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Abstract. The solutions of Skyrme's variational problem describe the structure
of mesons in a field of weak energy. The problem consists in minimizing the
corresponding energy among the functions from [R3 to S3 which have a fixed
"degree" without making any symmetry assumptions. We prove the existence
of minima and study their properties.

Introduction

Let φ be a function from [R3 to IR4 such that φ(U3) is contained in the unit sphere of
IR4. If we write

• and \A(φtf= Σ 3Φ dΦ

(by a Λ b we denote the alternating exterior product of a, fceIR4), we will define the
energy associated with the fields {^J by:

where γ and K are two positive physical constants.

Physical Motivation. T. H. R. Skyrme introduced in [S3] the problem of looking for
critical points of the functional δ in an attempt to find a model for the static
configurations of a field of mesons.

Recent works seem to indicate that in the large ΛMimit some gauge field theories
(QCD) are equivalent to an effective field theory of mesons (see \_W~\\ Unfortunately,
little is known about the large N limit. Some authors have suggested the study of the
case N = 3, hoping that this case will be very close to the large ΛMimit (see G. tΉooft
[tΉ 1,2]).

Another possibility is to attempt simplified field theories as was proposed by
Skyrme. Skyrme's idea consisted in adding to the nonlinear σ-model
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(i.e., J \Vφ\2dx) another term to prevent the solitons in the theory to collapse at
u3

certain isolated points with finite energy. The term he chose was J \A(φ)\2 dx, i.e. a
R3

term of order 4 in the first order derivatives. Besides he introduced some physical
constants, K and y (which are not yet well determined) to fit the experimental data.
Recent works (see [A,V,W]) have shown that Skyrme's choice was more than
reasonable, since the theoretical results obtained from his theory fit the experimental
measures very well.

For all these reasons Skyrme's model is very useful. However, it takes only into
account the pions and omits the other mesons, their masses and their interaction.

The Concrete Mathematical Problem. In Skyrme's model one can define a quantity
which is constant for a particular field of mesons, and it has the following analytical
expression

2π R

This quantity is actually the degree of φ composed with a stereographic
projection mapping S3 (the unit sphere of R4) into R3. It measures the "number of
times" that the space (R3 is mapped into S3 by φ. (For more details about the degree
see for example [ΛΓf.)

Let us now define the functional spaces to be considered. Let Y be the following

Now we define in Y an approximation-condition as follows:

(P) afφJcynCH^S^such that

Vφn - > Vφ, A(φn) - > A(φ) in L2(U\ (R4).
M-» + 00 «-> + oo

Then the set in which we will minimize $ will be:

X = {φeY\φ satisfies condition (P)}.

Notice that X and Y may be the same set, but this is still an open problem.
Anyway, we will only consider functions φ in X. In particular, for all φ in X N is an
integer since the degree is an integer for all smooth functions from S3 into itself and φ
satisfies (P). In the sequel N will be denoted by d(φ).

In order to obtain critical points of <?, we will study the following family of
minimization problems:

(/k) It = M{Λ(φ)\φeXk}9 /ceZ,

where Xk = {φeX\d(φ) = k}. In fact, the sets Xk should be the connected componets
of X in a convenient topology, but this is still an open problem.

Clearly the global minimum of $ in X is /0 = 0, and it is achieved by and only by
the constant functions.

In [S3] Skyrme studied this same problem for / c = l , but considered only



Skyrme's Model for Meson Fields 573

functions in X with a particular symmetry. In \_K-L~] Kapitanky and Ladyzenskaia
show that there is a minimum of S among all the functions of X which have this
symmetry and whose degree is 1. In [E2] we generalize this result to the general case
d(φ) = keZ and treat an intermediate problem (with less symmetry assumptions). In
[E2] we show also that if we denote by If the

m£{δ(φ)\d(φ) = k, φ satisfies (S)},
where

3ω: U+ -> (R such that for all xeIR3,

φ(x) = cosω(|x|),— -sinω(|x|)

then, at least for k ̂  0, + 1, /jf > / fc.
In this paper we fully solve the more general problems (/±1) and give necessary

and sufficient conditions to solve (Ik). To do so we use in a fundamental way an
inequality of isoperimetric type that we proved in [El]. It must be emphasized that
we make here an important use of the concentration-compactness method due to
P. L. Lions (see [LI, 2]).

From a mathematical point of view problem (Ik) is very close to the Yang-Mills
problem or to that of harmonic maps (see [B-C, Tl, 2, Ul, 2]). Indeed, the structures
of the energy functionals are not very different since the underlying physical
problems are closely related.

Furthermore, we would like to explain how the existence of minima of (/+1) is
useful for the construction of static configurations of meson fields. Skyrme sought
fields φ of minimal energy that are singular at a certain number of isolated points.
The number of these singularities is constant and their dynamical behavior is similar
to that of a particle coupled to the gradient of the residual field. In [S3] one may find
more complete explanations about the idealization of the particles in Skyrme's
model.

This paper is organized as follows. First we state our main results. In the second
section we give some technical lemmas and in the next two ones we prove our main
results. Finally in Appendices 1 and 2 we present some technicalities used in Sects.
Ill and IV.

Notation. Let us now introduce some of the notation we will use below. By BR,
B(y, R) we will denote the sets:

{xelR 3 | | x <R} and (xeR 3 | | x-y | < #}.

For any set A , \ A \ will represent the measure (Lebesgue-measure) of A and if $ is
the functional defined in (1), δ(φ\A) will denote (y/4π2) J (κ2\Vφ\2 + \A(φ)\2)dx.

A

Finally, for any xeIR3, δx is the Dirac measure at x, and for any α, b, ce(R4, we will
denote by a Λ b Λ .c (resp. a Λ b) the alternating exterior product of α, b, c (respec-
tively a,b\ which is an element of /13([R4) ~ U4 (respectively Λ2 ((R4)).

I. Main Results

Our main results concerning problem (/k) are the following:
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Theorem 1. For every minimizing sequence of 1^ (respectively I-±\ {φ^}ne^9 we can
find a subsequence of {φn}n>

 sίl" called {φ^}n, some yπe(R3 and a function φ +

(respectively φ~) in X such that:

in L2(R3,

In other words, d(φ±)=l, £(φ±) = I+l and φ+ (respectively φ ) is a minimum of
/! (respectively /.J.

In the case k Φ 0, ± 1, we are not able to prove such a precise result, and this is
due to the fact that little is known about the value of Ik and its variation with respect
to k.

Theorem!. Let k be in Z-{0, ±1}. Then, if for all /eZ-{0,/c} we have:

Ik<Iι + Ik-ι (2)

there is at least a minimum of lk.

Moreover, lim Ik = + oo and for all fe in Z we have: Ik = / | Λ |.
fc-» + 00

Remark. As we will see below, Theorem 2 still holds if instead of assuming (2) for all

/eZ-{0,/c}, we assume it only for all ίeZ with ^/2\k\ < \l\ + |/c-/|.
On the other hand, we conjecture that the sequence {/fc}teN is monotone

increasing but this question remains still open.

Next we try to explain how the study of /± 1 is a first step to understand the
structure of the static configurations of mesons in Skyrme's model.

Let us fix a finite number of points of R3, x l s . . . ,x m and ai9...,ame{l9 —I}.
Following Skyrme's idea of what a static configuration of mesons is, we will look for
a sequence {φn} in X such that the φn are constant on [R3 except for the union of small
neighborhoods of x, (1 ̂  /^ w), where all the φn behave "like" a minimum of Ia.. We
will construct such a sequence and we will show that it converges in a weak sense to a
measure with constant regular part and whose singular part is concentrated at
(x j , . . . ,xm} and is the idealization of m mesons placed at those points, which are
called sources. The precise result is as follows:

Let x l 5 . . . ,x m elR 3 , α 1 ? . . . , t f m e{l , —1} and PeS3; there exists a sequence {φn} in
X satisfying the following conditions:

m

(i) d(φn) = £ a{ for n large.

i = l

"

(iiiJ^ β^-Π-^i as n-* + oo.

(iv) φn( B( xh- 1 j => S3 for every ΐ = 1,...,m and for n large.



Skyrme's Model for Meson Fields 575

m

Moreover, {det ((/>„, Vφn)} converges weakly to £ α^x-., where δx denotes the
/ = ! '

Dirac measure at x.

Remark. Note that the meaning of this result is that S3 may be covered in a small
neighborhood of a finite number of fixed points of R3 (sources), with minimal energy.
This energy will increase, nevertheless, as rapidly as the radius of the neighborhood
of the sources becomes smaller. The high energy zones around the sources represent
the mesons. Far away from the sources, the energy is very small (or even zero).

II. Auxiliary Results

Before studying the minimization problems (/k), we will state a basic result proved in
[El], since it is necessary to treat (Ik). It consists in an isoperimetric inequality
relating the energy & (φ) to the degree d(φ).

Proposition 4. There exists a positive constant C such that for any φ in X we have

(κ3}, (3)

and as it will be shown in Corollary 12, C is achieved in X.
Moreover, it was shown in [El] that when Im φ c S3 and d(φ) φ 0, then we can

prove an inequality better than (3), namely:

2π^2 J I^^WJ vψn™-^ \ = II γ V7 I I L 2 I I ™\Ψ) IIL2^ (4)

Remark. From (3) we may easily infer an inequality relating d(φ) to $ (φ) as follows:

(5)
Ky

Let us now take φ in X and consider the dilated functions φ\') = φ('/λ)9

Since Vφλ = (l/λ)Vφ( /λ), it follows that d(φλ) = d(φ). Indeed this was expected
because φλ and φ cover S3 at a different "speed" but the same "number of times" and
with the same orientation.

Using (1) and the above we obtain

4π2 1
£(φλ) = κ2 J \Vφλ\2dx + J \A(φλ)\2dx = λκ2 f \Vφ\2dx + - J \A(φ)\2dx9 (6)

y ^ ^ 1 Λ a
' GT R3 (R3 R3

and so, the problems (/fe), trivially invariant by translations in R3, are not invariant
under the dilations φ -> φλ. In any case, we will see next that equality (6) allows us to
obtain some information about the minimizing sequences and the minima for Ik.

Lemma 5. Let us take fceZ and {φn}neN, a minimizing sequence for Ik. Then,

= lim \\A(φn}\2dx.
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Moreover, if there is a minimum for /k, φ, then,

κ2$\Vφ\2dx = $\A(φ)\2dx.
ra3 R3

Proof. Assume that the lemma does not hold. For any 1>0 we consider the
sequence {Φίi}neN. We know that for this sequence

X + j \A(φn)\2dx.
471 3

Since {(/>„} is a minimizing sequence and since d(φ%) = d(φn) for all n we find that
lim £(φn) ^ lim <ί(φ;J) for all λ > 0. Therefore,

( l - A ) κ 2 lim J | V φ n | 2 ^ - lim jl^JI2^. (7)

Now, lim J I Vφn

 2 dx Φ 0, since otherwise lγ would be equal to 0 (we see it taking
n~* + °° JR3

{φfy as minimizing sequence, with λ large). But by Proposition 4, / t > 0. Thus, (7)
proves the first part of the lemma. The second statement is proved in the same way.

Remark 6. Whenever we consider a function φ oΐX, we can decrease its energy (in an
optimal way) keeping its degree constant, by re-scaling it as follows

Indeed, by using (5) we see that the optimal dilation is achieved when we make
equal the two terms of the energy, and this is done for the dilation coefficient Γ. This
happens because the degree and the functional ^(φ) = κ \\ Vφ ||L2(R3} || A(φ) \\L2(Rz} are
invariant under the dilations φ->φλ, and the inequality ^(φ)^δ(φ) becomes an
equality when κ\\VΦ\\L\^} = \\A(φ)\\L2(R*Γ

Lemma?. For any φ in X there is PeS3 such that J \φ(x) — P\6dx < + oo, i.e., φ

converges to P at infinity in a weak sense.

Proof. By the Poincare-Wirtinger inequality we know that

(J \φ(x) - PR

 βdx)116 ^ C( J \Vφ\2dx)112 ^ C(f \Vφ\2dx)1/2 < + oo,
BR BR R3

where PR = —— J φ(x)dx.

Now, since for all R, PReB1, which is a bounded set of (R4, we may apply Fatou's
lemma to infer that

J \φ(x)-P6dx< +00,
R3

where P is any accumulation point of the set (PR}R>0. Moreover, the above
inequality cannot hold for two different Fs in S3, thus P = lim PR and therefore
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We note again that the problems (Ik) are invariant under the group of
translations in U3. This allows us to prove the following (which is to be expected in
view of the general arguments of P. L. Lions [LI, 2]):

Propositions. For all /c, /eZ, we have

Ik£Iι + Ik-ι. (8)

Proof. First we fix ε > 0 and choose φh φk-l in X such that

d(φi) = i, Wφά-Iil^ε and ||0t.-(l,0,0,0)||LV)< + rc

for i = /, fe — /. Then we choose R > 0 such that:

,;Bg)gε, i = Λ k-L

Then we can use Appendix 2 to cut-off φl and 0 f c_, and obtain two new functions
of X9 ψh \l/k_l satisfying

ΨΪ\BR = Φι\BR> Ψt constant in BC

2R,

^Cε, i = l,k-l,

where C is a fixed positive constant. Moreover, if we choose ε small enough, it is
obvious that d(ψι) = d(φ^ = i for i = /, k — /, since the degree of any function in X is
always an integer and |det(0(x), V0(x))| ^\Vφ(x)\2 + \A(φ(x})\2 for any x i n [R3 and
φinX.

Finally we define φeX by

φ = ψt in B2R,

φ(') = ψk_l('-M)mBc

2R,mthMεU* and |M|>4R.

For φ we have

d(φ) = k and \^(φ)-Il-Ik.l\

Hence, making ε go to 0, we obtain (8).

Lemma 9. For all k in Z, the following holds:

Proof. For any φ in X we have:

κ2\Vφ\2)dX^2κ\\A(φ)\\L2(Λ

rίfh rlsh rl(h
— dx (see [El]).

Furthermore, the integral J

dx2

50 50 50
dx represents the area covered by

5x2 5x3

0(R3), and hence it is larger or equal than |d(0)||S3|. Then, for all fceZ+,
/^(3yκ/2π2)|S3 | |H

We finish this section with a technical lemma that will be very useful in the sequel.
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Lemma 10. If a, b, c are three vectors in [R3, we have:

\a Λ b c\ ̂  \a Λ b\1/2\a Λ c\1/2\b Λ c|1/2. (9)

Moreover, for all B a [R3 and φ in X we have:

Γ dφ dφ dφ
J ^— Λ 3— Λ ^~
έ ^Xi ^x2 ^ :̂

Proof. If we denote by /flf, the quotient ——— and by habtC the quotient ^r~\^ ̂

is equivalent to hab,c lab ̂  l^2 ll'2 ll

a

12. We observe that for any α, feetR3, /α&e[0, 1];
hence, lab ̂  /^2. Moreover, habtC ̂  lbc and habtC^lac, since /if l&5C represents the sine of

the angle formed by c with the plane containing a and fe, while lbc (respectively lac) is
equal to the sine of the angle between b and c (respectively a and c). Therefore (9) is
proved.

Next, for any φ in X, we denote by (φ, ξ, 0) its spherical coordinates and we

consider for all xe(R3 the vectors

= (cosφ(x))Vξ(x),

c = (cos φ(x) cos ξ(x))VΘ(x).

From (9) we obtain that for all x,

cos2 φ(x) cos ξ(x) I Vθ(x) Λ Vξ(x) Vφ(x) \

^(cosφ(x))(cosξ(x))1/2\VΘ(x) Λ V^(x

Λ Vφ(x)\112)

and finally we apply Holder's inequality to obtain (10) by using the representation of

d(φ) and A(φ) in terms of the spherical coordinates given in Appendix 1.

III. Proof of Theorem 1

In this section we will just consider the case k = 1. As we have pointed out above, the
case k = — 1 can be treated in a similar way.

Let {φn}n€^ be a minimizing sequence for /18 The energies of the φn's will be

uniformly bounded and thus, we may extract a subsequence, still denoted by {φn}n£N,
such that there is a φ in X satisfying:

Vφn - > Vφ in L2(ff33, K4)-weak,
n~* + oo

A(φn) - > A(φ) "m L2(U\ (R4)-weak,
n-» + oo

φn - > (/> in L°°([R3)-weak*. (1 1)

Indeed, the weak limit of (/1(0Π)} coincides with A(φ) because of the particular

structure of A, as it is shown for a large class of nonlinear functions A in [B (see
Theorem 6.2), R, M or TAR].
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Next we observe that for any function φ in X, we can obtain another function of
X, $ with

and we do it simply by rotating the image of φ. If we rotate all the φπ's in order that
Φn(+ °°) = e> besides (11) we obtain also:

φn-e >φ-e in L6(1R3,[R4)-weak,
π ~* + oo

H-> + oo

where possibly {φn} is now a subsequence of the original minimizing sequence.
By using the weak lower semicontinuity of the L2-norm, we obtain from (11)

^)^~<n</υ=/ι. (i3)
Thus, if we had d(φ) = 1, φ would be a solution to our problem.
If for all φ in X, we denote by (φ, ξ, θ) its spherical coordinates, as we do in

Appendix 1, we see that for all n the function

/„ = <S(cos φn cos ξn)
2θ«n + (5(cos φ n)

2ξβ

n + δφ6

n + κ2 \ Vφ J2 +1 A(φn)\2 + δ\φn-e\6

are uniformly bounded in L^R3) for any fixed positive constant δ (it will be fixed
below). Indeed as we see in Appendix 1, \Vφn\

2 can be also written as
cos 2φ / ίcos 2^M |V0π | 2-hcos 2φM |Vξπ | 2 + |Vφn |2, and e has been chosen in order to
have||0J|L6(R3), ||^||Lv)? \\φn\\L6(R^< +00.

Therefore, || fn ||Lι(R3} = λn9 and {/lJn6N is a sequence bounded away from 0 and
+ 00.

Now we introduce the concentration function of φn as follows:

J fn(x)dx9 t>0. (15)

The notion of the concentration function of a measure was first introduced by
Levy [Le] and has been recently used by P. L. Lions (see [LI, 2]) to give a general
method (concentration-compactness) for the existence of minima of minimization
problems. This so-called concentration-compactness method will be used here to
infer the existence of at least one minimum for 1±.

P. L. Lions proved in [LI, 2] that for a sequence as {φn} (or {/„}), there are only
three possibilities:
(i) (compactness) There exists a sequence {yn} in [R3 such that:

Vε >0 3R > 0 s.t. for all n, J fn(x)dx ^ ε (16)
B(Vn,R)c

(ii) (vanishing) For all R > 0,

lim sup J fn(x)dx = 0 (17)
-* + oo ye^

3 B(y,R)
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(iii) (dichotomy) There exists a sequence {yn} in IR3 and two real positive numbers, α,
b, such that a + b = 1 and

Vε > 0, 3R, Rn > 0, lim Rn = + oo
n-» + 00

such that

I J fn(x)dx-aλn\^ε,
B(yn,R)

\B J^ cfn(x)dx-bλn\^s (18)

where λn= H/JI^.
Let us now prove that (ii) and (iii) are impossible in our case. We will do it in

several steps.

Proposition 11. There does not exist R>Q such that (17) holds. In other words, the
sequence {φn} cannot vanish.

Proof. First let us show that if (17) holds, then:

lim J \φn — e\β<*dx = 0 for all α > 1. (19)

We will do it by using an idea of P. L. Lions in [LI]. We choose a countable set of
points of [R3, {j J such that

— every x in IR3 is at most in m of these balls B(yh R\ where m is a fixed constant.
Then, since by the Sobolev's imbeddings, Wltί(BR)<L^ L*(BR), αe[l, 3/2], we may

write:

J \φn-e\6"dx^C( j (\φΛ-e\* + 6\φn-e\5\Vφn\)dX)*9Vi.
B(yt,R) B(yt,R)

Next, by using Holder's inequality we obtain

J \φn-e\5\Vφn\dxϊ( j \φn-el°dx)^( j
B(yi,R) B ( y i , R ) B(yi9R)

B(yi,R) B(yi,R)

where we have used that \e\ — 1, \\φn \\L^(R^ g 1.
Therefore, by (17),

sup J \φΛ-e\6 + 6\φn-e\*\Vφn\)dx = aH - > 0
i B(yt,R) n-* + oo

and then, for every /,

ίCdi-1 J (\φn-e\6 + \Vφn\
2)dx, (20)
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where C is independent of n, and lim an = 0. Finally we deduce from (20) that

\\φ,-e ||̂ R3) g CaΓ X \\φn-e ||£V) + \\ Vφn ||

and since || φn \\L^(R^ = 1 for all n, (19) is proved.
Now, for every nεN we consider the set

From (19) we deduce that lim \An\ = 0.
n-* + oo

On the other hand, since d(φn) = 1 for all n, we know that φn(^3) => S3. Moreover,
by the definition of An, φn(An) must contain the half-sphere of S3 opposite to e.
Therefore,

An

S_Φ_n
Λ

Sφn

dx2

Λ
SΦn

dx3

- = π2.

Finally, we observe that we reach a contradiction since by Lemma 10
dφn dφn 8φn

Λ - Λ~^ - Λ"^ -OXi OX2 0X
2 3

dx is bounded by a constant times \An\£(φJ3l\ and this

converges to 0 as n goes to + oo.
Let us now see that the only possibility for a minimizing sequence like {φn} is the

compactness in the sense of (16). To do so we have to exclude first the possibility of
dichotomy.

Proposition 12. Under our assumptions, (18) cannot occur. Therefore, (16) holds, i.e.,
{fn('-yn)}n is tight for some yneU3.

Proof. Assume that (18) is verified. First, since Rw-> + oo, we may suppose that
8 ̂  8# ̂  Rn. Then by using Appendix 2, we may "cut φn into two pieces," that is, we
may define two new functions in X, φ* and φ2, which satisfy:

φl

n = φn in BR, φl = (1,0,0,0) in BC

8R,

f(Φn BSR - BR) ^ C£(φn; B8R - BR) ^ Cε, and (21)

φ2

n = φn in Bc

Rn, φ2

n = (1,0,0,0) in BRn/8,

^(Φn BR» ~ BRn/8) ^ Cδ(φl BRn - BRn/8) ^ Cε. (22)

Moreover, if we take ε small enough, we may deduce from (21)-(22) that

Therefore, since the degree of any fuction in X is an integer, for all n we must have
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Now two cases are possible:

-kn,lne{0,l}

In the first case we would have a sequence in X, {ψn}, with

(23)

Indeed the equality lim <?(^n) = /! is incompatible with (18). But (23) can never
H-» + 00

hold, since it contradicts //s definition. Thus the first case is impossible. Let us now
see that the same happens in the second one.

Without loss of generality, we assume that | kn \ ̂  2. Then, from φ*9s definition we
infer that for n large we have

where L is the best constant in the inequality

Hence, if we choose δ such that 1 + δ(L + 1) < 2/ v/2 and ε small, we find

and this is enough to conclude, since it contradicts Lemma 9 or (28).

Proposition 13. Let {φn} be a sequence in X such that
dφn dφn dφn

OXΛ UXi UXτ
IS

tight for some yπe[R3, then, there exist a countable set of points, x1,... ,xn,... in R3 and
vl9...,vn,... in R satisfying:

π ,Vφ n ) >-Ldet(φ,V0) + £ Vίδ i£ m ^'(R3)-vm*/c, (24)

'" A

 g(ftπ Λ

 SΦn

where by {φn} we denote {φn( + yn)} and by φ, its weak limit.

Moreover, the sequence of L1-functions

weakly to a measure μ satisfying

dφ dφ dφ

1 dx2

+ Σ ^Λ,

converges

(25)
1 2

with μt ̂  2π2vf/ 4 for every z = 1, . . . m.

Proof. The result is proved in quite a similar way as Lemma I.I in [L2]. In order to
do the same here we just have to check some technical details.

First we have to prove that there exists a positive constant C such that if φ were
equal to the north pole of S3 almost everywhere we would have

(26)

for all
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This is easily verified. By Proposition 4 we have

583

dx,
• Λ ••• Λ -

d(φφn) dx

for all φe&(U3). Since the left-hand part of this inequality is equal to | J φ4 x
R3

det (φn, Vφn)dx13/4> (26) will be proved if we show that the right-hand integral

converges to J φ3dμ. But,

ί Λ ••• Λ

+ Σ ί l < ? l 2 -£-

(ψΦn>

ί

f- dx J | < ;
R3

^ A dXj

d
c

dφn A
dx

Φn

**

1

dx,

• Λ
$X3

dx

>0 in

where β is the set of permutations of (1, 2, 3).

Then, (26) is proved because φn >0 in Lfoc(R4,U4) and Λ(φn)-
n-> + oo w-» + oo

L2([R3, [R4)-weak.
To treat the case where φ is not equal to the north pole almost everywhere we

need some additional information about the convergence of the sequence
{det((/>„,¥</>„)} towards v.

In particular we need to show that

J φ*det(φn-φ,V(φn-φ))dx- J φ ) Vφn)dx - >J φ4 det (φ, Vφ)dx.

We set ψn = Φn-φ and make the convention that df/dx0 =f for all /. Then we
compute easily that

det (ψn, Vφa) - det (φΛ9 Vφn) - det (φ, Vφ)

where 0%*, b^β

y and cj ξ are equal to + 1 or -1, and 9 = {permutations of (0,1,2,3)}.
Now we multiply this equality by φ4 and we integrate it over (R3. The terms in

which φn appears at most twice are shown to converge to 0 as n goes to + oo by using
(11)-(13), and the same can be done with the terms of the form

V ~ L / Λ Λ t/Λ i C/^v^

where α /O. Thus the only difficult term is J φ4det(φ,Vψn)dx.
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After some tedious computations one shows that since φe£^(IR3, (R), we have

3 J φ'detίAVWώc- J φ*

f f
J

R3\(

, Bψn dφn dφ\~]
π,/ ,̂/?,-^

5xx 5x2 dx3/J

where the lΛβλγ are integers independent of φ. Then, it is easy to conclude.
Then, once we have proved (26)-(27), we follow the general lines of the proof of

Lemma I.I in [L2].
We are going now to finish the proof of Theorem 1. By using propositions 11,12,

13 we have shown that either d(φ) = 1 or there must be at least a vt Φ 0 (and therefore,
μ, Φ 0 as well). But if this were to happen, it would mean that the area covered by φn

in B(Xi,r) with r small is bounded away from zero. And this is in contradiction with
Lemma 10, which tells us that the total energy being bounded, the area covered by φn

in B(xhr) is bounded by a constant times r3/4.
Therefore, vt = 0 for all i and d(φ) = 1, which means that φ is a minimum for / x .

IV. Proof of Theorem 2

We observe that Theorem 2 is not an existence result, but only gives a sufficient
condition for minima of /k, k Φ 0, ± 1, to exist and to be stable in some vague sense.
This is due to the fact that we do not know of the relationships existing between the
values of Ik and / :. It seems possible, for instance, that Ik = \ k \ I± for all k. In this case,
the condition given in Theorem 2 would not be fulfilled. However, it would still be
possible that minima of Ik exist, but being unstable in some sense.

Proof of Theorem 2. Everything we did in the proof of Theorem 1 applies here except
for the ruling out of the dichotomy. Let us then prove that this cannot happen under
the conditions of Theorem 2, and the proof will be complete.

We will assume that (18) is satisfied. Then we use Appendix 2 to build up two
functions of X, φl

n and φl such that:

φί = φn in B(yH9 K), φ2

n = φn in B(yn9 Rn)
c.

As in the proof of Proposition 12 we observe that for n large and ε small we must
have d(φn) + d(φl) = k and \d(φ%)\ + \d(φ%)\ > k, since the opposite would contradict
7fc's definition.

Next we observe that if (2) holds for a fixed fc, then there exists a constant we(0,1)
such that Ik < m(Il + /*_/) for all /eZ — (0, k}. Indeed by Proposition 8 and Lemma 9
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we see that if |/| ̂  2fc, then,

and

Moreover, in [El] we obtained an estimate for I± as follows:

(28)
«+7l

Hence, for | / | ̂  2/c, we have

Then we may define m= max I - - — I and m satisfies ^— < m < 1.
ίeZ-{0,t}\ •''"'"•'* -'/ 2

We apply this to /„ = d(φl) and kn = k-ln = d(φl) to obtain

Therefore if we choose ε small, n large and δ such that 1 + δ(L H- 1) < 1/m, we reach a
contradiction. And this concludes the proof.

Corollary 14. T/ze best constant of the inequality (5) is achieved in X. That is, there
exists φ in X such that:

S(φ)\d(φ)Γ^ = mi{^(φ}\d(φ)Γ^\φeX}. (29)

Moreover <j>eX\vX2vX3 and ίfφeXi9 then C~l = (2π2/κy)Iii~
3/4.

Proof. By Proposition 8, Lemma 9 and (28) we immediately see that the
M{£(φ)\d(φ)\-3/4\φeX} is in the set {/1,/22~3/4,/33-3/4}.

Now, if this infimum is equal to 1^ the proof is complete. Assume then this
infimum (actually, minimum) is either equal to /22 ~ 3/4 or to /33 ~ 3/4. In the first case
we have /22~3/4 ̂  7 l 5 and therefore, I2 < 27^ So we apply Theorem 2 to conclude.

Finally, if /33~3/4 ̂  Ii9 /22~3/4, then,

and again Theorem 2 allows us to conclude. Indeed, for kφ{Q, 1,2, 3} we use
Proposition 8, Lemma 9 and (28) to prove the inequality Ik + 7 3_ k > 73.

The second case can be treated in a similar way.

We will prove next our last result, i.e. the one given after the statement of
Theorem 2, which gives a hint of how Theorem 1 may be applied to the
understanding of the structure of static configurations of mesons. As we already said
in the introduction, Skyrme was interested in configurations of minimal energy.
Moreover, the mesons will correspond to points of high energy in a field of weak
energy.
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Let φ (respectively φ) be a minimum of / x (respectively I-.J such that

\\Φ-P\\L6(R*)> \\ψ-P\\L6(R*)<+«>'

The sequence {φn} will be constructed as follows:

(a) Vxφ\JE(xi9-\ φn(x) = P.
i=l \ n/

(b) if at = I and xeB(xi9 l/8n),
0ll(x) = 0(8w2(x-xi)).

(c) If af = - 1 and xeB(xi9 l/8n),
0>i(x) = ̂ (8n2(x-xί)).

m

And in (J (£(xf, 1/n) — B(xh l/8n)), we define $„ by using the cutting method
i= 1

introduced in Appendix 2. Let us verify that the sequence {φn} satisfies conditions
(i)-(iv). (ii) is immediate, (i) and (iv) are easily verified since the degree is a function

with integer values. Indeed, since ^1 φn\ (J (B(xh l/n) — B(xh l/8rc) I is small for n

large (see Appendix 2) and |det(0, Vφ)\ ^ 2(\Vφ\2 + \A(φ)\2) a.e., (i) and (iv) must
hold. That (iii) holds is a consequence of (6) and Lemma 5. Finally, the last statement
follows from Proposition 13.

Appendix 1

We will give here the expression of the degree, the area and the energy of any
function φ of X in spherical coordinates.

We choose a system of four orthonormal vectors in R4 and we may write any
point of [R4 with respect to them as:

y = (cos φ(y) cos ξ(y) cos θ(y\ cos φ(y) cos ξ(y) sin θ(y)9

cosφ(y)smξ(y),smφ(y))

where φ, ξe\ — 7r,— and 0e[0,2π].

In the same way, for any φ in X there are three associated functions defined in !R3,
9, ξ and θ satisfying

φ1 ΞΞ cos φ cos ξ cos θ,

02 Ξ cos φ cos ̂  sin θ,

</>3 Ξ cos φ sin ξ, (Al)

φ4 = sin φ.

As we saw in [E2], the degree of φ is given by

and the generalized area covered by φ(R3) by

dφr Λ

OX1 OX 2

dx.
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ι\
0 ,
0 * ] =

o

/o
1

0

\ o

, Έ-

0
0
1

0

Then, after some lengthy computations we obtain:

dφ dφ dφ
~— Λ -— Λ -— = D(cosJ φ cos2 ξ cos θi
dx1 dx2 dx3

+ cos3 φ cos2 ξ sin θj -f cos3 φ sin ξ cos £/F

+ sin φ cos2 φ cos ξΊ), with Z) = det(VΘ, Vξ, Vφ).

dφ dφ
Then, -— Λ Λ -—

UX± 6^3

for all φ in X we have

and

d(φ) = — J cos2 φ cos ξ(VΘ Vξ Λ Vφ)dx,

φcosξ)D. So,

(A2)

Ar(φ) = J cos2 φ cos ξ | Vθ - Vξ Λ Vφ | dx. (A3)

Let us now calculate the energy / in spherical coordinates. Assuming that φ is
written as in (Al) we obtain after some tedious computations

I Vφ\2 = \Vφ\2 + cos2 φ \ Vξ\2 + cos2 φcos2 ξ\VΘ\2. (A4)

Finally let α, β be in {1,2,3}. For any two functions /, g, we set A{f =
df/dxa Λ dg/dxβ, and we obtain

dφ dφ

dxn dxa
= (cos2 φ)(A*f)2 + (cos2 φ cos2 ξ)(A*f)2 + (cos4 φ cos:

We may then write

I A(φ) 1 2 - t [(cos2 <p)μs<)2 4- (cos2 φ cos2 ξ)(A* °)2 + (cos4 φ cos

(A.5)

Appendix 2

In the following we will cut a function φ of X to make it constant near infinity by the
use of a certain family of cut-off functions. We are interested in knowing how much
energy we spend doing so.

We will cut as well the functions of X in order to make them constant in the
neighborhood of a given point of R3.

Let us introduce a cut-off function WEC°°([R3, (R+) satisfying

, m=lmBl9 m = QmBc

2.
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Then, for all R > 0 we define mR by

mR satisfies: 0 ̂  mR ̂  1, mR = 1 in BR, mR = 0 in J5°2Λ.
Given any function φ in X, we consider its spherical coordinates, as in (Al), and

then define a new function $ = (φ, ζ, S) by

....
(A6)

We note that ^ = φinBR and ^(x) = <£( + oo) = (1, 0, 0, 0) for all x with |x| ^ 8Λ.
Then we prove the following:

Proposition A2. If φ is any function of X and we define $ as above, the relationship
between the energies of φ and $ is given by the following:

ά (A9)

\ B8R - BR) = g($; B'R) ^ Cg(φ; B8R - BR). (A 1 0)

Moreover, $ is an element of X.

Proof. (A9) is immediate. Then let us prove (A 10). The first equality in (A 10) is also
trivial because $ is constant in J?C

8R. Moreover,

J \V$\2dx= I \Vφ\2 + cos2φ\Vζ\2 + co
B2R~BR B2R~BR

By using Holder's inequality and | |mΛ | |L* = 1, we obtain

J \V$\2dx
B2R ~ BR

^2 J \Vφ\2dx + 2( j \VmR\3dx)2/3( j c
B2R~BR B2R~BR B2R~BR

^2 I \Vφ\2dx + 2 j |Vm|3rfx)2 / 3( j \Vφ\2)^C J \Vφ\2.
B2R~BR

 B2~Bl B2R~BR B2R~BR

Since

$\VmR\3dx= J \VmR\3dx= j \Vm\3dx= $ \Vm\3dx^C.
R3 BIR-BR B2~Bι R 3

In the other term of the energy δ, i.e., j \A(φ)\2dx, the only integrals to be
B? K ~ BR
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checked are:

f cos 2 φcos 2 fΓ X
R-BR LM=!

and

4

B2 R-BR

Let us check one of them, for example:

cosφcos 2 ?

I cos2φcos2£(Λf2)
2ί/x

f cos2 φ cos2

dxl J

B2R~BR

+ 2 J (coί
B2R~BR

and by using Holder's inequality, we may estimate the last integral by

32π2

ίn
D2R~°R

since θ(x) is bounded by 2π and

C

In the set £4K — B2R we have the following:

; B4R - 52Λ) - J (I Vφ| 2 + cos2 φ\V(m2Rξ)\2)dx
B4 R~B2R

since the terms in V? vanish. The remaining terms may be estimated as before.
Finally, the last integral to estimate is

φ)\2dx^C J \Vφ\2dx.

Remark. If instead of m we consider a new cut-off function neC°°([R3) satisfying

we could as well "cut" any function φ of X to obtain $, such that

$ = φ in #κ,
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where C is independent of φ and R, and by φ(0) we mean the lim — — J φ(x)dx.

To show the last statement we consider two possible cases. If φeC^lR3, S3), we
can conclude. If φφC1^, S3\ then by the definition of X there must exist a sequence
{φn} cCHff^S 3) such that Vφn - ̂ φ,A(φn) - >A(φ) in L2(R3, R4). Then by

«-* + oo «-» + oo

using the same arguments as above, we see that {$„} a C^IR3, S3) and

Hence
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