Translation Invariant Gibbs States in the \boldsymbol{q}-State Potts Model

D. H. Martirosian
Institute of Mathematics, Armenian Academy of Sciences, Yerevan, USSR

Abstract

We describe the set of all translation invariant Gibbs states in the q-state Potts model for the case of q large enough and the other parameters to be arbitrary.

Introduction

The aim of this note is to describe the set of all translation invariant Gibbs states in the q-state Potts model. We consider only the case of q large enough, assuming the other parameters of the model, i.e. the temperature and the space dimension $v \geqq 2$, to be arbitrary. Let \mathbb{Z}^{v} be v-dimentional lattice, $v \geqq 2$. The distance between any two points $x, y \in \mathbb{Z}^{v}, \quad x=\left(x_{1}, \ldots, x_{v}\right), y=\left(y_{1}, \ldots, y_{v}\right)$, is defined as $d(x, y)=\sum_{i=1}^{v}\left|x_{i}-y_{i}\right|$. We assume that the spin $\varphi(x), x \in \mathbb{Z}^{v}$, in the model under consideration takes values in the finite set $Q=\{1, \ldots, q\}$, and the formal Hamiltonian is written as follows:

$$
\begin{equation*}
H=-\sum_{\langle x, y\rangle} \delta_{\varphi(x), \varphi(y)}, \quad \varphi(x), \varphi(y) \in Q \tag{1}
\end{equation*}
$$

where the sum is taken over all the pairs of nearest neighbors x, y on the lattice and δ is the Kronecker symbol. By $\mathfrak{g}(\beta, q)$ [respectively by $\left.\mathfrak{g}^{(\text {inv })}(\beta, q)\right]$ is denoted the class of all (respectively of all translation invariant) Gibbs states with β parameter and the Hamiltonian (1).

By using reflection positivity Kotecky and Shlosman [1] have proved the coexistence of $q+1$ phases at some $\beta_{c}(q)$ (critical inverse temperature) for q large enough. Another approach to the solution of this problem, based on the contour technique, was offered by E. Dinaburg and Ya. Sinai [2] and independently by Bricmont et al. [3]. Everywhere below we mean that the value of $\beta_{c}(q)$ is defined namely as in [2], although the next theorem shows that $\beta_{c}(q)$ is to be unique.

Now we formulate the main result of this paper.
Theorem. For any $v \geqq 2, q_{0}(v)$ may be found so that for all $q>q_{0}(v)$ the following statement is true. There exists such a value $\beta=\beta_{c}(q)$ of inverse temperature, that
i) when $\beta=\beta_{c}(q)$ the class $\mathfrak{g}^{(\mathrm{inv})}(\beta, q)$ contains exactly $q+1$ extreme points $P^{(0)}$, $P^{(1)}, \ldots, P^{(q)}$, i.e. any translation invariant Gibbs state $P \in \mathfrak{g}^{(\mathrm{inv})}(\beta, q)$ is expressible as

$$
P=\alpha_{0} P^{(0)}+\alpha_{1} P^{(1)}+\ldots+\alpha_{q} P^{(q)}, \quad \alpha_{i} \geqq 0 \forall i, \quad \sum \alpha_{i}=1
$$

ii) for each $\beta>\beta_{c}(q)$ one may constructed q Gibbs states $P_{\beta}^{(1)}, P_{\beta}^{(2)}, \ldots, P_{\beta}^{(q)}$ so that any translation invariant Gibbs state $P \in \mathfrak{g}^{(\mathrm{inv})}(\beta, q)$ is expressible as

$$
P=\alpha_{1} P_{\beta}^{(1)}+\ldots+\alpha_{q} P_{\beta}^{(q)}, \quad \alpha_{i} \geqq 0 \forall i, \quad \sum \alpha_{i}=1
$$

iii) when $\beta<\beta_{c}(q)$ a Gibbs state is unique in the class $\mathfrak{g}^{(\text {(inv })}(\beta, q)$ of all translation invariant Gibbs states.

Remarks. i) when $\beta<\beta_{c}(q)$ one can prove the uniqueness of the Gibbs state in the class of all Gibbs states, but we omit the proof of this fact, ii) by a quite different method Laanait et al. [4] have received the similar result in the case $v=2$.

1. The Basic Definitions and Notations

In this section we make use of the definitions and notations of [2]. Given any set C, denote by $|C|$ the number of points in C. Let $V \subset \mathbb{Z}^{v}$. Let $\partial V=\{x \in V \mid$ there exists y $\notin V$ such that $d(x, y)=1\}$, and $\partial_{1} V=\{x \notin V \mid$ there exists $y \in V$ such that $d(x, y)=1\}$. The mapping $\varphi: \mathbb{Z}^{\nu} \rightarrow Q$ will be called a configuration. The restriction of the configuration φ to the set $V \subset \mathbb{Z}^{v}$ is denoted by $\varphi(V)$. This $\varphi(V)$ is sometimes called a configuration on V. If φ is a configuration and $x \in \mathbb{Z}^{\nu}$, we put $\alpha(x, \varphi)=\{$ the number of y, for which $\varphi(y) \neq \varphi(x), d(y, x)=1\}$.
Definition 1.1. Let φ be an arbitrary configuration. We shall say that φ is in the phase 0 at the point $x \in \mathbb{Z}^{v}$, if $\varphi(y) \neq \varphi(x)$ for all y such that $d(x, y)=1$. If $\varphi(y)=\varphi(x)=p(1 \leqq p \leqq q)$ for all y, satisfying condition $d(x, y)=1$, we shall say that φ is in the phase $p \neq 0$ at the point x. If at the point $x \in \mathbb{Z}^{\nu}$ the configuration φ is in none of the phases $0,1, \ldots, q$, then x will be called an incorrect point of the configuration φ. The union of all incorrect points of the configuration φ is called the preboundary of φ and denoted by $B^{*}(\varphi)$. The set $\left\{x \mid d\left(B^{*}(\varphi), x\right) \leqq 1\right\}$ is called the boundary of the configuration φ and denoted by $B(\varphi)$. We consider only the configurations for which $|B(\varphi)|<\infty$. A set $X \subset \mathbb{Z}^{v}$ is called connected if given any $x^{\prime}, x^{\prime \prime} \in X$ there is a sequence x_{1}, \ldots, x_{n} of points $x_{i} \in X, i=1, \ldots, n$, so that $x_{1}=x^{\prime}$, $x_{n}=x^{\prime \prime}$, and $d\left(x_{i}, x_{i+1}\right)=1, i=1,2, \ldots, n-1$. Let $B(\varphi)=\cup B_{i}(\varphi)$ be a decomposition of $B(\varphi)$ into its maximal connected components. Each of the sets $\partial B_{i}(\varphi)$ is in turn the union of its connected components. One of them is external and denoted by $\partial B_{i}^{(\text {ext })}(\varphi)$, and the others are the boundaries of some bounded domains $O_{i, s}$ (they will be called internal domains) and denoted by $\partial B_{i, s}^{(\text {int })}(s=1, \ldots, r(i))$, where $r(i)$ is the number of these domains. At each point of $\partial B_{i}(\varphi)$ the configuration φ is in some phase. At different points of the same connected component of $\partial B_{i}^{(\text {ext })}$ or of $\partial B_{i, s}^{(\text {int })}$ this phase is the same and coincides with the phase in which φ is at the points that are at distance 1 from this component and belong to the complement of $B_{i}(\varphi)$.
Definition 1.2. A contour $\gamma^{(p)}$ is a pair $\left(b^{(p)}, \psi\left(b^{(p)}\right)\right.$), where $b^{(p)}$ is a connected component of $B(\varphi)$ for some configuration φ, which is in phase $p(p=0,1, \ldots, q)$ at
the points of $\left(\partial b^{(p)}\right)^{(\text {ext })}$, and $\psi\left(b^{(p)}\right)$ is the restriction of this configuration to $b^{(p)}$. The set $b^{(p)}$ is called the support of the contour $\gamma^{(p)}$ and denoted by supp $\gamma^{(p)}$. The union of all internal domains O_{s} is called the interior of $\gamma^{(p)}$ and denoted by int $\gamma^{(p)}$. Put

$$
V\left(\gamma^{(p)}\right)=\operatorname{supp} \gamma^{(p)} \cup \operatorname{int} \gamma^{(p)}, \quad \operatorname{Ext}\left(\gamma^{(p)}\right)=\mathbb{Z}^{v} \backslash V\left(\gamma^{(p)}\right)
$$

The outer contours are defined as usual [5]. Given fixed $V \subset \mathbb{Z}^{v},|V|<\infty$, denote by $\mathfrak{X}_{0}^{(p)}\left(V, \varphi_{0}\right), p=0,1, \ldots, q$, the set of all configurations that are in phase p at each point of V and coincide with the configuration φ_{0} on $\partial_{1} V$. Here $\varphi_{0}(x)=p$ for all $x \in \partial_{1} V$, if $p \neq 0$, and $\varphi_{0}(x) \neq \varphi_{0}(y)$ for all $x, y \in \partial_{1} V$, such that $d(x, y)=1$ at $p=0$. We shall consider only such boundary conditions without mentioning it further. Introduce the following partition function

$$
\begin{equation*}
\Xi_{0}^{(p)}\left(V ; \varphi_{0}, \beta\right)=\sum_{\varphi \in\left\{\tilde{Y}_{0}^{p}\right)\left(V, \varphi_{0}\right)} \exp \left\{-\beta H_{V}(\varphi)\right\} \tag{1.1}
\end{equation*}
$$

where

$$
H_{V}(\varphi)=\sum_{\langle x, y\rangle \subset V} \delta_{\varphi(x), \varphi(y)}+\sum_{\langle x, y\rangle: x \in V, y \notin V} \delta_{\varphi(x), \varphi(y)} .
$$

Fix $p, 0 \leqq p \leqq q$, and consider the arbitrary collection $\gamma_{i}^{(p)}=\left(b_{i}^{(p)}, \psi\left(b_{i}^{(p)}\right)\right)$, $i=1,2, \ldots, n$, of pairwise outer contours. Let $V\left(\gamma_{i}^{(p)}\right) \subset V, i=1,2, \ldots, n$, for some V. Denote by $\mathfrak{A}^{(p)}\left(\left\{\gamma_{i}^{(p)}\right\}, V, \varphi_{0}\right)$ the set of all configurations $\varphi\left(V \cup \partial_{1} V\right)$ such that both $\varphi\left(\partial_{1} V\right)=\varphi_{0}\left(\partial_{1} V\right)$ and the set of contours $\gamma_{i}^{(p)}(i=1,2, \ldots, n)$ coincides with the set of all outer contours of $B(\varphi)$. Introduce the partition function

$$
\begin{equation*}
\Xi^{(p)}\left(V \mid\left\{\gamma_{i}^{(p)}\right\}_{i=1}^{n}, \beta, \varphi_{0}\right)=\left(\Xi_{0}^{(p)}\left(V, \beta, \varphi_{0}\right)\right)^{-1} \sum_{\varphi \in \mathfrak{U}(p)\left(\gamma_{i}^{(p)}, V, \varphi_{0}\right)} \exp \left\{-\beta H_{V}(\varphi)\right\},(\tag{1.2}
\end{equation*}
$$

and put

$$
\begin{equation*}
\Xi^{(p)}\left(\left\{\gamma_{i}^{(p)}\right\}_{i=1}^{n}, \beta\right)=\lim _{V \rightarrow \infty} \Xi^{(p)}\left(V \mid\left\{\gamma_{i}^{(p)}\right\}_{i=1}^{n}, \beta, \varphi_{0}\right), \tag{1.3}
\end{equation*}
$$

where $V \rightarrow \infty$ in the Van Hove sense. $\Xi^{(p)}\left(\gamma^{(p)}, \beta\right)$ will be called a crystallic partition function. Given any $W \subset \mathbb{Z}^{v},|W|<\infty$ define the dilute partition function

$$
\begin{equation*}
\Xi^{(p)}(W, \beta)=\sum_{\left\{\gamma_{1}^{(p)}, \ldots, \gamma_{n}^{(p)}\right\} \subset W} \Xi^{(p)}\left(\left\{\gamma_{i}^{(p)}\right\}_{i=1}^{n}, \beta\right), \tag{1.4}
\end{equation*}
$$

where the sum is taken over all such collections of outer contours $\left\{\gamma_{i}^{(p)}\right\}_{i=1}^{n}$, that $V\left(\gamma_{i}^{(p)}\right) \subset W \forall i$ and $d\left(\partial W, \cup V\left(\gamma_{i}\right)\right)>1$. Let $W \subset V,|V|<\infty$. We consider also the dilute partition function

$$
\begin{equation*}
\Xi^{(p)}\left(V \mid W, \beta, \varphi_{0}\right)=\sum_{\left\{\gamma_{1}^{(p)}, \ldots, \gamma_{n}^{(p)}\right\}} \Xi^{(p)}\left(V \mid\left\{\gamma_{i}^{(p)}\right\}_{i=1}^{n}, \beta, \varphi_{0}\right) \tag{1.5}
\end{equation*}
$$

where the sum is taken, as above, over all such collections of outer contours $\gamma_{i}^{(p)}$, $i=1, \ldots, n$, that $V\left(\gamma_{i}^{(p)}\right) \subset W$ and $d\left(\partial W, \cup V\left(\gamma_{i}\right)\right)>1$. It is not difficult to see that

$$
\begin{equation*}
\Xi^{(p)}\left(V \mid \gamma^{(p)}, \beta, \varphi_{0}\right)=\sum_{\varphi \in \mathscr{\mu}(p)\left(\gamma^{(p)}, \boldsymbol{V}, \varphi_{0}\right)} \exp \left\{-\frac{\beta}{2} \sum_{x \in V} \alpha(x, \varphi)\right\}, \tag{1.6}
\end{equation*}
$$

when $p \neq 0$, where $\alpha(x, \varphi)=0$ for all $x \notin V\left(\gamma^{(p)}\right)$ and partition function (1.6) does not depend on V. In particular from this one can get both the existence of the limit (1.3)
for $p \neq 0$ and the formulas

$$
\begin{gather*}
\Xi^{(p)}\left(\gamma^{(p)}, \beta\right)=\Xi^{(p)}\left(V \mid \gamma^{(p)}, \beta, \varphi_{0}\right), \tag{1.7}\\
\Xi^{(p)}\left(\left\{\gamma_{i}^{(p)}\right\}_{i=1}^{n}, \beta\right)=\prod_{i=1}^{n} \Xi^{(p)}\left(\gamma_{i}^{(p)}, \beta\right) . \tag{1.8}
\end{gather*}
$$

For $p=0$ the existence of the limit (1.3) is obtained in [2]. Finally, let us formulate the results of E. Dinaburg and Ya. Sinai [2], which will be helpful for us later on (see also [3]).

1.1. Interacting Contour Models

Let $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ be a finite collection of the contours, such that supp γ_{i} $\cap \operatorname{supp} \gamma_{j}=\emptyset$ for all $i \neq j$ and $\Gamma^{\prime} \subset \Gamma . \Gamma^{\prime}$ is called the maximal permissible subcollection of Γ, if given any two contours $\gamma_{1}^{\prime}, \gamma_{2}^{\prime} \in \Gamma^{\prime}$, neither of them is inside of one other, there does not exist such a contour $\gamma \in \Gamma$, such that $\operatorname{supp} \gamma_{1}^{\prime} \subset \operatorname{int} \gamma, \operatorname{supp} \gamma_{2}^{\prime}$ CExt γ, and it is impossible to extend Γ^{\prime}, keeping the above mentioned properties. It is supposed that contour Hamiltonian is written as

$$
\begin{equation*}
H(\Gamma)=\sum_{\gamma \in \Gamma} F(\gamma)+G(\Gamma), \tag{1.9}
\end{equation*}
$$

where $G(\Gamma)$ is the interaction energy of contours of Γ and has the special form

$$
\begin{equation*}
G(\Gamma)=\sum_{\Gamma^{\prime} \subset \Gamma} G\left(\Gamma^{\prime} \mid \Gamma\right), \quad\left|\Gamma^{\prime}\right|>1 \tag{1.10}
\end{equation*}
$$

and the sum is taken over all the maximal permissible subcollections Γ^{\prime} of the collection Γ. Then $G(\Gamma)$ and $F(\gamma)$ are supposed to be invariant with respect to any shift of the lattice. It is supposed, moreover, that the estimates

$$
\begin{equation*}
\sum_{\gamma: \operatorname{supp} \gamma=C} \exp (-F(\gamma)) \leqq \exp (-k|C|) \tag{1.11}
\end{equation*}
$$

hold with some constant $k>0$. Other properties of the interacting contour models wouldn't be immediatly used in this paper, that is why we omit them (see [2]). We shall write $\Gamma \subset V$, if $\operatorname{supp} \gamma \subset V$ for any $\gamma \in \Gamma$. Let $V \subset \mathbb{Z}^{v},|V|<\infty$. Dilute (contour) partition function in V is written as follows:

$$
Z(V \mid F, G)=\sum_{\Gamma \subset V} \exp (-H(\Gamma))
$$

and

$$
Z(\gamma \mid F, G)=\sum_{\Gamma \text { <int } \gamma} \exp (-H(\gamma \cup \Gamma))
$$

is called the crystallic partition function of the contour γ.

1.2. The Interaction G for the Potts Model

Let $V \subset \mathbb{Z}^{\nu},|V|<\infty$ and let $\gamma_{i}^{(0)}=\left(b_{i}^{(0)}, \psi\left(b_{i}^{(0)}\right)\right), i=1,2, \ldots, n$, be such pairwise outer contours, that $V\left(\gamma_{i}^{(0)}\right) \subset V$ for any $i=1,2, \ldots, n$. Then the functions

$$
\begin{gather*}
G^{(0)}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}\right)=\ln \Xi^{(0)}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}, \beta\right)-\sum_{i=1}^{n} \ln \Xi^{(0)}\left(\gamma_{i}^{(0)}, \beta\right), \tag{1.12}\\
G^{(0)}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n} ; V ; \varphi_{0}\right)=\ln \Xi^{(0)}\left(V \mid\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}, \beta, \varphi_{0}\right)-\sum_{i=1}^{n} \ln \Xi^{(0)}\left(V \mid \gamma_{i}^{(0)}, \beta, \varphi_{0}\right) \tag{1.13}
\end{gather*}
$$

don't depend on β. Let us mention the connection between (1.10) and (1.12). If the collection Γ of contours satisfies the condition of point 1.1, then

$$
G^{(0)}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}\right)=G\left(\Gamma^{\prime} \mid \Gamma\right),
$$

where $\Gamma^{\prime}=\left(\gamma_{1}^{(0)}, \ldots, \gamma_{n}^{(0)}\right)$ is the set of all outer contours of the collection Γ.

1.3. Description of Gibbs States, Some Estimates

There exists $q(v)>0$ such that for all $q>q(v)$, one finds $\beta_{c}(q)>0$ $\left(\beta_{c}(q)=\frac{\ln q}{v}+O\left(q^{-1}\right)\right)$, the contour functional $F^{(0)}$, the interaction $G^{(0)}$ and q contour functionals $F^{(p)}, p=1,2, \ldots, q$, so that

$$
\begin{gather*}
\Xi^{(0)}\left(\gamma^{(0)}, \beta_{c}(q)\right)=Z\left(\gamma^{(0)} \mid F^{(0)}, G^{(0)}\right), \tag{1.14}\\
\Xi^{(p)}\left(\gamma^{(p)}, \beta_{c}(q)\right)=Z\left(\gamma^{(p)} \mid F^{(p)}\right), \quad p=1, \ldots, q . \tag{1.15}
\end{gather*}
$$

Moreover

$$
\begin{equation*}
\sum_{\gamma^{(p)}: \operatorname{supp} \gamma^{(p)}=C} \exp \left(-F^{(p)} \mid\left(\gamma^{(p)}\right)\right) \leqq \exp (-k(q)|C|), \quad p=0, \ldots, q \tag{1.16}
\end{equation*}
$$

where $k(q) \rightarrow 0$ when $q \rightarrow \infty$. Note finally that based on the contour definition one can prove the existence of the constant $c(q)$, such that the estimate

$$
\begin{equation*}
F^{(p)}\left(\gamma^{(p)}\right) \leqq c(q)\left|\operatorname{supp} \gamma^{(p)}\right| \tag{1.17}
\end{equation*}
$$

holds when $\beta=\beta_{c}(q)$.

2. Construction of Pure Phases in the Case $\boldsymbol{\beta} \neq \boldsymbol{\beta}_{\boldsymbol{c}}(q)$

All constructions in the case $\beta \neq \beta_{c}(q)$ are based on some inequalities which are similar to that of R. Minlos and Ya. Sinai [6] for the Ising model.
Definition 2.1. The point $x \in \mathbb{Z}^{\nu}$ is called a stable point of the configuration φ under either of the following conditions:
i) $\beta>\beta_{c}(q), \varphi$ is in phase $p \neq 0$ at the point x,
ii) $\beta=\beta_{c}(q), \varphi$ is in phase $p, p=0,1, \ldots, q$, at the point x,
iii) $\beta<\beta_{c}(q), \varphi$ is in phase 0 at the point x. In all other cases the point x is called the unstable point of the configuration φ.

Lemma 2.1. For any $v \geqq 2$ there exists $q_{1}(v)>0$ such that for each $q>q_{1}(v)$ and $\beta \geqq \beta_{c}(q)$ one can construct q contour functionals $\left\{F^{(p)}\left(\gamma^{(p)}, \beta\right)\right\}, p=1, \ldots, q$, so that

$$
\begin{equation*}
\Xi^{(p)}\left(\gamma^{(p)}, \beta\right)=Z\left\{\gamma^{(p)} \mid F^{(p)}(\cdot, \beta)\right\}, \quad p=1, \ldots, q . \tag{2.1}
\end{equation*}
$$

Moreover, for both arbitrary fixed $p, 1 \leqq p \leqq q$, and contour $\gamma^{(p)}$, the function $F^{(p)}\left(\gamma^{(p)}, \beta\right)$ is monotone increasing with respect to β when $\beta \geqq \beta_{c}(q)$.
Proof. Let $p \neq 0$ and let $\mathfrak{A}^{(p)}\left(\gamma^{(p)}\right)$ be the set of configurations that have only one outer contour $\gamma^{(p)}$. Applying the relation (1.6) we get

$$
\begin{equation*}
-\frac{\partial}{\partial \beta} \Xi^{(p)}\left(\gamma^{(p)}, \beta\right)=\sum_{\varphi \in \mathscr{r}(p)\left(\gamma^{(p)}\right)} \frac{1}{2}\left(\sum_{x} \alpha(x, \varphi)\right) \exp \left(-\frac{\beta}{2} \sum_{x} \alpha(x, \varphi)\right) \tag{2.2}
\end{equation*}
$$

As far as $\alpha(x, \varphi)=0$ for $x \notin V\left(\gamma^{(p)}\right)$, and $0 \leqq \alpha(x, \varphi) \leqq 2 v$ for all other x, we have

$$
\begin{equation*}
\left|\frac{\partial}{\partial \beta} \ln \Xi^{(p)}\left(\gamma^{(p)}, \beta\right)\right| \leqq v\left|V\left(\gamma_{i}\right)\right| \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{\partial}{\partial \beta} \Xi^{(p)}(V, \beta) & =\sum_{\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}}\left(\sum_{k=1}^{n} \frac{\partial}{\partial \beta} \ln \Xi^{(p)}\left(\gamma_{k}^{(p)}, \beta\right)\right) \prod_{i=1}^{n} \Xi^{(p)}\left(\gamma_{i}^{(p)}, \beta\right) \\
& =\sum_{\gamma \subset V}\left[\frac{\partial}{\partial \beta} \ln \Xi^{(p)}\left(\gamma^{(p)}, \beta\right)\right] \Xi^{(p)}\left(\gamma^{(p)}, \beta\right) \Xi^{(p)}\left(V \backslash V\left(\gamma^{(p)}, \beta\right)\right) \tag{2.4}
\end{align*}
$$

Choose now $k_{0}(v)$ so that

$$
\begin{equation*}
\sum_{0 \in C} v|V(C)| \exp \left(-k_{0}|C|\right)<\frac{1}{4}, \tag{2.5}
\end{equation*}
$$

where the sum is taken over all connected sets C, containing the point $0, V(C)=C$ vint $C, C \neq \emptyset$. Based on relation (1.16), choose $q_{1}(v)$ so that for all $q>q_{1}(v)$ the inequalities

$$
\begin{equation*}
\sum_{\gamma: \operatorname{supp} \gamma=C} \exp \left(-F^{(p)}\left(\gamma^{(p)}, \beta\right)\right) \leqq \exp \left(-k_{0}(v)|C|\right), \quad p=1, \ldots, q \tag{2.6}
\end{equation*}
$$

hold at the point $\beta=\beta_{c}(q)$. Suppose $\beta \geqq \beta_{c}(q)$. Let $\gamma^{(p)}$ be a contour and O_{m} ($m=1,2, \ldots, r$) be connected components of the set int $\gamma^{(p)}$. Put

$$
\begin{equation*}
F^{(p)}\left(\gamma^{(p)}, \beta\right)=\sum_{m=1}^{r} \ln \Xi^{(p)}\left(O_{m}, \beta\right)-\ln \Xi^{(p)}\left(\gamma^{(p)}, \beta\right) \tag{2.7}
\end{equation*}
$$

Suppose that for some $\beta_{0} \geqq \beta_{c}$ the inequalities

$$
\begin{equation*}
F^{(p)}\left(\gamma^{(p)}, \beta_{0}\right) \geqq F^{(p)}\left(\gamma^{(p)}, \beta_{c}\right), \quad p=1, \ldots, q \tag{2.8}
\end{equation*}
$$

hold. From the condition (2.8) and from (2.2)-(2.4) one can get, in a standard fashion (see [6]), that for $\beta=\beta_{0}$,

$$
\begin{equation*}
\left.\frac{\partial}{\partial \beta} \ln \Xi^{(p)}(V, \beta)\right|_{\beta=\beta_{0}}=a\left(F^{(p)}\left(\cdot, \beta_{0}\right)\right)|V|+b\left(\partial V, F^{(p)}\right) \tag{2.9}
\end{equation*}
$$

where $\left|a\left(F^{(p)}\left(\cdot, \beta_{0}\right)\right)\right|<\frac{1}{4},\left|b\left(\partial V, F^{(p)}\right)\right|<\frac{1}{4}|\partial V|$. Let $\gamma^{(p)}=\left(b^{(p)}, \psi\left(b^{(p)}\right)\right)$ be a contour. Given any configuration $\varphi \in \mathfrak{A}^{(p)}\left(\gamma^{(p)}\right)$, denote by $\widetilde{O}^{(u)}(\varphi)$ the largest connected subset of unstable points such that $b^{(p)} \cap \widetilde{O}^{(u)}(\varphi) \neq \emptyset$. The complement of $\widetilde{O}^{(u)}(\varphi)$ with respect to $V^{\prime}\left(\gamma^{(p)}\right)=V\left(\gamma^{(p)}\right) \backslash \partial^{(e x t)} b^{(p)}$ is split into the connected components $\widetilde{O}_{n}^{\left(p_{n}\right)}(\varphi), n=1, \ldots, \tilde{r}(\varphi)$, where $p_{n} \neq 0$ is the value of the phase on $\partial \widetilde{O}_{n}^{\left(p_{n}\right)}(\varphi)$. Then

$$
\begin{equation*}
\Xi^{(p)}\left(\gamma^{(p)}, \beta\right)=\sum_{\varphi \in \mathfrak{U}\left(\gamma^{(p)}\right)} \exp \left(-\frac{\beta}{2} \sum_{x \in \widehat{O}^{(u)}(\varphi)} \alpha(x, \varphi)\right) \prod_{n=1}^{\widetilde{r}(\varphi)} \Xi^{\left(p_{n}\right)}\left(\widetilde{O}_{n}^{\left(p_{n}\right)}, \beta\right) \tag{2.10}
\end{equation*}
$$

Inserting this expression in (2.7) and computing the derivative $\frac{\partial}{\partial \beta} F^{(p)}\left(\gamma^{(p)}, \beta\right)$ at the
point β_{0} we have point β_{0}, we have

$$
\left.\frac{\partial}{\partial \beta} F^{(p)}\left(\gamma^{(p)}, \beta\right)\right|_{\beta=\beta_{0}} \geqq 0
$$

provided

$$
\sum_{x \in O^{(u)}(\varphi)} \alpha(x, \varphi)-\sum_{n=1}^{\widetilde{r}(\varphi)} \frac{\partial}{\partial \beta} \ln \Xi^{\left(p_{n}\right)}\left(\widetilde{O}_{n}^{\left(p_{n}\right)}, \beta\right)+\sum_{m} \frac{\partial}{\partial \beta} \ln \Xi^{(p)}\left(O_{m}, \beta\right) \geqq 0
$$

By virtue of the symmetry of the Potts model

$$
\Xi^{\left(p^{\prime}\right)}(V, \beta)=\Xi^{\left(p^{\prime \prime}\right)}(V, \beta)
$$

holds for $V \subset \mathbb{Z}^{v},|V|<\infty$ and any $p^{\prime}, p^{\prime \prime}, 1 \leqq p^{\prime} \leqq q, 1 \leqq p^{\prime \prime} \leqq q$. From this and also from representation (2.9) and the inequality $\alpha(x, \varphi) \geqq 1$ that holds for all $x \in \widetilde{O}(\varphi)$, it is not difficult to make sure that the latter inequality holds for all configurations $\varphi \in \mathfrak{A}^{(p)}\left(\gamma^{(p)}\right)$. Since this discussion is valid for $\beta=\beta_{c}$, it remains valid for all $\beta>\beta_{c}$, Q.E.D.

Lemma 2.2. Given any $v \geqq 2 q_{2}(v)>0$ may be found such that for all $q>q_{2}(v)$ and $\beta<\beta_{c}$ one can construct the contour functional $\left\{F^{(0)}\left(\gamma^{(0)}, \beta\right)\right\}$ and the interaction $G^{(0)}$ so that

$$
\begin{equation*}
\Xi^{(0)}\left(\gamma^{(0)}, \beta\right)=Z\left(\gamma^{(0)} \mid F^{(0)}, G^{(0)}\right) \tag{2.11}
\end{equation*}
$$

Here the function $G^{(0)}$ does not depend on β, and $F^{(0)}\left(\gamma^{(0)}, \beta\right)$ is monotone decreasing with respect to β provided $\beta \leqq \beta_{c}$.
Proof. The proof of this lemma differs only a little from the previous one. Let us mention the distinctions between them. First of all choose $G^{(0)}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}\right)$ according to (1.12) and note that $G^{(0)}$ does not depend on β. Comparing this with (1.13) we obtain

$$
\frac{\partial}{\partial \beta} \ln \Xi^{(0)}\left(V \mid\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}, \beta, \varphi_{0}\right)=\sum_{i=1}^{n} \frac{\partial}{\partial \beta} \ln \Xi^{(0)}\left(V \mid \gamma_{i}^{(0)}, \beta, \varphi_{0}\right) .
$$

Denote by

$$
P_{W}\left(\mathfrak{A}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}, V, \varphi_{0}\right) \mid \beta\right)=\frac{\Xi^{(0)}\left(V \mid\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}, \beta, \varphi_{0}\right)}{\Xi^{(0)}\left(V \mid W, \beta, \varphi_{0}\right)}
$$

the probability distribution $P_{W}(\cdot \mid \beta)$ on the set of all $\mathfrak{A}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}, V, \varphi_{0}\right)$ such that supp $\gamma_{i}^{(0)} \mathrm{C} W$. Taking into consideration this notation and the previous equality we obtain [just as in demonstration of (2.4)]

$$
\begin{aligned}
& \frac{\partial}{\partial \beta} \\
& \ln \Xi^{(0)}\left(V \mid W, \beta, \varphi_{0}\right) \\
& \quad=\sum_{\operatorname{supp} \gamma \subset W}\left[\frac{\partial}{\partial \beta} \ln \Xi^{(0)}\left(V \mid \gamma^{(0)}, \beta, \varphi_{0}\right)\right] P_{W}\left(\gamma^{(0)} \in \mathfrak{A}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}, V, \varphi_{0}\right) \mid \beta\right)
\end{aligned}
$$

Note that the probability $P_{W}\left(\gamma^{(0)} \in \mathfrak{A} \mid \beta\right)$ of $\gamma^{(0)}$ to be an outer contour, arising here, satisfies the Peierls' [2,3] inequality

$$
\begin{align*}
& P_{W}\left(\gamma^{(0)} \in \mathfrak{A l}\left(\left\{\gamma_{i}^{(0)}\right\}_{i=1}^{n}, V, \varphi_{0}\right) \mid \beta_{c}\right) \\
& \quad \leqq \exp \left\{-F^{(0)}\left(\gamma^{(0)}, \beta_{c}(q)\right)+O\left(\frac{1}{q}\right)\left|\operatorname{supp} \gamma^{(0)}\right|\right\} \tag{2.12}
\end{align*}
$$

when $\beta=\beta_{c}(q)$. Then, obviously,

$$
\begin{aligned}
& \Xi_{0}^{(0)}\left(V ; \varphi_{0}\right) \cdot \frac{\partial}{\partial \beta} \ln \Xi^{(0)}\left(V \mid \gamma^{(0)}, \beta, \varphi_{0}\right) \\
& \quad=\sum_{\varphi \in \mathfrak{U}(0)\left(\gamma^{(0)}, V, \varphi_{0}\right)} \sum_{x \in V}\left[v-\frac{\alpha(x, \varphi)}{2}\right] \exp \left\{-\beta H_{V}(\varphi)\right\},
\end{aligned}
$$

and since $\alpha(x, \varphi)=2 v$ for all $x \notin V\left(\gamma^{(0)}\right)$, we obtain

$$
\begin{equation*}
\left|\frac{\partial}{\partial \beta} \ln \Xi^{(0)}\left(V \mid \gamma^{(0)}, \beta, \varphi_{0}\right)\right| \leqq v\left|V\left(\gamma^{(0)}\right)\right| . \tag{2.13}
\end{equation*}
$$

Put as in (2.7)

$$
F^{(0)}\left(\gamma^{(0)}, \beta\right)=\sum_{m=1}^{r} \ln \Xi^{(0)}\left(O_{m}, \beta\right)-\ln \Xi^{(0)}\left(\gamma^{(0)}, \beta\right)
$$

Since the estimates (2.12) and (2.13) are uniform with respect to all V and φ_{0}, we are able to repeat the reasoning of the previous lemma. This proves that $F^{(0)}\left(\gamma^{(0)}, \beta\right)$ is monotone decreasing when $\beta \leqq \beta_{c}(q)$.

3. Proof of Theorem

In the case $\beta=\beta_{c}$, the proof of the theorem is similar to that for the Ising model [7].
Let $\beta \neq \beta_{c}$. We shall study the properties of the Gibbs state in V with the boundary conditions φ_{0} on $\partial_{1} V$, assuming that $\varphi_{0}(x) \neq \varphi_{0}(y)$ for any $x, y \in \partial_{1} V$, $d(x, y)=1$ if $\beta>\beta_{c}$, and demanding of the boundary conditions φ_{0} that $\varphi_{0}\left(\partial_{1} V\right)=p, 1 \leqq p \leqq q$ in the case $\beta<\beta_{c}$. The passage to the case of arbitrary boundary conditions is simple enough (see, for example, $[8,9]$), so the assumptions about the boundary conditions discussed above are to be fulfiled later without mentioning it.

Let $V \subset \mathbb{Z}^{v},|V|<\infty$, be a connected set. Consider the configuration φ, the restriction of which to $\partial_{1} V$ has the properties mentioned at the beginning of this section. The connected component of the set of unstable points of the configuration φ in $V \cup \partial_{1} V$, containing $\partial_{1} V$, will be denoted by $V^{(u)}(\varphi)$. Put

$$
\mathfrak{A}^{N}=\left\{\varphi\left(V \cup \partial_{1} V\right)\left|\varphi\left(\partial_{1} V\right)=\varphi_{0}\left(\partial_{1} V\right),\left|V^{(u)}(\varphi)\right|=N\right\}\right.
$$

for $N \in \mathbb{Z}^{+}$and consider the partition function

$$
\begin{equation*}
\Xi^{(p), N}\left(V \mid \beta, \varphi_{0}\right)=\sum_{\varphi \in \mathfrak{U}^{N}} \exp \left\{-\beta H_{V}(\varphi)\right\}, \quad p=0,1, \ldots, q . \tag{3.1}
\end{equation*}
$$

Here it is supposed that $p=0$ when $\beta>\beta_{c}(q)$, and $p=1, \ldots, q$ when $\beta<\beta_{c}(q)$. The proof of the theorem follows from the estimate (see $[8,9]$)

$$
\begin{equation*}
\frac{\Xi^{(p), N}\left(V \mid \beta, \varphi_{0}\right)}{\Xi^{(p)}\left(V \mid \beta, \varphi_{0}\right)} \leqq \exp \left\{-c(\beta) N+c_{1}(\beta)|\partial V|\right\} \tag{3.2}
\end{equation*}
$$

which is of main importance in this paper. To establish the inequality (3.2) we consider the set of contours γ, which has the properties
i) $\operatorname{supp} \gamma \subset V$,
ii) the restrictions of the configuration φ on $\partial^{(\text {int })} \gamma$ and on $\partial^{(\text {ext })} \gamma$ are in the opposite phases (i.e. in the case $\beta>\beta_{c}$ the points of the set $\partial^{(\mathrm{ext})} \gamma$ are in phase 0 , and the points of the set $\partial^{\text {(int) }} \gamma$ are in either of the phases $1,2, \ldots, q$, and vice versa in the case $\beta<\beta_{c}$). Let us choose in this class of contours the contour γ with the largest |int $\gamma \mid$, and denote it by γ_{V}. It is clear that

$$
\begin{equation*}
\Xi^{(p)}\left(V \mid \beta, \varphi_{0}\right) \geqq \Xi^{(p)}\left(V \mid \beta, \gamma_{V}^{(p)}, \varphi_{0}\right) \tag{3.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
V \backslash V^{(u)}(\varphi)=V_{1}^{(s)}(\varphi) \cup \ldots \cup V_{k}^{(s)}(\varphi) \tag{3.4}
\end{equation*}
$$

be the decomposition of the set $V \backslash V^{(u)}(\varphi)$ into connected components. Note that for any $m=1, \ldots, k$ all points of the set $\partial V_{m}^{(s)}(\varphi)$ are in phase 0 if $\beta<\beta_{c}$, and are in phase $p_{m} \neq 0$ if $\beta>\beta_{c}$. Taking this into account we rewrite the partition function $\Xi^{(p), N}\left(V, \beta, \varphi_{0}\right)$ as

$$
\begin{align*}
& \Xi^{(p), N}\left(V \mid \beta, \varphi_{0}\right) \\
&= \sum_{\varphi \in \mathscr{U}^{N}} \exp \left\{-\beta H\left(\varphi_{V^{(u)}}\right)\right\} \times \prod_{m=1}^{k} \Xi_{o}^{\left(p_{m}\right)}\left(V_{m}^{(s)} \backslash \partial V_{m}^{(s)}, \beta, \varphi\left(\partial V_{m}^{(s)}\right)\right) \\
& \cdot \prod_{m=1}^{k} \Xi^{\left(p_{m}\right)}\left(V_{m}^{(s)} \backslash \partial V_{m}^{(s)}, \beta, \varphi\left(\partial V_{m}^{(s)}\right)\right), \tag{3.5}
\end{align*}
$$

where

$$
\begin{equation*}
H\left(\varphi_{V^{(u)}}\right)=-\sum_{\langle x, y\rangle} \delta_{\varphi(x), \varphi(y)} \tag{3.6}
\end{equation*}
$$

and the sum in the latter relation is taken over all the pairs of nearest neighbors, such that either $\langle x, y\rangle \subset V^{(u)}(\varphi) \cap V$ or $x \in V^{(u)}(\varphi) \cap V, y \notin V^{(u)}(\varphi) \cap V$. The remaining calculation will be carried out only for the case $\beta<\beta_{c}$. The case $\beta>\beta_{c}$ is similar. So let $p \neq 0, \varphi_{0}(\partial V) \equiv p$ and $\beta<\beta_{c}$. From (3.3) and (1.17) it follows

$$
\begin{equation*}
\frac{\Xi^{(p), N}\left(V \mid \beta_{c}, \varphi_{0}\right)}{\Xi^{(p)}\left(V \mid \beta_{c}, \varphi_{0}\right)} \leqq \frac{\Xi^{(p)}\left(V \mid \beta_{c}, \varphi_{0}\right)}{\Xi^{(p)}\left(V \mid \gamma_{V}, \beta_{c}, \varphi_{0}\right)} \leqq \exp \left(c_{2}(q)|\partial V|\right) \tag{3.7}
\end{equation*}
$$

Having applied (3.5) for $\Xi^{(p)}\left(V \mid \gamma_{V}, \beta, \varphi_{0}\right)$, we obtain

$$
\begin{equation*}
\frac{\Xi^{(p), N}\left(V \mid \beta, \varphi_{0}\right)}{\Xi^{(p)}\left(V \mid \gamma_{V}, \beta, \varphi_{0}\right)}=\sum_{\varphi \in \mathscr{Q}^{N}} \exp \left\{\omega_{V}(\beta, \varphi)\right\} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \omega_{V}(\beta, \varphi)=\frac{\beta}{2} \sum_{x \in V^{(u)}(\varphi)}(2 v-\alpha(x, \varphi))-\frac{\beta}{2} \sum_{x \in V \backslash V\left(\gamma_{V}\right)}(2 v-\alpha(x, \varphi)) \\
& \quad+\sum_{m=1}^{k} \ln \Xi^{(0)}\left(V_{m}^{(s)} \backslash \partial V_{m}^{(s)}, \beta, \varphi\left(\partial V_{m}^{(s)}\right)\right) \\
& \quad-\ln \Xi^{(0)}\left(\operatorname{int} \gamma^{(0)} \backslash \partial\left\{\operatorname{int} \gamma^{(0)}\right\}, \beta, \varphi\left(\partial\left\{\operatorname{int} \gamma^{(0)}\right\}\right)\right)+\omega_{V}^{(0)}(\varphi) .
\end{aligned}
$$

Here

$$
\begin{aligned}
\omega_{V}^{(0)}(\varphi)= & \sum_{m=1}^{k} \ln \Xi_{0}^{(0)}\left(V_{m}^{(s)} \backslash \partial V_{m}^{(s)}, \varphi\left(\partial V_{m}^{(s)}\right)\right) \\
& -\ln \Xi_{0}^{(0)}\left(\operatorname{int} \gamma^{(0)} \backslash \partial\left\{\operatorname{int} \gamma^{(0)}\right\}, \varphi\left(\partial\left\{\operatorname{int} \gamma^{(0)}\right\}\right)\right)
\end{aligned}
$$

does not depend on β. From (3.8) and the considerations of previous section it follows (see Lemma 2.2), that for every configuration $\varphi \in \mathfrak{A}^{N}\left(V, \varphi_{0}\right)$,

$$
\frac{\partial}{\partial \beta} \omega_{V}^{(0)}(\varphi, \beta) \geqq \frac{1}{4} N-\frac{v}{4}\left|V \backslash V\left(\gamma_{V}\right)\right| \geqq \frac{1}{4} N-c_{3}(v)|\partial V|,
$$

if $q>q_{2}(v)$ and $\beta<\beta_{c}(q)$. Hence

$$
\begin{equation*}
\omega_{V}^{(0)}(\varphi, \beta)-\omega_{V}^{(0)}\left(\varphi, \beta_{c}\right) \leqq-\frac{1}{4}\left(\beta_{c}-\beta\right) N+c_{3}(v)\left(\beta_{c}-\beta\right)|\partial V| \tag{3.9}
\end{equation*}
$$

Choosing $c(\beta)=\frac{1}{4}\left(\beta_{c}-\beta\right), c_{1}(\beta)=c_{2}(q)+c_{3}(v)\left(\beta_{c}-\beta\right)$, from (3.3), (3.7)-(3.9) we obtain the estimate (3.2). The theorem is proved.

Acknowledgements. It is a pleasure to thank Professors Ya.G. Sinai and E.I. Dinaburg for helpful discussions.

References

1. Kotecky, R., Shlosman, S.B.: First-order phase transitions in large entropy lattice models. Commun. Math. Phys. 83, 493-515 (1982)
2. Dinaburg, E.I., Sinai, Ya.G.: Interacting contour models and their applications. Tr. Conf. Mat. Fiz., Dubna, August (1984) (in Russian)
3. Bricmont, J., Kuroda, K., Lebowitz, J.L.: First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory. Commun. Math. Phys. (in press)
4. Laanait, L., Messager, A., Ruiz, J.: Phases coexistence and surface tensions for the Potts model. Commun. Math. Phys. (in press)
5. Sinai, Ya.G.: Theory of phase transitions: Rigorous results. Oxford, New York: Pergamon Press 1982
6. Minlos, R.A., Sinai, Ya.G.: Tr. Mosk. Math. Obshch. 17, 213-242 (1967) (in Russian)
7. Gallavoti, G., Miracle-Sole, S.: Equilibrium states of the Ising model in the two-phase region. Phys. Rev. B 5, 2555-2559 (1972)
8. Martirosian, D.G.: Izv. Akad. Nauk Arm. SSR, Mat. 14, 21-41 (1979) (in Russian) [English transl.: Periodic Gibbs states for classical lattice models. Sov. J. Contemp. Math. Anal. 14, 19-38 (1979)]
9. Zahradnik, M.: An alternate version of Pirogov-Sinai theory. Commun. Math. Phys. 93, 559-581 (1984)

Communicated by Ya. G. Sinai

Received February 15, 1985

