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Abstract. The ultraviolet stability for the cosine interaction in two dimensions
and finite volume Λ is rederived for values α2 e [4π,^π[ and proven for the
remaining α2 e [4π, 8π[ by using renormalization group methods developed in
[G,GN1] to portray renormalized effective potentials arising from a multi-
scale decomposition.

1.1. Introduction

The two dimensional sine-Gordon model has been widely studied as an interesting
model in quantum field theory as well as in statistical mechanics. In constructive
quantum field theory, its interest is mainly due to the fact that by varying the
parameter α in the cosine potential

K 0[Λ]:=λf :cosα<p δ :dξ, ΛcR 2 , (1.1)
Λ

we encounter either a finite, superrenormalizable, renormalizable, or non-
renormalizable theory. In fact, Frόhlich showed in [F] that the theory remains
finite for α2e[0,4π[. Furthermore, for α2e[4π,8π[, the theory can be re-
normalized by subtracting an ever-increasing number of field independent
counterterms (cf. [G]). Ultraviolet stability was proven by Benfatto et al. in
[BGN] for the interval α2 e [4π, 2π(]/Ϊ7 -1)[, and subsequently extended in [Nl]
to the interval α2e[4π,^π[. This paper proves the ultraviolet stability for all
values α2 e [4π, 8π[. The crucial ingredients for the proof are the application of the
tree expansion developed by Gallavotti and one of us (F.N.) in [G, GN1] as well as
a general strategy to solve the large fluctuation problem which arises as one
analyzes (1.1) in the framework of Euclidean scalar field theory. This strategy is
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different from the one used in [Nl]; however, as we will show in [RS], the
technique developed there can also be extended to prove ultraviolet stability for all
values α2e[4π, 8π[. In classical statistical mechanics, on the other hand, the
potential (1.1) describes a two dimensional gas of spinless particles with Yukawa
interaction in the grand canonical ensemble.

The charges of the particles are ±e, the activity is λ, and the inverse
temperature of the gas is such that α2 = βe2. For βe2 < 4π, the gas is stable, whereas
the situation in the interval βe2 e [4π, 8π[ can be interpreted as a sequence of
partial collapses in which infinitesimal neutral clusters composed of an ever
increasing number of particles are formed. At βe2 = 8π one expects full collapse (cf.
[F, BGN, Nl, N2]). The methods developed for studying the interaction (1.1) may
also be used to study a two dimensional, neutral gas of classical, spinless particles
with Coulomb interaction, where a similar interpretation of the phase transitions
holds (see [G, Nl, N2, GN1, GN2, NRS]).

1.2. The General Strategy

We use a multiscale decomposition of the cutoff field φ(-N}:

φ(

ξ=
N)'=Σφf\ ξeΛ, (1.2)

defined as the gaussian field with covariance

where y > 1 is a scaling factor chosen close to one and A is the Laplace operator in
R2.

The fields of frequency h, φ(h\ are independent gaussian processes whose
covariances are given by

PT1]. (1-4)
(2π)2

Writing δ for the expectations with respect to the measure P(dφ(-N\ we define the
truncated expectation of order n,

w
1/1+...+τn/,) | Q ? (L5)

where fl9...,fn are n random variables. Note that ^(f q): =£>τ(f,...,/) (q
times).

Similarly we define expectation δk and truncated expectation $£ with respect
to the measure P(dφ(k}). Finally, we write δ^h for δ$ - . . . δn . We will prove the
following theorem:

Theorem 1.0. Let

: = λ J : cosαφp': dξ, (1.6)
Λ
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/ f

then the renormalized cosine potential (note here that when t is odd the sum Σ runs

\ (even)

over the even integers from 2 thru t—l\

1 1

(even)

is stable in the ultraviolet limit for t an integer satisfying

2

(1.8)

That is, there exist ίwo positive constants E__(λ) and E+ (λ) independent of the cutoff
N and the finite volume \Λ\, so that

(1.9)

Moreover, it easily follows from the proof of (1.9) that

lim£±(/ί)/Γ(ί+τ) = 0 (1.10)
Γ ΛΛ λ~*°lor some τ > 0.

For fixed α2, inequality (1.8) defines a minimal integer t0(a2) such that for t ̂  ί0

it holds. On the other hand, we encounter an infinite number of thresholds

(1.11)

which means that in the interval [α2, α2

+2[, the interaction needs renormalization
up to counterterms of order t (even).

In the Yukawa gas interpretation, these thresholds correspond to the critical
e2 ( t \

temperatures Tt = ——- — - , t = 2, 4, 6, . . . (where k is the Boltzmann constant) at
oTik \t-\J

which neutral clusters consisting of t particles collapse (see [BGN,N1]).
We now introduce the "effective potential" on "scale k" or at "frequency fe" by

defining recursively for k = 0, . . . , N — 1 :

and

V(N^A](φ(=N}):=V(N}[_A] for k = N . (1.12)

Moreover, let the "truncated effective potential on scale k" be

(for fc = 0, ..., JV), (1.13)_

where [ ]gί w^ stand for truncation of the power series in λ at order t.
The basic idea for showing the inequalities (1.9) is to use the concept of effective

potential to perform the integration with respect to P(dφ(-k}) frequency by
frequency. In fact, due to the simple scaling properties of the fields

(1.14)
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it will be enough to perform a generic step of this interative procedure. In order to
do this one step, i.e. to perform an integration of the truncated effective potential at
frequency k with respect to P(dφ(k}), we use a lemma which has been previously
proven in [BCGNOPS] and adapted to the sine-Gordon problem in [BGN].
This "Main Lemma", which reduces our problem to one in perturbation theory,
will be explained briefly in Sect. 2.3. It turns out that integration with respect to

) results in an expression of the following type (see also [BGN])

\Λ\

where R(k~ 1)(/l) is a remainder of order t + 1 in λ independent of the volume \Λ\ and
J V - l

the ultraviolet cutoff N. Actually, for the sum X R(h\λ) to remain finite when
h = 0

N^oo [and thus proving inequalities (1.9)], it is necessary to restrict the fields
Φ(-k) to be "smooth", i.e. to be Holder continuous of given modulus (Bk) and
exponent (1 — ε) [cf. Eq. (2.1)]. This is easily achieved in the case of the lower bound
by just introducing the appropriate characteristic functions restricting to such
"smooth" fields. Then by using the estimates for the effective potential in Sect. 2.3,
it is an easy task to prove the lower bound in (1.9) precisely in the spirit of [BGN].
For proving the upper bound, on the other hand, it is a priori not legitimate to
introduce any characteristic functions.

Nevertheless, let us first discuss how the integration of the "smooth" part of the
effective potential can be performed: Instead of F(/c)[Λ.] we consider F(fc)[®£],
where 2c

k is the complement of the region @k in which the field φ(-k) is "rough" (i.e.
not "smooth"). As we will see in Sect. 2.1, the letters 2k, 3>c

k, etc. actually symbolize
sets of field dependent regions. Writing 3)k or 2k in the argument of F(k)[ ] is only
meant to be a suggestive notation for the "rough" respectively "smooth" part of
V(\A\. This new effective potential 7(fc)[®£], being the "smooth" part of the
effective potential F(/c)[/l], would be the natural object to be integrated with
respect to P(dφ(k}). The field-dependent region 2k, however, introduces an
additional complicated φ(-Λ)-fϊeld dependence in the effective potential on scale k.
But since the large fluctuations (that is, the "roughness") on scale k are related to
the ones on scale k — 1 , we have the following relationship :

^C^^u^, (1.16)

where ̂ k_1isa region in which the field φ(-k~ 1} is "rough" while 0tk is a region in
which the field φ(k} is "rough" [the precise definitions and the proof of (1.16) will be
given in Sect. 2.1].

Inclusion (1.16) motivates the idea to consider V(k}[&c

k_1π&c

k] instead of
as the "smooth" part of the effective potential which is to be integrated

with respect to P(dφ(k}), since the φ(/c)-field dependence introduced by the set &Fk

(the complement of <%k) is now manageable (βc

k being a collection of squares on
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scale fc). Thus, instead of (1.1 5a), we prove the following inequality

(l.Πa)n st /
and, for the lower bound,

Jj&X(k>M/W^ (l 17b)

where Qk is a pavement using squares of side length γ ~k and with suitably defined
characteristic functions χb^ χb@k (cf. Sect. 2) and R(k~ 1}(λ) a controllable remainder.

In order to set up an iterative procedure for the upper bound, it would be
sufficient to show

(i) that it is possible to reduce the expression on the right-hand side of (l.Πa) to
a term like:

with, as before, a reasonable remainder R(k l\λ}.
In other words, it would be sufficient to control

-ί**-1^-!], (1.18)
_n = ιn _\^t

provided the passages:

(ii) from V(N~l} to F^1^^]
and

(iii) from F(fe)[^] to V(k)l@c

k^1n@c

k], V fc^JV-1
are allowed.

The first step is the most difficult one. Unfortunately, one cannot show in
general that zl(fc)[^fe] is negative as one would like to in order to prove the upper
bound. The crucial reason behind this difficulty is that the iterative procedure
envisioned by steps (i), (ii), and (iii) only "transports" the smooth part of the
effective potential from one frequency to the next. The second step is possible since

(1.19)

and the third since

and V(k}[βc

kr\^^\ is again a term which can be safely put into the remainder (see
[BGN]).

Inequalities (1.19) and (1.20) are properties of the large fluctuation part of the
effective potential and are proven in Sect. 2. The crux of a correct iterative
procedure, is the "transport" of a large fluctuation part of the effective potential
from one frequency to another allowing us to use in step (i) as well a part of the
negativity exhibited in (1.19) and (1.20).

Calling W(k^\_^k~\ this "transported" large fluctuation part of the effective
potential at a generic level fc, the iterative mechanism we are going to apply will
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essentially proceed as follows: Start at a generic level k:

1)

2a) Transform it using step (iii) and the "large fluctuation transport"
mechanism into

V[βk-d . (1.22)

2b) Apply the Main Lemma: [integration with respect to P(dφ(k}}'] obtaining

[The precise version of (1.21) is given in Sect. 3.]
In Sect. 4 we describe as clearly as possible how all the theorems and lemmata

proven in the foregoing sections contribute to the proof of the announced result,
namely Theorem 1.0. We thus urge the reader to follow this guide attentively while
reading the next sections, so that in the midst of so many trees he will not lose sight
of the forest.

1.3. The Effective Potential in Tree Notation

We write the cosine interaction F0

(N)[Λ] as a sum of exponentials:

*o(ΛΓ)[Λ]=i Σ λl\eiΛσφi-N):dξ, (1.23)
σ= ±1 A

where the Wick-ordering is defined by

:eίΰίσφ::=eΎ^φ2)eίaσφ. (1.24)

The parameters σ will in the following be referred to as "charges." Using (1.23) and
recursively applying the formula (1.12), we get a "tree expansion" for the effective
potential defined in terms of the tree notation introduced in [G, GN1, GN2,

NRS]: ~«_ i
n=ί lk(θ) = k n(θ} σ Λn

\v(θ) = n

- Σ , Σe* - Σ ί dξ, ...dξaΫ(θ,σ), (1.25)
n=l lk(θ) = k n(U) σ Λn

\v(θ) = n

where θ is a tree with definite frequencies at each bifurcation, k(θ) denotes its root
frequency and υ(θ) is the number of final lines. The number n(θ) is the usual
combinatorial factor (see [G,GN1]) and σ = (σί9 ...,σπ), σt= ± 1, are the charges
of the final lines.

The sum Σ0runs over all different trees with n final lines and root frequency k.
{

The second sum Σ* differs from the first in that the frequency of the lowest
{

bifurcation, hereafter called h(θ), runs over frequencies from zero to k instead of
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frequencies from k + 1 to N as in the first sum. Note that we will generally reserve
the letter k for depicting the root frequency, while h will be a running frequency.
The second term in (1.25) corresponds to the parts of the counterterms which had
not yet been utilized, having gone from scale N down to scale k. (See [BGN] and
[NRS] for an explicit discussion of the counterterms.) We now decompose the sum
Σ0 in the following way: We fix the shape s of the tree, then we fix the absolute value
of the charge at each vertex (bifurcation) v of the tree β^O (a vertex can also be
thought of as a cluster of charges whose average size depends on the frequency hv of
the vertex). Finally, we call {Qv}s a compatible vertex charge configuration for a
tree θ with shape s.

Therefore, we can write

Σe Σ= Σs Σ Σe Σ, , (1-26)
k(θ) = k σ v(s) = n {Qv}s ίs(0) = s {Qv}sfixed
ι>(β) = n j/c(0) = /c

where s(θ) = s means that the tree θ has the shape s and Σg implies that the

absolute value of the charge of the vertex v has the value Qv. Next we decompose
Σg in the following way: We call σ = (σ1?..., σj satisfying the constraint {g Js an

"admissible configuration" and associate a label μv to each vertex v such that when
(2^ = 0, μv= ± 1, while μυ = 1 when βυ>0. Then we fix an "admissible configura-
tion" for a given {Qυ}s: σ = (σ1?..., σn) and define:

where v 3 i means that the ith endpoint of θ is inside the cluster θv (i.e. those points
pertaining to a vertex v). It is clear that the sum over all admissible configurations
of a tree θ with fixed s and {Qv}s can be decomposed as a sum over a suitable family
ίf of admissible configurations σ times a sum over the other configurations σ
which can be obtained from a fixed σ by just summing over the set of μ^-labels {μv},
and dividing by a factor which takes into account a possible double counting.

Therefore r / ^

Σ0 Σ — ) Σs Σ Σσ 7VT f Σ0 Σ^}
fc(0) = fc σ (χs) = n {Qv}s σe<? Π(S) ) s(θ) = s σ
υ(θ) = n \k(θ) = k fixed

= : Σ ΣβΣw. (1-28)
(s,{Qι;}s,?) {': {:

where n(θ) = n(s) only if when we sum over the frequencies we do not impose any
constraints between frequencies of different branches. Now we can write

γ(\A\ = Σ Σ Σ0 ^(9, ff) - [counterterms; k], (1.29)

where
V(θ, σ)= ί d^ ... d^(β) ΣM V(θ, Ψ(=k\ {μv}) (1-30)

ΛV(Θ) f ' - Afixed

Remarks, i) This decomposition is such that each term of the sum X satisfies
(s,{Qv}s,σ)

the estimates we need. To prove them we need to use important cancellations
provided by the Σ{μυ}.
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ii) We do not explicitly write the second term of (1.25) because these parts of
the counterterms do not play any role at level k. A piece of them will be extracted
and used when we go to the next level k—\.

We are still free to change the names of the final lines, changing the names of the
coordinates, and therefore to require that σ always appears as

σ = ( + , -,..., + , -) when β(0) = 0 and n = 2m,

σ = ( + , -,..., +,-;+, +,..., ±) when |β(0)|=p>0
= (σ1,...,σ2m;σ2m + 1,.. .,σ 2 m +) and w =

where Q = Q(θ) is the total charge of the tree θ. (Hereafter when Q ή= 0 we write σ for
σ.) This can be done by ordering the bifurcations hierarchically as follows.

Definition of Hierarchical Ordering of Vertices (Bifurcations). A vertex v is called
of order ί if and only if there is at least one subtree pertaining to v whose lowest
bifurcation is of order f—\ and no other subtree has its lowest bifurcation of order
> { — 1 furthermore, a vertex is of order zero when its subtrees are all trivial, that
is, they have no bifurcations.

We start by considering all the vertices of order zero and we arrange the names
of the coordinates in such a way that the charges of the σ configurations associated
to that vertex are ( + ,—,+,—, . . . ,+, — ) = σ if the vertex is neutral. We do the
same for the non-neutral vertices, but in that case we label only the neutral part (for
example, if in a vertex of order zero three lines merge with charges ( + , — , + ) we
label the first two only). We go on by considering the final lines of the order one
vertices which have not yet been labelled and we proceed as before, order by order.
With this choice σ appears as in (1.31) and in each vertex the lines with opposite
charges always have adjacent indices. m

Now we decompose: cosαφ(θ, σ) — 1 : = : cosα Σ (A^φ) — 1 ' into

/ m

cosα Σ
V=ι

m

=iΣ: Π (cosασΛ,φ + ίsinασΛ,φ)-l:= Σ^ P0>(φ)' , (1-32)
σ f=\ |̂ | even

where 9 is a subset {/1? ...,*fjc{l, ...,m}, O^q^m, \0>\ = q and

: : = iw : fl sinαJ^ Π cosaAsφ :,

"' (1.33)

): : = :( Π cosαzl^φ ) -1:,
V-i

using the following conventions

(1.34)
forβ-O:

2m m

(1-35)
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and for |Q| = p>0:

_ 2m+p m P

φ(θ,σ): = Σ σt<Pξi= Σ Λ,φ + signβ Σ φξ^+r (1-36)
J

We now observe that P&(φ) is odd under the exchange ζ2tj- i<r*%2tj>
even under the exchange ξ 2S-i<r*%2s> VsφέP

Therefore we can define the following operations for /e C(IRn):

l5 •••? S2i-2? S2ϊ? S2 i- l J '••> ζn)} >

ξ1,...,ξ2i-ί,ξ2i,...,ξn)

~~/(£lJ •••? ^2i-2> S2i? S2ί-l? •••? S«)} 5

as well as the operation:

<W): = ( Π A Π S Λ / . (1.38)
V-63» j*^ y

Of course,

Σ0Λ/)=Λ (1-39)
&

and moreover, if / satisfies for all z

/(ίlJ S2? •••? S2i- l? ^2iJ '••' ^n-lJ £n)=f(%2? C l > •••? S2ί? S2i- l? •••5 S«> Sn-l) 5

(1.40)

then Σ* <W)=/ (1-41)
|̂ | even

Thus it is possible to prove that we can write
2m

ί dξ:PM:Fθ^(ξ,σ;Q = Q), (1.42)
|^»|even Λ2γn

where the explicit expression for Ffl>^(...) can be inferred from the proof of
Theorem 1.1.

For non-neutral trees we proceed in a slightly different way; we divide the
coordinates ξ of the final lines of θ in two groups : we call ζ the 2m lines which merge
at some neutral bifurcation of θ and ζ the p remaining ones. Then we decompose
:έ,i«Φ(M). as follows:

Jf
m _ P

where PιyΓ=0(φ) : = Π cosazl^φ, and φ(&(θ)) : = Σ σ2m+sψί and ̂  is a subset of
<?=! s=l

{1, ...,m}. Therefore, analogously

Σ ί ^C:^ yl2m + p - -

(1.44)
The relations (1.42) and (1.44) follow as a corollary of the next theorem.
The decompositions (1.42) and (1.44) are useful as we have a recursive expression
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Theorem 1.1.

=θ) = Σ
>i\ even

x Π
7=1

P l even

>TIF
i=l

(1.45)

) ΓI

w/zere 6V operates only on the ξ coordinates.

We have assumed that at the lowest bifurcation h(θ)(h(θ)\ s neutral trees
Θl9...9θs and s non-neutral trees 9"l5 . . ., ΰs merge as in Fig. 1. The symbol Δ in gPΔ^
stands for the symmetric difference (^\^)u(^\^), thus when feSPΔy we know
that the function &&Ay(f) is odd under the exchange ̂ -i^^

The function W is associated to the truncated expectation at the lowest
frequency; its explicit expression is given in the proof of the theorem. The set &'
and the operation fiV^iu ... u^5)

 wn^ ̂ e defined in the course of the proof as well.

Proof. We first consider the case when Q — 0: starting from the lowest bifurcation,
h(θ) = k+ 1, the tree θ looks like:

h(θ)

Fig.l

Given the subtrees Θl9 ...,θs and θί, ...,θs we assume the expressions (1.42) and
(1.44) for Ϋ(θi9σ

(t*) and V(ffj9σ^:

, σ) - Σ 4Γ

+ ι(V(θi9 σ(1)), . . ., V(θs, σ^ Ϋ(Vl9

= Σ Σ

μo

(

x[.Π Fet,^'\ ?(i);

where JS?;= jSf(9)) [cf. Eq. (1.43)].

ΓI (1.47)
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We remark that F$ ̂  does not depend on μ0 as it is left invariant under the
simultaneous change of sign of all charges of θj.

Moreover, from definition (1.33), we can write:

PΛ>(=*+1))=i Σ τ^- ̂ (Sk+1}-δ^Φ, (1.48)
2* τe{- l , + l}™

where τ = (τ l9 ...,τj, τ^ = τΛ τ/2 ... τ,β for 0> = {tl9 ...,/J, and

m

τ zlφ^+'^Στ^y-^1', (1.49)
and further,

1', (1.50)
/ I

where τ, τ^, «yΓ, and τ zl are defined analogously. The — 1 present in P0 has been
neglected since it has no effect in the truncated expectations.

Recalling the relation

and using (1.48) and (1.50) to compute Σ<^+ι( ) of (1.47) we get
μo

(1.52)
where

τ : =τ(1)0 ... Θτ(s)Θτ(1)Θ ... 0f(5), (1.53)

and

. iα(τ(1) 4φ(k

. tί
s

c(m,m):=Σ m^+ Σ w / 5 (1.55)
i = l j = l

where i7(-fc)(...) is the interaction energy between the clusters Θί9 ...,θs(f)l9 ...,9s)
and τ^^^) the vector defining the charges oϊθt(^) with coordinates ξfΦf) (j odd).

/ s \

Finally, we decompose : cosαl τ Δφ(-k}+ Σ Ψ(~k)(^j) ) '• once more folio w-
V J=ι /

ing Eq. (1.32) and obtaining:

:cos<xtτ 4φ(-k) + l 4φ(-ky)' = Σ$> :P^(φ('k)): τ^+ 1 . (1.56)
Eleven

The + 1 will be cancelled by the corresponding part of the counterterm, and
^ C {!,... ,m}. Note that

&>' = ̂ n(subset of {1, . . ., m} in which τt is present) . (1.57)
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We have

, τ ) . (1.58)

The equalities (1.45) and (1.46) are proven using the explicit expression of W(θ)
given in Eq. (1.55): From this expression we recognize that changing the sign of τγ
is equivalent to exchanging ®-i<-»£(2/ in the function W(θ)(ξ,τ\ Therefore

Σ (τ ξ, τ)

and
(1.59)

\&i\ even

s s
χ O F & (£(l)? G®> β =θ) O -P" (?7)5 Cίj)? ̂ j(

i = l f ' j=i J > J - > - > - > •

(1.60)

Remark. The operator ^'j(^lU...Utyrg) is a symmetrization or antisymmetrization
operator only with respect to those variables in the A^φ's which are multiplied by
the τ's [cf. Eq. (1.56) and Eq. (1.59)]. Thus, Eqs. (1.45) is proven; the case when
QΦO [Eq. (1.46)] is proven analogously. D

2.1. The Smooth Part of the Effective Potential

The smooth part of the effective potential is defined by subtracting from the
regions of integration in F(k)[yl] those parts in which the fields are insufficiently
Holder continuous. We first define the basic field-dependent sets of which these
regions consist; they describe in terms of pairs of variables (ζ2t-1> %2t\ where the
fields are insufficiently Holder continuous (with respect to a given modulus Bk):

and

and

(2.1)

\=Rf: = e Qk\3ξ^A, ηeΛ such that yk\ξ/-η\ < 1

Bk
σ

(2.2)

where Qk is a pavement of R2 on scale fc; e.g. a set of squares A with side length γ k.
The constant σ> 1 is to be chosen sufficiently large subsequently [cf. (2.19), (3.6)].

The strictly increasing succession {Bk} is chosen as in [G] with B > 1 and a > 2
arbitrarily fixed:

(2.3)

Note that Bk> 1 and Bk + JBk> 1 for all feeN.
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In analogy with Eq. (1.29) we write

ί
t/(fc)r^<η — V V V V(Q rr} Γ^Π ί? 4Ϊ

Lc >^κJ * / / , / jf) V V l / ) Ul |=^t I 5 \ /

«=1 (s,{Qv}s,σ) is(θ) = s
~ \k(θ) = k

with

ί

Remember when βφO, we write σ for σ; and remark that when ^ = 0, :P0 : is
thought of as decomposed in the following way:

' P 0 ( φ ) ' ' = Σ :P*,(φ)::= Σ :(cosA,φ-l) Π
* f = l ^=1 j = ̂ +

Furthermore, we have

... xΛ2\D(x ... χyl 2 , (2.6)

and a similar definition for 2c

k(Jf)\ 3>k stands symbolically for either &k(3P) or
). Note that when & — 0 we use the above decomposition and define

From (2.6) it follows for the complement of 2k(3P\ i.e. for the region of
insufficient Holder continuity

O£ (0>\ — I I Λ* x x [}(*) X X /1^ f2 7)

Similarly we define:

We thus have:

= vl X ... X y l \ / ? 1 _ t) X

- x ((Λ\/?(

2Vι) x(^\^(

2X)} x ... x Λ 2 . (2.9)

Furthermore, we define:

m^\0>}: = 0 A2 x ... x /?fj, _ ! x /?f j. x ... x Λ 2 . (2.10)
i= 1

We note that «<2^)cΛ^) (211)
*S(/ir \*-' ) -̂ t^/k\ ) ' \ /

Formulae (2.7) thru (2.11) obviously hold for ,/F as well.
Let us now prove an important lemma.

Lemma 2.1. For all integers k and all sets of indices 0> = {£l9 ...,/β}, we have:

(2.12)
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Proof. The proof is easily reduced to that of an analogous inclusion for the sets
defined in terms of pairs of variables (omitting subscripts):

and

either

We show the converse, that is, for (ξ,η)φD(k~1)uR(k)2, we show (ξ,η)φD(k}:

(ξ,η)eΛ2\R^ <*

R.
••-η\y-° (2.15)

or
>m-( •nW Bk

σ

>1. (2.16)

The latter, however, immediately implies (ξ, η) φ D(k\ For the former we apply (2.14)
onto the triangular inequality

and thus

(2.17)

(2.18)

which implies (ξ, η) φ D(k\ since we can pick a finite σ^θj) large enough so that for
any θt such that y~(ί~e)<θί<\,

kγ
-^0! f o r a l l f c e N a n d a l l σ > σ 1 ( 0 1 ) .
σ

(2.19)

The statement of Lemma 2.1 is illustrated in Fig. 2. D

As already mentioned in Sect. 1.2, Lemma 2.1 suggests that we consider
°k-ι n^fc] as that part of the effective potential to which the Main Lemma (cf.

Sect. 2.3) is applied. V(k)[_@c

k-1n&c

k] is defined in complete analogy to F(fc)[^],
just replacing [̂ ] by \βc

k^vr\^\. Furthermore, we note that the difference of
F(fc)[^] and F(/c)[^-!Π^] can be written as [cf. (1.20)]:

F(fc)[^] - F(fe)[^_ iΠ^J] - F(/c)[^n^fc_ in^a + F(fe)[^n^J , (2.20)

where [ again symbolizes either

or

(2.21)
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Fig. 2

(k-1)

and [®£n J?k] is to be understood analogously. Observe that (2.20) is true because,
due to Lemma 2.1, 2kr\S>c

k-vr\^c

k is the empty set.
Furthermore, we remark that the sets in [βc

kr\$^\ are of the form:

= ύ {Λ2x... x,
i = l

... x(ΛxR(2})\D(£ x ... x Λ 2 \ D f q x ... xΛ2}. (2.22)

We finally give an explicit expression for zl(fe)[^J defined by (1.18),

where (for Q = Q)

n = 2 (s,{Qυ}s,σ) (s(θ) = s
\k(θ) = k
[h(θ) = k

A n

-i y_ I / jt

2/ |^>|even (^\^i\ even' rs) x ^k(^ι) x .

ξ, σ)) Π F βί^(ξ(ί\ σ(ί>; Q( =

(2.23)

and a similar expression for the non-neutral case. Note that the only difference
between the two terms in (2.23) consists in their regions of integration.

Recalling definition (1.18) of ΛW[^J and the fact that all trees with root k
having their first bifurcation at a frequency h > k +1 come from the simple
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expectation S'k+ i(V(h+ υ[^fe]), it becomes clear that Λ(k)[®fc] does not contain any
of these trees. [For these trees the regions 2k(9\ @k(Λ^) already have their correct
"position."] In other words, all trees in zl(/c)[^fc] have their first bifurcation fixed at
the frequency k +1. This fact will turn out to be crucial in the following.

2.2. Estimates of the Effective Potential

In this section we give essentially three types of estimates, all of which will be useful
for the proof of the iterative procedure discussed in Sect. 3. The first type is mainly
used to provide an estimate of the smooth part of the effective potential which
shows that the Main Lemma can be applied to it and that the remainder terms are
well behaved. The second type of estimate serves to "factorize" certain tree
contributions from Δ(\^k~\ and [F^^n^-F^^^n^l of order
greater than two into a second order tree and into a remainder onto which the first
estimate can be applied. The motivation for this operation becomes evident in the
context of the third type of estimate which is the easiest one, since only neutral trees
of second order integrated on a large fluctuation region are concerned. The third
estimate shows that these terms are in fact negative. In the iterative procedure they
will be used to go from (1.21) to (1.22) in the scheme presented in Sect. 1.2. In other
words, we will show that these second order trees render the large fluctuation part
of the effective potential negative. The second estimate makes sure that the second
order trees actually dominate the higher order contributions to the effective
potential.

Consider the contribution V(Θ9 σ) [®£] to the effective potential of frequency k
as given by (2.5). All zeroes of the field dependent part are effective. They can be
estimated by (for Q = 0)

(const)βf ly*l*l(1-β)[zeroes, 9]

(and, obviously, we have a similar expression with 9 substituted by Jf for Q Φ 0),
where [zeroes, &~\ is defined by (& = {Si9...9Sq}):

[zeroes, &\ : = Π \ξ2/J. 1 - ξ2,f -•> . (2.24)

The quotient

does not have any zeroes, and as we consider a region in which the field φ(-k) is
Holder continuous with modulus Bk, it is in fact bounded by (const)BJf'. For 9 = 0
we define

[zeroes, 0] : =y2fe(1-ε)(d(£))2(1~ε), (2.25)

where d(ξ) is the length of the shortest polygonal connecting the points ξί9...9 ξv(θy
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In order to further analyze the factor &^(FΘ) in (1.42) only depending on the
covariances, we use (1.45) and (1.55). First, we rewrite (1.55) in the following way:

x exp ( + ̂  ( Σ Cffi\0) + Σ cyV. <C ,(...). (2.26)
\ * V = l 7=1 J J

We use the definitions:

C(ik):= Σ σpjC^ξ^ξj), (2.27)
and l Jeβ

C(βίk\0) : = Σ ί^C<s«(0, 0) = Ql(k + 1)C<°>(0) , (2.28)
i,jsθ

where i and; run over the indices of all the final lines of the tree θ. Let us further
define:

ί/(

0

s't)(6l1,...,θ5): = (7(='[)(θ1,...,5s;τ
(1),...,τ(s)) (all coordinates equal),

that is , <2 29>
l/P'^, ...,θs)= - - Σ,,,CW®, (2.30)

2 £*s

where /, s both run over (/, ...,s) and (/,... ,5) and ^ can be either θt or 9^
depending on its index.

We also introduce:

Using these definitions (2.26) becomes:

' 6k+l

7=1

With this expression for W(θ)(ξ, τ) we can rewrite (1.45) (and analogously the non-
neutral part):

. . . . .
l^il even

s ^_r(^k)(Q)

x Π e 2 A ".F^ωgW.ρ^o)
i= 1

s ^L_r;( ̂  fc)fθ)
x Π e2 •>> FSjιjrj(^, ζu\ σ^; β^ΦO) . (2.33)

7=1
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Using formula (2.33), the estimate of

(respectively {/|J/Ί(1~ε)[zeroes, Λ^F^Cf, C, σ; βφO)}) can be performed recurs-
ively provided that we previously prove the following fundamental lemma:

Lemma 2.2. Let h(θ) = hbe the lowest bifurcation frequency and k(θ) = k the root of
the tree θ, then

and

<ι-«>m[zeroes,

have at each neutral bifurcation v>v0a "zero" of second order, where by "zero" we
mean that in the estimates of these functions at each neutral bifurcation - different
from the lowest one - we have a factor y ~ 2^- v)U -ε) ory-2hv>(i ~ ε)|£ _ ξ^ where v' is

the bifurcation immediately following v (going from top to bottom) and hv, hv> are
the associated frequencies.

Proof. The proof will be by induction; we assume it true for the trees with final
bifurcation of order n and we prove it for a tree with final bifurcation of order n + 1 .
Let θ be such a tree (Qθ = ty as drawn in Fig. 1. Let us consider a generic term

of the sum (1.45) defining Fe^(ξ9σ;Q = 0):

[zeroes,^]

Π [zeroes, ̂ ] Π [zeroes, Jfλ

(2.34)

Π yeil*>l(1~e)[zeroes, ̂ ] Π
.i=l j = l

Π Fβi>#,(f ,g(l>;a = 0) Π F

where

(235)

We have to investigate the {...} factor of (2.34). Og>.A(^^(Wθ(ξ,σ)) is symmetric
under all the exchanges ξ2f-ί^2e f°r /e^'n^u ... uΛ9, whereas for

... uyKs) it is antisymmetric, and therefore has first order zeroes in
1"ε. Therefore

(2.36)x [zeroes, ̂ (...)] [zeroes, (...
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where G(ξ, σ) does not have first order zeroes anymore. We have:

M\0>'\(...)\ + |0"n(...)|](l -ε)vΛ[|ίT\

{(2.34)} = I - ; - 1

1=1 j=l

x [zeroes, ^(...)]2Gfe
S S

< ΓΊ y(Λ-«i) |0Ίl(l-ε) ΓT y(Λ-3.7 )MOUl-ε) Γ/ί|^'\(...)| (1 -ε)

[zeroes,

.)])2 . G(ξ, σ). (2.37)
i = l

If ̂  Φ0, l^ l ̂ 2, and we have produced 5 second order "zeroes" associated to the
neutral bifurcations ft^), ...,/z(#s). If some ^ = 0, there are two possibilities:
either a zero associated to the bifurcation ft(fy) is in (γh^'\( > l (1 ~ε)[zeroes, ̂ Y. . .)])2

and is again of second order, or neither in 3?' nor in (̂  u . . . uJQ, there are indices
associated to the coordinates of θt in which case [recalling the definition of Wθ(ξ, σ)
and Eq. (1.47)] there must be a zero of second order (yhd(ξ(ί^)2(ΐ~ε} in G(ξ,σ).

This completes the proof of the lemma in the neutral case (the argument for the
non-neutral trees is completely equivalent), provided we prove the inductive
assumption for the trees with only one bifurcation. This is trivial as they do not
have any zeroes at all. D

The final estimate is now an easy consequence of the next lemma.

Lemma 2.3. The following estimates hold for a generic tree θ(h(θ) = h),

yk\*\ a -β)[zeroes> 0^θr(Fθ(ξ9 σ; β))

_ , , . (

X Π e Π y~2 Λ υ ( s"-1 ) Π
ί= 1 V ̂ Vo V>VQ

exp. decay factor at hv

where 3F stands for both & ana Jf.

Following the notations of [GN1, GN2], we have:
i) θv is the subtree whose lowest bifurcation is v.

ϋ) Π y~2hv(s"~ί} are the volume factors due to the exponentially decaying
V^VQ

factor present at each bifurcation; sv is the number of lines entering into υ (from
right to left).

iϋ) Π γ~2(1~ε)(hv~hv')δ<**.o are the "zeroes" (of second order) discussed in
V>VQ

Lemma 2.2.
iv) The exponentially decaying factor at a generic bifurcation is

^(xv)), where d*(X;) is the length of the shortest path connecting the
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clusters (bifurcations) v(1\ . . ., v (Sv\ which come immediately before v (from the right
to left), κ>0.

v) v{ is the vertex where the zth final line merges.

Proof. The proof follows immediately from (2.33) noting that Lemma 2.2 is still
valid with δW(θ)(ξ, τ), instead of W(e)(ξ, τ), such that in δW(θ)(ξ, τ) of Eq. (2.32) there
is an exponentially decaying factor exp( — κγh(θ)d*(xVQ)) with τc>0. D

Now we are ready to state and prove the first estimate.

Theorem 2.1. Let Δ{ e Qfe, (k = k(θ), h = h(ΘJ); then for all shapes s, for all [QV}S9 and
for all σ, we have for Q(Θ) = Q = Q,

ί dίi ... d{B{7W(1"β)k[zeroes, ̂ ]
Al*"'xA"

v(θ) = n

x |ί β.,(ί,σ;β = 0 ) | } ^ C Λ X f e ) e - ' ..... " , (2.39)

where, as in [BGN], leff(fe) = V*" ~ 2) " for ρ(9) = β Φ 0 ,

i—kQ 2/, — ykd(Aι,...,An) /Λ ΛΓ\\
4-π ~ e . (/.4UJ

Proof (sketch, for details see [GN2]). We first observe that

C<| k\ty = Q%C(=k\ϋ) = Q2

θ(k+ l)C(0)(0) = gθ(k + 1)—logy, (2.41)

and

Σ (sv-l) = n-l=nvo-l, (2.42)

where v0 is the lowest bifurcation and nv the number of final lines which finally
merge into the vertex v.

It is simple to realize, choosing nvo = n, Qθ = Q = QVo

:

Σosy
2(k-"(1-\ χ ί XA dξί...dξn

k(θ) = k
v(θ) = n

x

y2(t-'"(1-ε) Π

\

^...dξnΠ" -1),

(2.43)
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and, as discussed in [G,GN2],

{(2.43)}^ (const) M|έΓ**^^

Thus, we get:

l.h.s. of

Γ

L t?>yo

xy

where Cn is a constant depending only on the number of final lines and Σ is the
{hv}

sum over all possible frequencies associated to the bifurcations of θ. Since α < 8π,
α2 α2

we have 2(1 — ε)δQv9 0 — — Q2 < 0 as ε > 0 is arbitrary. Therefore, we finally

obtain: l.h.s. of (2.43)^(const)^ff(/c>-^kd(zll'-'^). (2.45)

The proof in the non-neutral case is completely equivalent. D

As already mentioned, the second estimate we are going to perform is used to
control the expressions V{k}\β)c

kc\2k_.vc\^\ and zl(fc)[^fe] arising from passages
(1.21) and (1.22) of the iterative procedure. Both of these terms can be dominated
by certain second order contributions to the effective potential. In the case of
V(k}[_@c

kr\@k_ !Π^], they are already present, whereas in the case of Δ(k}[β^\ they
have to be partially brought down from higher frequencies. In any case, we now
restrict our attention to the contributions of order higher than two. We will
estimate them as second order terms multiplied by a suitable finite constant
depending on λ. It is sufficient to explicitly consider only the case concerning

], as it is the more complicated one due to the more intricate dependence of
] in its regions of integration.

Γ * 1 Ί
We recall that we can go from Σ — ̂ +ι(P(fe+1)[^k];π) to ̂ [̂ 1 in

two steps [cf. (2.23)]: L«=1 n - J ̂  t
a) We eliminate the dangerous regions of :P^:, where the "zeroes" are not

effective because they lack sufficient Holder continuity.
b) We put back those regions 3tk(&^ ...,2k(0*s), (̂yί̂ ), • • ,<®/c(ΛQ> which

are not useful anymore.
Thus, the desired estimate of zl(fe)[^fe] is attained if we prove Theorems 2.2a)

and 2.2b):

Theorem 2.2a). Let ^\,..., &s, Λ^,..., J\T-S and 0> = {/1?..., /J be arbitrarily fixed.
We write (in the case Q = Q):

where l{ can be A2 or Λ2\D(^ depending on ί.

= l\ x . . . x βV^) x ... x /2\fl?> x . . . x £ . (2.47)
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Therefore,
~ q

<£ r\(J}l (ffl\— I ) (fi v v /^ v 7")(k) y /2 v v fi\ CJ AR\^^^k^y) — U \'ι x ••• x/<?j-ιxu<?j x / < f j + ι x ••• X ' m (έAo)
j=ι

Then we have:

( ι\ n

2y / 2 χ . . . χ / 2 χ D ( k ) χ . . . χ / 2 x . . . χ / w

t?(0) > 2

δ)) Π Fet<ft(?\ σ(i»; β; = 0)

ί^dξ, dξ2 Sm
2(φ^-φ^)

Σ eα2cSίV2C^-l)7"2<9"

(the case β φ 0 is analogous).

Theorem 2.2b). For αwy t e (̂  u ... \jJf^\3^f (in the case Q = Q),we have (the case
Q φ 0 is analogous).

ί
s(0) = s

Λ(0) = k + l
t;(v9) > 2

Γ s

)Π
i = l

J dξίdξ2(yk\ξ1-ξ2\)2

where now the regions ̂  are implicitly defined and such that the zeroes of
:Pp(φ(-k}): are all effective.

Proof of Theorem 2.2a). We observe, first of all, that the zeroes of :P^>(φ(-k)):
associated to the indices f e ̂ \(^ u ... uΛQ are not "effective" as the field is not
forced to be sufficiently Holder continuous in the corresponding regions.

/^Φ0 the case ,̂  =
Therefore we estimate : P^(φ(-fe)): in the following way: .

\ is simpler
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Assume ^= 1, then in Ό ( f } :

l p (sn( = k)\ \<C(k}I . JΓ ΰf>\\γ ) \ =. ^V /

313

l-s

<C sirΛ ««»
- S ΔΨ

where : P^n(...} : is that part of : P& : which gives effective zeroes.
The left-hand side of (2.49) can be estimated by

C λ2 J dξ1dξ2sin2A1φ

. . .)]] ̂

Π F θj,^(f >, σ«; β( = 0) Π ?,»*,(?», Cω, ̂  δj
ί = 1 7=1

(152)

There are now different possibilities to investigate:
i) The final lines associated to ξl9 ξ2 merge into a neutral bifurcation before

the lowest one.
ii) The only neutral bifurcation the final lines ξl9 ξ2 meet is the lowest one (we

are assuming the tree to be neutral).

Case i). Here there are two different possible situations,

either: a) (ξ^ξ2) belong to a neutral subtree θ ί ?

or b) ( ξ ί 9 ξ 2 ) belong to a non-neutral subtree θj.

We start by considering the case i) a): We rewrite {(2.52)} in the following way:

{(2.52)}=
( s ( θ l ) = S l

<k(θi) = k+l
(h(θi) = q>k+l

x(yk(1"ε)^n^l[zeroes,
f l [zeroes,

xΠ[y*<

5

x π [yk<

/ = = 1

Ί [zeroes, (...

}] Fβjtjr$», ζω, σ^'1; βj

Ί
1"ε)l^-^l1~εJ
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where one has to remember that ( ξ ί 9 ξ2) are associated to an index t$ which does
not belong to ̂ . The expression {(2.53)} can now be estimated as in Theorem 2.1
obtaining

(2.54)

and the first part of (2.53) as

Σ0. y qι - λ"1 \ dξn

(/(i ) 2 X ... X / ( i ) X ... X / ( i ) 2 )

^ (const) _Σ y-to-w-'W

which globally gives, as |̂ | is even, [for & = 0 remember definition (2.25)]

{(2.52)} = (const)/l2 f dξίdξ2sm2~Δίφ
(^

n(k) 2,
1

x _Σ ^2cί2<V2c--i) y~2 ( 9~k ) ( 1~ ε ) (4ff(fc))2(""1^ (2.56)

Remark. If |̂ | = 0 (̂  = 0), remembering the remark following Eq. (2.5) it is easy to
recognize that in dV^iu Uί/rs)( Wθ\ there is a second order zero which can again
be estimated by

7-2te-fc)(i-β) (2.57)

due to the (cosAφ— 1) factor present in each term :P0 ( f: of :P0(φ(-/c+1)):,
producing the same estimates.

Case i)b). In this case we rewrite {(2.52)} in the following way:

{(2.52)}= _ Σβf λn>~2 ..

S(θ\Θj) = S\Sj

k(θ) = k l\ x ... χ ( / ω χ ... χ / ω ) χ ...
h(θ)= k+l 1 1 μ,

dξ\dF>dζ"">

s

x [zeroes, J^]FβSίtArs(ξ(S\ ζ(~s\ ̂

The {...} factor is again estimated using Theorem 2.1. The first part can be
estimated considering now θj as the whole tree and iterating the previous proof if
the lines (1,2) are in one of the neutral subtrees which merge in the lowest
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bifurcation of ΘJ9 otherwise one iterates the procedure as many times as needed to
arrive at such a situation.

Case ii). In this case (ξί9 ξ2) merge together only in the lowest bifurcation (this case
is trivial) or in a non-neutral bifurcation and then the line going out from this
bifurcation still merges in a non-neutral one and so on. Therefore, neutrality is
only restored at the lowest bifurcation. This is an easier case; in fact, there will be at
least one line of coordinate (say £3) merging into the same non-neutral bifurcation
of frequency q as ξl9 ξ2 which therefore is at a distance \ξ3 — ξ2\~γ~q from (ξί9 ξ2).
The integration over £3 gives a factor y~2q.

But if £3 is associated to ξ4 in A3φ only at the lowest bifurcation it will be
enough - in order to get the usual estimates - that ξ3 be at a distance y~(k+ 1} from
£4 and that the integration over it gives a factor y~ 2( f e + 1); that is, a factor

has been gained. This argument can easily be generalized to all possible situations
of case ii). The non-neutral case can be worked out in a similar way both for the
case i) and for the case ii), and we do not report it here.

This completes the proof of Theorem 2.2 a). D

Proof of Theorem 2.2b). (The regions &f are such that the zeroes of : P@ : are all
effective.) We mimick the proof of Theorem 2.2 a) and call ξ ί 9 ξ2 the coordinates
associated to the index { which we assume to belong to the subtree θt. Again, for

C Σe ί
S(Θ) = S \// ^fx _ X Jδ?/_ ! X DW X Jg?2+ ! X ... X J

k(u) — k

f ff\\ FT F (^ >τ(ί) Π — ί
ξ? Q)) I 1 ^fli.^Λζ '- ?^i~^

i = l

g(constμ2 J d^

x Σe ί
{i Jδff x ... x jδf/x ...

v Γyprπpς ^ i j i j^i j i i AfΛ V F Γ "i T~T F (Λ |_^Lιt/l C/^/o, tx i Vy . . . \J tS \J . . . \J ί/ϊ p i / i a < ^ \ * / J . J _ f l y t ^ v

y l [^zeroes, <sΛ _ 9 / Λ _ / , w ι — p^n /
_ . Λ J ^W ''M1 fc-'fy. _|
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At this point we proceed as before. But the last factor y2(v-w ~ε> cancels a factor
y-2<,-*χι-,) Of (2.59) and we get

{(2.58)}^(const)A2 f dξ1dξ2(y"\ξί-ξ2\)2-'
D<k>

*%ϊϊ2(k) Σ eα2c-V2cί''-l) (2.61)
q = k+l

The other cases in which ̂  = 0 or in which θ is not neutral are treated in a similar
way and we do not discuss them here.

This completes the proof of Theorem 2.2 b). D

Remarks. 1) The method we use is slightly different if ̂  = 0, due to the fact that we
have split: P^. = 0: into a sum of different terms [cf. remark after Eq. (2.5)]. We
leave the details to the reader.

2) It is completely trivial to extract from FΘ.^. a factor y4π *e ^'^"^l to
extract a factor e*

2c(<qi)(e*
2c(qi) — i) requires a little more work.

3) If θ is a non-neutral tree the last factors in (2.57) and (2.61) appear multiplied

by an extra factor γ~ ~ϊ^kQ2 according to the estimate (2.40) of Theorem 2.1.
The third and last estimate of this section is concerned with second order trees

integrated over a large fluctuation region.

Theorem 2.3. For a region /cD(k} or {(l\F(k))2nD(k-v\D(k)}; ft,/ceN; h>k, we
have:

- ~
/or /CDW

/or * - 1 * ' ( J

Proof. In D(k\ it follows

In {(D(k~l\D(k))n(l\R(®)2}9 we have:
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The relation (2.64) is attained as follows: For

317

and therefore

. α
5in — i

BK
σ

must follow for ( ξ l ί ξ 2 ) < E ( / \ R ( k } ) 2 . Applying the triangular inequality

. α .α
12'

(2.65)

immediately gives

We now write

(2.66)

For B large enough we have in /:

Using also

,!*)-ci!«= Σ

^C(/l^-^l)2(1"ε), (2.67)

we see that the square bracket in (2.66) is negative for B sufficiently large.
Furthermore, eα2(Cook)~cι(

2"
k))>l, therefore we finally get

from which the theorem follows. D

2.3. The Main Lemma

In this subsection we restrict ourselves to a brief presentation of the central
inequality needed to prove the Main Lemma. How one is reduced to it is explained
in complete detail in [BGN] and [NRS]. The proof of the lemma can be found in
[BCGNOPS].
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Consider a function //[/] of the fields φ(fe) at fixed φ(-k~ υ for an arbitrary set

(2.68)

letting 0 < ε <\ and 7 > 1 be the arbitrarily fixed parameters of Holder continuity
and scaling. Assuming that Qk is an exact pavement of IcΛ on scale fc, e.g. a set of

squares A with side length y~k so that U A =/ and letting d(Al9...,An)be the
ΛeQ k

length of the shortest path connecting the squares Aί9...9An9wε require that the
^-functions satisfy bounds of the following form (A9 K are arbitrary, positive
constants)

λ" ί \Vpq,n(ξl9...9ζ^\dξl...dξn

(2.69)
-

where Hk may be picked independent of n as H λe{f(k) B% (with // a positive
constant) for λ > 0 sufficiently small.

We now further introduce the P(rfφ(/c))-measurable events

(170)

whose characteristic functions we call χB

Δ. Defining

XA ' ^ AA 5

— Π tf; X G : = ΠL, (2.71)
AeG

and

we have the following decomposition of the identity

1 = Σ fβ lL\G (2-72)
GCQk

We are now ready to formulate the Main Lemma:

Lemma 2.2. For every integer t^O there exist constants jB*, D, g, g' depending on ε,
y, ί, and K, so that for B>B*

g exp {δ(B, Hk)y2k\l\ + δ'(B, Hfc)7

2k|Gn/|}

2, (2.73a)
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and
) ̂  exp { - δ(B,

, (2 73b)
_p=ι _±t

where

δ(B, Hk) : =D{(HkB
eeeSkBe)t+ 1

 + e-β'B^gHkBβ} ^ (2.74)

and

δ'(B,Hk):=D{HkBS}. (2.75)

Furthermore, for all ε > 0 there exist positive constants B', a, and b so that for
B>B',

ί Xβp(dφ(k)) ^ Π ea~bB2(1 +d(Λ'n (2-76)
AeG

for any G C Qk. The latter has also been called the "Tail Lemma."

Remark. Clearly, one can drop the Λ-signs on the sets which designate a coating on
scale y~k in [BCGNOPS] by readjusting the multiplicative constants; that is, a set
G on scale k is essentially the same as G.

We now observe that we can use the Main Lemma in our case since we can
identify #{/£)[/] with V(k}[@c

k_1n@c

k] as Theorem 11 shows that V\βc

k-^S^\
satisfies the estimates (2.69) appropriately identifying the constant factors.

3. Proof of Ultraviolet Stability

In this section we completely present the iterative mechanism used for "transport-
ing" the effective potential from frequency to frequency. As we have seen in Sect. 1,
the main difficulty in setting up this mechanism consists in treating the large
fluctuation part of the effective potential, while the smooth part is taken care of by
the Main Lemma. Since it is not possible to exclusively base the iterative procedure
on this smooth part, one has to create an instrument, analogous to the Main
Lemma, for the transportation of the large fluctuation part as well. It turns out that
the mechanism required for this purpose is actually based on a very simple lemma
which makes use of the relationship of large fluctuations of different frequencies.
The true object of the iteration, in the following called U(k} for a given frequency /c,
consists of a smooth part as well as of a large fluctuation part:

For k = N—\ we have:

i)|-^_ι] = ^(Jv-i)> (31b)

where F(/c)[^] and Δ(\£$k~\ are defined in Sect. 2. The term Δ(k][_®k~\ is a large
fluctuation part generated at frequency k. By PF(fe)[^J we denote the large
fluctuation part brought down from higher frequencies via the "large fluctuation
transport mechanism;" it will be defined in a moment.
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When going from F(/c)[^c

fc] to F^^^n^] (cf. Sect. 1.2) another large
fluctuation part of the effective potential is generated; namely

All of the three large fluctuation parts present at the frequency k will be split into a
fraction which is "used," i.e. which makes the iterative mechanism work at
frequency k and into another fraction, denoted by the subscript "s", which will be
saved and transported to lower frequencies. For instance:

W(k^k-] = (W(\®k-\ - Ws

(k^J) + Ws

(k^k~] . (3.2)

The precise meaning of the operation V as well as the symbol W(k} will be defined
in the central theorem of this section. Let us now state the iterative mechanism:

1) a) U(k} =

1) b) ^ F(/c)[^c

k_ ! πΛJ

+ [other terms] .

2) a) (large fluctuation transport) =>

^ F(fe)[^c

k_ iΠ^O + W ( k~ υ[®fc- 1] + [other terms] .

b) (Main Lemma) =>

Theorem 3.1. FPfe introduce the following definitions:

:= Σ W^k>S)[/], (3.3)

: =C Σ {p^'-'^tC/D + pr '-''FAC/]}, (3.4)
β = o

y-(2-^); p2.=y-(2-2.). (o<p ί<l), (3.5)

where we have the following conditions on p l 9 p2?
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(Note that these conditions can always be satisfied for σ sufficiently large which is
compatible with the condition on σ coming from the lower bound (cf. [BGN]))

(3.7)

(3.8)

(3.9)

(3-10)

(3.11)

(3.12)

(3.13)

= - c2;.
2

Wf >[/]: = Σ
h = k +

C*Σ
9 = 0

:= Σ

[other terms] = - W(k~ l)[_9k. j

Theorem 3.1. With these definitions the iterative mechanism as described by the steps
1) a), b) and 2) a), b) above works in the sense that there is a finite k0 = k0(λ) such that
for all frequencies k with N—\^k~^k0 the following properties hold:

(step l)a))

(step l)b))

(step 2) a))

Ws

(step 2) b))

[other terms] can be safely put into the remainder.

(3.14)

(3.15)

(3.16)

(3.17)

Before proving the Theorem 1.0 we state a lemma which is crucial for the "large
fluctuation transport:"

Lemma 3.1. In D(fc-1)n(/\/?(([))2, we have:

OC /— . (X

2* Δ

with ρ defined by (3.6).

Proof of the Lemma. We start from the triangular inequality:

α

'2'

α12' (3.19)
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Let ξi^A and ξ2 e A' (A and A' are squares of the pavement Qfe), we then have:

(i) (ξMeDV-v .tf-^-ξΛγ- Bk-^l => \ξ^-ξ2\<y-k

for Bk_ 1 large enough (y1 ~εB^\ < 1),
(ii) (zl,zΓ)<£/?(/£)2, let ΔφR(k} => Vξl9ξ2 with ^ eA: either /|^-^2|>1 or

. α
>ιn — i

Bk

σ

Bk

σ
\l-ε

On the other hand, we have in D(k):

and in

\ί-ε

Taking (3.19), (3.20), and (3.21) together, the lemma follows. D

Proof of Theorem 3.1.

Proof of (3.14).

= - Σ

(3.20)

(3.21)

(3.22)

comparing this expression with the estimates provided by Theorem 2.2 and taking
into account that zl(fe)[^J — Δf}[&>^\ itself contains a negative second order tree
with bifurcation at the frequency k + 1 , we obtain the desired result for Ae f f (k)
sufficiently small (i.e. for k large enough).

Proof of (3.15). This follows immediately from the fact that

contains negative second order trees with bifurcations at all frequencies h ̂  k + 1
and from the estimates of Sect. 2.2.
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Proof of (3.16). We have

Fta^PΓ^-iC/L (3-23)

and for/Cfl<*~1)n(/V?<*))2 from Lemma 3.1:

ΐM^Γ^-ilT]. (3.24)

Thus,

and

(3.26)

Proo/ o/ (3.17). First we observe that in 7(/c)[^£n^k] all zeroes are effective. But
also — W(k~^\j$k_vc\$^ in spite of being a large fluctuation term, has - by
construction - an "artificial" zero so that it essentially obeys the same estimate as
the first contribution to (other terms): In fact, using the results of Sect. 2, both
terms can be estimated by

(const)λ*f{(k)Bkγ
2k\R(k}xΛ\ ,

which can be safely put into the remainder.
Since from (3.14) W(ko) + A(ko) = 0, and applying the estimates given by the Main

Lemma for the remainder terms, we are left at the finite frequency k0 with an
interaction which doesn't have ultraviolet problems anymore, i.e. it is ultraviolet
stable in the sense of (1.9). D

The frequency fc0 at which we end the recursive procedure had been chosen for
given λ such that /Leff(/c0) was very small. Yet, by choosing λ sufficiently, small we
could even force fc0 to be zero. Nevertheless, the only need of requiring λ small is to
obtain the property that [cf. (1.10)]:

lim£±(/l) ,r(ί+τ) = 0 (τ>0).

Let us briefly recollect the central results of the most important sections:

Section 1.3. This section is devoted to the derivation of an expansion for the
effective potential V(k} (a "tree expansion," see [G, GN1, GN2]) which is
appropriate for defining "smooth" and "rough" parts of V(k} in such a way as to
have good control of each of these terms. The central results are the expansions
(1.29), the explicit expressions for 7(0, σ) and 7(0", σ) [Eqs. (1.42) and (1.44)] as well
as the recursive relation for their coefficients given in Theorem 1.1.

Section 2.1. This section is devoted to the study of the smooth part of the effective
potential (see the discussion in Sect. 1.2 as well). The effective potential 7(/c)[^] is
defined in Eqs. (2.4) and (2.5) and the composition of the "rough" regions @k is
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given explicitly. Finally, V(k}[@c

k_ίπ&c

k] is defined (following Fig. 2). These defi-
nitions allow us to write down explicit expressions for

[F(fe)[^n<rfe] - V(\3)c

k_ inΛJ]] [Eqs. (2.20) and (2.21)]

and

[Eq.(2.23)].

The control of these expressions is essential to perform steps (i) and (iii) as
discussed in Sect. (1.2).

Section 2.2. In this section the estimates for Δ(\9k~\ and
— F(fc)[^fc_ ιn^?j ]] are performed. The first one is the more difficult one, once it is
proven the second one is proven similarly but with fewer complications. The
estimate for the 0(λ>2) part of Λ(k)[^fe] is obtained in Theorems (2.2a) and (2.2b),
that is M(k)[^fc]| is bounded by the sum of the right-hand side of inequalities (2.49)
and (2.50). The estimate for the 0(λ > 2) part of [7(k)[0£n#2 - V(\3)\ _ l n^]] is
not given but may be obtained proceeding as in the proof of Theorem (2.2a) with
the few relevant modifications discussed following that proof. The result is that this
part is again bounded by the right-hand side of (2.49) with D(k} substituted by

Section 2.3. Here the "Main Lemma" is briefly discussed. It has been proven in
every detail in [BGN, BCGNOPS]. This lemma provides inequality (1.17), that is
it allows us to perform the integration of the "smooth" part of the effective
potential F^^j^n^] with respect to the fields φ(k} on a generic scale k. The
two parts of this lemma (i.e. the two inequalities) are one of the main ingredients
used to prove the upper and lower bounds of ultraviolet stability. The way one
reduces the proof of the upper and lower bounds (1.9) to the proof of this "Main
Lemma" together with estimates of the "rough" parts of the effective potential (for
the upper bound) is described in detail in [BGN] and [NRS]. Observe that the
estimate of F(/c)[^n^fe] is incorporated in δ'(B,Hk)fk\GN\ of Eq. (2.73) with
appropriate notations.

As discussed in Sect. (1.2), the proof of the upper bound of Theorem 1.0 is
completed if at each level k we can reduce it to the proof of (1.17a) which in turn
followed from the "Main Lemma" in a straightforward way. To do so we must be
able to control the terms 0(λ>2) of [F(/c)[^c

kn <Tk] - V(k)[_&c

k.^^cJ] and A^\β^
which are produced at each level. But as was remarked in Sect. 1.2, (see also
Theorem 2.3) the 0(λ2) parts of these terms are negative and thus natural
candidates for dominating the 0(λ>2) parts which are smaller due to their
dependence on λeff(fc) [see Eqs. (2.49) and (2.50)] and recalling that |Λeff(fc)| is very
small when k is large. This idea is correct but the difficult task is to keep track of all
the negative 0(λ2} parts which were produced at previous levels. How these
negative terms can be brought down to a generic level k without integrating them
by using the relationships between the large fluctuations on different scales is the
content of Sect. 3. Therein a new type of effective potential U(k} is defined ( = V(N~ 1}

for k = N — 1), and it is shown that while the smooth part of U(k} on each scale k is
transported to scale k— 1 by integration with respect to P(dφ(k)} through
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application of the "Main Lemma" [see Eq. (1.17)], the other terms Δ(k} and W(k)

associated to the "rough" parts are transported to level k — 1 using in a delicate way
the negativity of their 0(λ2) parts and the relationship between large fluctuations
coming from different levels (see Lemmata 2.1 and 3.1).

To summarize, the proof of the upper bound of Theorem 1.0 is attained in the
following way:

a) We reduce the integration with respect to P(dφ(k}] to a sum over the regions
Rk composed of terms like on the left-hand side of inequality (1.17) where the
exp F(fe) is substituted by U(k) [Eq. (3.la)]. This requires some manipulations which
are given in detail in [BGN] and in a more general setting in [NRS].

b) Before performing the integration we transport to scale k — 1 the "rough"
parts using the transport mechanism discussed in Sect. 3.1, hence one is left only
with the integration of the "smooth" parts.

c) The integration with respect to the smooth part is performed using the
"Main Lemma."

d) We reconstruct from the right-hand side of (1.17a) V(k~ υ[^£-i], and prove
(again in Sect. 3.1) that the terms newly produced together with the ones
transported down reproduce W(k~l) + Δ(k~^.

The iterative procedure is now complete; at the lowest level, the "rough" part is
dropped because of its negativity. This completes the proof of the upper bound.
The lower bound is much easier as only step c) above has to be performed. In fact,
in this case we can introduce appropriate characteristic functions preventing the
fields φ(-k} and φ(k} from being "rough" for all k. This was again discussed in detail
in [BGN] and [NRS]. Finally we remark that the proof of the "Main Lemma" can
be used to prove (1.17a) and (1.17b) since F(Λ)[^£n$?£] satisfies the appropriate
estimates which allow us to identify it with the //[/] of the "Main Lemma." These
estimates are the ones provided by Theorem 2.1 in Sect. 2.2.
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