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Abstract. In a previous paper it was shown that certain Schrδdinger operators
H = A — V on W such as the Hamiltonians for the quantized one-dimensional
lattice systems of Toda type (either non-periodic or periodic) are part of a
family of mutually commuting differential operators H = L1?..., L̂  on ]R/. The
potential V in these cases is associated with a finite root system of rank /, and
the top-order symbols of the operators Lt are a set of functionally independent
polynomials that generate the polynomial invariants for the Weyl group W of
the root system. In this paper it is proved that the spaces of joint eigenfunctions
for the family of operators Lt have dimension \W\. In the case of the periodic
Toda lattices it is shown that the Hamiltonian has only bound states. An
integrable holomorphic connection with periodic coefficients is constructed on
a trivial \W\ -dimensional vector bundle over (Ĉ , and it is shown that the joint
eigenfunctions correspond exactly to the covariant constant sections of this
bundle. Hence the eigenfunctions can be calculated (in principle) by integrating
a system of ordinary differential equations. These eigenfunctions are holom-
orphic functions on (Ĉ , and are multivariable generalizations of the classical
Whittaker functions and Mathieu functions. A generalization of Hill's
determinant method is used to analyze the monodromy of the connection.
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0. Introduction

This paper is the third in a series of papers on classical and quantum mechanical
systems of Toda lattice type (cf. [G-W2, G-W4]). The quantized Hamiltonians for
these systems are Schrόdinger operators H = A — V on C°°(IR/) with the potential V
determined by the following data: Let Φ be a finite set of linear functions on R^ that
define either an irreducible Dynkin diagram of arbitrary type or a completed
Dynkin diagram of type A, B, C, D, or £ 6 , and let cα, for α e Φ, be a constant. Then

<xeΦ

In [G-W 2] it was shown that H is part of a family Lί, L2,..., L€ of commuting
differential operators whose top-order symbols are a set of functionally independ-
ent polynomials, and that these polynomials generate the polynomial invariants
for the Weyl group of the root system associated with Φ.

For the completed Dynkin diagram of type A^ H is the quantized periodic
Toda lattice Hamiltonian. We can write down an explicit "generating function" for
the operators L{ in this case as follows:

Take Φ in R", w = ̂  + l, to consist of the linear functions oci(x) = xi — xi+1

[i = 1,2,..., n with the indices read cyclically mod (n)]. Let ̂  be the collection of all
subsets QcΦ such that oclβ for α,/?eg. Given β e ^ , set

eQ = exp { — 2 Σ αl and cQ = Y\ca.

Also let I(Q) be the set of indices between 1 and n such that (d/dxi)ea{x) = 0 for all
α e β. In particular, when β is empty, then J(β) = {1,2,..., n). Define a constant
coefficient differential operator

PQ(t)= Π \~^
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where t is an indeterminant. With this notation in place, define

χ\\Q\

One can prove (cf. Appendix II) that [L(ί), H~] = 0 for all t. It follows by [G-W2,
Theorem 5.2] that the coefficients Z)7 of tn~j in L(ί) are mutually commuting
differential operators for 7 = 1,2, ...,n. One has Dί=(d/dxί)+...+(d/dxn) and
H = D\ — 2D2. SettingLx = i/, L2 = D3,..., Ln_ί=Dn, we obtain a complete set of
quantum invariants for the periodic Toda lattice system (cf. [Gu2] for the cases
n = 3,4, and 5; note that the linear momentum D1 is an extra conserved quantity
for this system).

We now return to the general case. Let the operators Ll9..., Le be as above. In
Sect. 1 it is proved that if the potential V is determined by a completed Dynkin
diagram and the coefficients ca are all real and non-zero, then L2(R/) decomposes
into a direct sum of finite-dimensional joint eigenspaces for L l 5 ...,Iy. Thus the
problem of determining the joint eigenfunctions for these operators is especially
important. It is natural to allow the coefficients c = {cα} in the potential V to be
complex, and to consider all the joint eigenfunctions, without any a priori
condition of square-integrability. For v = (v1 )...,vJeC^ we set

τrCiV = {/eCβ o(R0:A/ = vi/, for i = l,...,^}.

The main purpose of the present paper is to analyze the joint eigenspaces Ψ"c5 v. Let
W be the finite Weyl group of the root system associated with Φ, and let w be its
order. We prove that for all values of c and v, the space iΓCtV has constant
dimension w. For example, in the case of the periodic Toda lattice with n particles,
this dimension is n\ (cf. Theorem 3.10; for invariance purposes the parameters c
and v are replaced by an equivalent set in remainder of this paper). This result is
proved by first constructing holomorphic wxw matrix-valued functions Γι(c, v: z),
for ze(C* and i = l,...,/, such that:

(a) the operators V{ = d/dzt — P(c, v: z) mutually commute (Lemma 3.8). From
the integrability condition (a) one knows that the space of solutions SCtV of the
first-order system

ΓXc^F, for i = l,...,Λ (2)

has dimension w. We then prove the key result (Lemma 3.9):
(b) the map (Fί9 ...9FW)\-^F1 is a bijection between <fc>v and ifc>v.

Combining (a) and (b) we obtain the stated dimension result; furthermore, the
integrability condition means that the joint eigenfunctions for the operators
L l 5 ...jL^ can be obtained by integrating a system of ordinary differential
equations. Taking into account our earlier results [G-W4] on the solutions of
the classical Hamiltonian flows for the generalized periodic Toda lattices, we see
that these systems are "integrable" in all possible senses.

In the last part of the paper we turn to the problem of finding explicit
expansions for the joint eigenfunctions. We know by properties (a) and (b) above
that the eigenfunctions are holomorphic functions on C The coefficients of the
operators L7 and the matrices Γι are multiply-periodic with purely imaginary
independent periods τp 7 = !,...,/. By Floquet theory there are mutually
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commuting wxw matrices S l9...?S^ (the monodromy matrices), all depending
holomorphically on the parameters c, v, such that

for all F e &Ct v. We prove that the matrices Sj are diagonalizable for generic values
of the parameters (c, v) (cf. Proposition 4.1). As a corollary, we show that for (c, v)
in general position, there is a set M(c, v) of w linear functional on <£f which are all
distinct mod2L (L being the root lattice associated with Φ), and a basis
{fΛ\Λ e M(c, v)} for ^ v , such that the functions fΛ have expansions

fΛ(z) = e<Λ^Σaμ(Λ)e-2<^z>. (3)
μeL

The convergence in (3) is uniform on tube domains. We emphasize that in our
treatment of these systems, the existence of a convergent expansion (3) is a
consequence of the integrability of the system, and is not merely an ansatz.

The elements A e M(c, v) are the monodromy exponents. When Φ is an ordinary
Dynkin diagram (the "generalized non-periodic Toda systems"), then we prove
that M(c, v) is an orbit of the Weyl group (Corollary 4.4). When Φ is a completed
Dynkin diagram, then the explicit determination of M(c, v) from c and v is quite
difficult, the case i = \ being the problem of the Floquet exponents for the Mathieu
equation (cf. [W-W; Chap. XIX Mathieu Functions]). We attack this problem in
Sect. 4.3 using the following technique:

Write the Schrodinger equation

HfΛ(x) = vJΛ{x) (4)

in terms of the expansion coefficients in (3); this gives an infinite set of
homogeneous partial difference equations for the coefficients av(Λ). We use a
generalization of Hill's original method (as it applies to the Mathieu equation) and
some results of von Koch ([vK 1, vK2] cf. the appendix to this paper) to show that
the coefficient matrix of this set of difference equations has an absolutely
convergent determinant Δc V(Λ). Furthermore, the monodromy exponents A must
satisfy the equation ' 4 > ^ ) = 0 . (5)

Conversely, for any Ae^ lying on the variety (5), let iΓCiV(A) be the space of
functions that have convergent expansions of the form (3) and that satisfy (4). This
space has finite non-zero dimension, and is invariant under the other operators
L2, ...,LΛ This yields £— \ more equations that suffice to determine the
monodromy exponents (Theorem 4.6).

In the case of the quantized systems associated with an ordinary Dynkin
diagram Φ, such as the non-periodic Toda lattice, the eigenfunctions have been
previously constructed using representation theory ([G-Wl, Go 2, Ko]; cf. [O-P]
for further references). The approach in the current paper via the system of first-
order differential equations (2) was outlined in [Go 2], and the result dim#^ v ^ w
(with equality for generic values of c and v) was proved there. Subsequently,
Hashizume [Ha] carried out a direct construction of the eigenfunctions via the
expansion (3) and reproved the generic dimension result. The fact that dim #^ v = w
for all values of the parameters c and v was not previously known.
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The most extensive previous study of the eigenfunctions for the quantized
periodic Toda lattice was done by Gutzwiller [Gul, Gu2], who uses some
(partially heuristic) arguments involving matched asymptotic expansions to
reduce the calculation of the monodromy to the case of one-variable infinite
determinants of Hill's type. In [Gu2] the eigenfunctions are expanded in terms of
Whittaker functions, rather than exponentials as in (3). This is a quantized version
of a technique used by Kac and van Moerbeke to treat the JV-particle periodic
Toda lattice in terms of the (N — l)-particle non-periodic lattice. There seem to be
several analytic points that are left open in this work. A WKB approximation for
the eigenfunctions has been studied in [D-M], and general surveys of quantum
integrable systems are found in [Fa, and O-P].

1. Hamiltonians with Long-Range Exponential Potentials

1.1. Solvable Lie Algebras and Exponential Potentials

In this section we study quantum Hamiltonians L=A-V on R ,̂ where the
potential V grows exponentially at infinity. By relating L to the unitary
representations of certain exponential solvable Lie groups, we prove that the
resolvent of L is compact, and we obtain exponential decay estimates for the
eigenfunctions.

We begin by recalling some results from [G-W2], where the following class of
Lie algebras was studied: Let b be a finite-dimensional Lie algebra over R such
that b = α0u, where α is a commutative subalgebra of dimension *f, and u is a
commutative ideal. We assume that a positive-definite inner product < , > on b
is given such that α±b and the linear transformations ad H, for He a, are self-
adjoint relative to this form.

By our assumptions, it is clear that u admits an orthogonal direct sum
decomposition into eigenspaces relative to adα:

u=0u Λ .
λeΦ

Here Φcα* and

For the purposes of this paper we may assume that

dimuA = l for all λeΦ. (1)

Let A and U denote the simply-connected Lie groups with Lie algebras α and u
respectively. Denote by B the simply connected Lie group with Lie algebra b. From
the structure of b it follows directly that the exponential map exp: b-^B and the
map from A x U to B given by group multiplication are both analytic manifold
isomorphisms.

Let c G u*, and set
eic{x\ (2)

for X e u. Then yc is a unitary character of the group U. We form the induced
unitary representation Tc = lndu^B(yc) of B as usual. Using the splitting B = AU
and exponential coordinates on A, we may take 3^(Tc) = L2(a) (relative to
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Lebesgue measure on α) as the Hubert space for Tc. The action of B on a function
/ G L 2 ( O ) is given as

Tc(expH)f(a)=f(a-H), (3)

for a and H in α, and

, (4)

for X e nλ.
There is a corresponding representation of the universal enveloping algebra

U(b) on C°°(α) which we obtain by differentiating formulas (3) and (4) along one-
parameter subgroups of B:

Tc(H)f = d(H)f (5)

for Hea, where d(H)f(a) = (d/dt)f(a-tH)\t=0 and
λf (6)

for X e nλ.
Let Z l 9 ...,Zm be any orthonormal basis of b. Set

m

β= Σ z?

as an element of U(b). Then £2 does not depend on the particular choice of the
orthonormal basis, and will be called the Laplacίan for b, < , >. We can choose
the basis elements Zf to be either in α or in uA, λeΦ.lt then follows from (5) and (6)
that the operator L= TC(Ω) is given by

L=A-Σ\cλ\
2e-2λ, (7)

λeΦ

where A is the constant-coefficient Laplace operator on α corresponding to < , >
and cλ is the restriction of the linear functional c to the subspace ιxλ.

The elliptic operator L satisfies global estimates relative to the unitary
representation Tc. To describe these estimates, one introduces the Hubert spaces
Jfk(Tc) of fc-times differentiable vectors for the representation Tc, with norm | |/| |k,
and the Frechet space

of C00 vectors (cf. [Gol]). By standard results for Schrόdinger operators, one
knows that L is essentially self-adjoint on C™(ά). By results of Nelson and
Goodman (loc. cit.) one has

Domain (Lfe) = M>\TC) for all positive k. (8)

Here L is considered as an unbounded self-adjoint operator on L2(a\ and the
equality in (8) means that the norms | |/| | + ||Lfc/|| and ||/|| fc are equivalent.

To explicate (8) in the present situation, we need a more direct description of
the spaces 2tfk and jf°°. We shall say that the linear functional c is non-degenerate if
for all λeΦ, cλ + 0. Pick a basis {ίίj for α, and set di =
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Lemma 1.1. Suppose that ceu* is non-degenerate. Then for any non-negative
integer k, the space J^k(Tc) consists of all functions /eL2(α) such that

e-
pλdQfeL2(a) (9)

for all λeΦ and all integers p and multi-indices Q with p + \Q\^k. Here the
derivatives are taken in the sense of distributions. The norm \\f\\koff in ^fk(Tc) is
equivalent to the sum of the L2 norms of the functions in (9) over all λeΦ and

Proof This is immediate from formulas (5) and (6) and the definition of
D

GeΓfand and Shilov [Ge-Sh, Chap. II] have defined test function spaces
K{MP} on Rn using families {Mp: p = 0,1,...} of weight functions to control rate
of decay at infinity. The weight functions that fit in the present context are

Mp(α) = e"β', (10)

where \a\ is any convenient norm on the vector space α. Define a family of norms
{vp:p = 0,l,...} on C°°(α) by

vp(/) = supMp(α)|3Q/(α)|

(sup over aea and multi-indices Q with \Q\ S P). Then the space K{MP} consists of
all C00 functions / such that vp(f)< oo for all p^O, with topology defined by the
countable family of norms {vp}. The functions / in this space are obviously
characterized by the property that / and all its derivatives decrease faster than any
exponential at infinity.

Lemma 1.2. Assume that the convex hull of the set of roots Φ contains a
neighborhood of 0 in α*. Suppose that c is non-degenerate. Then the space
jfco(Tc) = K{Mp}. More precisely, there are positive constants C = C(Φ,c) and
b = b(Φ) so that for all positive integers p

vP(mc\\f\\d+bp, (ii)

where d=[f/4'] + l, and
Wf\\pZCv(f)1+bp. (12)

Remark. Suppose that Φ spans α* and that there is a relation of the form

Σ M = o , (13)
λeΦ

where the coefficients nλ > 0 for all λ. Then it is easy to check that Φ satisfies the
conditions of Lemma 1.2.

Proof It suffices to prove (11) and (12) when / is a C00 function with compact
support on α, by standard density theorems. Define the gauge function of the set Φ
by wφ(a) = maxλeφλ(a). Then the hypothesis on Φ implies that there is a constant
r>0 (which we may take to be an integer), such that |α|^rwφ(α) for all αeα. It
follows that for any positive p,

^ H | / ( α ) | ^ Σ s u P α e α ^ > | / ( α ) | . (14)
λeΦ
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By standard Sobolev estimates one also has

su?aβa\f(a)\£C\\(l-AYf\\, (15)

where the norm on the right is the L2 norm on α, and A is the constant-coefficient
Laplacian on α. Estimate (11) now follows readily from (14), (15) and Lemma 1.1.

To obtain estimate (12), observe that if λ e Φ, then

| ) (16)

where s = maxλeΦ |/l| and C is the L2 norm of e~ | α |. Estimate (12) now follows from
(15), (16) and Lemma 1.1. D

Corollary 1.3. There exists a positive integer t so that the inclusion map Jf ί C L2(a) is
compact.

Proof. For any positive integer p, denote by Sp the space of Cp functions / on α such
that the norm vp(f) is finite. This is a Banach space in this norm, and the inclusion
map δpcδq is compact, iίp>q (cf. [Ge-Sh; Chap. II, Sect. 2.3]). By Lemma 1.2,
one has continuous inclusions

If we take p = 2, q = 1, for example, then we see that t = 2b + d will suffice. D

Theorem 1.4. Assume that the convex hull of the set of roots Φ contains a
neighborhood of 0 in α*, and suppose that c e u * is non-degenerate. Then the
Schrδdίnger operator L in (6) has compact resolvent on L2(a), and the square-
integrable eigenfunctions of L are in the space K{MP}, where Mp is given by (10).
Thus these eigenfunctions and their derivatives decrease faster than exponential at
oo, and the eigenfunctions form a complete orthonormal set in L2(a).

Proof. By (8) and Lemma 1.2, we know that the space of C00 vectors for the self-
adjoint operator Lcoincides with the space K{Mp}. Furthermore, the resolvent of
L raised to a suitably high power is compact, by (8) and the Corollary to
Lemma 1.2. Hence the resolvent of Lis compact, by the functional calculus for self-
adjoint operators. D

1.2. Operators Commuting with the Laplacian

We continue with the notation of the previous section. To find quantum invariants
for the system with Schrδdinger operator L, we look in the enveloping algebra of b
for elements commuting with the Laplacian Ω. We write

) Ω = {ReU(b):RΩ = ΩR}. (1)

Let T-+T* be the canonical conjugate-linear involution on U(b) (X* = —X for X
in b). Since Ω* = Ω, the subalgebra U(b)Ω is self-adjoint. Furthermore, if R = R* is in
ί/(b)β, then TC(R) is essentially self-adjoint on Q°(α), by a theorem of Nelson and
Stinespring [N-S]. The following result will be used later in the paper to establish
quantum complete integrability for a family of systems. (Recall that a Lie algebra I),
not assumed to be finite-dimensional, is called solvable if its derived series of ideals
ί)(1)(ί)) = ί), D(fc+1)(ί)) = [D(fc)(t)), D(fc)(ί))] vanishes for some finite L):
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Proposition 1.5. Assume that the hypotheses of Theorem 1.4 hold for Φ and c.
Suppose that Rί9...,Rne U(b)Ω are self-adjoint elements. Let ί) be the complex Lie
algebra of operators on Jf°°(7ί) generated by TC(RX)9..., Tc(Rn). Assume that ί) is a
solvable Lie algebra. Then ί) is commutative, i.e. the operators Tc(Rj) mutually
commute.

Proof For any real number μ, let

MTμ = {fe C°(a)nL2(a): Lf = μf} . (2)

Then by Theorem 1.4, d i m ^ < o o for every μ. Furthermore, L2(a) is the
orthogonal direct sum of the spaces 3Ίfμ9 as μ ranges over the spectrum of L. Each
subspace 34?μ is invariant under the action of ί). Since f) is solvable, Lie's theorem
implies that the derived algebra [I), ί)] acts by nilpotent transformations on jfμ.
But by the self-adjointness of the generators Rj9 the subalgebra [I), f)] has a basis
consisting of self-adjoint operators. This is only possible if [I), I)] acts by zero on
each space J^μ. By the completeness of the eigenspaces of L, this in turn implies that

B,W=o. •

2. Some Generalities on Certain Rings of Differential Operators

2.1. Certain Rings of Differential Operators

Let V be a finite-dimensional real vector space. We identify the symmetric tensor
algebra over V with the algebra 0> of all complex-valued polynomial functions on
the dual space F* as usual. We grade Θ> by degree and we denote by SP* the space of
all homogeneous elements of & of degree j . If X e V9 then d(X) denotes the
differential operator (d(X)f)(v) = (d/dt)f(v-tX)\t=0. By the identification of ^
with the symmetric tensor algebra over V9 we can extend the map X i—> d(X) to an
isomorphism from & onto the algebra of constant coefficient differential operators
on V.

Let UcV be an open subset, and suppose that ^CC°°(L0 is a subalgebra
(under pointwise multiplication) containing the constants, such that d{X)0l C M for
all X G K Denote by Ά the algebra of differential operators on U generated by
multiplication by 01 and d(V). We give J the usual filtration by maximum order of
differentiation. If D e Ά is of order j , then we denote the top-order symbol of D by
σj(D). This is an element of ^®Sk.

In many cases the differential equations satisfied by the joint eigenfunctions of
a set of differential operators (including the Toda lattice systems) can be put into
the following framework: One has an algebra Ά of (variable-coefficient) differential
operators as above, and a subalgebra &CΆ which satisfies these conditions:

(DOi) If D G J* is of order j , then σ/D) e 0>j (i.e. the top-order term of D is a
constant-coefficient operator).

(DO2) If s/ is the subalgebra of 0> generated by all the top-order symbols of
elements of J*, then there are homogeneous elements 1 =eu e2, . . . , ^ 6 ^ (where
d<oo), such that d

9= Σ
Ϊ = 1

(i.e. 0> is integral over si):
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Given this information, we then obtain the following algebraic analogue of
"separation of variables" for operators in Ά (this technique was first used by
Harish-Chandra in connection with spherical functions [H-C]):

Lemma 2.1. Suppose (DO^ and (DO2) are satisfied. Set Eι = d{e^. Given any
differential operator DeΆ, there exist operators uV] e 31 and functions feM such
that

ij. (1)

Proof We proceed by induction on the order of D. The operators in Ά of order zero
are multiplications by functions in 01, so the result is obvious in this case. Suppose
we have proved the result for operators of order ^ k. Let D e Ά have order k 4-1.
Let x l5...,xn be linear coordinates on V. For J = (i l9 ...,ίπ)eNπ, write
x/ = xί

1

1...xjι and \I\ = ix + ...+in. Since DeM, there are functions faeM, for
|/| = fc + 1 , such that σk+1(D)= ΣfiχI Let kt be the degrees of the elements et in
condition (2) above. By condition (DO2) there are elements vι j e stf, homogeneous
of degree |/| — kp such that each monomial x1 can be expressed in the form
x1 = Σ vijer Let uu e 36 be of order |/| - kj and have top-order symbol vItj. The
operator T= Σ/J-E./MJ,J is then of order k +1, with top order symbol σk+1(D). Thus
D — T has order at most fe, and is an element of J. The result now follows from the
inductive hypothesis. D

Corollary 2.2. Let the notation and assumptions be as in Lemma 2.1. Assume that U
is convex. Let χ: Ĵ ->(C be a homomorphism and set

χ f = χ(u)f for all

Then di

Proof Let Xu ..., Xn be a basis for V, and write dt — d(X^). By Lemma 2.1 there are
functions fijke& and operators u^e^ such that

Thus if/e#"χ, then
diEjf=ΣΓi

jeEJ, (2)

where we have set

We denote by Γι the d x d matrix whose;, ( entry is the function Pβ e M, and we let
F be the column vector whose entries are the functions Ee f Then the system (2) can
be written as

diF = ΓiF, i = l n. (3)

Let δ be the space of all solutions F to the linear system (3). We have just seen
that there is a map T: HT -+δ given by /W[Έi/> •> EdΩ- Since EJ = f this map
is injective. The dimension estimate in the Corollary now follows from

Fix x° G U. Then the map <f->Cd given by F H> F(X°) is injective. (4)
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This is a standard result, but we give the proof for the sake of completeness. Given
x 1 e U, we set X = x° — xί. Let X have components v{ relative to the basis {XJ.
Then by (3) one has

d(X)F=ΣviΓ
iF (5)

i

for all F e 8. Thus if we define Φ(ί) = F(x° + tX), A(t)=Σ ί | ^ ° + tX), then by
i

the convexity of U9 Φ(t) and A(t) are smooth functions of t on some interval
- s < t < 1 + ε, and by (5) we have Φ\t) = A(t) Φ(t). If we assume that F(x°) = 0, then
Φ(0) = 0. It follows from the differential equation that Φ(t) = 0 for O ^ ί ^ l . This
proves (4). D

Note. It is clear that the dimension estimate in the corollary is true if U is only
assumed to be connected.

2.2. Connections

We now recall some well-known facts about connections in several complex
variables that will be used later in the paper. Let U C (Cw be open and (for simplicity)
real convex. Let P: (7->End((Cd) be holomorphic for ί = l,...,w. We define a
connection V on the trivial vector bundle U x(Dd over U by setting

for v= Σvidi a holomorphic vector field on U and F: U-^<Ed a holomorphic
section. Here dt = d/dzt.

One says that V is integrable (or /Zα£) on [/ if for all holomorphic vector fields
X, 7 and all holomorphic sections F on (7, one has VXVYF— VYVXF— V[XY]F = 0
on £/. Let <? be the space of covarίant constant sections of the connection, i.e. the
space of all holomorphic sections F such that VXF = 0 on U for all holomorphic
vector fields X on U. The following result is a restatement of the Frobenius
theorem on total differential systems in this situation:

Lemma 2.3. The following properties of the connection V are equivalent:
(1) For every zeU, the map $^><Ld given by F\->F(z) is surjectίve.
(2) For some z°eU, the map S>-^<Cd given by F\-+F(z°) is surjective.
(3) The connection V is integrable.

3. Joint Eigenfunctions for the Quantized Systems

3.1. Laplacians

We resume our study of the Laplace operator for the class of solvable Lie algebras
introduced in Sect. 1. Given such an algebra b = α 0 u , and a choice of inner
product, we define a map λh-+λ* from α* to α by

for He a.
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Given λ, μ e α*, define <λ, μ) = </lb, μb>. If A e α*, let sλ be the orthogonal reflection
of α about the hyperplane λ = 0. That is,

Let W be the subgroup of the orthogonal group of (α, < , » generated by the
reflections sλ, for λeΦ. The action of W on α extends naturally to an action on the
symmetric tensor algebra S(a). Since α is abelian, we may identify S(a) with the
universal enveloping algebra U(a). We denote by U(a)w the invariants in U(a)
under W.

Let Ω be the Laplacian for b, < , >, as in Sect. 1. Recall that

The algebra U(b)Ω was extensively studied in [G-W2]. Identify α with the abelian
Lie algebra b/u. Then the natural homomorphism b-*b/u extends to an algebra
homomorphism μ: £/(b)->ί/(α). The operators commuting with Ω then have the
following symmetry property:

Theorem 3.1 [G-W2, Theorem 2.6]. One has μ(U(bf)cU(a)w.

3.2. Root Systems and Invariants

To obtain further information about (7(b)β, we shall require that Φ be suitably
related to a root system. Recall that a subset π = {αl5 ...,α^}Cα* defines a connected
Dynkίn diagram if π is a set of simple positive roots for an irreducible reduced root
system RπCa* (see [Bo]). This is equivalent to the following conditions:

( D J π is a basis of α*.
(D2) The group Wπ generated by the reflections sα, for α e π, is finite.
(D3) The numbers aij = 2<^au αJ >/<αi5 αf> are non-positive integers, for all i φ j .
(D4) If π = π x u π 2 with <α, /?> = 0 for all α e π x and β e π 2 , then either π1 or π 2 is

empty.
We now assume that π C α is a connected Dynkin diagram, and that Φ is given

in terms of π as follows: Either

(NP)Φ = π ("generalized non-periodic Toda lattice systems"), or

(P)Φ = π ("generalized periodic Toda lattice systems").

In case (P), π = π u { α a i } is an extended Dynkin diagram, i.e. α^+ 1 = — β, with
βeRπ and </?, α, > ^ 0 for i = 1,..., L The possible choices for β were determined in
[G-W2, Sect. 5]. Note that the group W= Wn in this case (see D2). We thus have
the following fundamental result of Chevalley and Harish-Chandra [He,
Chap. Ill, Sect. 3]:

Theorem 3.2. (1) 1/(0)^ is a polynomial ring in £ homogeneous generators uu ..., ue.
(2) Let w be the order of the group W. Then there exist homogeneous elements

\=eu...,ewin U(ά) such that U(a) is free as a U(a)w module with basis eu...,ew.
(Note that U(ά) is graded by degree, since a is abelian.)

(3) The degrees dt of the elements ut and the degrees kj of the elements e^ are
uniquely determined by W.
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3.3. Structure of U(b)Ω

Let Φ be defined as in Sect. 3.2 in terms of a Dynkin diagram π. Choose a unit
vector Xt e uα. for each i. When Φ = π, there is a linear relation

' Σ * Λ = 0 , (1)

where each nt is a positive integer and n^+i = l. We set Σn^h. (When — α^ + x is
the highest root of the root system Rπ relative to π, then h is the Coxeter number of
Rπ.) Set

*= n x?1.

Thus £ has degree /ι, and relation (1) implies that ξ is in the center of U(b). (In fact, it
is easy to verify that ξ generates the center.) In particular, ξ e U(b)Ω. Note also that
μ(ξ) = 0.

Let Uj(b) be the standard filtration on l/(b), generated by b. Let U+(b) denote
the ideal of elements with zero constant term.

Theorem 3.3. Assume that Φ is one of the following:
Case 1: Φ = π, an arbitrary connected Dynkin diagram
Case 2: Φ = π, where π is of type A, B, C, D or E6 and — α / + 1 is the largest

positive root of Rπ

Case 3: Φ = π, where π is of type Bs or Cs and —oί^+ίis the short dominant root.
Fix homogeneous generators uί,...,u^ of U(a)w, and in Case 1 set ξ = 0,

Xj+1=0. Then the following holds:
(i) There exist elements Ωu ...,Ωe in U + (b)Ω such that

(a) μ(Ωi) = ui and degΩ^degMj relative to the standard filtration on U(b),

for i = l , . . . , Λ
(b) Ωt is in the subalgebra of U(b) generated by a and X\, . . .,X^,X|+ 1;
(c) U(b)Ω is generated as an algebra by Ωu ...,Ω^ and ξ.

(ii) The elements Ωγ,...,Ωe mutually commute and are algebraically

independent.

Proof. In Case 1, this follows from [G-W2, Theorems 2.5 and 4.1]. In Cases 2 and
3, let Ωj be the element w'(Uj) constructed inductively in Sect. 3 of [G-W2] for
j= 1,...,/. These operators are alternating sums of elements for which conditions
(ij and (ib) hold, by [G-W2, Sect. 2, Formula (2.7)]. Property (ic) now follows from
[G-W2, Theorem 5.2] in both Cases 2 and 3. By [loc. cit], property (ii) is known to
hold for Case 2 and the diagram of type Ce in Case 3.

It remains to prove that the operators Ω3 mutually commute in the case of the
extended diagram Be with — α / + 1 the short dominant root. To establish this
algebraic property, we use the following analytic argument: Consider the
representation Tc of Sect. 1.1 (c non-degenerate). It is easily verified that the kernel
of this representation of U(b) is the ideal generated by the central element ξ — y(c),
where y(c) is the scalar Tc(ξ). To prove that the operators Ωj mutually commute, it
will suffice by Proposition 1.5 to show that the Lie algebra ί) generated by Tc(Ωj),
7 = 1, ...,*f, is solvable.
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Letting x l 5 . . . 5 x, be orthogonal coordinates on α, we take the elementary
symmetric functions of x\,..., xj as the basic Weyl group invariants uί9..., ue. (W
consists of permutations and sign changes of the coordinates in this case.) Their
degrees are thus 2, 4, ...,2/, and hence Qte U2i(b) for ί = 1,2,...,/. (Here l/fe(b)
denotes the elements of degree ^ fe, relative to the standard filtration on the
enveloping algebra.)

Take A, Be U(b)Ω of degrees 2/ and 2k, respectively. By [G-W2, Lemma 3.6],

) , (2)

where C(A,B)e jj2j+2k~2'~2(b) and commutes with Ω. In particular, if
^ 2 / , then C(A,B) has degree at most 2 / - 2 . Now Tc(ξ) = y(c)L Thus

TC(B)~\ = y(c)2 TC(C(A, B)). (3)

We conclude from (2) and (3) that ί) = Tc(U2\b)Ω) is a Lie algebra, and if Z e [t), f)],
then the order of Z (as a differential operator) is at most 2/ —2. Let t)0 = ί) and
ί ) i + 1 = [ί),ί)ί]. Given Yet)i, one verifies inductively from (2) that o r d 7 ^ 2 / — 2ί.
Thus ϊ)f+ί = 0. This implies that ί) is nilpotent. D

Remark. The proofs of the cited results in [G-W2] exploit the empirical fact that
the degrees of the basic invariants are at most twice the rank for the classical root
systems and E6. It is possible that the theorem is true for all the exceptional
extended diagrams.

3.4. Representations of b

Throughout the remainder of this section we shall assume that Φ satisfies Cases 1,
2, or 3 of Theorem 3.3. Let rf = dimu = CardΦ. Given ceu*, set ct = c{X^ where
Xienat as in Sect. 3.3. Identify c with the point (cl9...,cd)e<Ed. Let Tc be the
representation of U(b) on C°°(α) as in Sect. 1.1. When Φ = π, then the central
element ξ acts by d

p )
We now relate this representation of U(b) to the rings of differential operators

in Sect. 2.1, taking α as the vector space V. We may identify U(a) with 9. Let ^ be
the algebra of C0 0 functions on α generated over C by 1 and e ~α i,..., e ~αd, and let Ά
be the algebra of differential operators on α with coefficients in 01. Clearly Tc(U(b))
C J2, with equality if all c, Φ 0. We set & = Tc(U(bf) and s/ = U(a)w. We claim that
conditions ( D O J and (DO2) in Sect. 2.1 are satisfied in this case.

Indeed, by Eq. (1) and Theorem 3.3 (ic), we see that

# = Γ C ( / ) , (2)

where β is the subalgebra of U(b) generated over (C by Ωί9 ...,Qe. By (ia) of
Theorem 3.3, we have

Ω,.-M j.eu 2 [/dj._2(b), (3)

where dj = dQgUj. From (2) and (3) it follows that Tc(Ωj) is a differential operator of
order dp and

Uj. (4)
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Thus conditions (DOJ and (DO2) follow from (2), (4), and Theorem 3.2.
Furthermore, in (DO2) we may take d = w, the order of W.

Corollary 2.2 combined with these observations implies the following dimen-
sion estimate:

Theorem 3.4. Assume that Φ is of type Case 1,2 or 3 in Theorem 3.3. Let f be the
subalgebra of U(b) generated over (C by β l 5 ...,Ω,, and let χ : / - > C be a
homomorphism. Let UCa be an open convex subset. Put

f = χ(ω)f for ωef}. (5)

3.5. Factorization of U(b)

We next show that the inequality in the dimension estimate of Theorem 3.4 can be
replaced by equality. For this, we shall continue to assume Φ is of type Case 1,2, or
3 in Theorem 3.3. In these cases one knows that the algebra f in Sect. 3.4 is
commutative and algebraically isomorphic to U(a)w under the homomorphism μ.
Let 1 =eu ...,ew be the elements in Theorem 3.2, indexed by increasing degree, and
set

[the space of W-harmonics in 17(α)]. We denote by £7/b) the standard filtration on
U(b). If Lc U(b) is a linear subspace, we set L7 = Ln(7/b).

Lemma 3.5. The map U{\x)®^®f^ΊJ(b) given by z®e®ω\-^zeω is a linear
isomorphism. Furthermore, for every 7^0,

Uj(b)= Σ VAu) •*,-/,. (1)
r+s+t=j

Proof From Theorem 3.2 and Theorem 3.3 it is clear that the spaces 17/b) and
Σ Ur(n)®J^s®ft (sum over r + s +1 =j) have the same dimension. So it is enough
to prove Eq. (1). It is trivial for j = 0. We assume the result is true for; ^ k — 1, and
look at the case; = k. By Theorem 3.2 it suffices to consider elements x e U(b) of the
form zeu, where z e C7(u), e e Jf, u e U(a)w, and the sum of the degrees of z, e, and u
is at most k. By Theorem 3.3, there exists an element ωef such that degω = degw
and ω-uen2 U(b). It follows that x — zeωeu2ΊJk^_2(b). Now apply the
induction hypothesis. D

Let ce(Cd. Recall that in the representation Tc of b in Sect. 3.4, an element
z e U(n) acts by multiplication by the function τc(z) = Tc(z) Λe0l. This defines a
homomorphism τc: U(u)->&. Let JΓ be the vector space of all holomorphic maps
from αc to ̂ f whose coefficients are in the algebra 01.

Corollary 3.6. Let X'./-^^ be a homomorphism. There is a unique linear map
Sc>χ:U(b)^£? such that

for z e C7(u), eeJίf, and ωef.
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Proof. There is a linear map l/(u)(χ)^f®β^>3£ which carries z®e®ω to
χ(ω)τc(z)e, for z e (7(u), e e Jf, and ωef. Using the isomorphism of Lemma 3.5,
we obtain the map Scχ. D

From the proof of Lemma 3.5 we can extract some explicit information about
the factorization (1) when applied to elements of U(a). Denote by U+(a) the
elements with zero constant term in l/(α), and by U + (a)w the subring of
W-invariants. Since there are no linear invariants, we note that if Oφwe U+(a)w,
then degw^2. Let P: (7(α)-> J f be the projection onto the harmonics along the
ideal in U(a) generated by U+(a)w. Let Hu ..., Rs be the basis for α dual to π. Let a
basis eu ..., ew for ffl be fixed as above, and define the integers mr by the property
that deg£fe^r if and only if k^mr. We know from Theorem 3.2 that there are
unique linear maps Iip: U(a)->U+(a)w such that if φ is homogeneous of degree r,
then

mr— 1

Hiφ = P(Hiφ)+ Σ eplip(φ). (2)
p=l

By Theorem 3.3 we can define unique linear maps Ωip: U((ή-*f+ such that
2 (3)

and degΩip(φ) = degIip(φ) for any φε U(a). Combining (2) and (3), we obtain the
identity

m r - l

Hrf = P(Hrf)+ Σ epΩip(φ)moάu2U(b), (4)
p=ί

for all φ e U(a) which are homogeneous of degree r.

Lemma 3.7. Suppose ωe/. Assume that ωu ω2,... are elements in β such that

μ(ω) = Σ ekωk modu£/(b). (5)
k

Then ωί=ω and ωk = 0 for k> 1.

Proof Apply the homomorphism μ to Eq. (5). By Theorem 3.1 we have
μ(ωk)eU(a)w

9 so by Theorem 3.2(2), μ(ωί) = μ(ω) and μ(ωk) = 0 for k>\. Now
apply Theorem 3.3. D

3.6. Integrabilίty of the Connection

Continuing with the notation and assumptions of the previous section, we now
choose a basis 1 = z l 5 z2,... for U(n) such that [H,zp] = λp(H)zp, for Heα, where
λpea*. By Lemma 3.5, there are unique elements uijpqe f such that

q (1)

for l^ i ίg/ and l^ j^w. Fixing a homomorphism χ:,/->C and CG(C^ + 1 , we
define functions Pjq on a by

Γ' Λ =Στ ί (z p )χ(« ϋ M ) . (2)
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[Recall from Sect. 3.5 that τc{z) = Tc{z) 1.] These functions are in the algebra M
generated by the exponentials {eα|α e Φ}, and thus extend holomorphically to αc.
Let Γ : α c ^ E n d J f be defined by

Γ\x)e^ Σ r^(x)e e , (3)
q=l

for x e αc. Define a connection V on the trivial vector bundle αc x Jf over αc by

VH=d(Hύ-Γ\ for ί^i^ί. (4)

Lemma 3.8. The connection V is ίntegrable.

Proof. Using the map Sc χ from Corollary 3.6, we see that Γι(x) is simply the linear
map

)

on Jf. By a direct calculation using (1) and (2) one finds that

S^iHflf) = (3(H;) P > + ΠΓe, (5)

for e 6 ̂ f and 1 ̂  i j £Ξ {. The left side of (5) is symmetric in i and;, so (5) implies that

d(H t) Γ
j + ΓjΓ = 3(H;) Γ' + ΓT^'. (6)

It follows immediately from (6) that \Vb P}] = 0, which proves that V is
integrable. D

3.7. Covarίant Constant Sections

Let V be the connection defined in Sect. 3.6, and suppose F is a C00 map from α to
Jf * that is covariant constant relative to the dual connection:

diHJF^PF, j = l,...,Λ (1)

Define the functions fj(x) = <F(x), e7), xeα, using the basis e1,..., ew of Jf. (Recall
that βi = l.) In terms of the components fp the system (1) becomes

Wj)fk= Σ r^/, (Π
β = l

for 1 ̂ 7 '^/ and 1 ̂ k ^ w. The following result is the key step for determining the
dimension of the space of joint eigenfunctions for the operators Tc(Ωj):

Lemma 3.9. // F satisfies (1) then

Λ = θ(βj)Λ (2)

far j = ί9 ...,w, and
Tc(ω)f1=χ(ω)f1 (3)

for all ωe/.

Proof We shall prove (2) and (3) by induction on the degrees of βj and ω. They are
trivially true if both degrees are 0, and we assume inductively that (2) and (3) are
true whenever the degrees of βj and ω are at most n.
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We shall first prove that (3) is true for any ω e / of degree n + 1 . Set u = μ(ω).
We may assume by the induction hypothesis that u is homogeneous of degree n +1 .
There exist ^ e C/(α), homogeneous of degree w, such that

(4)

Applying the factorization in Lemma 3.5 to φj9 we obtain elements ωjpq e ^ of
degree at most n, such that

" = Σ Σ ΣHjZpeqωjpq. (5)

Define

S=Σ Σ ΣZpHjeMn. (6)

i=i«=i P

Then S = u modu £/(b). Factoring Hpq according to Sect. 3.6(1), we can write S as

€ mn w

S= Σ Σ Σ Σ zpzrekujqrkωjpq. (7)
7 = 1 q=l p,r k=l

Although this formula for S looks quite unpromising, it actually has the
original operator ω hidden in it. To make this explicit, we recall that zί = 1, so if we
isolate the terms with p = r = l in (7), we see that

ekujqlkωjlq,
u= Σ Σ Σ ekujqlkωjlq, (8)

j=l q

modu U(b). Hence by Lemma 3.7,

e
ω= Σ Σujqllωjlq (9)

7 = 1 q

and e

0= Σ Σujqίkωjίq (10)
J = I «

for fc> 1. Thus the formula for S becomes

S = ω+ Σ Σ Σ Σ zpzrekujqrkωjpq. (11)
. 7 = 1 p + r>l q k = 2

Observe that ωjpq and ujqrk each have degrees at most n, and if ujqrk φ 0 with
p + r > l , then dQgek^n. Thus we may use the induction hypothesis to calculate

T£S)fi = Tc(ω)f1+ Σ Σ ΣΣ Tc(zpzrMujqrkωjpq)fk. (12)
j=l p + r> 1 q k = 2

By (10), the right side of (12) is unchanged if we include the terms with p = r = l.
Thus by (9) the terms with k= 1 that are omitted on the right side of (12) sum to
χ(ω)/1. By adding and subtracting these terms, we may write (12) as

ΓC(S)Λ = Tc(ω)Λ -χ{ω)h + Σ Σ Tc{zp)χ(ωjpq) \Σ Tc(zr)χ(ukΛfk • (13)
i,p,qk=l [r J



Systems of Toda-Lattice Type. Ill 491

We may now simplify (13) by first noting that the summation over r in the
braces gives Γj

qk. By Eq. (1)', the summation over r and k in (13) thus gives d(Hj)fq.
But degeq^n for all q such that ωjpq + 0. Hence by the induction hypothesis
d(Hj)fq = d{Hjeq)f1 for q in this range. With these observations, we may write (13)
as

ΓC(S)Λ = TXω)/, - χ(ω)Λ + Σ Σ T c(zp)χ(ω,.M)δ(tf/„)/; . (14)

Again by the induction hypothesis we can write

Substituting this into (14), we finally get

Tc{S)fi = Γc(ω)Λ - χ(ω)Λ + Tc(β)fi

Hence Tc(ω)fί=χ(ώ)fu completing the induction step for Eq.(3).
With (3) now established for all ω of degree ^ n + 1, we turn to (2). Let

degep = n. Taking φ = ep in Sect. 3.5(4) and using the definition of the connection
coefficients Γj

pq9 we see that

Γj

pq = 0 if dege β >n + l or if degeβ = n, (16)

Γ j

M e R if degeβ = n + l , (17)

and

)= Σ ΓV, (18)

Thus from (18) we can write formula Sect. 3.6(1) as

= P(Hjep)+
q<mn r

Since άQgeq<n and degMjpr€^n + l on the right side of (19), we may use the
induction hypothesis as extended in the first part of this proof to calculate

J j J p q q J p M ,
q < mn r q< mn

On the other hand, we can use Eq. (1)' and the induction hypothesis to write

Comparing these two formulas, we find that

^W)/i= Σ /V, (20)
q>mn

The final step in the induction is now an easy consequence of (20). Indeed, it is a
standard property of harmonic polynomials that JfM+1 = P(α Jf"). Given

B + 1 , we can thus find coefficients αfcj p e R such that

ek=ΣakJPP(Hjep).
hP
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From (17) and (18) it then follows that
€

δkq= Σ Σ ajkpΓj

pq.
q>mn j=l

Using this in (20), we obtain <9(efc)/i = /&, completing the induction. D

Combining Lemmas 2.3, 3.8, and 3.9, we obtain our main result (recall that we
are assuming that Φ satisfies Cases 1, 2, or 3 of Theorem 3.3):

Theorem 3.10. Let iTCiX denote the space of all holomorphic functions f on α c such
that

Tc(ω)f = χ(ω)f for ωef. (21)

Let Scχ denote the space of all holomorphic maps F from α c to $P% such that

diHjjF^PF for j = U...J. (22)

Then
(i) d i m # ; x = w.

(ii) The map F\->(F,e{) defines a linear isomorphism from SCiX onto # ^ r

4. The Monodromy of the Systems

4.1. The Space # ; v

We retain the notation and hypotheses of Sect. 3, and assume that the set Φ is as in
Cases 1, 2, or 3 of Theorem 3.3. Thus we know that U(b)Ω is abelian and is the
polynomial algebra in ξ, Ωu ...,Ω^ where the top-order symbols μ(Ω1)9...9μ(Ω^)
are basic homogeneous invariants for Win U(a) and ξ generates the center of U(b).

Recall that we are denoting by / the algebra generated by Ωl9..., Ω^. Let χ: /
-•(C be a homomorphism. Then χ can be parametrized by v e a$ via

) = μ{ω){v), ωef. (1)

(Here we view μ(ω) as a polynomial function on α* as usual.) We write χ = χv', under
the assumptions above, we then have χv = χμ if and only if μ = sv for some element
seW. For c e <Ed, let the representation Tc of b be as in Sect. 3.4. In this section we
shall study in greater detail the | W|-dimensional space Wc x of solutions to the
system

TAΩWiΩ)/ for 7 = 1,...,/ (2)

(cf. Theorem 3.10). Taking χ = χv, we denote this space as Ψ*c v.
Since the functions in iΓCtV are holomorphic on αc, we can exploit the

periodicity of the coefficients of the operators TC{Ω^) under complex translations, as
follows: Recall that Hjea is defined by α îί,-) = (5ίi7 , for ΐ = l,...,*f. Define the
translation operator 7} on C 0 0 ^ ) by (Tjf)(y)=f(y + iπHj) for yea^ (where
i = (—1)1/2). The operator T obviously commutes with the operators TC(H), He a,
and with the operators Tc(x\\ \^k^d. Hence by Theorem 3.3 (b) it follows that 7}
commutes with Tc(ω) for all ω e U(b)Ω. Thus

Tj:irCty-+irC9V (3)

forj = I , . . . ,/ . Obviously 7]7}= 7}T(.
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Let / e # ^ v be a joint eigenfunction of the operators Ίb z = l,...,/. (By the
finite-dimensionality of # ^ v, there always exists at least one such eigenfunction.)
Thus

TJ = μJ for i = l, . . . ,Λ

where μ{ e (C. Choose A e ct£, so that

et*Λ(Hj) = μ j 9 for ; = 1 , . . . , Λ (4)

Of course, A is not uniquely defined by (4), but the coset A + 2Lis well-defined as an
element of α|/2L, where

e
L= @ΈoLi

is the root lattice. If we now set φ(h) = e~m)f(h), for h e αj, then ̂  is a holomorphic
function which satisfies the periodicity conditions

j for 7 = 1,...,Λ (5)

Thus ^ has a Fourier series (multiple Laurent series) expansion

φ(h)= Σ aμe
2^,

μeL

which converges uniformly and absolutely on all strips

I ^ C for i = l,. . .,/}.

For the eigenfunction /, we thus have an expansion

f=eΛΣaμe
2>, (6)

μeL

with the same convergence properties.

Definition. Let M(c, v) C αJ/2L consist of all cosets A + 2L corresponding to joint
eigenvalues of the operators Tl9..., 7} as in (4). Call M(c, v) the (semi-simple part of
the) monodromy of the system (2).

From the results just cited, we see that M(c, v) is non-empty, and has at most
\W\ elements. The rest of this paper will be largely devoted to the study of the
monodromy.

Example. Take c = 0. Then the representation To is trivial on the subalgebra u, and
is just the regular representation on α. The operators T0(i2j) = d(u^) for i = 1,...,/ in
this case. In the notation of [He, Chap. Ill, Sect. 3.4], the space iT0> v = <?v(α). Let Wv

be the subgroup of W that fixes v, and let J*fv be the space of Wv harmonic
polynomials. Then by [loc. cit., Theorem 3.13] we have

Thus M(0, v) consists of all the cosets sv + 2L, seW. If we make the stronger
assumption that

, ^ 4 ^ Z (7)
(α,α)
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(cf. Sect. 3.2 for notation), then the cosets sv + 2L are all distinct. This follows easily
from the fact that for any λea$, the subgroup {se W\sλ — λεL) is generated by
reflections (cf. [Bo, p. 227, ex. 1 and p. 75, Proposition 2]). Thus Wsv = {ί} and
jfsv = C for all s e Win this case. It follows that when v satisfies (7), then M(0, v) has
cardinality \W\9 and the elements of M(0, v) parametrize a basis for Wo>v. We shall

show in the next section that this property continues to hold for generic values of
the pair c, v.

4.2. General Properties of the Monodromy

Because the system 4.1(2) is equivalent to the system 3.7(1)' by Theorem 3.10, we
can also obtain the monodromy of these systems via Floquet's theorem, as follows:

Fix the basis for Jf as in Theorem 3.2 and identify 2tf with (£w via this basis
(w = I W\). For ce(Cd (or in intrinsic terms, c e u£) and v e α£, let Γ(c, v: h) be the w
x w connection matrix evaluated at the point /ιeαc, as defined in Sect. 3.6(2).
From the theory of completely integrable systems of holomorphic differential
equations, there exists a unique holomorphic map

such that

d(Hi)W(c, v: h) = r\c, v: h)Ψ(c, v: h\ Ψ(c,v: 0) = I. (1)

By Theorem 3.10, if fί9 ...,/w are the entries in the first row of Ψ, then this set of
functions comprises a basis for the space # ^ v, and the remaining entries of Ψ are
given by

Ψtj = d(edfj. (2)

Let Sj(c, v) e GL(w, <C) be the matrix of the translation operator 7} on # ^ v relative
to this basis. From (2) it follows that

Ψ{c, v: h + iπHj) = Ψ(c, v: h)Sj(c, v) (3)

for 7 = 1,...,/. Furthermore, the matrices Sj mutually commute and the eigen-
values of Sj are the numbers eιπΛ{Hj\ as A ranges over M(c, v).

With this notation in place we can now prove the following general properties
of the monodromy:

Proposition 4.1. There exists a non-zero holomorphic function φ on<Edx α | such
that if φ(c,v) + 0, then M(c, v) has cardinality w.

Proof. Since the matrices S/c, v) mutually commute and have eigenvalues eiπΛ{Hj\
where A e M(c, v), it follows that any linear combination

A(c,v) = f djSj(c,v) (4)
7 = 1

(βj e C) will have eigenvalues

€

Σ n piπΛ{Hj) (ς\



Systems of Toda-Lattice Type. Ill 495

with A ranging over M(c, v). In particular, the cardinality of M(c, v) is at least as
large as the number of distinct eigenvalues of the matrix A(c, v).

Now fix v0 e α| satisfying condition 4.1 (7), set c = 0, and pick the constants at in
(4) so that the numbers (5) are all distinct, as A ranges over M(0, v0). (This can
always be done, since the row vectors

are all distinct when the cosets A + 2L are disjoint.) The matrix ,4(0, v0) will then
have w distinct eigenvalues. To see that this is a generic property, recall that if
Z e End((Cw) and adZ:End((Cw)->End(<Cw) is defined by adZ(X) = [Z,X] as
usual, then

d e t ( a d Z - ί ί ) = Σ ( - 1 /
j = w

If Z has eigenvalues ξl9...9ξw9 counted according to algebraic multiplicity, then

Thus if we set φ(c9 v) = DW(A(c, v)), then φ is clearly holomorphic on C d x αj, and
0, v0) Φ 0. As observed above, CardM(c, v) = w on the set where φ(c, v) Φ 0. D

By the multiplicity of an element A e M(c, v) we shall mean the dimension of the
corresponding joint generalized eigenspace

#; v(A) = {feiTe9V:(Tj-μ/f = 0 for some k and all j},

where μj = eιπΛ{Hj\ Of course, if Card M(c,v) = w, which we now know to be the
case generically, then all multiplicities are one.

Proposition 4.2. For all c, v, the sum (counting multiplicity) of the elements of
M(c, v) is in 2L.

Proof Let Ψ be the fundamental solution matrix, as in (1). By Abel's formula for
homogeneous systems of ordinary differential equations, we have d(Ht) det!F
= (trΓi)det!P. But from Sect. 3.7(16) we know that tr(Γι) = 0. Hence det*F is
constant on α€. Evaluating it at 0, we see that det Ψ = ί9 and thus by formula (3) we
conclude that

d e t S ^ l , for 7 = 1,...,Λ (6)

If mΛ is the multiplicity of Λ9 then Eq. (6) implies that

Σ mΛΛ(Hj)e2Z
ΛeM(c, v)

for j = 1,...,/. Hence Σ mΛΛ e 2L, as claimed. D
Recall from Sect. 3.3 the central element ξ (which equals 0 for the generalized

non-periodic systems, and generates the center of U(b) for the generalized periodic
systems). We now show that the monodromy only depends on the parameter c via
the value of the scalar Tc(ξ) [cf. Sect. 3.4(2)]:

Proposition 4.3. Suppose c, d€<Ed and Tc(ξ)=Tc,(ξ). Then M(y9c) = M(y,c/) for
any v e αj£.
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Proof. If h e α c and fe C°°(oc), then we set (R(h)f) (x)=f(x - ft), for x e αc. Then
#(ft) commutes with the operators 7}, and a simple calculation shows that

R(h)-1Tc(z)R(h) = Th.c(z) for z e b . (7)

Here we let h e α c act on c e (Cd by

(h c)j = e-a*h)cj9 for j = l,...,d. (8)

[Recall that d = dim(u); the action in (8) is equivalent to the coadjoint action of
expαc on ujj;.] From (7) we see that

bijectively. It then follows from formula (2) that the fundamental solution matrix
satisfies Ψ(c, v: x) = Ψ(h -c,v:x — h)A, for some matrix A depending on c, v and h.
Setting x = ft, we find that A = Ψ(c,v:h) and thus obtain the functional equation

Ψ(c9v:x) = Ψ(h c,v:x-h)Ψ(c9v:h) (9)

for all c e (Cd, v e α ?̂ and x,he αc. In particular, taking x = 0 and then x = /πH7 in (9)
yields the relation

Sjic9v)=Ψ(c9v:h)-1SJ{h'C9v)Ψ(c9v:h). (10)

Given (10), it is now easy to complete the proof. Suppose first that for all j , we
have Cy + O and cJΦO. Then there exists hea€ such that

c>j = e-aj(h)Cj for 7 = 1 , . . . , / (11)

(recall that α1? ...,α^ are linearly independent). If we also assume that

(12)

in the extended diagram case where d = £ + l, then condition (12) implies that (11)
also holds for j = d, and hence h-c = c/. [In the non-periodic case, d = ί and
condition (12) is vacuous.] By (10) the matrices Sj(c, v) and Sj(c\ v) are similar for
7 = 1,...,/; in particular, the joint spectra are the same, which proves the
proposition in this case.

Now suppose some c, = 0. By the linear independence of the set of roots {αf: i
Φ7}, there exists he a such that

o # ) > 0 (13)

for all i+j9 with 1 ̂ i = d. From (11) we thus have

lim Si((ίΛ).c,v) = Si(0,v), (14)
ί> + 00> + 00

for i = 1,...,/. But the characteristic polynomial of Sf((ίΛ) c, v) is independent of t
by (10), so by (14) we see that S4(c, v) and S^O, v) have the same eigenvalues. Thus

Af(c,v) = M(0,v). (15)

This completes the proof. D

Since Eq. (13) can always be satisfied for z = 1,...,/, the proof just given shows
that (15) holds for all the generalized non-periodic systems. Taking into account
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the example at the end of Sect. 4.1, we thus have completely determined the
monodromy in the following cases:

Corollary 4.4. (a) For the generalized non-periodic Toda lattice systems, M(c, v)
= {sv + 2L\s e W} for all CG<£* and all v e α | . Furthermore, when v satisfies
Sect. 4.1(7), then \M(c,v)\ = \W\9 and the monodromy matrices Sj(c,v) are semi-
simple.

(b) For the generalized periodic Toda lattice systems, the same conclusions hold
whenever at least one Cj = 0.

In the case of an extended Dynkin diagram Φ = {oc1, . . . ,α, + 1} as in
Theorem 3.3, a subgroup of the Weyl group acts on the space of eigenfunctions and
on the monodromy. Define

Wφ = {seW\sΦQΦ}.

An element s of Wφ acts on α by definition. We let s act on u by s Xt = Xj if αf = s α,-,
where {Xt} is the basis for u as in Sect. 3.3. This action preserves the commutation
relations in b, and hence defines an action of Wφ as automorphisms of UQή. These
actions commute with the projection μ: l/(b)->l/(α). Let ce(C' + 1 have all
components equal. Then for seWφ and ze U(b), we have

ρ(sy1, (16)

where ρ is the natural action of W on C^ia): ρ(s)f(h) = f(s~1 A) for he a.

Proposition 4.5. For any vectjjξ, the space # ^ v and the monodromy M(c,v) are
invariant under Wφ.

Proof. Recall that χv = χs.v for any s e W. By definition of the action of Wφ, it is
immediate that every s e Wφ fixes Ω. Furthermore, it follows from Theorem 3.3(la)
that the elements Ωt are all left fixed by s, since this is true of their top-order terms
ut. Thus by (16) we find that Ψ*cjV is invariant under ρ(s). Since the lattice L is
invariant under W, s induces a transformation of M(c, v). D

Example. The most extensive group of symmetries Wφ occurs in the case of the As

completed Dynkin diagram (the original "periodic Toda lattice"), for which the
subgroup Wφ is the group Έ/(/ + X)ΊL, acting by cyclic permutations of coordinates.
To verify this, we realize the Ae root system in IR", n = ί + 1 , as usual [Bo, Chap. VI,
Sect. 4.7]: Let eb\^i^n, be the standard basis for R", and take αcR" to be the
subspace Σ xi = 0 Define linear functional αf on α by

<Xi = (ei-ei+1)\a9 f o r ί = l , . . . , n .

(Here and in the following the indices are to be read cyclically modn: en+ί = e1.)
The functional α1? ...,α, comprise a base for the A€ root system, and an is the
negative of the highest root relative to this base. The Weyl group W is the
permutation group on n letters, acting on RM by permutations of the coordinates.
This action leaves α invariant, and it is clear that the only permutations that
preserve the set Φ are the iterates of the shift ei^ei+1. D

Remark. In general, one can show that the group Wφ is isomorphic to the quotient
of the weight lattice of the root system modulo the root lattice, hence its order is the
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"connection index" of the root system (cf. [Bo; Chap. VI, Sect. 4.3 and Planches
II-V]). This fact has also been observed by Olive and Turok [O-T].

4.3. Equations for the Monodromy

Since Corollary 4.4 gives complete information about the monodromy for
generalized non-periodic systems, we shall henceforth consider only the case of an
extended Dynkin diagram Φ = {α l J . . . ,α,,α, + 1}. We show, using a multidimen-
sional version of the celebrated technique introduced by G.W. Hill [Hi] and
developed by von Koch [vKl] (see the appendix to this paper), that the
monodromy exponents are restricted to lie on a complex variety in αJ/2L defined
by the vanishing of an infinite determinant associated with the operator Ω. The
complete set of equations for these exponents is then furnished by finite-
dimensional eigenvalue conditions for the remaining operators in U(b)Ω.

We fix the parameter ce(£* with Tc(ξ)φ0. As shown in the proof of
Proposition 4.3, we may assume for calculating the monodromy that the
components of c are all equal, and we set cf — ~κ. Let veαj , and set σ = χv(Ω)
= <v, v> (where < , > denotes the complex-bilinear extension to αj of the inner
product on α*).

Let Λ + 2Le M(c, v). Thus there is a non-zero function fe #^ > v which has an
expansion Sect. 4.1(6). We also know (since / is holomorphic on αc) that the
coefficients aμ in the expansion are exponentially decreasing. Set φ(y)=f(iy), for
yea(i = (-1)1/2), and let S be the operator TC(Ω) acting on C°°(m). Identify ia with
R/ using an orthonomal basis relative to the inner product on α. Then φ satisfies
Eqs. Sect. A.3(3)-(5), so by Theorem A.5 the monodromy exponent A satisfies the
equation

A*.M) = 0, (1)

where A is the infinite determinant associated with S defined in Sect. A.3.
We can obtain a complete set of equations for the monodromy by using the

remaining operators Ω2,..., Ω€. Let Lj be the operator Lc(Ωj) acting on C°°(m), for
7 = 1,2,...,/ (we set Ω = Ω1). For any Λea%, let $κ^σ(A) denote the space of
functions φ on ίa satisfying Sect. A.3(3)-(4) [for some choice of coefficients aμ

satisfying Sect. A.3(5)]. Since the operators L} mutually commute, they leave this
space invariant; we write L / K , σ,Λ.) for the restriction of Lj to this space. By
Theorem A.5, dϊm&Ktσ(Λ) < oo, and Eq. (1) is the necessary and sufficient condition
for SKitt{A) to be non-zero. For ίe(C, let Pj(κ,σ,Λ;t) = det(tI — Lj(κ,σ,Λ)) be the
characteristic polynomial of Lj(κ, σ, A).

Theorem 4.6. Let Λ,vea%. Set σ} = χv(ωj) for j = 1,2,...,/. Then A + 2Le M(c, v)
if and only if (1) holds and

pj(κ,σ9Λ;σj) = 0, for j = 2,3,...9ί. (2)

Proof. Conditions (1) and (2) are obviously necessary for A + 2Le M(c, v), by the
remarks preceding the theorem, since Lj acts by the scalar a>} on the space Wc>v.
(Recall that the functions in this space are holomorphic on αc, so we can consider
their restrictions to ίa.)
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To prove sufficiency of (1) and (2), we use the fact that the operators L, mutually
commute, and thus they have a joint eigenfunction in the finite-dimensional space
Sκσ{A)\ For every A satisfying (1), there exist complex eigenvalues σ = yl9 γ2,. ., 7/
and a non-zero function φeSKi<r(Λ)9 such that

Ljφ = yjφ, for 7 = 1,...,Λ (3)

If Eqs. (2) hold, then we may take γj = σ,- in (3). It follows from Lemma A.4 that φ
extends holomorphically to a complex tubular neighborhood U of iα, and satisfies
Lc(Ωj)φ = χv(Ωj)φ on U. By Lemma 2.3 and Theorem 3.10, we conclude that φ
extends holomorphically to α c and is in the space ΊV^ v. Since φ has the expansion
Sect. A.3 (4), it follows that A + 2Le M(c, v). D

Appendix I:
Infinite Determinants and Equations of Mathieu Type in Several Variables

ALL Infinite Determinants

We recall some results in the "classical" theory of absolutely convergent infinite
determinants, as developed by H. Poincare and H. von Koch (cf. [Ri, Chap. 2] and
the references cited there; the "modern" operator-theoretic treatment of infinite
determinants, as in [Si], does not seem to be sufficiently delicate for our needs). Let
L be an index set. If s: L^L is a bijection, define

= {μeL:s(μ)*μ}.

The restricted symmetric group of L is the group S^ of all permutations s with
Supp(s) finite. Let sgn: S ^ - ^ + l} be the homomorphism that is - 1 on
transpositions.

Let A = \_Aμv~] be a matrix of complex numbers indexed by L x L. Assume that
the diagonal elements Aμμ satisfy

Σ μ 4 μ μ - i | < o o . (l)
meL

In particular, at most a finite number of the Aμμ are zero. For seS^, set

A(s)=ΠAμ,sμ. (2)
μeL

Since s has finite support, it is clear from (1) that the infinite product (2) converges
absolutely.

Definition. A has an absolutely convergent determinant if (1) holds and

π(A)= Σ |4(s) |<oo.

In this case, we define seSo°

deU= Σ sgn(s)A(s).
seSao

Remarks. 1. Suppose A has an absolutely convergent determinant. Let (μ0, v0) be a
fixed pair of indices, and consider the matrix A' formed by multiplying the μ0, v0

entry of A by the complex number λ. Since each entry of A occurs at most once in
any term A(s), one has τφ40^(l +W)πC4), and hence A' has an absolutely
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convergent determinant. Thus, for example, to establish that a matrix A satisfying
condition (1) has an absolutely convergent determinant, it suffices to show that the
matrix A' has an absolutely convergent determinant, where A" is obtained from A
by replacing any zero diagonal elements by 1.

2. If condition (1) holds, let D be the infinite product of the non-zero diagonal
elements of A. Set Bmn = AmJAmm for all m such that v4mmΦθ, and otherwise
Bmn = Amn. Then the diagonal elements of B are all 0 or 1, and it is straightforward
to show that A has an absolutely convergent determinant if and only if B does. In
this case,

Lemma A.I. Assume that A has an absolutely convergent determinant. Given M C L,
set A^ = ίAmn]m,neM. Then

detA= lira detAm. (3)
M->-oo

Here M -> oo means taking the limit along the net of all finite subsets of L.

Proof As noted in Remark 2 above, it suffices to consider the case in which a finite
number of the diagonal entries are 0, and the rest are 1. For every finite subset M
CL, we set

S(M) = {seSO0:Supv(s)cM}.

For every ε > 0, the convergence condition (3) implies that there is a finite set MεcL
such that

Σ \A(s)\<ε. (4)
sφS(Mε)

We may choose Mε large enough to include all the indices μ such that Aμμ = 0. But
if MDMε is finite and Supp(s)cM, then Am(s) = A(s). It follows from (4) that

\dQtA-detAiM)\<8,

which proves the lemma. D

We want to have conditions on A so that the existence of a non-trivial bounded
sequence x satisfying Ax = 0 is equivalent to the condition det̂ 4 = 0. The first
sufficient condition for this to hold was given by Poincare. For our purposes we
shall need the more refined conditions found by von Koch ([vK2] and the
references cited there):

Lemma A.2. Let rΞ^ 2 be an integer, and define for μ, v e L

where Σ ' denotes the sum over all μ l 5 . . . , μ r _ 1 e L which are distinct among
themselves and not equal to μ or v. Assume that there exists an integer n^t2 such that
the series of "circular products" of length r

Σ z£J (6)
μeL

converges for r = 2,3,..., 2n — ί, and the series of "semi-circular products" of
length r

Σ z% (7)
μ, veL
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converges for r — n, n + l,...,2n — l. Then
(i) A has an absolutely convergent determinant;

(ii) The system of equations:

for all μeL,Σ Aμλxλ = 0
λeL

has a non-zero solution x with sup μ | x μ |< oo if and only if dQtA = 0.

AI.2. Multidimensional Jacobi Matrices

Let Φ = {oc1,...,(xtf+1}C1SS/ be such that
(a) the vectors α1 ? ...,a^ are a basis for K/
(b) there are integers n{ ^ 1 such that

e

i=ί

We set h = 1 + nt + . . . + ne, and denote by L the lattice in K/ generated by α l 9 . . . , α .̂
Let A = \_Aμv~\ be a matrix indexed by LxL. We shall assume that the off-

diagonal elements satisfy the following condition:
(c) lϊ vφμ + Φ, then Aμv = 0.
For example, if *f = 1 and αx = — α2, then (c) says that A is a doubly-infinite

tridiagonal (Jacobi) matrix. In this case the condition for the absolute convergence
of the determinant of A was found by von Koch (cf. [W-W, p. 37]). For ( > 1, we
shall show that von Koch's general criterion (Lemma A.2) applies, given the
following bounds on the elements of A:

Lemma A.3. Assume that the product of the diagonal elements of A is absolutely
convergent, and that there exists a number ε > {jh and a constant C such that

for allμεL and veμ + Φ. Then the conditions of Lemma A.2 are satisfied with n = h.
Furthermore, if the entries of A depend on a parameter in such a way that the series
Sect. A.l( 1) converges uniformly and estimate (1) holds uniformly in the parameter,
then the limit Sect. A.I (3) giving det^4 holds uniformly in the parameter.

Proof. We introduce the following notions: If μ e L and v e μ + Φ, we shall write μ
-> v. By a Φ-path in L of length r we shall mean a map y: {1,2, ...,r, r +1} ->L which
satisfies

where μj = y(j). We say the path is closed if y(r + l) = y(l). Set

r

Aγ= I I Aγφγ(i+1) .
i= 1

Consider now the conditions of Lemma A.2. By (c) above, the only non-zero
terms in the summations Sect. A.I (5) for Z%1 are those for which
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is a Φ-path. Thus

z%ύ Σ MM, (2)
γePr(μ, v)

where Pr(μ, v) is the set of all Φ-paths of length r beginning at μ and ending at v. But
for fixed μ and fixed r, there are at most (/ + l)r such paths, and every point on the
path is at a bounded distance from μ. From estimate (1) and (2) we thus have

γir) < ^ (IΛ

where the constant C" depends only on r, the set Φ, and the constant C in (1). Also,
Z{μl = 0 if II μ — v| |>M, where M is a constant depending on r and Φ, but
independent of μ and v. By the condition εh > £, it is thus clear from (3) that the
series Sects. A.I(6) and A.I(7) converge as soon as r^h.

It remains to consider the series Sect. A.I (6) when r<h. For this, we make the
key observation that

Z^l = 0 unless r is divisible by h. (*)

Thus the convergence condition on Sect. A. 1 (6)is vacuous when r = l , 2 , ...,ft — 1,
so the lemma will follow from (*). (The uniformity statements follow from the
estimates above and von Koch's estimates for det^l [loc. cit.].)

To prove (*), write μ = μ1? and assume that there is a non-zero term
Aμιμ2... Aμrfiί in Z^. Since μt φ μj for i +;, we have a closed Φ-path y: μγ ->μ2-•...
-> μr -> μ!, by condition (c). For 1 ̂  i ̂  / +1, let α{ be the number of times that μk + x

= μk + αf. (Here we set μ r + ! = μv) Writing a^ +1 = b, we find that because y is closed,
the numbers at must satisfy αf = bnt, 1 ̂  i ̂  /. But αj + ... + a^ + b = r, so it follows
that r = bh, which proves (*). D

AI.3. Mathieu Equations in Several Variables

Let the set of vectors Φ c Mf be as in Sect. A.2. Define the complex-valued potential

V(y)= Σ e-2i<«» (1)
αeΦ

for ye]R/(z = ( —1)1/2), and define the Schrδdinger operator

S = - . Σ ( W 2 + κF(3;), (2)

where K e C is a constant. Notice that F is multiply-periodic with periods %Hp

where fί l 5 ...,H^ is the dual basis to α l5 ...,αΛ Let

7 = 1

be the lattice generated by Hlf..., iϊ^. As in Sect. A.2, we let L be the dual lattice
generated by α1? ...,αΛ

In this section we consider the eigenfunctions φ of S:

Sφ = σφ, σe(C, (3)
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which admit convergent expansions

φ{y) = έ<Λ>y> Σ α μ e 2 < < " *> (4)
μeL

for some A e C .̂ (Here (A, y) denotes the complex-bilinear extension to (Ĉ  of the
inner product on IRΛ)

Example. I f / = 1 and Φ = {α, -α}, then F(y) = 2cosα(y), and (3) is Mathieu's
equation [W-W, Chap. XIX]. In this case (3) always admits solutions of the form
(4), by Floquet's theorem.

Lemma A.4. Suppose φ is a solution of (3). // φ admits an expansion (4) that
converges weakly (in the sense of distributions, say), then φ is a real-analytic
function and the coefficients aμ in (4) are exponentially decreasing: There exists an
r > 0 such that

s u P μ 6 L | α μ | ^ » < o o . (5)

In particular, if {aμ:μeL] is a bounded sequence such that the distribution defined
by (4) is an eigendistribution for S, then this sequence necessarily satisfies (5).

Proof. The distribution e~ ι<Λ>y> φ(y) is a periodic eigendistribution for the operator
SΛ = M2 1SMΛ, where MΛ is multiplication by ei<Λ*y>. But SΛ is an elliptic operator
with analytic, πP-periodic coefficients, so the lemma follows by the analytic
hypoellipticity of this operator on the torus JS//πP. Π

We denote by Sκσ{Λ) the space of functions φ on K/ satisfying (3) and (4) [for
some choice of coefficients aμ satisfying (5)]. Since the eigenspaces of SΛ on

f ) are finite-dimensional, it follows as in the proof of Lemma A.4 that

We can now prove, using a multi-dimensional version of the celebrated
technique introduced by Hill [Hi] and developed by von Koch [vKl], that the
space <$κ,σ{A) is non-zero if and only if the monodromy exponent A lies on a variety
defined by the vanishing of an infinite determinant. To obtain this result, we
calculate from Eq. (3) that the coefficients aμ in the expansion (4) of φ satisfy the
following infinite set of homogeneous partial difference equations:

tf+l

[</t + 2μ, A + 2μ) - σ] aμ = - K Σ aμ+Xj (6),
• 7 = 1

for all μ in the lattice L. We can express the condition on A so that the system (6)
have a non-zero bounded solution {aμ} as follows:

For μeL, μφ0, we multiply Eq.(6)μ by the non-zero scalar

where £{z}=exp[z + (z2/2) + ... + (z7*0] f°r ^eC. This gives an equivalent
homogeneous system of the form

ΣAμλaλ = 0, (7)μ
λeL
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where the coefficient matrix A = \_Aμ)~\ has diagonal entries

<Λ,Λ}+4<Λ,μ}-σ

if μφO, and A00 = (A,A} — σ. The only non-zero off-diagonal entries of A are
Aoλ = K for μ = 0, and

<Λ,Λ> + 4<Λ,μ>-σ) ( 9 )

for μφO, where in both cases λ = μ + ocj9 w i t h a l , ...,/ + l.

Theorem A.5. The matrix A has an absolutely convergent determinant ΔσfK(A)
which is a non-constant holomorphic function of Ae(C*, κe(C, and ve(C. A
necessary and sufficient condition that Eq. (3) admit a non-trivial C00 solution of the
form (4) is that Aσκ(A) = 0.

Proof By the standard estimates for Weierstrass infinite products, we obtain from
(8) that

H A ^ C(Λ,σ)

where C(A, σ) is a locally bounded function of A, σ and is independent of μ. Thus
Sect. A.I (1) converges, uniformly on compacta in A, σ. For the off-diagonal entries
we have an estimate

from (9), with C(Λ9 σ) another locally bounded function of Λ9 σ. Thus estimate Sect.
A.2(l) holds with ε = 2, uniformly on compacta in the parameters. Since the
number h^ί + 1 in Lemma A.3, we certainly have sh>£, and the hypotheses of
Lemma A.3 are satisfied by A. The theorem thus follows by Lemmas A.2 and
A.4. D

Remarks. The infinite determinant Λσ>κ(A) can be factored as follows: Let

Dσ(A)=UAμμ, (12)
μeL

where the diagonal elements of A are given by (8). Then by estimate (10), we find
that Dσ is a holomorphic function of A e C^, and Dσ(A) = 0 if and only there exists
μeL such that

σ. (13)μ

In particular, the zero set of Dσ is invariant under translations by elements of 2L.
Suppose Dσ(A) φθ. Then we can get a system of equations equivalent to (6)μ by
dividing by the coefficient of aμ:

(14),
λeL
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Here the coefficient matrix B = [Bμλ~] has diagonal entries Bμμ = 1. The only non-
zero off-diagonal entries of B are

B

where λ = μ + otp withj = l, . . . , / + l .
By the same argument as for the matrix A, we see that the function Γσ κ = det5

is a holomorphic function of A on the complement of the unions of the varieties
)μ, μeL. It is clear that

ΓσJA) (16)

for all μeL. By Remark 2 before Lemma A.I, we have the factorization

(A). (17)

This shows that Γσ κ is a meromorphic function on (Ĉ , multiply-periodic with
periods 2L. We also conclude that the equation Aσ K(A) = 0 is invariant under
translations of A by 2L, and hence defines an analytic variety on the manifold
C/2L.

Appendix II: Invariant Operators for the Periodic Toda Lattice

In this appendix we derive formula (1) of the introduction. We realize the A€ root
system in R", n = £ +1, as usual [Bo, Chap. VI, Sect. 4.7]: Let ei9 1 ̂ i ^ n , be the
standard basis for R", and take α C R" to be the subspace Σ *i = 0. Define Λ£ = ̂  — u,
for ΐ = l,...,«, where u = (l/n,..., 1/w). Then ^ e α , and hx + ,..-\-hn = 0. We define
linear functionals αf on α by oci(x) = xi — xi+1, for i = l,...,n. (Here and in the
following the indices will always be read cyclically modn: xn + ί=x1 ) The
functionals α l5 ...,α^ comprise a base for the A€ root system, and α^+1 is the
negative of the highest root relative to this base. One has the relation

α1 + . . . + α , + 1 = 0 . (1)

The Weyl group W is the permutation group on n letters, and its action on α is by
permutations of hu ..., hn.

We introduce the following notation: Set Φ = {αl5...,α^+1} and
7 = { l , . . .y+l} . IfPcΦ, let

7(P) = {/e/|there exists aeP with α(Λf)φ0}

(with the convention that I (void) = void). It is clear that
(a) If PCΦ and P = P'UP", then 7(P) = /(P/)u/(P//)
Furthermore, a special property of the type Ae completed Dynkin diagram is

that
(b) If P\ P"CΦ and F 1 P " , then J(P/)n/(P//)-void.
Indeed, if ieI(P'), then either at or ai_ί is in P'. But (aboίi_1)ή=O, so neither of

these roots can be in P". Hence a(/zf) = 0 for all αeP\ so iφI{P"). This proves (b).
Now consider the family of disconnected subsets of P, in the sense of Dynkin
diagrams:

5f(P) {QP\±β for all α,j8eβ}.
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(In particular, note that S?(P) always contains the empty set.) It is clear from the
definition that

(c) If P' and P" are subsets of Φ and PΊP", then ^ ( P ' u P " ) consists of all sets
Q = Q'KJQ% where Q'eSf(P') and Q"

Let ίe(C. Given QCPCΦ, set

HP/Q(t)= Π (ht + t) (2)
ίeI{P)~I(Q)

as an element in the complexified enveloping algebra U(a). When Q is empty, we
write HpιQ(t) = HP(t). In particular, when P = Φ, then we set Hφ(t) = H(t). This
element of degree £ +1 is W-invariant, and when we expand it as a polynomial in ί,
the coefficients of 1, ί, . .^ί^" 1 furnish a set of £ independent homogeneous
generators for S(a)w (cf. [Bo, loc. cit] note that the coefficient of t€ is zero by (1)).
From properties (a) and (b) above we obtain the following multiplicative property
for these polynomials:

(d) Suppose β ' c P ' and Q?dP" are subsets of Φ such that P'±P". Set
P = FvP" and β = β 'uβ". Then Hm(t) = HPΊQ(t)HP»IQ..(t).

Form the Lie algebra b as in Sect. 3 with roots Φ = {α1? . . . ,α / + 1 }, and let
X = Xα. be chosen as in Sect. 3.3. Then hί9 ...9h^Xl9 . . . , Z / + 1 is a basis for b, and
the commutation relations in b are

;:;+,
for i,j = ί , . . . 9 £ + ί.

For an inductive study of the Laplacian Ω for b we recall the following
constructions from [G-W2]: Let PcΦ and set

α(P)= Σ O ( , u(P)=Σ<CX α ,
fe/(P) αeP

and b(P) = α(P) + u(P). Let σP: b(P)^α(P) be the projection corresponding to this
direct sum decomposition. We extend σP to a homomorphism from U(b(P)) to
ί/(α(P)), and call σP(T) the symfco/ of T, for Γe C/(b(P)). For any subset QcP let

This is a subalgebra of b(P). The Laplacians for the algebras b(P)Q are

Ω(P)Q= Σ hf+ Σ ^α

2

ίe/(P) αeP~(2

When <2 = void, we simply write Ω(P). Note that

Q, (4)

where ΔP Qe U(a(P)) and commutes with £/(b(P)Q). This is obvious, since
fcJ = 0 if α e P ~ β and i ( )

Π

Note that Z ρ commutes with HP/Q(t), since αί/z^O for all α e g and iφI(Q).
With this notation in place, we can now define the following polynomial in t e C
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with coefficients in U(b(P)):

LP(t)= Σ i-i)mx2

QHP/Q(t). (5)
Q^(P)

For example, iϊ P = {oci}, then ίf(P) consists of the empty set and P, so

LP(t) = (hi + t)(hi+1 + t)-$Xl

in this case. A simple calculation using (3) then shows that

[Ω(P),LP(ί)] = 0 (6)

when |P| = 1.
Before proving (6) in general, we observe that if P = P'uP" with PΊP''', then

) = LP.(t)LP..(t). (7)

Furthermore,

β(P) = β(P0 + β(P"), (8)

and we have

[β(po, β(θ]=o, [β(n LAm=o, [β(po, MO]=o. (9)

[These all follow easily from properties (a), (b), (c), and (d) above.]

Theorem. For any subset PcΦ, one has [LP(ί), β(P)] =0 for all t e(C.

Proo/. When |P| = 1, then the theorem follows by direct calculation, as noted
above. Assume that the theorem is true for all subsets of cardinality less than \P\.

Case 1. P = P'\JP% with P'LP" and both non-empty. The induction hypothesis
applies to P' and P". By (7)-(9) we see immediately that the theorem is true for P.

Case 2. P is connected. We recall the following results from [G-W2]: Let QcP
with β + P. Set Q' = P~Q. Since Q is an ordinary Dynkin diagram, [G-W2,
Theorem 4.1] implies that there is a unique element wPtQ(t) e U(b(P)Q) such that

(i) wPQ(t) has symbol HP(t).
(ii) wPfQ(t) commutes with Ω(P)Q>.
We claim that

wP,Q(t) = HPIQ(t)LQ(t). (10)

To prove (10), note that the right side of (10) has symbol Hp/Q(i) HQ(t)9 which is
simply HP(t). Hence property (i) is satisfied. Furthermore, since LQ(t) commutes
with Ω{Q) by the induction hypothesis, we see from (4) (with Q replaced by Q") that
LQ(t) also commutes with Ω(P)Q,. Finally, HP/Q(t) commutes with Ω(P)Q, because
[hb Xα] = 0 for α e Q and i φI(Q). Thus the right side of (10) also satisfies property
(ii). This proves that equality holds in (10).

To complete the induction, we use [G-W2, Lemma 3.2]: Since deg(HP(ί))
= |P| + 1, the element

= Σ (-l) |P

(2 + P
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(sum over all proper subsets Q of P, including the empty set) commutes with Ω(P)
and has symbol HP(i). By (10) it thus only remains to check that

= Σ ( - i ) | F M β l + 1 i ϊ p / Q ( ί ) £ β ( ί ) (li)

The proof of (11) is a straightforward calculation starting from formula (4) and
using the fact that every totally disconnected subset Q e &*{P) is contained in some
proper subset of P, since P is connected. We leave the details to the reader.

The differential operator in Eq. (1) of the introduction is Γc(L(ί)), with Tc the
representation of b defined in Sect. 1.1.
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