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Abstract. In a previous paper it was shown that certain Schrodinger operators
H=A4-V on IR’ such as the Hamiltonians for the quantized one-dimensional
lattice systems of Toda type (either non-periodic or periodic) are part of a
family of mutually commuting differential operators H=L,, ..., L, on R?. The
potential V in these cases is associated with a finite root system of rank /, and
the top-order symbols of the operators L; are a set of functionally independent
polynomials that generate the polynomial invariants for the Weyl group W of
the root system. In this paper it is proved that the spaces of joint eigenfunctions
for the family of operators L; have dimension |W|. In the case of the periodic
Toda lattices it is shown that the Hamiltonian has only bound states. An
integrable holomorphic connection with periodic coefficients is constructed on
a trivial | W|-dimensional vector bundle over €/, and it is shown that the joint
eigenfunctions correspond exactly to the covariant constant sections of this
bundle. Hence the eigenfunctions can be calculated (in principle) by integrating
a system of ordinary differential equations. These eigenfunctions are holom-
orphic functions on €’, and are multivariable generalizations of the classical
Whittaker functions and Mathieu functions. A generalization of Hill’s
determinant method is used to analyze the monodromy of the connection.
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0. Introduction

This paper is the third in a series of papers on classical and quantum mechanical
systems of Toda lattice type (cf. [G-W 2, G-W4]). The quantized Hamiltonians for
these systems are Schrodinger operators H =4 — V on C*(IR?) with the potential V
determined by the following data: Let @ be a finite set of linear functions on R? that
define either an irreducible Dynkin diagram of arbitrary type or a completed
Dynkin diagram of type A, B, C, D, or Eg, and let c,, for o € @, be a constant. Then
V=13 cle %,
) acd

In [G-W2] it was shown that H is part of a family L, L,, ..., L, of commuting
differential operators whose top-order symbols are a set of functionally independ-
ent polynomials, and that these polynomials generate the polynomial invariants
for the Weyl group of the root system associated with &.

For the completed Dynkin diagram of type A4,, H is the quantized periodic
Toda lattice Hamiltonian. We can write down an explicit “generating function” for
the operators L; in this case as follows:

Take @ in R*, n=¢/+1, to consist of the linear functions o;(x)=x;—x;,
[i=1,2,...,nwith theindices read cyclically mod(n)]. Let & be the collection of all
subsets O C® such that aL f for a, f€ Q. Given Q € &, set

eQ=exp{—2 3y a} and co=[]¢,.
aeQ aeQ
Also let I(Q) be the set of indices between 1 and n such that (6/0x;)e*™ =0 for all
o€ Q. In particular, when Q is empty, then I(Q)={1,2, ...,n). Define a constant
coefficient differential operator

Pot= 11 {2,

iel(Q)
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where ¢ is an indeterminant. With this notation in place, define

1\'e!
L(t)= ng <— §> coeoPo(t). )
One can prove (cf. Appendix II) that [L(z), H]=0 for all ¢. It follows by [G-W 2,
Theorem 5.2] that the coefficients D; of "~/ in L(t) are mutually commuting
differential operators for j=1,2,...,n. One has D, =(0/0x,)+ ... +(d/0x,) and
H=D?-2D,. Setting L,=H, L,=D,, ..., L,_, =D,, we obtain a complete set of
quantum invariants for the periodic Toda lattice system (cf. [Gu2] for the cases
n=3,4, and 5; note that the linear momentum D, is an extra conserved quantity
for this system).

We now return to the general case. Let the operators Ly, ..., L, be as above. In
Sect. 1 it is proved that if the potential V' is determined by a completed Dynkin
diagram and the coefficients c, are all real and non-zero, then L*(IR?) decomposes
into a direct sum of finite-dimensional joint eigenspaces for L, ..., L,. Thus the
problem of determining the joint eigenfunctions for these operators is especially
important. It is natural to allow the coefficients c={c,} in the potential ¥ to be
complex, and to consider all the joint eigenfunctions, without any a priori
condition of square-integrability. For v=(v,, ..., v,) € €’ we set

W, ,={feC*(RY):L,f=v;f, for i=1,...,¢(}.

The main purpose of the present paper is to analyze the joint eigenspaces %/, ,. Let
W be the finite Weyl group of the root system associated with @, and let w be its
order. We prove that for all values of ¢ and v, the space #, , has constant
dimension w. For example, in the case of the periodic Toda lattice with n particles,
this dimension is n! (cf. Theorem 3.10; for invariance purposes the parameters ¢
and v are replaced by an equivalent set in remainder of this paper). This result is
proved by first constructing holomorphic w x w matrix-valued functions I'’(c, v: z),
for ze € and i=1, ..., 7, such that:

(a) the operators V,=d/0z;,— I''(c, v: z) mutually commute (Lemma 3.8). From
the integrability condition (a) one knows that the space of solutions &, , of the

first-order system ‘
0F/0z;=T"c,v)F, for i=1,...,7, 2

has dimension w. We then prove the key result (Lemma 3.9):

(b) the map (F,, ..., F,) F is a bijection between &, , and ¥/, ,.

Combining (a) and (b) we obtain the stated dimension result; furthermore, the
integrability condition means that the joint eigenfunctions for the operators
L,...,L, can be obtained by integrating a system of ordinary differential
equations. Taking into account our earlier results [G-W4] on the solutions of
the classical Hamiltonian flows for the generalized periodic Toda lattices, we see
that these systems are “integrable” in all possible senses.

In the last part of the paper we turn to the problem of finding explicit
expansions for the joint eigenfunctions. We know by properties (a) and (b) above
that the eigenfunctions are holomorphic functions on €*. The coefficients of the
operators L; and the matrices I are multiply-periodic with purely imaginary
independent periods t; j=1,...,/. By Floquet theory there are mutually
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commuting w X w matrices S, ..., S, (the monodromy matrices), all depending
holomorphically on the parameters ¢, v, such that

F(z+1;)=8;F(z),

for all F € 8, ,. We prove that the matrices S; are diagonalizable for generic values
of the parameters (c, v) (cf. Proposition 4.1). As a corollary, we show that for (c, v)
in general position, there is a set M (c, v) of w linear functionals on €/ which are all
distinct mod2L (L being the root lattice associated with @), and a basis

{falAe M(c,v)} for #, ,, such that the functions f, have expansions
fD) =D T a(M)e 2w, (3
uel

The convergence in (3) is uniform on tube domains. We emphasize that in our
treatment of these systems, the existence of a convergent expansion (3) is a
consequence of the integrability of the system, and is not merely an ansatz.

The elements A € M(c, v) are the monodromy exponents. When @ is an ordinary
Dynkin diagram (the “generalized non-periodic Toda systems”), then we prove
that M(c, v) is an orbit of the Weyl group (Corollary 4.4). When & is a completed
Dynkin diagram, then the explicit determination of M(c,v) from ¢ and v is quite
difficult, the case £ = 1 being the problem of the Floquet exponents for the Mathieu
equation (cf. [W-W; Chap. XIX Mathieu Functions]). We attack this problem in
Sect. 4.3 using the following technique:

Write the Schrddinger equation

Hf 4(x)=v, f4(x) 4)

in terms of the expansion coefficients in (3); this gives an infinite set of
homogeneous partial difference equations for the coefficients a,(4). We use a
generalization of Hill’s original method (as it applies to the Mathieu equation) and
some results of von Koch ([vK 1, vK 2]; cf. the appendix to this paper) to show that
the coefficient matrix of this set of difference equations has an absolutely
convergent determinant 4, (4). Furthermore, the monodromy exponents A must
satisfy the equation Ao (4)=0. 5)

Conversely, for any AeC’ lying on the variety (5), let #; (A) be the space of
functions that have convergent expansions of the form (3) and that satisfy (4). This
space has finite non-zero dimension, and is invariant under the other operators
L,,...,L, This yields /—1 more equations that suffice to determine the
monodromy exponents (Theorem 4.6).

In the case of the quantized systems associated with an ordinary Dynkin
diagram &, such as the non-periodic Toda lattice, the eigenfunctions have been
previously constructed using representation theory ([G-W 1, Go2, Ko]; cf. [O-P]
for further references). The approach in the current paper via the system of first-
order differential equations (2) was outlined in [Go2], and the result dim¥#; ,<w
(with equality for generic values of ¢ and v) was proved there. Subsequently,
Hashizume [Ha] carried out a direct construction of the eigenfunctions via the
expansion (3) and reproved the generic dimension result. The fact that dim %, ,=w
for all values of the parameters ¢ and v was not previously known.
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The most extensive previous study of the eigenfunctions for the quantized
periodic Toda lattice was done by Gutzwiller [Gul, Gu2], who uses some
(partially heuristic) arguments involving matched asymptotic expansions to
reduce the calculation of the monodromy to the case of one-variable infinite
determinants of Hill’s type. In [Gu2] the eigenfunctions are expanded in terms of
Whittaker functions, rather than exponentials as in (3). This is a quantized version
of a technique used by Kac and van Moerbeke to treat the N-particle periodic
Toda lattice in terms of the (N — 1)-particle non-periodic lattice. There seem to be
several analytic points that are left open in this work. A WKB approximation for
the eigenfunctions has been studied in [D-M], and general surveys of quantum
integrable systems are found in [Fa, and O-P].

1. Hamiltonians with Long-Range Exponential Potentials

1.1. Solvable Lie Algebras and Exponential Potentials

In this section we study quantum Hamiltonians L=4—V on R, where the
potential ¥ grows exponentially at infinity. By relating L to the unitary
representations of certain exponential solvable Lie groups, we prove that the
resolvent of L is compact, and we obtain exponential decay estimates for the
eigenfunctions.

We begin by recalling some results from [G-W 2], where the following class of
Lie algebras was studied: Let b be a finite-dimensional Lie algebra over R such
that b=a®u, where a is a commutative subalgebra of dimension Z, and u is a
commutative ideal. We assume that a positive-definite inner product { -, - Yonb
is given such that a1 b and the linear transformations ad H, for H € q, are self-
adjoint relative to this form.

By our assumptions, it is clear that u admits an orthogonal direct sum
decomposition into eigenspaces relative to ada:

u= Pu,.

=g}
Here ¢ Ca* and

w,={Xeu[H,X]=AH)X,Hea}.
For the purposes of this paper we may assume that
dimu,=1 forall Aed. (6))

Let 4 and U denote the simply-connected Lie groups with Lie algebras a and u
respectively. Denote by B the simply connected Lie group with Lie algebra b. From
the structure of b it follows directly that the exponential map exp: b— B and the
map from 4 x U to B given by group multiplication are both analytic manifold
isomorphisms.

Let ceu* and set .
7expX)=e®, )

for X eu. Then y, is a unitary character of the group U. We form the induced
unitary representation T,=1Indy , z(y.) of B as usual. Using the splitting B=A4-U
and exponential coordinates on A, we may take H#(T,)=L*(a) (relative to
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Lebesgue measure on a) as the Hilbert space for T,. The action of B on a function
feL*a) is given as
T(expH) f (@)= (a—H), )
for a and H in a, and
T(expX) f(a) =exp{ic(X)e "} f(a), “4)

for Xeu,.

There is a corresponding representation of the universal enveloping algebra
U(b) on C*(a) which we obtain by differentiating formulas (3) and (4) along one-
parameter subgroups of B:

T(H) f=0H)f ©)
for H € a, where 0(H) f (a)=(d/dt) f (a—tH)|,~, and
T(X) f=ic(X)e *f (6)

for X eu,.
Let Z,, ..., Z, be any orthonormal basis of b. Set

Q=Y 7?
i=1

as an element of U(b). Then Q does not depend on the particular choice of the
orthonormal basis, and will be called the Laplacian for b, (-, - >. We can choose
the basis elements Z; to be either in a or in u,, A € @. It then follows from (5) and (6)
that the operator L= T,({2) is given by

L=4— 3 |c;]?e %%, @)

AsD

where 4 is the constant-coefficient Laplace operator on a corresponding to -, - »
and c, is the restriction of the linear functional ¢ to the subspace u,.

The elliptic operator L satisfies global estimates relative to the unitary
representation T,. To describe these estimates, one introduces the Hilbert spaces
H*(T,) of k-times differentiable vectors for the representation T,, with norm | f,,
and the Fréchet space

#(T)= (| #4T)

of C* vectors (cf. [Go1]). By standard results for Schrodinger operators, one
knows that L is essentially self-adjoint on C®(a). By results of Nelson and
Goodman (loc. cit.) one has

Domain (L¥)=#*(T,) for all positive k. (8)

Here L is considered as an unbounded self-adjoint operator on L*(a), and the
equality in (8) means that the norms || /|| + ||[L*f | and | f |, are equivalent.

To explicate (8) in the present situation, we need a more direct description of
the spaces #* and # ©. We shall say that the linear functional c is non-degenerate if
for all e @, ¢, 0. Pick a basis {H;} for a, and set 9;=0(H)).
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Lemma 1.1. Suppose that ceu* is non-degenerate. Then for any non-negative
integer k, the space #*(T,) consists of all functions fe L*(a) such that

e 792 fe L*(a) ©)

for all e ® and all integers p and multi-indices Q with p+|Q|<k. Here the
derivatives are taken in the sense of distributions. The norm | f |, of f in #*(T) is
equivalent to the sum of the L? norms of the functions in (9) over all Ae ® and
p+IQI=k.

Proof. This is immediate from formulas (5) and (6) and the definition of
AKT). O

Gel'fand and Shilov [Ge-Sh, Chap.II] have defined test function spaces
K{M,} on R" using families {M,:p=0,1, ...} of weight functions to control rate
of decay at infinity. The weight functions that fit in the present context are

M (a)=el, (10)

where |a| is any convenient norm on the vector space a. Define a family of norms
{v,:p=0,1,...} on C*(a) by

v(f)=supM,(a)|6°f (a)]

(sup over a € a and multi-indices Q with |Q| < p). Then the space K{M ,} consists of
all C* functions f such that v (f)< oo for all p=0, with topology defined by the
countable family of norms {v,}. The functions f in this space are obviously
characterized by the property that f and all its derivatives decrease faster than any
exponential at infinity.

Lemma 1.2. Assume that the convex hull of the set of roots @ contains a
neighborhood of 0 in a*. Suppose that c is non-degenerate. Then the space
A °(T)=K{M,}. More precisely, there are positive constants C=C(®,c) and
b=>b(®) so that for all positive integers p

vp(f)écllf”d+bp> (11)
where d=[//4]1+1, and
11, = Cv(f)14op- (12)
Remark. Suppose that @ spans a* and that there is a relation of the form
¥ n,2=0, (13)
preod

where the coefficients n, >0 for all 1. Then it is easy to check that @ satisfies the
conditions of Lemma 1.2.

Proof. Tt suffices to prove (11) and (12) when f is a C® function with compact
support on a, by standard density theorems. Define the gauge function of the set &
by we(a) =max;, _gA(a). Then the hypothesis on @ implies that there is a constant
r>0 (which we may take to be an integer), such that |a|<rwg(a) for all aea. It
follows that for any positive p,

SuPaea ! f(@)| £ X sup,,e™@|f (a)l. (14
AsD
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By standard Sobolev estimates one also has

SUPaealf (@IS CIA =) 11, (15)

where the norm on the right is the L? norm on a, and 4 is the constant-coefficient
Laplacian on a. Estimate (11) now follows readily from (14), (15) and Lemma 1.1.
To obtain estimate (12), observe that if 1€ @, then

le?* fI| < C sup,e e | f (a)], (16)

where s =max,_o}A| and C is the L2 norm of e~ Estimate (12) now follows from
(15), (16) and Lemma 1.1. [

Corollary 1.3. There exists a positive integer t so that the inclusion map #"' C L*(a) is
compact.

Proof. For any positive integer p, denote by &, the space of C? functions f on a such
that the norm v (/) is finite. This is a Banach space in this norm, and the inclusion
map &,C&, is compact, if p>q (cf. [Ge-Sh; Chap. II, Sect. 2.3]). By Lemma 1.2,
one has continuous inclusions

HPTISE, > E >,
If we take p=2, g=1, for example, then we see that t=2b+d will suffice. O

Theorem 1.4. Assume that the convex hull of the set of roots ® contains a
neighborhood of 0 in a*, and suppose that ceu* is non-degenerate. Then the
Schridinger operator L in (6) has compact resolvent on L*(a), and the square-
integrable eigenfunctions of L are in the space K{M }, where M, is given by (10).
Thus these eigenfunctions and their derivatives decrease faster than exponential at
00, and the eigenfunctions form a complete orthonormal set in L*(a).

Proof. By (8) and Lemma 1.2, we know that the space of C® vectors for the self-
adjoint operator L coincides with the space K{M ,}. Furthermore, the resolvent of
L raised to a suitably high power is compact, by (8) and the Corollary to
Lemma 1.2. Hence the resolvent of Lis compact, by the functional calculus for self-
adjoint operators. [

1.2. Operators Commuting with the Laplacian

We continue with the notation of the previous section. To find quantum invariants
for the system with Schrodinger operator L, we look in the enveloping algebra of b
for elements commuting with the Laplacian Q. We write

U(b)?={Re U(b): RQ=0QR)}. (1)

Let T— T* be the canonical conjugate-linear involution on U(b) (X*= — X for X
in b). Since Q* = Q, the subalgebra U (b)?is self-adjoint. Furthermore, if R = R*is in
U(b)%, then T,(R) is essentially self-adjoint on CX(a), by a theorem of Nelson and
Stinespring [ N-S]. The following result will be used later in the paper to establish
quantum complete integrability for a family of systems. (Recall that a Lie algebra b,
not assumed to be finite-dimensional, is called solvable if its derived series of ideals
DMV(B)=h, D** () =[D¥(h), DP(H)] vanishes for some finite k.):
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Proposition 1.5. Assume that the hypotheses of Theorem 1.4 hold for & and c.
Suppose that R, ..., R, € U(b)? are self-adjoint elements. Let Y be the complex Lie
algebra of operators on # “(T,) generated by T(R,), ..., T(R,). Assume that b is a
solvable Lie algebra. Then ) is commutative, i.e. the operators T(R;) mutually
commute.

Proof. For any real number y, let
H,={feC™(a)nL*(a): Lf =pf}. (@)

Then by Theorem 1.4, dims#, <co for every u. Furthermore, L(a) is the
orthogonal direct sum of the spaces #,, as y ranges over the spectrum of L. Each
subspace #, is invariant under the action of b. Since b is solvable, Lie’s theorem
implies that the derived algebra [}, h] acts by nilpotent transformations on .
But by the self-adjointness of the generators R;, the subalgebra [h, h] has a basis
consisting of self-adjoint operators. This is only possible if [, )] acts by zero on
each space #,. By the completeness of the eigenspaces of L, this in turn implies that

[h,b]1=0. O

2. Some Generalities on Certain Rings of Differential Operators

2.1. Certain Rings of Differential Operators

Let V be a finite-dimensional real vector space. We identify the symmetric tensor
algebra over V with the algebra £ of all complex-valued polynomial functions on
the dual space V* as usual. We grade 2 by degree and we denote by 2 the space of
all homogeneous elements of &2 of degree j. If X eV, then 9(X) denotes the
differential operator (0(X) f) (v)=(d/dt) f (v—tX)|,—,- By the identification of 2
with the symmetric tensor algebra over ¥, we can extend the map X +— 9(X) to an
isomorphism from £ onto the algebra of constant coefficient differential operators
on V.

Let UCV be an open subset, and suppose that ZCC®(U) is a subalgebra
(under pointwise multiplication) containing the constants, such that 0(X) 2 C £ for
all X e V. Denote by 2 the algebra of differential operators on U generated by
multiplication by £ and 0(V). We give 2 the usual filtration by maximum order of
differentiation. If D € 2 is of order j, then we denote the top-order symbol of D by
o(D). This is an element of #/Q 2.

In many cases the differential equations satisfied by the joint eigenfunctions of
a set of differential operators (including the Toda lattice systems) can be put into
the following framework: One has an algebra 2 of (variable-coefficient) differential
operators as above, and a subalgebra # C.2 which satisfies these conditions:

(DO,) If D€ 4 is of order j, then (D)€ %’ (i.e. the top-order term of D is a
constant-coefficient operator).

(DO,) If o/ is the subalgebra of £ generated by all the top-order symbols of
elements of 4, then there are homogeneous elements 1=e,, ¢,, ...,e,€ Z (where
d < 00), such that p
P=73 Ade;

i=1

1

(i.e. 2 is integral over &).
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Given this information, we then obtain the following algebraic analogue of
“separation of variables” for operators in 2 (this technique was first used by
Harish-Chandra in connection with spherical functions [H-C]):

Lemma 2.1. Suppose (DO,) and (DO,) are satisfied. Set E;=0d(e;). Given any
differential operator D € 2, there exist operators u;;€ % and functions f,€ # such
that

L,J

Proof. We proceed by induction on the order of D. The operatorsin 2 of order zero
are multiplications by functions in £, so the result is obvious in this case. Suppose
we have proved the result for operators of order <k. Let D € 2 have order k+1.
Let x,...,x, be linear coordinates on V’. For I=(i,...,i,) e N", write
x'=x%..xi» and |I|=i,+...+i, Since De 2, there are functions f;e %, for
[I|=k+1, such that o, , (D)= 3 f;x'. Let k; be the degrees of the elements e; in
condition (2) above. By condition (DO,) there are elements v; ; € ./, homogeneous
of degree |I|—k;, such that each monomial x' can be expressed in the form
x"'= Y v, je;. Let u; ;€ % be of order |I|—k; and have top-order symbol v; ;. The
operator T= Y fiEu; ;is then of order k + 1, with top order symbol oy ;. (D). Thus
D — T has order at most k, and is an element of 2. The result now follows from the
inductive hypothesis. [J

Corollary 2.2. Let the notation and assumptions be as in Lemma 2.1. Assume that U
is convex. Let y:%B—C be a homomorphism and set

W, ={feC*(U)u-f=xw)f foral ueA}.
Then dim¥, <d.

Proof. Let X, ..., X, be a basis for V, and write 0;=0(X;). By Lemma 2.1 there are
functions f;; € # and operators u,, € # such that
0.E;= k%fijkE/ukz-

Thus if fe ¥/, then ,
O.E;f= 2r ieEef s @)

where we have set
F3'¢’= %fijk%(ukf)‘

We denote by I' the d x d matrix whose j, £ entry is the function I', € , and we let
F be the column vector whose entries are the functions E, f. Then the system (2) can
be written as

oF=I'F, i=1,..,n. 3)

Let & be the space of all solutions F to the linear system (3). We have just seen
that thereisamap T: #,—¢& given by f—'[E, f, ..., E,f]. Since E, f = f, this map
is injective. The dimension estimate in the Corollary now follows from

Fix x°e U. Then the map & -»C*? given by F i F(x°) is injective.  (4)
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This is a standard result, but we give the proof for the sake of completeness. Given
x'e U, we set X =x°—x". Let X have components v; relative to the basis {X}.
Then by (3) one has

AX)F=Y vol'F )

for all F e &. Thus if we define &(t) = F(x°+tX), A(t)= X v;,I""(x° +tX), then by

the convexity of U, &(t) and A(t) are smooth functions of ¢ on some interval
—e<t<1+e¢,and by (5) we have &'(t) = A(t) D(t). If we assume that F(x°) =0, then
@(0)=0. It follows from the differential equation that &(t)=0 for 0<t<1. This
proves (4). O

Note. It is clear that the dimension estimate in the corollary is true if U is only
assumed to be connected.

2.2. Connections

We now recall some well-known facts about connections in several complex
variables that will be used later in the paper. Let U C C" be open and (for simplicity)
real convex. Let I'': U—End(C* be holomorphic for i=1,...,n. We define a
connection ¥ on the trivial vector bundle U x €C? over U by setting

Vsz Z U,-(@,-F—FiF),
i=1

for v= 3 v,0; a holomorphic vector field on U and F:U—C? a holomorphic
section. Here 0,=0/0z,.

One says that V is integrable (or flat) on U if for all holomorphic vector fields
X, Y and all holomorphic sections F on U, one has VyVyF —VyVyF —Vix y,F=0
on U. Let & be the space of covariant constant sections of the connection, i.e. the
space of all holomorphic sections F such that VyF=0 on U for all holomorphic
vector fields X on U. The following result is a restatement of the Frobenius
theorem on total differential systems in this situation:

Lemma 2.3. The following properties of the connection V are equivalent:
(1) For every ze U, the map & —C*? given by F > F(z) is surjective.
(2) For some z°€ U, the map &—C* given by F > F(z°) is surjective.
(3) The connection V is integrable.

3. Joint Eigenfunctions for the Quantized Systems

3.1. Laplacians

We resume our study of the Laplace operator for the class of solvable Lie algebras
introduced in Sect. 1. Given such an algebra b=a®u, and a choice of inner
product, we define a map A+ A’ from a* to a by

(A Hy=A(H) for Hea.
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Given A, ue a*, define {4, u) =<A", u’>. If L€ a*, let 5, be the orthogonal reflection
of a about the hyperplane 1=0. That is,

22(H)
(A, A

Let W be the subgroup of the orthogonal group of (a,< -, - ») generated by the
reflections s,, for A € ®. The action of W on a extends naturally to an action on the
symmetric tensor algebra S(a). Since a is abelian, we may identify S(a) with the
universal enveloping algebra U(a). We denote by U(a)” the invariants in U(a)
under W.

Let Q be the Laplacian for b, (-, - >, as in Sect. 1. Recall that

U®)?={Te U®)TQ=QT}.

The algebra U(b)? was extensively studied in [G-W 2]. Identify a with the abelian
Lie algebra b/u. Then the natural homomorphism b—b/u extends to an algebra
homomorphism yu: U(b)—U/(a). The operators commuting with Q then have the
following symmetry property:

Theorem 3.1 [G-W2, Theorem 2.6]. One has u(U(b)Y?)CU(a)”.

Sl(H)zH_ 'ﬂ.b.

3.2. Root Systems and Invariants

To obtain further information about U(b)?, we shall require that @ be suitably
related to a root system. Recall that a subset 7 = {«;, ..., o} C a* defines a connected
Dynkin diagram if 7 is a set of simple positive roots for an irreducible reduced root
system R, Ca* (see [Bo]). This is equivalent to the following conditions:

(D,) = is a basis of a*.

(D,) The group W, generated by the reflections s,, for o €=, is finite.

(D3) The numbers a;;=2 {a;, a;>/{o;, ®;> are non-positive integers, for all i .

(Dy) f r=n,umn, with {a, f) =0for all « e 7, and f € 7, then either n, or n, is
empty.

We now assume that 7 Ca is a connected Dynkin diagram, and that @ is given
in terms of 7 as follows: Either

(NP)®=n (“generalized non-periodic Toda lattice systems™), or
(P)® =1 (‘“generalized periodic Toda lattice systems”).

In case (P), i=nu{a,,} is an extended Dynkin diagram, i.e. o, ; = — f, with
peR, and {f,a;>=0fori=1,...,7. The possible choices for § were determined in
[G-W2, Sect. 5]. Note that the group W= W, in this case (see D,). We thus have
the following fundamental result of Chevalley and Harish-Chandra [He,
Chap. I11, Sect. 3]:

Theorem 3.2. (1) U(a)" is a polynomial ring in £ homogeneous generators u,, ..., u,.
(2) Let w be the order of the group W. Then there exist homogeneous elements
1=e,,...,e, in U(a) such that U(a) is free as a U(a)¥ module with basis e, ..., e,
(Note that U(a) is graded by degree, since a is abelian.)
(3) The degrees d; of the elements u; and the degrees k; of the elements e; are
uniquely determined by W.
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3.3. Structure of U(b)?

Let & be defined as in Sect. 3.2 in terms of a Dynkin diagram n. Choose a unit
vector X;eu,, for each i. When @ =7, there is a linear relation

Z+1

._21 no; =0, )]

where each n; is a positive integer and n,, ; =1. We set 3" n;=h. (When —a,,, is
the highest root of the root system R, relative to 7, then h is the Coxeter number of
R,.) Set

Z+1

{= 1_—[1 Xi

Thus £ has degree h, and relation (1) implies that £ is in the center of U(D). (In fact, it
is easy to verify that £ generates the center.) In particular, & e U(b)? Note also that
w(&)=0.

Let U j(b) be the standard filtration on U (b), generated by b. Let U . (b) denote
the ideal of elements with zero constant term.

Theorem 3.3. Assume that ® is one of the following:
Case 1: @=m, an arbitrary connected Dynkin diagram
Case 2: & =7, where n is of type A, B, C, D or Eg and —o,. { is the largest
positive root of R,
Case 3: & =17, where n is of type B, or C, and —a,, 4 is the short dominant root.
Fix homogeneous generators uy,...,u, of U(a)¥, and in Casel set ¢=0,
X,+1=0. Then the following holds:
(i) There exist elements Q, ...,Q, in U . (b)? such that
(a) u(Q)=u; and degQ,=degu; relative to the standard filtration on U(b),
fori=1,...,¢;
(b) @, is in the subalgebra of U(b) generated by a and X3, ..., X2, X2, ,;
(c) U(b)? is generated as an algebra by Q,, ...,Q, and ¢.
(ii) The elements Q,...,Q, mutually commute and are algebraically
independent.

Proof. In Case 1, this follows from [G-W 2, Theorems 2.5 and 4.1]. In Cases 2 and
3, let Q; be the element w'(u;) constructed inductively in Sect. 3 of [G-W 2] for
j=1,...,¢. These operators are alternating sums of elements for which conditions
(i,) and (i) hold, by [G-W 2, Sect. 2, Formula (2.7)]. Property (i.) now follows from
[G-W2, Theorem 5.2] in both Cases 2 and 3. By [loc. cit.], property (ii) is known to
hold for Case 2 and the diagram of type C, in Case 3.

It remains to prove that the operators Q; mutually commute in the case of the
extended diagram B, with —a,,; the short dominant root. To establish this
algebraic property, we use the following analytic argument: Consider the
representation T, of Sect. 1.1 (c non-degenerate). It is easily verified that the kernel
of this representation of U(b) is the ideal generated by the central element & —1y(c),
where y(c) is the scalar T,({). To prove that the operators Q; mutually commute, it
will suffice by Proposition 1.5 to show that the Lie algebra [) generated by T.(Q)),
j=1,...,¢, is solvable.
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Letting x,, ..., X, be orthogonal coordinates on a, we take the elementary
symmetric functions of x2, ..., xZ as the basic Weyl group invariants u, ..., u,. (W
consists of permutations and sign changes of the coordinates in this case.) Their
degrees are thus 2, 4,...,2¢, and hence Q;e U%(b) for i=1,2,...,/. (Here UXb)
denotes the elements of degree <k, relative to the standard filtration on the
enveloping algebra.)

Take A, Be U(b)? of degrees 2j and 2k, respectively. By [G-W 2, Lemma 3.6],

L4, B]= 62 C(A’ B) > (2)

where C(A4,B)e U?*%72=2(p) and commutes with Q. In particular, if
max {j, k} £2¢, then C(4, B) has degree at most 2/ —2. Now T,(£)=y(c)I. Thus

[T(A4), T(B)1=7(c)* T(C(4, B)). €)

We conclude from (2) and (3) that h = T(U?%(b)? is a Lie algebra, and if Z € [, b],
then the order of Z (as a differential operator) is at most 24 —2. Let h,=} and
b;+1=[bh,b;]. Given Yeb, one verifies inductively from (2) that ord Y <2/ —2i.
Thus b, =0. This implies that } is nilpotent. [

Remark. The proofs of the cited results in [G-W 2] exploit the empirical fact that
the degrees of the basic invariants are at most twice the rank for the classical root
systems and Eg. It is possible that the theorem is true for all the exceptional
extended diagrams.

3.4. Representations of b

Throughout the remainder of this section we shall assume that @ satisfies Cases 1,
2, or 3 of Theorem 3.3. Let d =dimu=Card ®. Given c € u*, set ¢;=c(X;), where
X,eu,, as in Sect.3.3. Identify ¢ with the point (cy, ...,c,)€C% Let T, be the
representation of U(b) on C*®(a) as in Sect. 1.1. When &=, then the central
element & acts by

d
T.(O= ,-131 (ic)™I. M

We now relate this representation of U (b) to the rings of differential operators
in Sect. 2.1, taking a as the vector space V. We may identify U(a) with 2. Let # be
the algebra of C* functions on a generated over Cby 1 ande™, ...,e”* and let 2
be the algebra of differential operators on a with coefficients in 4. Clearly T(U(b))
C 2, with equality if all ¢;+0. We set = T(U(b)?) and o/ = U(a)”. We claim that
conditions (DO,) and (DO,) in Sect. 2.1 are satisfied in this case.

Indeed, by Eq. (1) and Theorem 3.3 (i.), we see that

B=T1(5), 2
where # is the subalgebra of U(b) generated over C by Q,...,Q,. By (i,) of
Theorem 3.3, we have 5

Q;—ujeu ‘Udj—z(b), A3)

where d;=degu;. From (2) and (3) it follows that T,(2;) is a differential operator of
order d;, and

04,(Q)=u;. “@
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Thus conditions (DO,) and (DO,) follow from (2), (4), and Theorem 3.2.
Furthermore, in (DO,) we may take d=w, the order of W.

Corollary 2.2 combined with these observations implies the following dimen-
sion estimate:

Theorem 3.4. Assume that @ is of type Case 1, 2 or 3 in Theorem 3.3. Let ¢ be the
subalgebra of U(b) generated over C by Q,,...,Q,, and let y: #—>C be a
homomorphism. Let U Ca be an open convex subset. Put

Ve U)={feC(U)T() f=x(w)f for wef}. ©)
Then dim¥, (U)<w.

3.5. Factorization of U(b)

We next show that the inequality in the dimension estimate of Theorem 3.4 can be
replaced by equality. For this, we shall continue to assume @ is of type Case 1, 2, or
3 in Theorem 3.3. In these cases one knows that the algebra ¢ in Sect.3.4 is
commutative and algebraically isomorphic to U(a)” under the homomorphism .
Let1=ey,..., e, betheelementsin Theorem 3.2, indexed by increasing degree, and
set

e}f:izélcei

[the space of W-harmonics in U(a)]. We denote by U (b) the standard filtration on
U(b). If LCU(b) is a linear subspace, we set L;=LNU (b).

Lemma 3.5. The map U@ # ® ¢ —U(b) given by zQe@w > zew is a linear
isomorphism. Furthermore, for every j=0,

ub)y= 2 U H#: 7. M

rts+t=j

Proof. From Theorem 3.2 and Theorem 3.3 it is clear that the spaces U,(b) and
> U )Q@H,® 4 (sum over r+ s+t =j) have the same dimension. So it is enough
to prove Eq. (1). It is trivial for j=0. We assume the result is true for j<k—1, and
look at the case j=k. By Theorem 3.2 it suffices to consider elements x € U (b) of the
form zeu, where z € U(u), ee #, ue U(a)?, and the sum of the degrees of z, e, and u
is at most k. By Theorem 3.3, there exists an element w € # such that degw =degu
and w—ueu?-U(b). It follows that x—zeweu?-U,_,(b). Now apply the
induction hypothesis. O

Let ce €. Recall that in the representation T, of b in Sect. 3.4, an element
z € U(u) acts by multiplication by the function t(z) = T,(z) - 1 € #. This defines a
homomorphism z,: U(u)—%. Let Z be the vector space of all holomorphic maps
from a; to # whose coefficients are in the algebra Z.

Corollary 3.6. Let y: #—>C be a homomorphism. There is a unique linear map
S, - U(b)>Z such that

S, [(zew) = y(w)T(2)e
for zeU(u), ee #, and we ¢.
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Proof. There is a linear map U)X H# ® £ —~% which carries zQe®@w to
(o)t (2)e, for ze U(u), ee #, and w € #. Using the isomorphism of Lemma 3.5,
we obtain the map S, ,. O

From the proof of Lemma 3.5 we can extract some explicit information about
the factorization (1) when applied to elements of U(a). Denote by U, (a) the
elements with zero constant term in U(a), and by U_(a)¥ the subring of
W-invariants. Since there are no linear invariants, we note that if 0% u e U, (a)”,
then degu=2. Let P: U(a)— s be the projection onto the harmonics along the
ideal in U(a) generated by U _(a)”. Let H,, ..., H, be the basis for adual to n. Leta
basis ey, ..., e,, for # be fixed as above, and define the integers m, by the property
that dege, <r if and only if k<m,. We know from Theorem 3.2 that there are
unique linear maps I;,: U(a)— U, (a)" such that if ¢ is homogeneous of degree r,
then

m,—1
H¢=P(H)+ 21 eplip(9). 0]
pe
By Theorem 3.3 we can define unique linear maps Q;,: U(a)— ¢ such that
Quy($) =1;,($) modu>U(b), )
and degQ,,(¢) =degl,,(¢) for any ¢ € U(a). Combining (2) and (3), we obtain the
identity

HA=PHA+ S ¢,0,@)mod?U(), @

for all ¢ € U(a) which are homogeneous of degree r.
Lemma 3.7. Suppose we ¢. Assume that ®,, @,, ... are elements in ¢ such that
u(w)= Y e,w, modul (b). ®)]
k

Then w,=w and w,=0 for k>1.

Proof. Apply the homomorphism u to Eq.(5). By Theorem 3.1 we have
W) € U(a)?, so by Theorem 3.2(2), u(w,)=u(w) and u(w,)=0 for k>1. Now
apply Theorem 3.3. O

3.6. Integrability of the Connection

Continuing with the notation and assumptions of the previous section, we now
choose a basis 1=z, z,, ... for U(u) such that [H,z,]=4,(H)z,, for H € a, where
A,€a*. By Lemma 3.5, there are unique elements u;;,, € # such that

Hie;= 2 Zp€qlhijpq (6]
p.q

for 1<i<¢ and 1<j<w. Fixing a homomorphism y: #—»C and ceC’*!, we
define functions I'%, on a by

I, = %‘,rc(zp)x(uiqu). 2
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[Recall from Sect. 3.5 that 7.(z) = T(z) - 1.] These functions are in the algebra £
generated by the exponentials {e*|a € @}, and thus extend holomorphically to ag.
Let I'":ag—End # be defined by

I'(x)e;= zl ' (x)e,, 3)

q=
for x € ag. Define a connection ¥ on the trivial vector bundle ag x # over ag by
Vg, =0H)—T*, for 1<i</. 4)

Lemma 3.8. The connection V is integrable.

Proof. Using the map S, , from Corollary 3.6, we see that I'/(x) is simply the linear
map

e S, (He)(x)
on . By a direct calculation using (1) and (2) one finds that
S, (HHe)=@H)I)e+T'Te, Q)
foree s# and 1 <i,j < /. Theleft side of (5) is symmetric in i and j, so (5) implies that
OH)I+I'T'=0(H)I'+T'T’. 6)

It follows immediately from (6) that [V, V;]=0, which proves that V is
integrable. [

3.7. Covariant Constant Sections

Let V be the connection defined in Sect. 3.6, and suppose F is a C* map from a to
H* that is covariant constant relative to the dual connection:

AH)F='T'F, j=1,...¢. 1)

Define the functions f{(x) = (F(x), ¢;>, x € a, using the basis ey, ..., e,, of #. (Recall
that e; =1.) In terms of the components f, the system (1) becomes

0(H)) fi= Zl Iy 1, (1)
q=
for 1 <j</ and 1 <k <w. The following result is the key step for determining the
dimension of the space of joint eigenfunctions for the operators T.(2):
Lemma 3.9. If F satisfies (1) then
fi=0(e) fy (@)
forj=1,...,w, and
T(o) fi= () f1 3
forallwe ¢.
Proof. We shall prove (2) and (3) by induction on the degrees of e; and . They are

trivially true if both degrees are 0, and we assume inductively that (2) and (3) are
true whenever the degrees of e; and w are at most n.
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We shall first prove that (3) is true for any w e ¢ of degree n+ 1. Set u= u(w).
We may assume by the induction hypothesis that u is homogeneous of degree n + 1.
There exist ¢; € U(a), homogeneous of degree n, such that

2
u= ¥ H). )

Applying the factorization in Lemma 3.5 to ¢; we obtain elements w;,, € # of
degree at most n, such that

4 my,
u=y > Hiz,e,w;p,. ®)
j=14¢=1p
Define
S= 2 Z ZZPH]eqcom (6)
j=14q=1

Then S =umodu- U(b). Factoring H je, according to Sect. 3.6(1), we can write S as

3 my, w
S= Z Z Z Z Zerekujquwqu . (7)
j=14q=1 p,r k=1
Although this formula for S looks quite unpromising, it actually has the
original operator w hidden in it. To make this explicit, we recall that z; =1, so if we
isolate the terms with p=r=1 in (7), we see that

w

¢
u= Z Z Z ekuqukwjlq’ (8)
ji=1 q k=
modu - U(b). Hence by Lemma 3.7,
¢
o= 3 Zuqulelq )]
i=1 gq
and p
0= '21 2 Ujg1kj1g (10)
i=14q

for k>1. Thus the formula for S becomes
¢ w
S=0+ X X X X Z5Uju0jp, - 11
j=1p+r>1 q k=2

Observe that w;,, and u;,, each have degrees at most n, and if u;,,+0 with
p+r>1, then dege, <n. Thus we may use the induction hypothesis to calculate

TS fi=T(w) fi + ,21 p+;>1 % k; T(2p20) 1 (Wjarc®jpg) Ji - (12)

By (10), the right side of (12) is unchanged if we include the terms with p=r=1.
Thus by (9) the terms with k=1 that are omitted on the right side of (12) sum to
z(w) f;. By adding and subtracting these terms, we may write (12) as

T =T~ 1@ fi+ T 5 Teu(o £ T 1 o (19
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We may now simplify (13) by first noting that the summation over r in the
braces gives I'/;,. By Eq. (1), the summation over r and k in (13) thus gives d(H,) f,.
But dege,<n for all g such that w;,,#0. Hence by the induction hypothesis
0(H)) f,=0(H e,) f; for q in this range. With these observations, we may write (13)
as

¢
TS fi=T@) fi—x@) fit+ X 2 TE) (@) 0Hie) fi (14
J=1Dp.q
Again by the induction hypothesis we can write
X(a)qu)a(Hjeq)fl = a(Hjeq) T:(wqu)fl = n(Hjeqwqu)fl .
Substituting this into (14), we finally get

TS fi=T(w) fi = x(@) fi + T(S) f: - ()

Hence T(w) f; =x(w) f1, completing the induction step for Eq. (3).
With (3) now established for all w of degree <n+1, we turn to (2). Let
dege,=n. Taking ¢ =e¢, in Sect. 3.5(4) and using the definition of the connection

coefficients IV, we see that
i, =0 if dege,>n+1 orif dege,=n, (16)
I,eR if dege,=n+1, (17)
and
PHpe)= Y I,e,. (18)

q>my

Thus from (18) we can write formula Sect. 3.6(1) as
He,=PHe,)+ 3 X zeip,. (19)

q<my, r

Since dege,<n and degu;,,<n+1 on the right side of (19), we may use the

induction hypothesis as extended in the first part of this proof to calculate
6(Hjep)f1 = a(P(Hjep))fl + Z Z T;(Zr)X(ujprq)f;] = a(P(H]ep))fl + Z Fquf; .

q<m, r q<my

On the other hand, we can use Eq. (1) and the induction hypothesis to write
5(Hjep)f1 =2 Fqufq :
q
Comparing these two formulas, we find that

0(P(Hje,)) f1= q;m I, f,. (20)

The final step in the induction is now an easy consequence of (20). Indeed, it is a
standard property of harmonic polynomials that #"*!=P(a-#"). Given
e €A™, we can thus find coefficients ;;, € R such that

ek= Z akaP(H]ep) .
I p
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From (17) and (18) it then follows that
2
Okg= 2. 2 Gjeplpq-

q>my j=1
Using this in (20), we obtain d(e,) f; = f;, completing the induction. [

Combining Lemmas 2.3, 3.8, and 3.9, we obtain our main result (recall that we
are assuming that @ satisfies Cases 1, 2, or 3 of Theorem 3.3):

Theorem 3.10. Let % , denote the space of all holomorphic functions f on ag such
that

T(w)f=x(@)f for wef. (21)
Let &, , denote the space of all holomorphic maps F from ag to #'§ such that
dH)F=T'F for j=1,...7. (22)
Then

(i) dim¥, ,=w.
(ii) The map F+{F,e,) defines a linear isomorphism from &, , onto W_ ,.

4. The Monodromy of the Systems

4.1. The Space ¥,

We retain the notation and hypotheses of Sect. 3, and assume that the set @ is as in
Cases 1, 2, or 3 of Theorem 3.3. Thus we know that U(b)® is abelian and is the
polynomial algebra in &, Q, ..., Q,, where the top-order symbols u(£2,), ..., u(2,)
are basic homogeneous invariants for Win U(a) and & generates the center of U (b).

Recall that we are denoting by # the algebra generated by Q4,...,Q,. Let y: ¢
—C be a homomorphism. Then y can be parametrized by v e a¥ via

H(w)=u@)(v), wef. M

(Here we view u(w) as a polynomial function on a* as usual.) We write y = y,; under
the assumptions above, we then have y, =y, if and only if 4 = sv for some element
se W. For ce €, let the representation T, of b be as in Sect. 3.4. In this section we
shall study in greater detail the |W|-dimensional space ¥ , of solutions to the

system
TQ)f=x(@)f, for j=1,...¢ 2)

(cf. Theorem 3.10). Taking y=x,, we denote this space as ¥/ ,.

Since the functions in #,, are holomorphic on ag, we can exploit the
periodicity of the coefficients of the operators T,(2;) under complex translations, as
follows: Recall that H;ea is defined by a(H;)=4;;, for i=1,...,7. Define the
translation operator T; on C®(ag) by (T;f) (»)=f(y+inH;) for yeae (Where
i=(—1)"?). The operator T; obviously commutes with the operators T.(H), H € a,
and with the operators T,(X}), 1 £k <d. Hence by Theorem 3.3(b) it follows that T;
commutes with T)(w) for all w e U(b)?. Thus

LR P O )
for j=1,...,Z. Obviously T,T,=TT.

J
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Let fe#. , be a joint eigenfunction of the operators T, i=1,...,7. (By the
finite-dimensionality of # ,, there always exists at least one such eigenfunction.)

Thus
T.f=wf for i=1,...,7¢,

where y; € €. Choose A € ag, so that
e )=y, for j=1,..,7. 4)

Of course, A is not uniquely defined by (4), but the coset A+ 2Lis well-defined as an
element of a&/2L, where

¢
L= ,@91 Zo,

is the root lattice. If we now set ¢(h) =e ™ *® f (h), for h € a, then ¢ is a holomorphic
function which satisfies the periodicity conditions

¢(h+inH)=¢(h), for j=1,...,7. (%)
Thus ¢ has a Fourier series (multiple Laurent series) expansion

d)= T a,e™,

pnel
which converges uniformly and absolutely on all strips
{heag||Reay(h)|=C for i=1,...,¢}.

For the eigenfunction f, we thus have an expansion

f=e'3 ae™, (6)

nel
with the same convergence properties.

Definition. Let M(c,v)Cad/2L consist of all cosets A +2L corresponding to joint
eigenvalues of the operators Ty, ..., T, as in (4). Call M(c, v) the (semi-simple part of
the) monodromy of the system (2).

From the results just cited, we see that M(c, v) is non-empty, and has at most
|W| elements. The rest of this paper will be largely devoted to the study of the
monodromy.

Example. Take c=0. Then the representation Ty is trivial on the subalgebra u, and
is just the regular representation on a. The operators Ty(2;) =0(u;) fori=1, ...,/ in
this case. In the notation of [He, Chap. III, Sect. 3.4], the space #, ,=&,(a). Let W,
be the subgroup of W that fixes v, and let s#" be the space of W, harmonic
polynomials. Then by [loc. cit., Theorem 3.13] we have

Wo.v= @ He™ .
SE

Thus M(0,v) consists of all the cosets sv+2L, se W. If we make the stronger
assumption that

for all ae R, g% ¢Z (7)
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(cf. Sect. 3.2 for notation), then the cosets sv + 2L are all distinct. This follows easily
from the fact that for any A € a¥, the subgroup {s€ W|sA—Ae L} is generated by
reflections (cf. [Bo, p. 227, ex. 1 and p. 75, Proposition 2]). Thus W,,={1} and

sv=( for all s € Win this case. It follows that when v satisfies (7), then M (0, v) has
cardinality |W|, and the elements of M(0,v) parametrize a basis for W, ,. We shall
show in the next section that this property continues to hold for generic values of
the pair c, v.

4.2. General Properties of the Monodromy

Because the system 4.1(2) is equivalent to the system 3.7(1)’ by Theorem 3.10, we
can also obtain the monodromy of these systems via Floquet’s theorem, as follows:

Fix the basis for # as in Theorem 3.2 and identify # with C" via this basis
(w=|W)|). For ce ©* (or in intrinsic terms, c € u¥) and v € a%, let I'(c, v: h) be the w
X w connection matrix evaluated at the point heag, as defined in Sect. 3.6(2).
From the theory of completely integrable systems of holomorphic differential
equations, there exists a unique holomorphic map

¥:C%x af x a;—>GL(w,C),
such that
O(H)¥(c,v:h)y=Tc,v:h)¥(c,v:h), ¥Y(c,v:0)=1I. )

By Theorem 3.10, if f, ..., f,, are the entries in the first row of ¥, then this set of
functions comprises a basis for the space #7, ,, and the remaining entries of ¥ are
given by

¥,=0(e) f;. )

Let S{(c,v) € GL(w, €) be the matrix of the translation operator T;on %, , relative
to this basis. From (2) it follows that

Y(c,v:h+inH;))=¥(c,v:h)Sic,v) 3)

for j=1,...,7. Furthermore, the matrices S; mutually commute and the eigen-
values of S; are the numbers ¢™*7, as A ranges over M(c, v).
With this notation in place we can now prove the following general properties

of the monodromy:

Proposition 4.1. There exists a non-zero holomorphic function ¢ on C* x a¥ such
that if ¢(c,v)+0, then M(c,v) has cardinality w.

Proof. Since the matrices S;(c, v) mutually commute and have eigenvalues ™47,
where A€ M(c,v), it follows that any linear combination
¢
A= T aSie) @
i<

(a;€ €) will have eigenvalues

ajein'A(Hj) , (5)

R

1

J
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with A ranging over M(c, v). In particular, the cardinality of M(c, v) is at least as
large as the number of distinct eigenvalues of the matrix A(c, v).

Now fix v, € af satisfying condition 4.1(7), set ¢ =0, and pick the constants g; in
(4) so that the numbers (5) are all distinct, as A ranges over M (0, v,). (This can
always be done, since the row vectors

inA(H inA(H
inA( ‘),...,e”’ ( ()]

pa=le

are all distinct when the cosets A+ 2L are disjoint.) The matrix A(0, v,) will then
have w distinct eigenvalues. To see that this is a generic property, recall that if
Z eEnd(C”*) and adZ:End(C")—~»End(C") is defined by adZ(X)=[Z,X] as
usual, then

w2

det(@dZ—th)= ¥ (—1)''D(Z).

If Z has eigenvalues &, ..., &, counted according to algebraic multiplicity, then

D (Z)=(-1)r~ P2 I (&—¢&y*.

Thus if we set ¢(c, v)=D,,(A(c, v)), then ¢ is clearly holomorphic on C* x a¥, and
#(0,v5)*+0. As observed above, Card M (c, v) =w on the set where ¢(c,v)+0. O

By the multiplicity of an element A€ M(c, v) we shall mean the dimension of the
corresponding joint generalized eigenspace

W, (A)={feW,, (T,—w)* f=0 for some k and all j},
where p;=e™#)_ Of course, if Card M(c, v)=w, which we now know to be the

case generically, then all multiplicities are one.

Proposition 4.2. For all c,v, the sum (counting multiplicity) of the elements of
M(c,v) is in 2L.

Proof. Let ¥ be the fundamental solution matrix, as in (1). By Abel’s formula for
homogeneous systems of ordinary differential equations, we have 0(H,;)det¥
=(trI)det¥. But from Sect.3.7(16) we know that tr(I")=0. Hence det¥ is
constant on ag. Evaluating it at 0, we see that det ¥ =1, and thus by formula (3) we

conclude that
detS;=1, for j=1,...7. 6)
If m, is the multiplicity of 4, then Eq. (6) implies that
> myA(H)e2Z

AeM(c, v)
for j=1,...,¢. Hence > m,A€2L, as claimed. [
Recall from Sect. 3.3 the central element & (which equals O for the generalized
non-periodic systems, and generates the center of U (b) for the generalized periodic

systems). We now show that the monodromy only depends on the parameter ¢ via
the value of the scalar T (&) [cf. Sect. 3.4(2)]:

Proposition 4.3. Suppose c, ¢’ e C* and T(&)=T.(¢). Then M(v,c)=M(®,c’) for
any veag.
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Proof. If he ag and fe C®(ag), then we set (R(h) f) (x)=f (x—h), for x € ag. Then
R(h) commutes with the operators T}, and a simple calculation shows that

R(W) 'T()R(H)=T,(z) for zeb. )
Here we let heag act on ce C? by
(h-c)j=e %W¢;, for j=1,....d. ®)

[Recall that d=dim(u); the action in (8) is equivalent to the coadjoint action of
expag on ug.] From (7) we see that

R W ey =>We,

bijectively. It then follows from formula (2) that the fundamental solution matrix
satisfies P(c,v:x)=¥(h-c,v:x—h) A, for some matrix A depending on ¢, v and h.
Setting x =h, we find that 4=Y(c,v:h) and thus obtain the functional equation

Y,v:x)=%h-c,v:ix—h)¥(c,v:h) ©)]

forallce €% veag, and x, h € ag. In particular, taking x =0 and then x =inHin (9)
yields the relation
Sic,v)=¥(c,v:h)"'Si(h-c,v)¥(c,v:h). (10)

Given (10), it is now easy to complete the proof. Suppose first that for all j, we
have ¢;+0 and c¢;=0. Then there exists h € ag such that

ci=e "W, for j=1,..,7 (11)
(recall that ay, ..., o, are linearly independent). If we also assume that

T(9)=T.(0 (12)

in the extended diagram case where d =/ + 1, then condition (12) implies that (11)
also holds for j=d, and hence h-c=c". [In the non-periodic case, d=¢ and
condition (12) is vacuous.] By (10) the matrices S(c, v) and S(c’, v) are similar for
j=1,...,¢; in particular, the joint spectra are the same, which proves the
proposition in this case.

Now suppose some c;=0. By the linear independence of the set of roots {o;:i
=/}, there exists 4 € a such that

ofh)>0 (13)
for all i%j, with 1 <i<d. From (11) we thus have
Jim Si((th) - ¢, v)=540,v), (14)

fori=1,...,Z. But the characteristic polynomial of S;((th) - ¢, v) is independent of ¢
by (10), so by (14) we see that S;(c,v) and S;(0, v) have the same eigenvalues. Thus

M(c,v)=M(0,v). 15)
This completes the proof. [

Since Eq. (13) can always be satisfied for i=1, ..., 7, the proof just given shows
that (15) holds for all the generalized non-periodic systems. Taking into account
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the example at the end of Sect. 4.1, we thus have completely determined the
monodromy in the following cases:

Corollary 4.4. (a) For the generalized non-periodic Toda lattice systems, M(c,v)
={sv+2L|se W} for all ceC’ and all vea¥. Furthermore, when v satisfies
Sect. 4.1(7), then |M(c,v)|=|W]|, and the monodromy matrices Sj(c,v) are semi-
simple.

(b) For the generalized periodic Toda lattice systems, the same conclusions hold
whenever at least one c;=0.

In the case of an extended Dynkin diagram &®={«y,...,a,,,} as in
Theorem 3.3, a subgroup of the Weyl group acts on the space of eigenfunctions and

on the monodromy. Define
Wo={se W|s®C D} .

Anelement s of Wy, acts on a by definition. Weletsactonuby s« X;= X ;ifo; =5 -t
where {X} is the basis for u as in Sect. 3.3. This action preserves the commutation
relations in b, and hence defines an action of W, as automorphisms of U(b). These
actions commute with the projection u:U(b)—>U(a). Let ceC/*! have all
components equal. Then for se W, and z e U(b), we have

T(s-z)=0() T(2)a(s) ", (16)
where ¢ is the natural action of W on C*(a): g(s) f(h)=f(s"'-h) for hea.

Proposition 4.5. For any veag, the space W, , and the monodromy M(c,v) are
invariant under Wy,

Proof. Recall that y,=y,., for any se W. By definition of the action of W, it is
immediate that every s € Wy, fixes Q. Furthermore, it follows from Theorem 3.3(1a)
that the elements £, are all left fixed by s, since this is true of their top-order terms
u;. Thus by (16) we find that ¥ , is invariant under g(s). Since the lattice L is
invariant under W, s induces a transformation of M(c,v). O

Example. The most extensive group of symmetries W, occurs in the case of the 4,
completed Dynkin diagram (the original “periodic Toda lattice”), for which the
subgroup W, is the group Z/(¢ + 1) Z, acting by cyclic permutations of coordinates.
To verify this, we realize the A, root system in R”, n=¢+ 1, as usual [Bo, Chap. VI,
Sect. 4.7]: Let ¢;, 1 £i<n, be the standard basis for IR”, and take aCIR” to be the
subspace Y x;=0. Define linear functionals «; on a by

o;=(e;—e;41)l,, for i=1,..,n.

(Here and in the following the indices are to be read cyclically modn: e, ; =e;.)
The functionals «,, ...,®, comprise a base for the 4, root system, and o, is the
negative of the highest root relative to this base. The Weyl group W is the
permutation group on n letters, acting on R” by permutations of the coordinates.
This action leaves a invariant, and it is clear that the only permutations that
preserve the set @ are the iterates of the shift e;—e;, ;. O

Remark. In general, one can show that the group W, is isomorphic to the quotient
of the weight lattice of the root system modulo the root lattice, hence its order is the
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“connection index” of the root system (cf. [Bo; Chap. VI, Sect. 4.3 and Planches
II-V7]). This fact has also been observed by Olive and Turok [O-T].

4.3. Equations for the Monodromy

Since Corollary 4.4 gives complete information about the monodromy for
generalized non-periodic systems, we shall henceforth consider only the case of an
extended Dynkin diagram &= {ay,...,a,,a,,}. We show, using a multidimen-
sional version of the celebrated technique introduced by G.W. Hill [Hi] and
developed by von Koch [vK1] (see the appendix to this paper), that the
monodromy exponents are restricted to lie on a complex variety in af/2L defined
by the vanishing of an infinite determinant associated with the operator Q. The
complete set of equations for these exponents is then furnished by finite-
dimensional eigenvalue conditions for the remaining operators in U (b)™

We fix the parameter ceC’ with T(¢)+0. As shown in the proof of
Proposition 4.3, we may assume for calculating the monodromy that the
components of ¢ are all equal, and we set ¢?= —x. Let vea¥, and set o= y,(Q)
={v,v) (where (-, - > denotes the complex-bilinear extension to af of the inner
product on a¥).

Let A+2Le M(c, v). Thus there is a non-zero function fe %7 , which has an
expansion Sect. 4.1(6). We also know (since f is holomorphic on ag) that the
coefficients g, in the expansion are exponentially decreasing. Set ¢(y) = f (iy), for
yea(i=(—1)*?), and let S be the operator T,(2) acting on C*(ia). Identify ia with
R’ using an orthonomal basis relative to the inner product on a. Then ¢ satisfies
Egs. Sect. A.3(3)5), so by Theorem A.5 the monodromy exponent A satisfies the
equation

Aa,x(A)=0’ (1)

where 4 is the infinite determinant associated with S defined in Sect. A.3.

We can obtain a complete set of equations for the monodromy by using the
remaining operators ,, ..., Q,. Let L; be the operator L.(£2;) acting on C*(ia), for
j=1,2,....,¢ (we set Q=Q,). For any Aea§, let &, ,(4) denote the space of
functions ¢ on ia satisfying Sect. A.3(3)~(4) [for some choice of coefficients a,
satisfying Sect. A.3(5)]. Since the operators L; mutually commute, they leave this
space invariant; we write Lk, o, A) for the restriction of L; to this space. By
Theorem A.5,dim &, ,(A) < oo, and Eq. (1) is the necessary and sufficient condition
for &, ,(A) to be non-zero. For te €, let pi(x, g, A;t) =det(t] — Li(x, g, A)) be the
characteristic polynomial of Lk, g, A).

Theorem 4.6. Let A,veag. Set o;=y,(w;) for j=1,2,...,¢. Then A+2Le M(c,v)
if and only if (1) holds and

pix,0,4;0,)=0, for j=2,3,...¢. (2)

Proof. Conditions (1) and (2) are obviously necessary for A+2Le M(c, v), by the
remarks preceding the theorem, since L; acts by the scalar ¢; on the space %, ,.
(Recall that the functions in this space are holomorphic on ag, so we can consider
their restrictions to ia.)
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To prove sufficiency of (1) and (2), we use the fact that the operators L; mutually
commute, and thus they have a joint eigenfunction in the finite-dimensional space
6, ,(A): For every A satisfying (1), there exist complex eigenvalues o =7y4,7,,...,7,
and a non-zero function ¢ € &, ,(4), such that

Lip=v¢, for j=1,...7. 3)

If Egs. (2) hold, then we may take y;=g¢;in (3). It follows from Lemma A.4 that ¢
extends holomorphically to a complex tubular neighborhood U of i, and satisfies
L(Q)¢=x,2;)¢ on U. By Lemma 2.3 and Theorem 3.10, we conclude that ¢
extends holomorphically to a¢ and is in the space ¥, ,. Since ¢ has the expansion
Sect. A.3(4), it follows that A+2Le M(c,v). O

Appendix I:
Infinite Determinants and Equations of Mathieu Type in Several Variables

Al.l. Infinite Determinants

We recall some results in the “classical” theory of absolutely convergent infinite
determinants, as developed by H. Poincaré and H. von Koch (cf. [Ri, Chap. 2] and
the references cited there; the “modern” operator-theoretic treatment of infinite
determinants, as in [Si], does not seem to be sufficiently delicate for our needs). Let
L be an index set. If s: L— L is a bijection, define

Supp(s)={pueL:s(u)+pu}.

The restricted symmetric group of L is the group S of all permutations s with
Supp(s) finite. Let sgn: S, —{+1} be the homomorphism that is —1 on
transpositions.

Let A=[A4,,] be a matrix of complex numbers indexed by L x L. Assume that
the diagonal elements A4, satisfy

ZLIAW—1|<oo. )
In particular, at most a finite number of the 4,, are zero. For se§, set
A@) =TT A5 @
pel

Since s has finite support, it is clear from (1) that the infinite product (2) converges
absolutely.

Definition. A has an absolutely convergent determinant if (1) holds and
)= X |A@)|<oo0.

SES o

In this case, we define
detA= Y sgn(s)A(s).

SES
Remarks. 1. Suppose A has an absolutely convergent determinant. Let (u,, v,) be a
fixed pair of indices, and consider the matrix A’ formed by multiplying the u,, vo
entry of A by the complex number A. Since each entry of 4 occurs at most once in
any term A(s), one has n(4)<(1+]|A])n(A4), and hence A’ has an absolutely
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convergent determinant. Thus, for example, to establish that a matrix A satisfying
condition (1) has an absolutely convergent determinant, it suffices to show that the
matrix A” has an absolutely convergent determinant, where A” is obtained from 4
by replacing any zero diagonal elements by 1.

2. If condition (1) holds, let D be the infinite product of the non-zero diagonal
elements of A. Set B,,,= A,u/Amm for all m such that A4,,+0, and otherwise
B,.,= A, Then the diagonal elements of B are all 0 or 1, and it is straightforward
to show that 4 has an absolutely convergent determinant if and only if B does. In
this case, det(4)=D det(B).

Lemma A.1. Assume that A has an absolutely convergent determinant. Given M C L,
set AM =[A,, 1 ners- Then
detA= I&im detAM, (3)

Here M — oo means taking the limit along the net of all finite subsets of L.
Proof. As noted in Remark 2 above, it suffices to consider the case in which a finite
number of the diagonal entries are 0, and the rest are 1. For every finite subset M
CL, we set
S(M)={seS,, :Supp(s)CM}.

For every ¢ >0, the convergence condition (3) implies that there is a finite set M,C L
such that

> lA(l<e. @

s¢S(Me)
We may choose M, large enough to include all the indices u such that 4,,=0. But
if M> M, is finite and Supp(s) C M, then AM)(s)= A(s). It follows from (4) that
|det A —det AM)| <,
which proves the lemma. [

We want to have conditions on 4 so that the existence of a non-trivial bounded
sequence x satisfying Ax=0 is equivalent to the condition det4=0. The first
sufficient condition for this to hold was given by Poincaré. For our purposes we
shall need the more refined conditions found by von Koch ([vK2] and the
references cited there):

Lemma A.2. Let r=2 be an integer, and define for u,ve L
Zﬁtr\)’= Z/|Auu1Au1uz"'Aur—1v|’ ®)

where Y denotes the sum over all uy,...,p, €L which are distinct among
themselves and not equal to p or v. Assume that there exists an integer n>2 such that
the series of “‘circular products” of length r

> Zi ©)

pelL

converges for r=2,3,..., 2n—1, and the series of ‘‘semi-circular products” of

length r
PIAL (M

u,vel
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converges for r=n, n+1,...,2n—1. Then
(i) A has an absolutely convergent determinant,
(i) The system of equations:

forall ueL, Y A,;x;,=0
AeL
has a non-zero solution x with sup,|x,| < co if and only if detA=0.

Al.2. Multidimensional Jacobi Matrices

Let ®={a,,...,0,.,} CIR’ be such that
(a) the vectors oy, ...,a, are a basis for R’
(b) there are integers n;=1 such that

¢
Xpt1= — '21 nd; .
i=

Weseth=1+n, +... +n,and denote by L the lattice in R’ generated by a4, ..., o,.

Let A=[A,,] be a matrix indexed by L x L. We shall assume that the off-
diagonal elements satisfy the following condition:

(c) If vé u+ @, then 4,,=0.

For example, if /=1 and o; = —a,, then (c) says that 4 is a doubly-infinite
tridiagonal (Jacobi) matrix. In this case the condition for the absolute convergence
of the determinant of A was found by von Koch (cf. [W-W, p. 37]). For /> 1, we
shall show that von Koch’s general criterion (Lemma A.2) applies, given the
following bounds on the elements of A:

Lemma A.3. Assume that the product of the diagonal elements of A is absolutely
convergent, and that there exists a number ¢>¢/h and a constant C such that

C
Auv' é T4 1 ne
(T+1ul
forallpe Landv € u+ ®. Then the conditions of Lemma A.2 are satisfied withn=h.
Furthermore, if the entries of A depend on a parameter in such a way that the series

Sect. A.1(1) converges uniformly and estimate (1) holds uniformly in the parameter,
then the limit Sect. A.1(3) giving det A holds uniformly in the parameter.

| )

Proof. We introduce the following notions: If g€ L and v e u+ &, we shall write u
—v. By a @-path in L of length r we shall mean a map y: {1,2,...,r,r+1}— L which
satisfies

W2l 2P U2 g

where p;=17(j). We say the path is closed if y(r+1)=y(1). Set
4,= i1=_[1 Ay, pa+1) -

Consider now the conditions of Lemma A.2. By (c) above, the only non-zero
terms in the summations Sect. A.1(5) for Z{) are those for which

BBy =P = e Sy Y
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is a @-path. Thus
Z0< Y |4, )

yePx(1, v)
where P,(u, v) is the set of all @-paths of length r beginning at 4 and ending at v. But
for fixed p and fixed r, there are at most (£ + 1)" such paths, and every point on the
path is at a bounded distance from u. From estimate (1) and (2) we thus have

r) < ¢
E A+l

where the constant C’ depends only on r, the set @, and the constant C in (1). Also,
ZD=0 if ||u—v|>M, where M is a constant depending on r and @, but
independent of x and v. By the condition ¢h>/, it is thus clear from (3) that the
series Sects. A.1(6) and A.1(7) converge as soon as r = h.

It remains to consider the series Sect. A.1(6) when r < h. For this, we make the
key observation that

(€)

Z$ =0 unless r is divisible by h. (*)

Thus the convergence condition on Sect. A.1(6) is vacuous whenr=1,2,...,h—1,
so the lemma will follow from (*). (The uniformity statements follow from the
estimates above and von Koch’s estimates for detA4 [loc. cit.].)

To prove (), write pu=p,, and assume that there is a non-zero term
Aypy Ay, in Z8). Since p; = p; for i+ j, we have a closed @-path y: p; —p,— ...
—u,— 14, by condition (c). For 1 i</ +1, let g; be the number of times that y, , ;
= p + ;. (Here we set p, . = u,.) Writing a, , ; = b, we find that because y is closed,
the numbers a; must satisfy a,=bn;, 1 <i</. Buta, +... +a,+b=r, so it follows
that r=>bh, which proves (*¥). [

Al.3. Mathieu Equations in Several Variables
Let the set of vectors @ CIR? be as in Sect. A.2. Define the complex-valued potential

V()= X e e (1

acd

for ye R’(i=(—1)'/?), and define the Schrddinger operator
3
S=— ,;1 (0/0y;)* +KkV () ()]

where x € € is a constant. Notice that ¥ is multiply-periodic with periods nH,
where Hy, ..., H, is the dual basis to a5, ..., a,. Let

2
P= Y ZH,
i=1

be the lattice generated by H, ..., H,. As in Sect. A.2, we let L be the dual lattice
generated by ay, ..., o,
In this section we consider the eigenfunctions ¢ of S:

Sp=0p, oeC, )
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which admit convergent expansions
$) =4 3 g, @

pel
for some A € C’. (Here {A, y) denotes the complex-bilinear extension to €’ of the
inner product on R’))

Example. If /=1 and ®={a, —a}, then V(y)=2cosa(y), and (3) is Mathieu’s
equation [W-W, Chap. XIX]. In this case (3) always admits solutions of the form
(4), by Floquet’s theorem.

Lemma A.4. Suppose ¢ is a solution of (3). If ¢ admits an expansion (4) that
converges weakly (in the sense of distributions, say), then ¢ is a real-analytic
function and the coefficients a, in (4) are exponentially decreasing: There exists an
r>0 such that

sup . la,| el < oo %)

In particular, if {a,: pe L} is a bounded sequence such that the distribution defined
by (4) is an eigendistribution for S, then this sequence necessarily satisfies (5).

Proof. The distribution e ~<4"?> ¢(y) is a periodic eigendistribution for the operator
S,=M'SM ,, where M , is multiplication by e/¢*:?”_ But S, is an elliptic operator
with analytic, nP-periodic coefficients, so the lemma follows by the analytic
hypoellipticity of this operator on the torus RY/zP. [

We denote by &, ,(A) the space of functions ¢ on IR” satisfying (3) and (4) [for
some choice of coefficients a, satisfying (5)]. Since the eigenspaces of S, on
C®(R?/nP) are finite-dimensional, it follows as in the proof of Lemma A.4 that
dimé, ,(4)<oo.

We can now prove, using a multi-dimensional version of the celebrated
technique introduced by Hill [Hi] and developed by von Koch [vK1], that the
space &, ,(A)is non-zero if and only if the monodromy exponent A lies on a variety
defined by the vanishing of an infinite determinant. To obtain this result, we
calculate from Eq. (3) that the coefficients a, in the expansion (4) of ¢ satisfy the
following infinite set of homogeneous partial difference equations:

£+1

[+ 24 A+ 2> =01a,=—x 3 ayu, ©),

for all p in the lattice L. We can express the condition on A so that the system (6)
have a non-zero bounded solution {a,} as follows:
For peL, n+0, we multiply Eq. (6), by the non-zero scalar

3 <A,A>+4<A,;¢>—a}
4{p, 1y ’

where E{z}=exp[z+(z?/2)+...+(Z/¢)] for zeC. This gives an equivalent
homogeneous system of the form

}EL A,ula}. =0 s (7);4

<2u,2u>‘1E{
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where the coefficient matrix 4=[4,,] has diagonal entries
{4,4) +44, u)—a} { <A,A>+4<A,ﬂ>—0}
A, =<1+ E<— 8
{ FEEA ERITAT ®

o
if p=%0, and Ayo=<{4, 4> —0. The only non-zero off-diagonal entries of 4 are
Ag; =k for u=0, and

K E{— <A,A>+4<A,u>—o} ©)

A =
T op 2y 4, 1y
for u#0, where in both cases A=pu+a;, with j=1,...,/+1.

Theorem A.5. The matrix A has an absolutely convergent determinant A, . (A)
which is a non-constant holomorphic function of AeC’, ke, and veC. A
necessary and sufficient condition that Eq. (3) admit a non-trivial C® solution of the
form (4) is that A, (A)=0.

Proof. By the standard estimates for Weierstrass infinite products, we obtain from
(8) that

C(4,0)
1—-4,|f —"——, (10
Al Ty )
where C(4, o) is a locally bounded function of 4, ¢ and is independent of u. Thus
Sect. A.1(1) converges, uniformly on compacta in 4, o. For the off-diagonal entries
we have an estimate

KIC(,0)
IS @

from (9), with C(A, o) another locally bounded function of A, 6. Thus estimate Sect.
A.2(1) holds with ¢=2, uniformly on compacta in the parameters. Since the
number h>/+1 in Lemma A.3, we certainly have ¢h >/, and the hypotheses of
Lemma A.3 are satisfied by A. The theorem thus follows by Lemmas A.2 and
A4, O

Remarks. The infinite determinant 4, ,(A4) can be factored as follows: Let
Dy(A)=T1A4,,, (12)

uel

(n

where the diagonal elements of A4 are given by (8). Then by estimate (10), we find
that D, is a holomorphic function of 4 € €?, and D,(4) =0 if and only there exists
we L such that

A+2u, A+ 20> =0 (13),

In particular, the zero set of D, is invariant under translations by elements of 2.
Suppose D,(A4)=+0. Then we can get a system of equations equivalent to (6), by
dividing by the coefficient of a,:

> B,a;=0. (14),

AeL
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Here the coefficient matrix B=[B,,;] has diagonal entries B,,=1. The only non-
zero off-diagonal entries of B are

K
B =
BT A2u, A+ 20> —0”

where A=p+aj, with j=1,...,/+1.

By the same argument as for the matrix A, we see that the function I, , =detB
is a holomorphic function of A on the complement of the unions of the varieties
(13),, pe L. It is clear that

(15)

I (A+2p)=1; (A) (16)

for all ue L. By Remark 2 before Lemma A.1, we have the factorization
45,{A)=Do(A)I; (4). (17)
This shows that I, , is a meromorphic function on C’, multlply periodic with

periods 2L. We also conclude that the equation 4, ,(4)=0 is invariant under
translations of A4 by 2L, and hence defines an analytic variety on the manifold
C’/2L.

Appendix II: Invariant Operators for the Periodic Toda Lattice

In this appendix we derive formula (1) of the introduction. We realize the 4, root
system in IR", n=/+1, as usual [Bo, Chap. VI, Sect. 4.7]: Let ¢;, 1 £i<n, be the
standard basis for R”, and take a CIR" to be the subspace Y x;=0. Define h;=¢;—u,
fori=1,...,n, where u=(1/n, ..., 1/n). Then h;€ a, and h, +... + h,=0. We define
linear functionals «; on a by a(x)=x;—x;,,, for i=1,...,n. (Here and in the
following the indices will always be read cyclically modn: x,,;=x;.) The
functionals oy, ...,a, comprise a base for the A, root system, and a,,, is the
negative of the highest root relative to this base. One has the relation

O£1+...+0t¢»+1=0. (1)

The Weyl group W is the permutation group on n letters, and its action on a is by
permutations of Ay, ..., h,.

We introduce the following notation: Set @={ay,...,0,,,} and
I={1,...,/+1}. If PC®, let

I(P)={i€ I|there exists a € P with a(h;)+0}

(with the convention that I(void)=void). It is clear that

(@) If PC® and P=P'UP”, then I(P)=I1(P)UI(P").

Furthermore, a special property of the type 4, completed Dynkin diagram is
that

(b) If P', P"C® and P’LP”, then I(P)nI(P")=void.

Indeed, if i € I(P’), then either o; or «;_; is in P’. But (o, o; _ ;) 0, so neither of
these roots can be in P”. Hence a(h;) =0 for all « € P”, so i¢ I(P”). This proves (b).
Now consider the family of disconnected subsets of P, in the sense of Dynkin

diagrams:
F(P)={QCPlaLp for all a,f€Q}.
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(In particular, note that (P) always contains the empty set.) It is clear from the
definition that
(c) If P’and P” are subsets of @ and P’ L P”, then & (P'UP”) consists of all sets
0=0'uQ’, where Q'€ #(P’) and Q" € F(P").
Let teC. Given QCPC®, set
Hpo)= I1 (h+0) (@)
iel(P)~I(Q)
as an element in the complexified enveloping algebra U(a). When Q is empty, we
write Hpo(t)=Hp(t). In particular, when P=®, then we set Hq(t)=H(t). This
element of degree / + 1 is W-invariant, and when we expand it as a polynomial in ¢,
the coefficients of 1, t,...,t/"! furnish a set of / independent homogeneous
generators for S(a)” (cf. [Bo, loc. cit.]; note that the coefficient of ¢/ is zero by (1)).
From properties (a) and (b) above we obtain the following multiplicative property
for these polynomials:
(d) Suppose Q'CP’ and Q”CP” are subsets of @ such that P’LP”. Set
P=P'UP” and Q=Q'uQ". Then Hp (1) =Hp o (t) Hp /(1)
Form the Lie algebra b as in Sect.3 with roots ®={a,...,a,,}, and let
X,;=X,, be chosen asin Sect. 3.3. Then h,, ..., h,, X4, ..., X, is a basis for b, and
the commutation relations in b are

X, i i)
[hi’Xj]_{—X if i=j+1

i

©)

fori, j=1,....,+1.
For an inductive study of the Laplacian @ for b we recall the following
constructions from [G-W2]: Let PC® and set

aP)= ¥ Ch, uP)=3CX,,

iel (P) aeP

and b(P) =a(P)+u(P). Let op: b(P)— a(P) be the projection corresponding to this
direct sum decomposition. We extend ¢, to a homomorphism from U(b(P)) to
U(a(P)), and call 65(T) the symbol of T, for Te U(b(P)). For any subset Q CP let

b(P)g=a(P)+u(P~Q).
This is a subalgebra of b(P). The Laplacians for the algebras b(P), are
QP)p= X K+ X XZ.

iel (P) aecP~Q
When Q =void, we simply write Q(P). Note that
QP)o=2(P~Q)+4p 0, (4)
where Ap o€ U(a(P)) and commutes with U(b(P)y). This is obvious, since
[h,X,]=0if ae P~Q and i¢ I(P~Q).

If QCP set Xo=TT X..
aeQ

Note that X, commutes with Hp,(t), since a(h;)=0 for all aeQ and i¢I(Q).
With this notation in place, we can now define the following polynomial in t e C
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with coefficients in U(b(P)):
Lp)= 3 (—=HX5Hp,(?). ®)
Qe (P)

For example, if P={x;}, then &(P) consists of the empty set and P, so
Lp(t) = (hi + t) (hi+ 1+ t) - %Xazz,-

in this case. A simple calculation using (3) then shows that

[Q(P), Lp(1)] =0 ©)

when |P|=1.
Before proving (6) in general, we observe that if P=P'UP” with P’ L P”, then
Lp(t)=Lp(t) Lp(1). (M

Furthermore,
Q(P)=Q(P)+Q(P"), @®)

and we have

[Q(P), QP)]=0, [QP),Lp()]=0, [Q(P"),Lp(t)]=0. (€))
[These all follow easily from properties (a), (b), (c), and (d) above.]
Theorem. For any subset PC®, one has [Lp(t), Q(P)]=0 for all te C.

Proof. When |P|=1, then the theorem follows by direct calculation, as noted
above. Assume that the theorem is true for all subsets of cardinality less than |P)|.

Case 1. P=P'UP”, with P’L P” and both non-empty. The induction hypothesis
applies to P” and P”. By (7)+(9) we see immediately that the theorem is true for P.

Case 2. P is connected. We recall the following results from [G-W2]: Let QCP
with Q+P. Set Q’=P~Q. Since Q is an ordinary Dynkin diagram, [G-W2,
Theorem 4.1] implies that there is a unique element wp () € U(b(P)q) such that

(1) wp,o(t) has symbol Hp(t).

(i) wp, o(t) commutes with Q(P),,..

We claim that

Wp, o(t) = Hp (1) Ly(2) - (10)

To prove (10), note that the right side of (10) has symbol Hpo(t) - Hy(t), which is
simply Hp(t). Hence property (i) is satisfied. Furthermore, since Ly(t) commutes
with Q(Q) by the induction hypothesis, we see from (4) (with Q replaced by Q’) that
L(t) also commutes with Q(P),,.. Finally, Hp (t) commutes with Q(P),, because
[h;, X,1=0for « e Q and i ¢ I(Q). Thus the right side of (10) also satisfies property
(ii). This proves that equality holds in (10).

To complete the induction, we use [G-W2, Lemma 3.2]: Since deg(Hp(t))
=|P|+1, the element

W(Hp)= ¥ (- 1)|P' Tlel+1 WP,Q(t)
0

*P
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(sum over all proper subsets Q of P, including the empty set) commutes with 2(P)
and has symbol Hp(t). By (10) it thus only remains to check that

Ly(t)= Qgp (=D Hp 5 Lo(1) - (1

The proof of (11) is a straightforward calculation starting from formula (4) and
using the fact that every totally disconnected subset Q € #(P) is contained in some
proper subset of P, since P is connected. We leave the details to the reader.

The differential operator in Eq. (1) of the introduction is T,(L(t)), with T; the
representation of b defined in Sect. 1.1.
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