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Abstract. The q states Potts model exhibits a first order phase transition at
some inverse temperature βt between "ordered" and "disordered" phases for q
large as proved in [1]. In space dimension 2 we use the duality transformation as
an internal symmetry of the partition function at βt to derive an estimate on the
probability of a contour. This enables us to prove the preceding result and the
following new results:

(i) The discontinuity of the mass gap at βt.
(ii) The existence of a strictly positive surface tension between two ordered

phases up to βt.
(iii) The existence of a non-zero surface tension between an "ordered" and

the "disordered" phase at βt.

I. Introduction

An usual situation in statistical mechanics is the coexistence of several ordered
phases (corresponding to the different ground states of the Hamiltonian). Such a
situation is very well described by the Pirogov-Sinai theory [8]. At high
temperature there is a unique phase (the "disordered one"). We sketch two typical
behaviours.

1. There is a second order phase transition at βc (critical inverse temperature)
and above βc a surface tension between different ordered phases which goes to
zero at βc. (This situation occurs in many models such as the Ising model [3, 4].)

Moreover at high temperature the two points function decays exponentially in
the distance with a mass gap vanishing at βc, as shown by Simon [2] (see also
previous works of Dobrushin and Pechersky [28]).

2. The phase transition is first order at βt. Such a situation was exhibited by
Dobrushin and Shlosman [22] for continuous spin and by Kotecky and Shlosman

* On leave from Ecole Normale Superieure Takaddoum, Rabat, Marocco
** Laboratoire propre du CNRS



528 L. Laanait, A. Messager, and J. Ruiz

[1] for the Potts model. They use as an essential tool the reflexion positivity. We
want to emphasize that this transition between ordered and disordered phases
does not correspond to ground states of the Hamiltonian.

We exhibit an internal symmetry of the partition function for the two
dimensional Potts model: the duality transformation (in fact this symmetry exists
for a wide class of models). This symmetry sends the partition function with free
boundary conditions (b.c.) at βt into the partition function with "0" b.c. at βt - up to
boundary terms. It enables us to prove the Peierls condition [3] for the contours
which separates the "ordered" and the "disordered" regions with arbitrary
boundary conditions. From these basic estimates we get the following results:

a) The coexistence of q ordered phases and of a disordered one at βt. Moreover
the spontaneous magnetization is discontinuous at βt.

b) The discontinuity of the mass gap at βt.
c) The existence of a strictly positive surface tension between two arbitrary

ordered phases up to βt.
d) The existence of a surface tension between an ordered phase and the

disordered phase at βt.
The paper is organized as follows:
- Chapter 2 fixes the notations and contains the results
- Chapter 3 describes the duality transformation.
- Chapter 4 concerns our basic estimate for the probability of a contour.
- Chapter 5 is devoted to the proof of the theorems.

II. Definitions and Results

The cell complex formalism is very efficient for the study of duality in statistical
mechanics [9,26,27] as noticed by Drouffe [25]. So we will introduce the Potts
model with this formalism in order to have a coherent formulation: the lattice will
be considered as a cell complex and the configuration as 0-chains taking their
values in the group Zq.

ILL Cell Complex Formalism

We refer the reader to Alexandroffs book [17]. A cell complex is a set of elements
called cells with the following properties: to each cell is assigned a non-negative
integer called its dimension, the upper bound of the cell dimensions is called the
dimension of the complex. Each cell of dimension sr is in correspondence with
another cell (—s r) of the same dimension (cell with opposite orientation); to two
cells sr and sr_ 1 is assigned an integer I(sr, s,.-1) called the incidence number such
that: /( — 5,.55r_1) = /(5l._1, — sr)= — /(sns>-ι) A cell complex is said to be
an α-complex if the following condition is satisfied: for any two cells s r + 1,5 r_1

Σ/(sr+1,sr)/(sr,sΓ-1) = 0. (2.1)
Sr

(Another terminology is sometimes used: a cell space instead of a cell complex, and
a cell complex instead of α-complex; the above have been introduced by
Alexandroff in [17].)
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An r-chain cr over the coefficient domain G (G is a ring with unity) is an odd
function of the r-cells over G. Any r-chain may be written as a sum of monomial
chains (the group law of G is denoted additively).

Cr = Σ"Mr (2.2)
sr

The monomial chain m - sr is the chain that takes the value m on sr and vanishes on
the r-cells different of ± sr: mSr = cr(sr). The set of r-chains over G forms an abelian
group denoted Cr(S, G). The /chains of Cr(S, Έ) [denoted Cr(S)] are called integral
chains, the rank of this group is denoted Nr(S) (or simply Nr}, 2Nr is the number of
r-cells.

On a cell complex there is a natural scalar product,

(s, s') = 1 if 5 = s' and 0 otherwise. (2.3)

This gives for r-chains,

(2.4)

One defines similarly the scalar product of a G valued r-chain with an integral
chain [if meG, fceZ, fcrn^m + mH- ... +m(k times)]. Hence the scalar product
(cr, 5r) of the chain cr and the integral chain sr is the value cr(sr} that takes the chain
cr on the r-cell sr.

The boundary of an r-cell is an integral chain defined as

&Γ=Σ/Cs r,s r-ιK-ι (2 5)
Sr-l

The coboundary of an r-cell is the following integral r + 1 chain,

3*S r =Σ/(Sr + 1 ,SrK + l (2.6)
S r+ 1

Notice that /(sr, 5,_ J = (3sr, s r_ J = (sr, d*sr_ J.
By linearity the boundary operator maps, r-chain into r — 1 chain and the

coboundary operator maps r-chain into r + 1 chain and

(δc r,c r_1) = (c r,δ*c r_1). (2.7)

A cell complex S' is said to be a cell subcomplex of a cell complex S if every
element of S' is an element of S, every two elements sr, sr_ί of S' have the same
incidence number in S as they do in S\ and every pair of opposites in S' is a pair of
opposite elements in S. A cell subcomplex of S' is said to be closed (respectively
open) if it contains with every cell also the cells of its boundary (respectively
coboundary). We denote S' the closure of S', i.e. the cell complex obtained by
adding to each element its boundary cells.

The lattice Έ2 may be considered as a cell complex denoted S(Z2) - 0-cells are
vertices, 1-cell links and 2-cells plaquettes. The orientation is the usual one and the
incidence number takes the values ± 1 if s,.-ι belongs to the boundary of sr with
respect to the relative orientation and the value 0 otherwise. The boundary and
coboundary operation are illustrated in the following picture:



530

9

L. Laanait, A. Messager, and J. Ruiz

i --- 1
i ___ t

*~r
Consider now a cell subcomplex S of S(Z2\ restrict the incidence function to

this subset [then the boundary operation does not coincide with the same
operation in S(Z2)]. S will be an α-complex if it verifies (2.1). In particular closed
and open cell subcomplex are α-complex. Ω being a subset of Z2, we define closed
subcomplexes of S(Z2) as follows:

S(Ω), ΩC Z2 : S(Ω) = ), S2(Ω)} ,

where

Let

S\Ω) = {s, e

5C(Ω) = {s, e

belongs to S°(Ω)

/all the s^ such that

/ belongs to S1(Ω)

6 S(Z2)/S(Ω) s.t. sj φ 0}

0 e S(ί2) s.t. ( d s ί 9 s0) Φ 0} .

We define the boundary cell complex of S(Ω) denoted ^S(β) as the closure of S&(Ω),
and the coboundary cell complex of S(Ω) denoted #S(β) as the cell complex obtained
from SC(Ω) by adding to each element of SC(Ω) its coboundary cells.

Ω S(Ω)
*S(Λ)

In the following we shall consider only 2-dimensional complexes and shall
denote respectively v,l9p the 0-cells, 1-cells and 2-cells.

II.2. Definitions and Main Results

We refer the reader to [10] for a general review on the Potts model. To introduce
the 2-dimensional rectangular ^-states Potts model one associates to a cell
subcomplex S of S(Z2) and to any 0-chain c of C°(S, %q) (i.e. a configuration),
the hamiltonian
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The boundary operation is restricted to the complex-S - the sum is only over
positively oriented links and δ is the Kronecker symbol (δmtm> = 1 iϊm = m/ and 0
otherwise).

The partition function associated to S is given by

Ξs(β)= Σ e-'H*v. (2.9)
ceC°(S,Zg)

The boundary conditions (b.c.) in (2.9) are given by the geometry of the complex S:
if S is open we have the usual "0" b.c., and if S is closed we have the so-called free
("/") b.c. In the following we will be interested in more general boundary
conditions, so for the closed complexes S(Ω) we define a characteristic function on
the 0-chain of &S(Ω} (for example χ(°c)= Π <5<c,t;),o> x(C) = l\ an(i the partition
functions V "e*s ' ' /

Ξb

s

 G (β)= Σ e-™χb'c (c). (2.10)
ceC°(S,Zq)

For every measurable function g with respect to the conditional Gibbs density
βHs(c)}χ^)'9 we introduce its expectation

Σ ge~ ̂ (%c - (2. 1
ceC°(S,Zg)

Let < >b c (β) denotes the infinite volume limit of < y%fa(β) when
according to the D.L.R. equations [20].

These limits are uniquely defined for "0" and "/" b.c. (this follows from
correlation inequalities). Among the interesting expectations we consider

(i) the magnetisation (up to a constant)

β ) , (2.12)

(ii) the long range order (two point function),

(2.13)

where υ and vf are positively oriented,
(iii) the mass gap or inverse correlation length,

m(j8)= lim -— — I n ^ ^ ^ o - ί / o , (2.14)
d(t?,t;')-»oo a(V,V) [_\ q/ J

where d(ϋ, f x) is the euclidean distance between the vertex v and ι/. It follows from
correlation inequalities that this limit exists.

Theorem 2.1. Tfte 2-dimensional q states Potts model exhibits a first order phase

transition at the self dual temperature βt(q) = \og(yq + 1) if q > 25: ί/ie derivative of
the free energy with respect to β and the magnetisation are discontinuous at βt(q).

a) At βt(q) there are at least q + 1 states < >α, α e {0, ...,q — 1 } and < Y such that
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b) For β<βt(q) the magnetisation M(β) is zero.

It had been proven by Hintermann, Kunz, and Wu [15] that the free energy of
the 2-dimensional ^-states Potts model is analytic in β except possibly at βt

provided q^4. So the structure of translation invariant Gibbs states can then
be known in this case [14]: for /JΦ/J f every translation invariant state is a linear
combination of the states < >α. It then follows from Theorem 2b that for β<βt

there is only one translation invariant state.1

Once one knows that several phases coexist at a given temperature, an
interesting problem is the existence or not of a surface tension between these
phases. One way to define the surface tension microscopically is to consider a
partition function with "mixed" b.c. [7,11]. More precisely consider the following
rectangular box:

-M— 1 ̂ x2^M} . (2.15)

The surface tension between two ordered phases is defined by [5]:

where

χ*ι*2(c) = Yl δ ( c υ ) Λ Π δ(c,v),a2'

&s is the cell subcomplex of ^S(Ω) such that its cells have non-negative
coordinates. The product in χαια2 is over positively oriented 0-cells.

The surface tension between an ordered and the disordered (free) phase is
defined by:

L~>™ \^S(Ω)\P)^S(Ω)\ί

where

Theorem2.2. For q>μ4 with μ = 2,Ί (the self avoiding constant), we have the
following properties:

a) ται'α2(β) is strictly positive for β^βt(q), αx φα2 e {0, ...9q- I}:

b) τ°^(β) is strictly positive at βt(q):

τ^(β)^lnq-

We believe that τ°^(β) is non-zero only at βt.

1 We have been informed that Martirosian investigates this problem for general Potts
models [30]
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The surface tension between two ordered phases can be compared to the mass
gap using duality transformation and correlation inequalities.

1 Q- 1

r°αOS*). (2.18)

The following theorem shows when q is large the discontinuity of the mass gap at
the transition point βt contrary to the Ising model (q — 2), where the mass gap is
continuous,

Theorem 2.3. If q>μ4,

a) m(β)>2(±lnq-\nμ) if β^βt(q),

b) m(β) = 0 if β>βt(q}.

We describe in the following picture the expected phase diagram of the
2-dimensional Potts model which is presumably typical of models with large
entropy.

Transition line :

2 order phase
transition

q +1 phases

q = 2 qc=Λ q

Remark 2.4. Our results are obtained for q integer, but it is believed that they can be
extended to q real.

III. Duality Transformation

We refer the reader to [26,27] for the duality in abelian lattice systems.

11 LI. Dual Lattice, Dual Complex

Let S be a 2-dimensional cell complex, the cell complex S* is said to be dual of S if
there is a one to one correspondence,

s r<->sf_ r, (3.1)

between the r-cells sr of S and the 2 —r-cells s*-r of S* such that the incidence
numbers satisfy the relation

The lattice
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is the dual lattice of TL2. For any cell subcomplex S oίS(Z2) there is a dual complex
S* which is a subcomplex of S((2£2)*).

The correspondence (3.1) is shown in the following picture:

p* =

V* ΞΞ I X I

I I

—

1 1 1 1
1 X, 1 W 1 W 1 X

+
ί-J-

^- *—
t 1 ι

-i-
f I \k 1 J

-i-
( 1 3

— *--

r ' ι

-f-
' ' 5
k i ]

-*--
( ' )

--*"
f ' 1

-4-
' I ik 1--*-
C 1 3

-4-
t I i

"i i
X ' X ' X
X , X , X

._J 1 1

Notice that if S is closed, 5* is open and

«? = %? if 5- (3.3)

We introduce the mapping * (Hodge operation) which sends Cr(S,TL^ onto

It follows that

d*cr = d*cr *dcr =

(3.4)

(3.5)

Therefore the mapping * determines an isomorphism between
(i) The group of Zg-valued r-cycles of S : Zr(S, Zq) = [c e Cr(S, %q)/dc = 0} and

the group of ^-valued 2 — r cocycles of 5*:

(ii) The group of ^-valued r-boundary: Br(S,Zq) = {ceCr(S,Zq)\c = dcr

and the group of ^-valued 2 — r coboundary of S*

Notice that since dd = Q [this follows from (3.1)] every boundary is a cycle: the
converse is not true in general and the factor groups Hr = Zr/Br, Hr = Zr/Br are
called respectively Z^-valued homology and cohomology group. The rank of
Hr(S, Z) [denoted Hr(SJ] is a topological invariant called r-betti number, denoted
πr(S). We have πr(S) = π2~Γ(S*).

7/7.2. Duality Transformation

We assume that S is an α-complex. To derive the duality relation for the partition
function (2.9) we first consider the Fourier expansion of eβδ,

9-1
= Σ

2iπ
me(c, <

eβ-l ί-1

- Σ ι
q nv=o '-1

f2iπ
exp< —
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One defines β* by

(3.6)

and cl = Σ mt ' Λ then
teS

2/7Γ
. .

q cec°(s,zq) \t q
CleC^(S,Zq)

We use the relation (2.7) and sum over the elements of C°(S, Zy,

σ ί/n — 0-βN—
q

/Pβ- ] N l

-Ni^ *

If S is closed then it is torsion free (this follows from Alexander's theorem [17]). If
one assumes that πx(S) = 0 (i.e. there is no "hole" in 5), then Z^S, Zq) = B^S, %q).
Since π2(S) = 0, we have

ί f e β — \ \ N l

\ q J c2eC2(S,Zq) \t J

Taking into account the correspondence (3.1) and the isomorphism * between
C2(S,Zq) and C°(S*,Zβ), we obtain

^s(^)= e(β β}N (S} qN (S}Ξs*(β*) - (3.7)

Notice that Ξ^(βήί) = Ξs4β).
In the following we will be interested in the self dual line defined by βt(q)

= ln(]/ί?+ 1). This line is obtained by letting β = β* in (3.6).
We now prove that the duality factor

is a boundary term.

Lemma 3.1. Let Ωc%2 and S = S(Ω), then:

^s(Ω) is the coboundary complex of the complex S(Ω).

Proof. Let

J(S, v) = {number of positively oriented 1-cell { of 5 such that (d/, υ) φ 0} .

Then since every 1-cell contains two 0-cells in its boundary



536 L. Laanait, A. Messager, and J. Ruiz

where the sum is restricted over positively oriented 0-cells. Then

- Σ

4 / 4 ves:
J(S, v) Φ 4

For each z; in S such that J(5, ι;) φ 4, 4 — J(S, y) is the number of positively oriented
1-cells t in S(Z2)/S such that (δ^tOΦO. Then

t eS

This ends the proof of the lemma.

Proposition 3.1. Let Ωc%2 and assume that the complex S = S(Ω) has trivial
homology. Let L, L1? L2 be \-dimensional cell subcomplexes of S such that

S£(ft) = 9

 4 38,08,),

NWsϊΓ / 1 \ 1°

Γ Π (i-«,) Π*,T(A)=« 4 Π (δ* —r) Π α-V) (A),
1/eLι <?eL2 Js L**eLΪ\ /£// <?*eL*2 Js"*

Hereafter we use the abbreviation δ^ for δ(Cid^t0 when there is no possible
confusion.

Proof. The first statement follows from (3.7) and Lemma 3.1. For the correlations
we use δ^eβ(δf~ 1) = δ^(l — δ^}eβδf= 1 — δ^ and proceed as for the partition function.

Proposition 3.1 shows clearly the analogy between the spin flip transformation
in the Ising model and the duality transformation in the Potts model for which the
free phase is sent into the ordered one with an energy cost proportional to the
boundary. These relations are the analogous of the usual symmetry in the σ
variables for the Ising model. At non-zero β* — βwe obtain a situation similar to an
Ising model with magnetic field. In fact the Lee- Yang theorem had been proved in
this case for q^4 [15].

IV. Contour Estimates

We define the contours for the Potts model analogously to those defined in [1]. Let
Ω C Z2 be a rectangular box, S = S(Ω} the associated cell complex and c a 2^-valued
0-chain of C°(S, Zq) (i.e. a configuration). We say that a link / of S is ordered (for c)
if (c, 3/) = 0 (we draw it —), and that it is disordered if (c, dί] φ 0 (we draw it —).

Assume that for a given configuration there exists an "Island of pure phase" i.e.
a connected subcomplex S' oϊS such that all the links of S' are ordered and all the
links of the coboundary %s, of S' are disordered. The subcomplex #s, is called
contour of the configuration c.
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Definition. A (geometric) contour Γ is an open complex which is the coboundary
complex of a closed connected complex called E such that E = S(ΩE) ΩEC%2. We
only consider contour Γ constructed from a given configuration c of C°(S, TL^.

We let I = S/EvΓ. Then Γ is the coboundary of the closed subcomplex /.
Notice that I = S(Ωj) with ΩjC%2.

Moreover Γ* divides Ω into ΩE and Ωf.

Definition. A contour is called elementary if Γ* has one connected component
(π°(Γ*) = l). (In the usual terminology of contours Γ* corresponds to a self
avoiding closed walk.)

We define the set of configurations associated to the contour as

/for every vertex v of J*£ (c, ι;) = (

' for every link { of Γ (c, άf) φ 0
(4.1)

(In the terminology of [1] Γ is a precontour and CΓ an union of contours.) We call
outer contour a contour such that 3

Π 1 i Π
We define the probability of an outer contour by

P/,(Γ)= (Sgί/OΓ1 Σ e~βHs(c) Π <
ceCr vεffls

Proposition 4.1. Let Γ be an (outer) contour. Then

(4-2)

Remark. In [1] Kotecky and Shlossman have shown that the probability of
contours are small in a large range of temperature but with periodic boundary
conditions only. Our estimate can be obtained at βt but with arbitrary b.c. This can
be compared with the Ising model with magnetic field h when β is large: the
situation of [1] corresponds to the Ising model with free b.c. and our estimate
corresponds to h = 0.

Proof of the Proposition. Let
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Since for every c in CΓ the links of Γ are disordered, we have:

Γ) = e-^Ξ°(βt) Σ e-'*™ Π (l-δ(c>1)).0)
ceC°(S,Zq) υ<=@'τ

we compute the dual of the partition function Ξj.
By construction / = S(ΩI) has trivial homology and we are in the hypothesis of

Proposition 3.1. Therefore

Let (/*)Γ be the dual complex /* translated by 1/2 in the two directions. Then

Hs(Q ΓT *11 °(c,v),o
ceC°(S,Zg) i

= Ξ°(βt)Ξ%(βt).

The proposition follows from the two last formulae by noticing that (SI = Γ.

Remark. The computation works as well in the particular cases:
(i) / is reduced to one point,

(ii) Ξj is a one dimensional partition function,
(iii) / contains more than one connected component.

V. Proof of Theorems

V.I. Proof of the Statement a of Theorem 2.1

Let £ be some link in S = S(Ω), where Ω is some rectangular box. Then

= l-Prob{(c,aθΦθ/(c,ι>) = 0 if

If we consider a configuration c of C0(S, Zq) such that (c, v) = 0 if v e J*5 and £ is
disordered, then necessarily there exists an elementary contour Γ such that c e Cr;
Γ* enclose or contain £ and N1(Γ)'^4. Hence

Prob{(c,5ίθΦθ/(c,ι?)} = 0 if
I V V <y~PHs(c) ΓT2^ 2^ e 11

Γ ceCr fe^s

The sum is restricted over the elementary contour Γ* which contains or enclose the
link £. We use the three way argument (the number of contours of length k
containing or enclosing a given link is bounded by k - μk ~ 2 (where μ = 2,7 see [29])),
the above relations and Proposition 4.1 to prove that for q > 25, <^>°()8f) > A/2. The
formula for the magnetization is obtained in the same way: if we consider a
configuration such that (c, v) = 0 if i; e ̂ s and (c, ι;0) φ 0, then necessarily there
exists an elementary contour Γ such that c e CΓ; Γ* enclose v0. The second formula
of Theorem 2.1 follows from the duality relation of Proposition 3.1.
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V.2. Proof of the Statement a of Theorem 2.2

Let Ω = ΩL.M be the box defined in (2.15) and S = S(Ω}. Consider the partition
function Ξ^Λ2(β). For any configuration c of C°(S,Zq) such that χαι'α2(c) = l,
there exist two connected cell subcomplex Sί9 S2 such that S1=S(Ωί), S2=S(Ω2)
and

(i) The boundary 0$Sί oϊS1 contain j£, and for all positively oriented vertex v
in 38 Sl (c9υ) = oc1.

(ii) The boundary £%S2 of S2 contains £$$ (@}$ is the symmetric of 38$ with
respect to the plane x2=— %) and for all, positively oriented vertex v in
J>S2 (c,ι?) = <X2.

(iii) The links of (&Si and the links of ^S2 are disordered.

r\

A.

s,

Let

for i= 1,2,

= S/S1υS2u«'Slu«'52J

Γ / for a l l / i n 7] (c,a/)Φθ Ί
CΓ. = I c e C°(S, Έq) I for every positively oriented \.

[ I vertex v of 3§s. (c, v) = αf J

We define the weight of CΓ nCΓ by:

Then

S?'α^)= Σ ωβ(CΓnCΓ2).
Γι,Γ2

(5.1)

(5.2)

We now give an estimate on ωβt(CΓ nCΓ ). For c e CΓ nCΓ all the links of Γj and
Γ2 are disordered,
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We compute the dual of the partition function E$(βt) and use

to obtain
,„ n ,^ -y(N1(Γι) + ]Vi(Γ2))< -j(JVi(Γ!) + JVi(Γ2))

ω^t(CΓιnCΓ2)^e 2 = 4 4 . (5.3)

The contour /], z= 1, 2 have a "minimal length" (Nl(Γ$ equal to L. It then follows
from (5.3) and the three way argument that the left-hand side of (5.2) decreases
exponentially with L when q > 34 and β = βt. This proves the theorem for β = βt. It
follows from Ginibre's inequality [18, 19] that the surface tension is increasing in β.
This extends the proof to β > βt.

Remark. We think that for β > βt the typical configuration are such that the region
/ is very thin and that for β = βtit becomes a drop.

V.3. Proof of the Statement a of Theorem 2.3

We first compute the dual of the mass-gap using the Fourier expansion of <5,

a(V,V)

ceC°(S*Zq)

(^(c,0**),α(*Λ, **)~1) Π_ <5(Cfι;*),0

ft is an integral chain such that dh = v — v'. For example assume that v and v' are on
the axis x2 = 0. Let y be the set of links of S on the axis x2 = 0 and / be the subset of y
between v and υ'. We take ft = Σ m<?' ̂  with m^ = 1 if ^ 6 / and ^ positively oriented
and m^ = 0 otherwise. f

The proof is now a simple adaptation of that of Theorem 2.2, as it is clear in the
preceding formulae; we have in this case open contours between the vertices v and
v'; so we derive the following estimate:

2iπ
(x(c,v-v )

^ i

This proves the theorem for β = βt. It follows from Ginibre's inequality that the
mass-gap is decreasing in β. This extends the proof to β < βt.

V.4. Proof of the Statement b of Theorem 2.3

We have to prove

d^(δ(CίV_vΊ-^Y(β)>0 if β>βt. (5.4)

It is known [20] that

,-,<).o>0G8) (5 5)
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The state < >%S) is clustering, hence:

1 \° / « /2πr
(c.v-vw- -) ( / 0 = ( Σ cos — (c,t;-ι/

#/ v=ι \ q

-* Σ /cos — (c9 v)\ ° 05) /cos — (c, ι/)\ ° (β) . (5.6)
r=ι \ q I \ q I

Ginibre's inequality and Theorem 2. la imply

cos ^(c,ιO\° 05)^0, (5.7)

1 « / 2πr \°
M(β)=-Σ (cos — (c,ι») (]5) >0 if J5£]5 t. (5.8)

ί r = ι \ q I

The four last formulae implies (5.4) and hence the statement b of Theorem 3.

V.5. Proof of the Statement b of Theorem 2.1

We have from (5.5) and (5.6),

β / 2πr \° / 2πr \ °
rΣ (cos — (c,v)J (β) (cos — frvy (β}

£ lim /δ(CtV_vΊ--Y(β + s) (5.9)
d(υ,t/)->oo \ C[ I

for c positive arbitrary small. Since the mass gap m(β) is non-zero for β^βt

(Theorem 2a) the limit in (5.9) is zero if β + ε ̂  A Therefore the left-hand side of
(5.9) is zero for β<βt. We then use (5.7) to obtain

(/?) = 0 if β<βt.

Hence the magnetisation M(β) is zero for β < βt.

V.6. Proof of the Statement b of Theorem 2.3

Consider the partition function Ξ^^(β\ where Ω is the rectangular box ΩL.M

defined in (2.15) and S = S(Ω).

For each configuration c of C° (S,Zq) such that Π ^(CtO) = l9 there ex-
υe^ +

ists a connected subcomplex 17 such that, 17 = S(ΩU) :ΩUCΩ;^V contains 08 £9 for
all v of &v (c,v) = Q and all the links of ^vr\S are disordered. Let D be the
following subcomplex:

D = S/Uv(%vnS) and Γ - «y«£ ,

where ̂  is the subset of %?$ in the half plane x2 > 0. Notice that there exists c such
that D — φ (see the picture below).
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I
M

1
•-

!
M

I

- L -

U

Hψ~

D

-4

(

J 'f

-'

<^

\

' D

* ,-*
- V € /

— — — —

We define

C - ίc e C°rS Za) 1^ eVCTy VerteX " °f ®v (C'ϋ) = ° 1
C r_ jceC (S, f̂or eyery Hnk ^ Qf ̂ ns (c5a/)φ0}'

Σ
ceCr

Then

(5.10)

(5.11)

ΛΓ'(Γ)_

Proposition 5.1. With the above definitions (θβt(CΓ) ^q 4

Proof. For any c in Cr the links of ^vr\S are disordered.

Therefore,

\ l / 2

We compute the dual of the partition functions with free b.c. in the above formula.
From Proposition 3.1 it follows.

(5.12)
We have

VJ-NWonSfl. (5.13)
Z,

We will now prove that

Ξ^SgK/?) ̂  (Sg(jί)^(j8))1/2 (5.14)

For this we will use reflection positivity [21] with respect to a suitable plane
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x2=-±). Let

f = Π <5(c,ι;),0 Π <5(c,t;),0ί
t>e$ + »e^/

ί= Π <5(c,ι;) fO

ue^
π the plane x2= — \.

We define θπF(υ) = Fθπ(v) (see [21]), where θπ(ι;) is the symmetric of υ with
respect to π. Since Ω' is symmetric with respect to π the hamiltonian //$, defined in
(2.8) is reflection positive with respect to π (see [21] or [1]):

UθπgYS'(β) £ (LfθπnS'(β) [aθj
We have

Now let (D*)Γ the complex D* translated by +^ in the two directions, then

) Π δ(c.vι>e^t/
L υe^(DT)τ JS'

The above relations imply (5.14) and the proposition follows from (5.12), (5.13),
(5.14).

Since the contour Γ have a minimal length L the statement b of Theorem 2.2
follows from Proposition 5.1 and (5.11). This ends the proofs of the theorems.

Remark. We can use this method to prove that another surface tension τ°'dis(/J) is
non-zero at βt\ τ°'dίs is defined similarly to τ°'^ [see (2.17)] but with the boundary
conditions respectively given by

χ?cT= Π (i-<W),o), *<°)dis= Π <W Π (i-<W>,o)

VI. Conclusion

We want to emphasize that the results we have obtained for the two dimensional
Potts model using the duality transformation are a particular case of a general
theory describing these order disordered phase transitions just as the Peierls
argument with the spin flip of the Ising model can be extended to a very general
concept describing the phase coexistence at low temperature: the Pirogov Sinai
theory. We want to give some possible generalizations.

1. The class of self dual model. (By this we mean that the hamiltonian after the
duality transformation is identical up to the coupling constant to the original one.)
A particularly interesting case is the 4 dimensional gauge model, where a similar
argument works to prove the phase transition between ordered and disordered
phase at βt and a discontinuity of the string tension at βt [23].
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2. The models which are not self dual, a typical case of which is the 3-
dimensional Potts model. We strongly believe that our methods work also.

3. The duality transformation can be done on subgroups of q with some
appropriate hamiltonian we could obtain when β increases the occurrence of a
sequence of order disorder phase transitions.

Appendix

A.L Generalized Ginibre Inequality [18, 19]

Let Ω = (!,...,n) be a finite set of sites and associate to each site i a spin

σ. = (cosθj, sinfy), fy e [0,2π]. Let ̂ Ω be the set of all M = {M1.. .MJ, M, taking
integer values, and M0 = ̂ Miθi. Let J and J' be two real valued functions defined
on JίΩ and for each M let ιpM e [0,2π]. Consider the two measures

: J(M)cosMΘ\dθ,

J'(M)cos(MΘ + ψM)\dθ.
MeJtΩ J

We note the corresponding expectations by < > < >'. We have, if J(M)^ |J'(M)|,
the following inequalities:

<cosMΘ>-<cosMΘ-φX^θ| , lt . _ f Ή1 for all M; for all φ e [0,2π] .

The above inequality applies to the Potts model by restricting the values θί to
θi = 2kiπ/q, this by adding an external interaction ^Kcosqθi to HΩ with K-κx).
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