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Abstract. Absence of bound states and asymptotic completeness are proven for
a quantum particle in a time dependent random (Markovian) short range
potential. Systems with confining potentials are also considered and un-
boundedness of the energy in time is shown.

1. Introduction and Results

In a previous paper ([1]) we started studying the quantum dynamics generated by
random time dependent Hamiltonians of the form

H(t)=Ho + V(£(1)), (1.1)

where H, is a self adjoint operator on some Hilbert space # (typically # = LA(R")
or [X(Z*) with Hy= —A), {{(t)|teR} =¢ a path of a stationary Markov process on
some state space E with a unique invariant measure  and V(-) a function on E with
values in the self adjoint operators on .

In this paper we continue the analysis of such systems. The first and main part of
our work is devoted to the case # =L*R") for v=3 and Hy= — A, V()
multiplication by a short range potential V(¢&, x) (i.e. sufficiently rapidly decaying at
spatial infinity). From [1] we learn modulo some non-triviality condition assuring
(1.1) to be “sufficiently time dependent” that such a system leaves any bounded
region of its phase space in time mean (this is the “RAGE-theorem™ 4.2 in [1]);
however we don’t know how. It may tend to spatial infinity, or have unbounded
kinetic energy, or both. We only know states with bounded energy to approach
spatial infinity like a free particle (from Corollary 4.4 in dimensions v = 5). We prove
this to be the right behaviour in general. More technically we show the dynamics
generated by (1.1) to be asymptotically complete (with respect to the free one). Let us
formulate our result as a

Theorem. Let Hy= — A be the ordinary kinetic energy on L*(R") with v = 3. Further
assume the short range potential V (&, x) and the process &(+) to satisfy the conditions
2.1-2.5 of Sect. 2. Then ifU(glt, s) denotes the unitary propagator associated to (1.1),
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the wave operators
Q7 (f]s) = s-lim U]t s)xe " Hott=9)
~ -+ <

exist and are unitary with probability one. In particular all states fe L(R") have time
bounded energy (in the sense of [1]) and a free asymptotic as t - + 0.

Hm | U], 5)f — e F ) | =0,

the scattering matrix
S=(2)*Q~

being unitary.

Note the condition v=3 on space dimension. We think some additional work
should relax this restriction; for a discussion of the (mainly technical) assumptions
2.1-2.5 we refer to Sect. 2. In the second part of this paper we consider the opposite
situation of a confining potential (i.e. such that I)}linzo V(& x)= + 00). A simple

application of the results in [1] shows that such systems always have time
unbounded energy. Thus, as time goes on, states with higher and higher energy are
excited (think of a harmonic oscillator, weakly and locally perturbed by a random
force). For a precise formulation of the results see Sect. 6, which can be read
independently of the rest of the paper.

The paper is organised as follows: Sects. 2 to 5 concern short range systems. In
Sect. 2 the necessary assumptions on the potential V and the process £ are listed and
discussed, we also give some of their immediate consequences. The completeness
proof then follows the beautiful time dependent approach of Enss, more precisely its
Jafaev version (see [2,3 and 4]). However the lack of energy conservation make
useless the usual estimates on the cut-off free propagator. Instead we use weaker
results on the full free propagator proved in an appendix; similar estimates have
already been used by Jafaev in [5]. In order to compensate the weakness of these
results, we will need some extra information on the interacting propagator U(t, s), in
the form of a local decay estimate proved in Sect. 3, using a stationary bound on
kinetic energy. Equipped with this propagation estimates we proceed in Sect. 4 to the
asymptotic completeness proof.

The main analytical work, now concentrated in the stationary energy estimate
used in Sect. 3, is done in Sect. 5 and consists in controling boundary values of some
resolvent (L —z)™! as z becomes real from the upper half plane. We use fairly
standard methods somewhat reminiscent of the three body problem: weighted L?-
spaces, Birman—Schwinger kernels and Fredholm theory; however the setting is
unusual since the operator L is neither self adjoint, nor elliptic and perhaps not even
spectral. Finally Sect. 6 is devoted to the study of confining systems.

2. Hypotheses and Preliminary Results
The conditions to be fulfilled by the potential V(¢, x) are of three distinct types:
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1) Decay conditions are well known to be critical in scattering theory. The borderline
for the existence of ordinary (i.e. short range) wave operators

S'lim ei( —A+ V)teiAt

t—+o0
being at
Vix)~|x|"' as x- 0.

But, as already stressed by Jafaev [5], completeness of the scattering by time
dependent potentials will be very hard to obtain, at least technically, for potentials
decaying slower than |x|~? at infinity due to the infrared singularity of free
propagation. In fact our method seems to break down at exactly this point for two
reasons: first in the resolvent estimate of Sect. 5 where we are unable to use Agmon
type arguments, and instead have to use the less effective Kato estimate (Lemma 5.2);
second in the estimate on free propagation (last statement of Lemma 4.1). Note that
in both cases the condition v = 3 is also essential.

Since we don’t want to worry about local singularities, we assume:

{W(f, x)=(1+[x}2V(& x)eL*(E x R")

for some s > 2. 2D

2) Smoothness conditions are not usually needed if the potential is time independent,
but as seen for example in Kato [6], any loss of regularity in the time behaviour of
the potential have to be compensated by some smoothness in space in order to get
good control of the evolution. The following will suffice:

W(,-)eC'(RY)
for some n > Max(Z, 2), and
*WeC(E x R)nL2(E x R") V]a| = n. 2.2)

We stress however not to know any physical motivation for such a restriction.

3) Non-triviality conditions clearly are necessary, for the system has to feel the time
dependence of the potential which, destroying quantum coherence, is responsible for
the unitarity of the wave operators. We assume

{Var(V(',x)— V(-,y))>0 for aa. (x,y)e0 x R, 2.3)

where @ is some non-empty open set in R”.
We used the notation

Var(f) = [ f(O)1Pdu(&) — [ f(Odu(&)I* 2 0

for any feL?*(E,dp). This seems somewhat stronger than the corresponding
assumption of our first paper, where (2.3) is only required to hold on @, x 0, for
some open sets O, 0, < R*. However a moment of reflection shows that under the
smoothness condition (2.2) this is not a real restriction. Note also that (2.3) imply
Var(V(-, x)) #0 on R, and since by (2.2) this is a continuous function of x there is an
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open set ¢ < R* such that
Var(V(-,x))>0 for xe0'. (2.3)

We turn to the assumptions on the generator A of the Markov process {£(t) }. They
are of two types (recall (£, Z, P) denotes the underlying probability structure, and
E(") is expectation with respect to P):

4) Symmetry. Doing scattering theory, we want the potential to be defined on the
whole time axis, i.e. the process {&(r)} to be indexed by teR. A convenient way of
doing this is to assume it to be symmetric:

(=)&) = E(fEm)IEO) = &) = E(f(£(0))1¢(1) = &),

or equivalently its infinitesimal generator 4 to be self adjoint. Together with the
assumptions already made in our first paper we obtain:

{A is a positive self-adjoint operator on h = L*(E, dy) (2.4)

with the non-degenerate ground state 1: A1 =0.

5) Compactness. Although not strictly necessary it will be technically very
convenient to assume:

A has compact resolvent. (2.9)

This condition is fulfilled by any jump process on a finite state space, any diffusion on
a compact manifold or even any P(¢),-process, in particular the oscillator process
(see [7]). (From the proof it will be clear than in fact only compactness of V(¢, x) x
(—A —iA+1)" 1! really matters.)

We will use freely the spectral representation

h=LHE dw ~1P(N), f(&e={f}
with
I £ =01 QP =Y 1 ful? (Af)a =4S

0=A4y<A, £4,<.- being the repeated eigenvalues of A. Either b is finite

dimensional, or lim 4, = + co0. Note also that the eigenspace to 4, =0 contains the
constant functions of &.

Conditions 2.1-2.5 are all the assumptions we will need in this paper. We now
briefly discuss some immediate consequences.

Clearly all hypotheses of Sect. 4 in [1] are fulfilled, so there is a nice propagator

U(¢]t, s) for the Schrodinger equation
10, =(—A + V), x)W,. (2.6)
Since the smoothness condition (2.2) imply (i)—(v) of [1] with the identifications:
X =1XR"), Y=H"R"), K(@E=i—A+V(EXx), S=(1-—Ay3
they are two constants M’, §’ such that for t = s:

(1 — A)"”U(é]t,s)(l — AR S MeP Y P—as.. (2.7)
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Furthermore, via Cook’s estimate (see [8]), the decay condition (2.1) imply the
existence of wave operators

Q*(|s) = s-lim U(&[t, s)*e 4¢ =9

t=Fw
with the intertwinning property
Q=)= U(|t, )R*(E|s)e™ 407 (2.8)
Finally on L3(R" x RY x E;d"xd"ydu(¢)), let
Lo =p*—k*—iA, 29

where p=—iV,and k = —iVy. L, clearly generates the contraction semigroup
e—iLor = eiAt ® e—iAt ® e—At.
Multiplication with (V(&, x)— V(&, y)) being a bounded self-adjoint operator, it then

follows from a standard perturbation theorem (see for example [9] theorem X.50)
that

L=Lo+ V(& x)— V() D(Lo)=D(L) (2.10)
also generate a contraction semigroup, easily identified with the expectation
semigroup of [1]:

E[Y,®¢|&t)]=e Yo ®@P®1 2.11)

for solutions i, and ¢, of the Schrodinger equation (2.6). The map ¢ — ¢ denoting
the anti-unitary complex conjugation on L*(R").

3. Propagator Estimate

As explained in the introduction our completeness proof relies on some estimate of
the interacting propagation. In this section we derive it from a stationary estimate of
the kinetic energy to be proved in Sect. 5.
Let C be Hilbert—Schmidt on L?(R"), and assume its integral kernel, which we
also denote by C, satisfies
CeH'(R")® H"(R").

Then for e #(R"), the Schwartz space of test functions, and with § =(1 — A)"/? a
simple computation shows

(SUIz, 00, CSU(L]t, 00) = (), ® 1, (S® S)C), G.1

where we have set i, = U({|¢,0)f and used the same symbol for inner products in
L*(R") and L*(R?"). Note that the left-hand side of (3.1) is well defined by (2.7). From
(3.1) we further get, using Fubini’s theorem and formula (2.11), for imz > 0,

f T €4S (8), CSY(E)dedP(E) = T FEY RTR1,(S®S®NC® 1)
=i((L-2 Y ®Jy®1, SRSRNCR1). (32
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Now we define
L'=Lo+(1-A4)7V({Ex)(1 —A) "2 —(1 - A)"*V(E (1 —4)" "2 (3.3)

This is a closed operator on D(L) = D(L), since by our smoothness hypothesis (2.2)
L — L, is bounded. A standard computation shows

L—2)7'S'®S'®N=5"'®S Q)L -2,

as long as zep(L)n p(L), which is surely the case for large im(z). With the last
identity, (3.2) becomes

] ze"“(&//n CSY)dtdP(§) =i((L'—2)" (Y @Sy @ 1),CR ). (3:4)

By the estimate (2.7) and a simple approximation argument, formula (3.4) extend to
all Ce LA(R*") and zep(L)n {im z > f'}. In order to let z | 0 from the upper half plane
in (3.4) we need the two following results. The first one is elementary, the second
being our main analytical estimate establishing, loosely speaking, (local) bounded-
ness of the kinetic energy (recall that formally L =(p?+ 1)"2(k*+ 1)"2 x
L(pz + 1)—n/2(k2 + 1)—n/2).

Lemma 3.1. Let f(t) be a positive measurable function such that the integral

e ¥ f(tydt

O—8

exists for big positive . Then there is an ¢, such that this integral converges for ¢ > ¢,
diverges for <&, and is an analytic function g(€) on the half plane {Ree>¢e,}. This
function, which may have an analytic continuation across the line Re ¢ = ¢y, must have a
singularity at € =¢,.

The proof of this lemma being very easy we omit it. Note however the analogy with a
well known theorem about analytic functions having positive Taylor coefficients at a
point (see [10]).

Theorem 5. {imz >0} = p(L) and (L' —z)~ ' extend to a continuous function from
{imz >0} to
B(L3(R*)® L*(E), L2 {R*) ® L*(E))

for any 6 > 1/2.
Assuming C to be positive and such that

Cy=(1 +x3)72C(1 + x?)7? 3.5)

is also Hilbert Schmidt, we may combine these two results to obtain from (3.4),
| (I) (Wi, SCSY)dtdP() = i((1+x%) (1 + y*) /XL —i0) 'Sy @ SY ® 1, C,®1).

(3.6)
(Remember Y e #(R") so SyeL2(R)).
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The last identity further gives for peCF(R")

J 0 @00 d1dPQ) < ] W | 605 )P
. =i((1+x2)#"”‘(1+y2)“’/2(L’—i0)‘IS|//®St/7®1,C‘,®1) (3.7)
e C=5" (IS
Since from definition (3.5)
Cy=[(1+xH)%287 11 + x2)" 92818 " | p(x)|(1 + x?)’S !
[S(1 + xH) ™28~ (1 + x2)%?],

with bounded first and last factors, we obtain from standard trace ideals estimates
(see [8] or [11])
ICsllus. < Const || p,2,,

and thus with Theorem 5, (3.7) becomes

I:fj (e, pOW) | dtdPE) < (Mo 1Y 11711 .12,

for some constant M, and norm |||l ;. Thus the linear map
M:L3(R) - LI(R, x E) (3.8)
defined by

(M )1, &) = W), HIVAE)), (39)

with fixed Y e #(R"), is bounded, with norm smaller than M, || (2. On the other
hand (3.9) clearly defines a bounded linear map

M LP(R)>LP(R, x &) (3.10)
with norm smaller than ||y || Interpolating between (3.8) and (3.10) gives
MEeB(LER), (R, x E)) (3.11)
for 1 <p< oo (see [12] for example), the norm in L35, being defined by
Ibll2g, = (f1(1 + x2)Ph(x) Pdx) 127,

Applying this result to the special case @(x)=(1+ x?)~* we obtain finally,
optimizing over J:

Theorem 3. Let p > 2 and ap > v/2 + 1, then for any Y e ¥ (R")
[ (1 +x?) 72U 0 [|P dt <0 P—as..
; 2

Remark. We proved Theorem 3 for t>0, but clearly an analogous result holds for
t <0, which we will use without further comments.
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4. Asymptotic Completeness
Let &, #(R") be a denumerable dense set in L*(R”), and choose y and p such that

, S+1
- 1 p=2 . .
sSv<b pz2 P> (4.1)
Then from Theorem 3 we can find a set = of full P measure such that
j I —a- Y)"zU(é]t 0)f[|7dt < o0 V€=, and Ve . 4.2)

To get sufficient control on the free evolution we will also need the
Lemma 4.1. There are two bounded self adjoint operators P, , P _ on L*(R") such that

P.+P_=L|P|=1,

s-lim P_e” o' = 0 (we set Hy=—A4),

t—=>t oo
P(x)e*Ho'P, are compact if t >0 and ¢ bounded and vanishing at infinity.
Furthermore if v=3 and o > 2 there is a constant C such that

(14 x?)~2eFHop | <C1+1t)"" for ¢>0.

P_ (respectively P,) have to be interpreted as projections on the incoming
(respectively outgoing) scattering states (see [2]).

A similar result has already been used by Jafaev in [5], however since our norm
estimate is not contained in [5] the lemma is proved in the appendix.

From now on we consider a fixed path (€=, and drop any reference to it.
Assume -

¢ LRanQ7(0). 4.3)
There is some fe&, with || ¢ —f|| <e, and by (4.2) a sequence {t,} such that
t,— + oo and || F(|x| <mU(t,,0)f || >0 as n—oo. (4.4)

We set f, = U(t,,0)f, then

IA12=1£ull? = (s (Ps + P) 1)
=(fn’(1 —Q+([n))P—fn)+(me+(tn)P—fn)
+(fm(1 - g_(tn))P+fn) + (fn"Q _([n)P+fn)'
We now estimate the four terms in the right-hand side of the last identity as n— co.
() (fn, 2 ()P f,) = (£, U(t,,0)2 ~(0)eoP , f,) by (2.8)
(f,27(0)e P, f,)
(6,27 (0)e P f,) + (f — §, 2~ (0)™P, f,).

The first term vanishes by assumption (4.3), and the second is bounded by ¢|| f |,

H

I
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thus

(0, 27@)P )l =el f

() (fo @F(WIP_ f2)=(fn, Ut,, 012" (0)e'™ P _f,)
=(f,27(0) e "P_f,)
= (P_e " Hom(Q* (0)*1.£,) = o(1),

since by Lemma 4.1 s-lim P_e ™o = (,

n— oo

(iii) (f,,(1 =R27@)P+ f,)
=lim (f,,(1 — U(t, t,)*e” )P f)

t— o
= lim j'<f”’ U(‘L’ t ) —1Ho(t——tn)P+fn>dt
t—> ooty
= —ilim [ (f,, Ule, t*(1 +x7) "2 W(z)e~ o= , £ )dy
1> o0ty
t
= —ilim [((14x2)~0"P2U(g,0) £, W(t)(1 + x?)~#/2e ~Hoe =P £ )iz,
1>ty

which can be estimated by

FIQA+x?) O 2UO)f || Wl 1L + x?) 7727 HETWP ||| f || dr
tn

© 1/p
=S “W”oo”f”<! (1 +xz)—(l_”S/ZU(T»O)f||”df>

© 1/q
(Fra-ermmeop. )
0

with ¢~'=1—p~! by Holders inequality. The second integral is finite by Lemma
4.1 since ¢>1 and ys>2 by (4.1). The first one vanishes as n— oo by (4.2). Thus

(fur (1 = Q7())P . f,) = o(1).
(iv) (/. (1=27(E)P-f,) = (/o 1= Q7 (t,))P-F(Ix| <n)f,)
+(I = Q7 ()P_F(x| > n)f,).

The first term being bounded by 2| f || | F(|x| <n) U(t,,0)f || = o(1) by (4.4), the
second term can be handled in the same way as in (iii) to yield the bound

0 1/p
Wil fI < _I (1 +x?)~0=72U(z,0) f Il"dr>
(T I(1 + x2) 772t P_F(|x| > n) Ilqd’)l/q.
0

The first integral is finite by (4.2). The integrand of the second is dominated by
11+ x2) 2P|,
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which is integrable by Lemma 4.1. Now by the same (1 + x?2)”7/2¢Horp_ g
compact, and since F(|x|> n) strongly vanishes as n— oo, the integrand vanishes
pointwise as n— c0. Application of the dominated convergence theorem gives

(fur (1 =27 ()P f,) = o(1).
Collecting our four estimates (i)—(iv),
If1I2=1/full*<ell fll +o(l) asn— oo,
and thus

[el=lfl+1d—1I=2e

Since ¢ was arbitrary we conclude ¢ = 0 and Ran 2 ~(0) = L*(R"). This holds for any
¢eZ,, therefore

P[RanQ7(£[0) = [A(R)]=1.
The same analysis clearly applies to £2 +(glO). We have proven

Theorem 4. The wave operators Qi(§|0) are unitary with probability one.

5. Resolvent Estimate

5.1. Resolvent Formulae. We set
E;=(1-A4)"V(Ex)(1—A4)7"?,
Ey=(1-A4,)2V(y)(1 —4,)""

They are bounded operators on L*(R?* x E). Also

Fi=(1—-A)1+x3)7*1-4)7"2,
Fy=(1-A4,)"(1+y*) 41 -4,)""2,
Gy=(1—A)"(1 +x*) "W x)(1—-4)",
Gy=—(1=A4)"(1 +y*) "W y) (1 - 4,)"2,

all are bounded, and
Finally let

Ro(z)=(Lo—2)7",
R{z)=(Lo+E;—2) '=(L;j—2"" (j=12),
R@)=(Lo+E,+E,—z2) ' =(L —2)" .

Since by (5.1) | E;|| < | F;| I1G;ll, we have
{zlimz> [ F | |G| + I F2ll 1 G211} < p(Lo)np(Ly) 0 p(Ly) 0 p(L),
and on this set a simple computation shows
R{(z) = Ro(z) — Ro(2)G {1 + Q2)) 'F;Ro(2) (j=1,2) (52)
R(2) = Ry(2) = Ry(2)G,(1 — Q(2)) (1 + Q4(2)) ™ 'F,R,(2), (5.3)
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where we have defined the Birman—Schwinger kernels as:
0/2)=F;Ro(2)G; (j=1,2), (54)
0(z) = (1 + Q,(2)) " 'F2Ro(2)G (1 + Q4(2)) " 'F1R,G,. (5.5)

Formulae (5.2) and (5.3) will allow us to control the resolvent R(z) as z becomes real
from the upper half plane.

5.2. The Birman—Schwinger Kernels Q (z). Clearly we only need to consider Q,(z), the
case of Q,(z) being completely analogous. We use the fibration

LYRY x R* x E) = LAR", d"k; LA(R", d*x) ® LXE, dy)),
which reduces Q,(z) according to

(Q1(2) /) (k) = q(k® + 2) f (k) (5.6)
qz)=F,(—=A—iA—2)"'G, |’ '
Lemma 5.1. ¢4(z) is a compact valued analytic function on the open upper half plane,

continuous on the closed upper half plane and

lim [ ¢(z)[| =0.
imz>0

Proof. Recall S =(1 —A)"? and let T = (1 + x?)*4, then
Qz)=ST 1S 'T{T Y (—A —id—z) ' T~} TST 1S (SW(E, x)S~}).

The last factor is bounded by (2.2). The two operators ST !S™!T and TST 'S~ !
are also easily shown to be bounded, thus it suffices to consider

T Y =A—iAd—2) ' T '=P{T"(-A—il,—2)"'T"*}. (5.7)
Analyticity in the open upper half plane is clear; to go further we need the

Lemma5.2. Let f, ge”(R") 2 < p £ o) and peL*(R"), then
I f(x)e g || < it fll,llgll, Nl

forimt <0.

This result is well known, at least for real ¢, but its proof by interpolation easily
extends to imt < 0, see for example [9]. Now from the representation

T =A—2)7'T ' =i T "¢ 4T \dt
0

Lemma 5.2 implies via dominated convergence continuity of each summand in (5.7)
in the closed upper half plane. Continuity of the sum follows from the estimate

IDAT (=4 —id,—2) ' T} =sup | T~ (=4 —id,—2) ' T || <Ay >0
nzN n2N
(5.8)

as N — oo. Compactness follows from the same argument, since each summand in
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(5.7) is compact for imz > 0. From (5.8) and

lim |F(|x]>R)(1+x2)7¢]|=0 Ve>0,
R—-
we easily see that
lim [[F(Jx|]<R}(—A—z)"'F(|x|<R)||=0 VR>0

z 0
imz=0

suffices to prove the last statement of the lemma. But
F(|x] <R)(—A—z)"'F(|x| <R)=i | ¢'F(|x| < R)e'"F(| x| < R)dt
0
= —i[ e "IF(|x| < R)e'4F(| x| < R)dt.
0

Using analyticity of the free evolution in {im ¢ < 0} we may deform the integration
contour in the last integral, obtaining

F(|x]<R)(—A4—2)"'F(|x| < R)=%nfeiz'F(|xl<R)e"A‘F(|x|<R)dt
0

+% [ € F(|x| < R){e4 — 40+ 7120} F(| x| < R)dr.
0

The first integral is bounded in norm by 7/2|z|. By the dominated convergence
theorem the second will also vanish as z— oo if F(|x|<R)e‘4'F(]x|<R) is norm
continuous in C\{0}. But

IF(1x] < R)(e' — e“)F(|x| < R)f |2

ei( (x—y)2/41) ei( (x—y)?/4s) 2
— - d'y| d¥x
i ,M{ G amye (SO
i (x=»)2/41) ei((x-y)2/4s) 2 )
< — - dyll fII* pd*x
= |X|£R{|y|£R (4nit)v/2 (47tlS)v/2 y | f

oltuit)  oiluls)
< Const sup

0<u<R?

2
}Hfllz,

lim || F(|x| < R)(e""—e*)F(|x| < R)|| =0,

s—=t#0

tv/2 - sv/l

and thus

which achieves the proof. O
Next we claim that (1+¢(z))~" exists for all z in the closed upper half plane.
Assume for z,, this fails to be true; then there is a Yy e L([R® x E) such that

q(zoy +y =limg(z, + ie)y + ¢ =0.

el0
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Using [S™1,(—4 —iAd—z,—ie)”*]=0 in formula (5.6) and multiplying the last
identify with S™! it becomes

Hm T Y—A—id—zy—ie) T WS 1y + 5 1y =0. (5.9)

el0
We now take the imaginary part of the inner product of (5.9) with WS~ to obtain

lim) (4, +imzo+e)|(—A —id, — zo —ie) " {T WS~ 'y),||> =0.

el0 n
If im z,, > O this clearly implies T~ !WS~! y =0 and by (5.9) ¢ = 0. Ifimz, = 0 we
only have (T~ 'WS~ 1), =0 for n> 0, but then

d=(—A—iAd—z,—i0)'T WSy (5.10)
is independent of ¢ (i.e. ¢, =0 for n>0), and ¢peL?,(R"), since by (5.9)
T '¢=—S "el(R. (5.11)

Using the distributional inverse to (5.10),
(—A—z))p=T WSy,
we obtain, multiplying (5.11) by WT~!=VT
(=4 + V(& x))p(x) = zop(x). (5.12)

Since this distributional Schrédinger equation has to hold for u—a.a. £€E, (2.3)
clearly implies

B0 =0. (5.13)
Further ¢eL?, = L2, and by (5.11),
¢eH; (R"). (5.14)

We are now in position to apply the
Lemma5.3. Assume VeL*(R") and let peHE(R") satisfy
(—4+V)p=0,

then if ¢ vanishes on some non-empty open set, it vanishes everywhere.
This is a special case of Theorem XII1.63 in [13]. Thus (5.12)—(5.14) imply ¢ =0
and (5.11) y = 0; the claim is proved. Now, since sup [|(1 + g(z)) ™ || < co by the last

imz20
statement of Lemma 5.1, (1+Q,(z)) ! also exists for all z in the closed upper half

plane and
sup [|(1 +Q4(2))™" || = sup sup [|(1 +gq(z + k%)) || < co.

Further : =
[F(k*>E)1—(1+0,) " )f 1= | 11— +qz+k»)" ") f(k)|*dk
K>E

< sup [[1—(L+4E+ k)2 1S 1%

k“>E
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and thus applying once again the last statement of Lemma 5.1,
lim | F(k* > E)(1—(1 +Q,(z))" ") =0,
E-
uniformly on compact subsets of the closed upper half plane. Since clearly
F(k* <E)(1+Q,(z))""

is norm continuous on the same set, we obtain norm continuity of (1 + @,(z))~!. On
the open upper half plane we have

(14+0,@) ' —(14+0,&) !

z—72

=(1+0:(2)" 1+0,)™!

1 Rol?) = Rel@)
Z—12Z

191(2)—04(2)
S,

=(1+0.(2))" G (1+Q:)"!

from which

d
LUt 0,(2)7 "= —(1+0,(2) " 'F1Ro(2)’G,(1 + Q4(2)) ™"

follows in the uniform topology. We just proved the

Proposition5.4. (1 + Q(z)) ™! are bounded continuous functions from the closed upper
half plane to the bounded operators, analytic in the open upper half plane.

5.3. The Birman—Schwinger Kernel Q(z). Recall
Q(z) = (1 + Q1(2)) " "(F,Ro(2)G)(1 + Q4(2)) ™ H(F1 Ro(2)G). (5.15)

The first and third factors are controled by Proposition 5.4, for the second and
fourth we need the

Lemma5.5. Let ¢eCg(R"), then the operator
P(x)Ro(2)(y)

is compact for im z > 0.

Proof. As in the proof of Lemma 5.1 we have

P(X)Ro(2)p(y) = @¢ (p* — k* =ik, —2)" (),

and it will suffice to prove compactness of each summand. This is done in two steps:
(i) ¢(x)(p? —k* —2)"'F(p? < E) ¢(y) is compact for im z > 0.
We may write

P(x)(p* — k* — 2)" ' F(p* < E)p(y)

2 k2+l 2 2
= (@(x)F(p* < E)) mF(P <E) J((k* +1)"'(y)

=(C; ®)B(p,k)(I ® C,), (5.16)
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where C, and C, are compact while B(p, k)e L*(R?*). Assume for a while C,, C, to be
rank one

Ci=(fi)g;. (j=12)
Then (5.16) will be Hilbert—Schmidt since its kernel

F1(0)9:1(p)B(p, k') f5(K')g (k)

clearly is square integrable. The result now follows by approximating C,; and C, by
finite rank operators.

(i) ng 1¢()(p* — k* —2)"'F(p* > E)p(y) | =0.

The proof of this statement is a simple modification of the proof of Lemma 3.8 in
[14], we omit it. Od
Now, consider for example
FiRy(2)Gy = — (1 = A)"(1 + x%) 71— 4,)™"2
Ro(2)(1 = A1+ y?) W y)(1-4,)~"?
= —(5,T 'S THT 5 'Ro(2) T, NT,S, Ty 'Sy S, WL »)S, )

with obvious notation. The first, third and forth factors are bounded, and choosing
¢peCg(R") to be one near x =0 we clearly have

TS 'R(A)T; ! = lim T;1¢<§>Ro(z)¢<%> T, !

in the norm. Thus application of Lemma 5.5 gives compactness of F;R(z)G,, the
same of course being true for F,R,(z)G,. From (5.15) we obtain compactness and
analyticity of Q(z) in the open upper half plane. To see what happens as z becomes
real, we note that combining (5.2) with (5.15),

0(z) = (1 + Q,(2)) " 'F(Ro(2) — R(2))G,. (5.17)

The critical term on the right-hand side of this identity can be controlled in exactly
the same way as we do in Lemma 5.1,

Fy(Ry(2) = Ro(2))G, = (S, T, 'S, ' T,)T, H(Ro(2) — Ry () Ty
(T8, Ty 'Sy NS, WIE S, ),

and we need only to consider

Ty_ 1(R1(Z)—R0(Z))Ty_1= _ij‘eizt(e—-i(—A+V—iA)t_e-i(—A—A)X)® T_leiAtT—ldt.
0
(5.18)

Lemma 5.2 and dominated convergence theorem together imply continuity of (5.18)
in the closed upper half plane.

Summarizing. Q(z) is an analytic function on the open upper half plane, continuous
on its closure with values in the compact operators.
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As in subsection 5.2 we now claim (1 —Q(z))™! to exist for all z in the closed
upper half plane. Thus let us assume e L*(R?" x E) such that

Ozl = .
Multiplying with (1 + Q,(z,)) we obtain by (5.17),

F3R(20)Go¥ + Y =lim F,R (2o + ie)G,Y + 1 =0,
el0

or more explicitly and after multiplication by S; !,

lim T, 'R (zo + i) T, ' W(&, y)S, " =S, 1. (5.19)
el0
Taking the imaginary part of the inner product of (5.19) with W(¢, y)S, ', we arrive
at

lim Y (4, + imz, + &) [ (Ry(zo + i&) T, *W(&, »)S, '), 1> =0.
el0 n

If im zo > 0 this implies Ry(zo)T, ' W(&, y)S; 'y =0 and thus y = 0. If im z, = 0 we
have only that

¢ = R,(zo +i0) T, 'W(, y)S; 'Y (5.20)
is independent of . We now may write (5.19) as
T, =581y, (5.21)

from which we conclude
e A(R") ® Hi,(R") (5:22)

(which is a shorthand for f(y)¢ e LA(R*) ® HY(R") Vfe CX(R").) Multiplying (5.21) by
T, 'W(¢,y) and using

(p? —k* —iA+ V(& x) = z0)p = T, ' W(E, S, Y,
which is the distributional inverse of (5.20), we easily obtain
(=4, +V(E,x)+ A4, = V(Ey)P(x, y) = zod(x, y). (5.23)

From this and (5.22) we further obtain ¢ H3(R") ® H}.; %(R"). As in subsection 5.2
we conclude from (5.23) and (2.3)

Olero=0. (5.24)
We are ready to apply

Lemma5.6. Assume VeL®(R*) and let ¢eH*(R")® Hp(RY) satisfy (—A,+
V(x)(x,y) — (— A4, + V(»)p(x, ) = zd(x, y), then if for some non-empty open set
OcR

d’mvxwzo

¢ vanishes everywhere.
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Proof. H= — A, + V(x)is self adjoint on H%(R"), and there is a measure space (M, v)
such that for some function f on M

LA(RY) ~ [A(M, dv),
HA(RY) = {u(m)| f(m)u(m)e L*(M, dv)},

H acting on L?(M) by multiplication with f. (This is the spectral theorem, see [15].)
Thus

LA(R") @ Hip(R) >~ LA(M) ® Hi,(R)

d(x,y) =@ (m,y)
and
(= A, + V()m,y) = (f(m) + 2)f(m, y)
5 tMx0 = 0.

Application of Lemma 5.3 gives the result. O
From (5.22)-(5.24) we get ¢ =0, and from (5.21) ¥ = 0 proving the claim.

Proposition 5.7. (1 + Q(z)) " ! is an analytic function from the open upper half plane to
the bounded operators, continuous on the closed upper half plane.

5.4 The Resolvent R(z). Proposition 5.4 and 5.7 together with formulae (5.2) (5.3)
clearly imply analyticity of R(z) in the open upper half plane, i.e.

{imz > 0} < p(L).

For 6 > 1
(] +y2)—6/2R1(Z)(1 +y2)—6/2 =i j eizte—i(— A+V—iA)t®(1 +y2)—6/2e—iAt(1 +y2)—6/2dt

0
has, by Lemma 5.2, a continuous extension to {im z = 0}. In the same way, the same
property holds for

(1+y*)7%?Ry(z)G, and F,R(z)(1+ y*)~%2
Thus by formula (5.3)
(1+y*)~7*R(z)(1 + y») ™2 (5.25)

is continuous on {im z = 0} for § > 1. Clearly the same is true if we replace y by x in
(5.25). Interpolating between the two cases we obtain our

Theorem 5. The resolvent R(z)= (L —z)~ ' is analytic in the open upper half plane,
and extend to a continuous function from its closure to

AL (R*) @ LX(E), L2 (R*") @ L(E))

for any 6 > 1.

6. Confined Systems

In this section we consider the random time dependence of the potential as a
perturbation, the unperturbed potential satisfying:
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U(x)20, (6.1)

UeL® (RY), (6.2)

lim U(x)= + 0. (6.3)
|x|— 00

Since the argument of this section is very close to [1], we will be very sketchy. The
unperturbed Hamiltonian

well defined as form sum, is a selfadjoint positive operator with compact resolvent
(see for example [9] and [13]). We perturb it in the usual way with a potential V(&, x)
which we assume continuous in the first, and two times continuously differentiable
in the second argument, with bounded derivatives. We also assume the non-triviality

condition (2.3), and the usual hypotheses on the process &(-) (see [1]). Then the
general results of [1] may be applied to the quantum evolution generated by

H(t)=H, + V(&(), x). (6.5)

The only problem is to verify the spectral condition (}). This may be done as in the
appendix of [1], provided we can extend the unique continuation theorem used
there to the operators

H(&)=Ho+ V(,x) (CeE).

The proof of such a result is an easy modification of that given in [13] once we note,
as a simple consequence of (6.1)—(6.3):

D(H,) = D(H(¢)) = Hipo(R).
THus under our assumptions
1 T
lim — [ [ CU(t,0)f ||*dt =0
T— o0 T 0

with probability one for any compact C and any state f. Applying this to the spectral
projection

C=F(H,<E),

which is compact for any finite energy E, since H, has compact resolvent, we obtain
the desired result:

Any state f has, under the time evolution U(t,s) generated
by (6.4)—(6.5), an unbounded H j-energy (with probability one).

For similar but stronger results on the perturbed harmonic oscillator see [17].

Appendix. The Asymptotic Projectors P ; Proof of Lemmad4.1.
Here we start with the momentum representation

H = LR, d"p),
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and thus look at X as a differential operator

; 0

op’

All Sobolev spaces over RYin this appendix have to be understood in this setting, and
we will drop any mention of the independent variable 7. The formula

X =

0 if A<0
)4 w)= {/ym— W2 £(11/2) else

clearly defines a partial isometry
Jo H > A =R, AH® L>(S’ ™, dw) (A.2)

whose range A, = L*(R,,dA)® L*S*~!,dw) is nothing but the space of spectral
representation for the free Hamiltonian p?, thus

(A.1)

JtI=1,
JJt =F(A>0). (A.3)
Let us also define
0
S=i— A4
i (A4

on . Then 1 and S are canonically conjugated operators and in particular the free
evolution e~ 7 acts as a shift on S:

SJe Pt =Se M J =TS 4 1) J. (A.S)
This strongly suggests to set
. =J F(SeR,)J.
The first immediate consequences are:
P, +P_ =J"{FS>0+FS<0)}J=J"J=1I
T EST
and a short computation using (A.3) gives
P¥=P,.
Also very easy is:
IP e”®f || =|J*F(SS0)Je [

S|FSs0e Jf|

Sle ™ F(S+ts0)Jf | by (AS)
' SIFASI>1t)Jf -0 as t— =+ o0,
ie.

S'lim P+€—ip2' = 0

[ -]
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The norm estimate of Lemma 4.1 requires some more work, but the idea is very
simple.
We claim for v=3 and o > 2:

JeBH(R"), H'(R)® L*(S*~1)). (A.6)

From this let us prove our norm estimate; for simplicity we only consider the case
t— + 00:

”P_e—ipzt(l +x2)792f | = |IJ+F(S<O)Je"iP2‘(1 X
S| F(S <0)e " J(1 +x3)~72f|

SIFES <—0J(1+x2)"2f |

SIFS < —0S™1SJ(1 + x?) =2 f |
SIFES < =S~ I ISIA +x) 7721
=y (N paT

where ||| J]|| is the norm corresponding to (A.6), and we are done. Let us now prove
the claim in three simple steps:

Step 1.
JeBH(R), H'[R,)® LXS* ™).
Let feCg(R"), then a simple computation shows

(i0,J N4 w)=(JTf)Aw) for A>0, (A7)

where T is the formal time operator

g e i _, 0
T=%{p P X+XDPp 2}~=E(v——2)p 2+§p '0,.

But 0,=pXeB(H(R"), H° }R') and a simple estimate gives p "e#
(HY(RY), L3(R"))if r < Min(v, s). Thus with our assumptions v = 3 and ¢ > 2 we obtain

Te# (H(R"), LX(R")),
and the first step is achieved by (A.7) and a density argument.
Step 2.
JeA (H(R"), Hy(R,)® L*(S* 1)),
By a well known characterisation of H}(R ) (see for example [16]) it suffices to show
AT TN w)eR, x §*™Y) for feH(R).
But
AN f=Jp%f,
and by the same estimate as in step 1 p~2e%(H?, L?), which prove step 2.
Step 3. Use the following standard fact in Sobolev technology (see also [16]), i being



Asymptotic Completeness 279

the imbedding of L*(R,) in LX(R):
ic# (HyR.), H\(R)),

from which the claim clearly follows.
Finally let us prove the compactness statement of Lemma 4.1. We consider only
the case t >0, i.e.

P_e PP(x) = P_e P"F(|x| < R)p(x) + P_e "P*F(|x| > R)p(x).

Since the second term in the right-hand side vanishes in norm as R — oo by our
assumptions on ¢, we need only to show the first term to be compact for all R > 0,
this can be further written as

Pe™ (1 4+ x2)7 V(1 4+ %) 2F(1x| < R},

and we need only to consider the case ¢(x)=(1+ x?)~2. To get a further
decomposition assume a function ye C*(R) to be given with the properties:

() 0=sx=s1
.. 0ifAs1

(iif) sup |x'(A)| = 2.
A

We then set yz(4) = y(4/E) for any E > 0 and note by (iii)
2l <2E71 (A.8)

Then
P_e P14 x3) 72 = P_e”Plyy(p?)(1 + x?) 712
+P_e” (1 — ()1 + X372,
and the second term in the right-hand side being clearly compact, we only need to
prove the vanishing in norm of the first term as E — c0. To do that we first look at
NS1Tze@?)(1 + X372 | = 1D I+ x*) "2 S|
= | {xe(W)S + [S, 2T} J(1 + x*) " V2|
S xeASI(A+x3) 2L+ (W) I+ X272 1,
and use (A.7):
FA>08J=JT
ie.

YHAF(A > 0)ST = xp(A)SJ = AT = Jye(p®) T
from which

NS (1 +x3) 721 < e@®) T +x3) 721 [+ ) (1 + x2S |

u(p%{ﬁ(v—z)p“%ip' 115'?}(1 X)L+ )1+ xD) Y

<
- 2

§<v—4—2E‘1+%E_1/2>||f[|+2E"||fl| <Const E™ [ [,
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where we have used the properties (i)—(iii) and in particular (A.8). Then we obtain:

| P_e™ P tygp?)(1+x%) 712 S | F(S < O)e ™I yglp?)(1+x%) 172
<IF(S< —Jxep?)(1+x3) 12

< Const
= tE'/?

S
Jre(pH) (1 + x?) ™12 0. O

<=
It
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