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Abstract. For a quantum mechanical two-body s-wave resonance we prove
that the evolution of square integrable approximations of the Gamow function
is outgoing and exponentially damped. An error estimate is given in terms of
resonance energy and width and the time variable. Furthermore the energy
distribution is given explicitly. We obtain the Breit-Wigner form. The results
are used in an α-decay model to prove general validity of the exponential decay
law for periods of several lifetimes.

1. Introduction

The success of quantum mechanics to describe α-decay from a heavy nucleus is
well-known. It was established by Gamow [3] and Gurney and Condon [4]. To
simplify the problem the discussion is conveniently based on the following one-
dimensional model: An α-particle is considered in a spherically symmetric
potential V= V(r) comprising a short-range negative piece from the attraction
between nucleons and a positive piece of longer range from the Coulomb repulsion
between protons. The large barrier thus defined by V has the effect that it confines
the α-particle for a long period until it eventually escapes by tunneling. The
relatively small energy differences of α-particles escaping from RaA, RaC\ and Ur
(examples taken from [3,4]) account in this model for the extremely large decay
rate differences observed.

Although the decay rate formulas obtained in [3,4] are identical, the
derivations are different. The idea in [3], that the α-particle is associated with a
complex energy E — ίΓ/2 ( = k^, fe0 = α — iβ\ an exponentially increasing purely
outgoing (~β'fcor for r large) space function f ( k 0 , r ) and consequently (?) an
outgoing exponentially damped state, is missing in [4] and, it seems, in modern
textbook derivations. E and Γ"1 are the energy and the lifetime, respectively.

The purpose of this paper is to put the above idea on a rigorous footing, first of
all to prove that the evolution of some square integrable approximations of/(/c0, r)
is in fact outgoing and exponentially damped. To do this we most conveniently
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assume that for some #s>0, F(r) = 0 for all r>Rs. It is remarked that this
assumption is as realistic as a repulsive Coulomb piece extending to infinity. This is
due to the electrons surrounding the radioactive nucleus. Let fR=f(kQ, -)χ(o,R)
Then the square integrable approximations, which we investigate in detail, are

given by fRl for R1 ̂  Rs. Letting H= — ~ττ + V on L2(R+), our main result (stated

here in an imprecise way) is as follows:
For a period of many lifetimes (measured in tΓ) we have (measured by the

L2-norm)

p-itHf np-itkof (Λ ι \
e JRι—e /JR 2 (ί)> "•"

where R2(t) = 2at + Rl.
In our units the reduced mass μ of the system comprising nucleus and α-particle

is equal to 1/2 I the substitution ί-> — introduces μ and real time 1. Hence R2(t)

= Vcl ί+ JR1 ? where Vcl is the classical speed corresponding to momentum α. We
also remark that α ̂ >β, and hence £~α2.

A number of conclusions can be drawn from (1.1): First of all e~ίtHfRί is
outgoing and exponentially damped. Secondly all cutoffs fRί correspond to
different stages of the evolution of the same state, and hence the choice of cutoff
radius R1 is in some sense not essential. Furthermore the exponentially increasing
property of /(/c0, r) gets the obvious interpretation that larger distance to the
barrier corresponds to earlier escape and hence, because of the decreasing
outgoing flux from the barrier, we find the larger position probability there.
Beyond the (free) classical propagation radius R2(t) the position probability is
equal to zero. The above interpretation was already noted by Gamow to explain
the (probably) unwelcome feature of /(fc0,r), the infinite growth at infinity.
Another consequence of (1.1) is the exponential decay law.

According to physical intuition, tunneling [because of the /(/+ l)/r2-barrier]
is much slower for angular momentum quantum numbers ( ̂  1 than for ( — 0. This
was already noted by Gamow and is the main reason why we restrict the entire
discussion to s-wave resonances.

The present model concerns the description of α-decay by means of a simplified
potential V. The α-particle state is assumed to be a truncated Gamow function. In
spite of the crude simplification it seems that many phenomena can be explained
within the model, qualitatively as well as quantitatively:

1. Discreteness of detected α-particle energies accompanied by some un-
certainty (widths), probably (?) Breit-Wigner distributions.

2. Purely outgoing behaviour, time-delay and the decay law (observed to be
very accurate for long times).

3. The connection between decay rates and energy levels (the decay rate
formula).

The mathematical results of this paper are stated and proved in Sect. 3. We
emphasize Lemma 3.2: The energy distribution of the state fRl is expressed in
terms of the S-matrix element S(k). The Breit-Wigner form is obtained. Fur-



Truncated Gamow Functions 593

thermore technically Lemma 3.2 plays a central role in this paper. Our main result,
corresponding to (1.1), is Theorem 3.6.

In Sect. 4 we quantitatively discuss applications to the α-decay problem: The
decay law is proved in general to be valid for periods of several lifetimes. Examples
from [3, 4] are numerically treated. Furthermore the propagation radius of the
state e~iίk°fR2(t} is found to be 2α/Γ less that the (free) classical propagation radius,
see (4.2). Because 2α is the classical outgoing speed and 1/Γ is the lifetime, we arrive
at the validity, in the sense of mean value, of the physical picture that the
propagation is delayed corresponding to nucleus confinement for a lifetime before
escape.

In the present decay model the α-particle is described by means of an intrinsic
resonance state (the truncated Gamow function). We do not ask how to prepare
this state. This point of view is justified by the present long lifetimes. In scattering
experiments time-delay is often a phenomenon that can hardly be measured. In
this case we cannot maintain the picture of a pure resonance phenomenon but
complicated interference between incoming and scattered waves is present. As
noted by many authors, one can "extract a resonance term" from a matrix element
(g,e~ίtHg) corresponding to a scattering state g by a spectral deformation:

Diagram 1 Y

As usual we find that (g, e ~ itHg) = Ce~ ίt([° + J e ' "z -f-1| P2g \\ 2dz (a simple pole is
y ClZ

assumed). An important problem in scattering theory is to find states g such that
the resonance term Ce~itk% "dominates" the second term for some time-interval. It
is interesting to note that for some g^fRί our results provide the statement: The
first term "dominates" the second for a "long" time, see Remark 3.8. The statement
of Corollary 3.7 is analogous.

The physical discussion of this paper concerns α-decay, however, we believe in
further applications. We refer to [1]. Various authors mention here as an open
general problem to find rigorous results on the connection between lifetimes and
poles of the S-matrix, on the validity of the decay law, etc. Our results are relevant
also from the point of view of [6] (and authors referred to therein), where detailed
knowledge of the energy distributions of resonance states in some rearrangement
scattering experiments are essential for the purpose of doing numerical
calculations.

In [9] we generalize our results in two directions. We prove results for all
angular momentum quantum numbers, and secondly in [9] V= V(r) is assumed to
be a rather general, radial, and short-range potential. Explicitly, of the form of an
"exterior analytic" plus an exponentially decaying potential. The result (1.1)
(modified in an obvious way for /^ 1) remains valid. An explicit error estimate is
given.



594 E. Skibsted

There exists an elementary and short proof of (1.1), which is totally different
from the one presented here. The idea is the following: We shall prove that
eίt(H~k&fR2(t) is almost constant for a long period. First approximate /R2(f) by a

suitable smooth function gR2(ty Then one realizes by performing the differentiation

that — {eίt(H~k^gR2(t}} is "very small." Now (1.1) follows by integration. In this way

it is possible to obtain an error estimate almost as strong as Theorem 3.6. Roughly

R

the forms of the error constant are identical. The form is K = C(ίΓ)1/21 — 1 . Due

to the very explicit nature of the proof of this paper it is tempting to claim that this
"form" of the constant in Theorem 3.6 is "optimal." At least it is easy to see (by the
same method of proof) that as t goes to infinity, e~itHfRί and e~ίtk°fR2(t} tend to
become mutually orthogonal, so that (1.1) does not hold for t large.

The proof briefly described above has the advantage that it can be generalized
rather easily to handle resonances of multiplicative non-radial potentials. This is
done in [10]. Provided Rί is "large," a result like (1.1) holds true and an explicit
error estimate can be given. Unfortunately it is not possible (contrary to [9]) to
control how large R^ has to be in the non-radial case.

2. Definitions and Assumptions on V

We consider a multiplicative, radial, and real potential V= V(r) satisfying the
following two conditions: For some RS>Q, F(r) = 0 for all r>Rs, and
RS d2

J r\V(r)\dr<co.LetH0= — — -j be the free Hamiltonian on L2(R+) determined by
o dr
the boundary condition #(0) = 0 for g e D(H0). Then it is easy to prove that V is
infϊnitesimally form-bounded with respect to H0. Hence we can construct the total
Hamiltonian H = H0 -h V by the standard quadratic form technique.

The following functions (and notation) can all be found in Newton [7, Sect.
12.1].

We consider for fce]R\{0} solutions φ(/c,r), /(/c,r), and ψ+(k,r) of the equation

- -r-

— φ(fc, 0) = 1, and /(/c, r) by the condition /(/c, r) = eikr for r ̂  Rs. ψ
+ (fc, r) is equal to

kω(k r)
V . / , where the lost function F(k) is given by F(k) = W(f(k,r),φ(k,r))
F(k)

= — φ(fc, r)/(/c, r) — φ(/c, r)— /(/c, r), the Wronskian between φ(k, r) and /(fe, r). It
ar ar

is known that F(fc)Φθ.

The connection between φ(k, r) and /( ± /c, r) is given by

2 +V(r)~ k2 ) ψ(r) = Q. φ(k,r) is given by the conditions φ(k, 0) = 0 and

Ψ(k, r) = (F( - k)f(k, r) - F(k)f( - k, r)) . (2. 1)
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Using F(k) = F( — k) the "unitary property" of

|S(fc)| = l , follows. (2.2)

follows. (2.3)

Because φ(k, r) is real, also the equation

...+ „. .Λ k(P(k>r)

In this paper we make use of the following expression for the kernel of the
Ί T-I

spectral density of H, —~, where we put λ = k2 and k> 0.
aλ

dF 1
—i(r,r')=r-φ+(/e,r)V+(/c,r').
aλ kπ

The expression is found utilizing the identity 2πi—^ = lim{(H — λ-iε)"1

dλ ε i o
-(H-λ + ίsΓ1}, the fact that the kernel of (H - λ2 + iO)"1 is given (cf. [7, (12.40)])
by

φ(k,r)f(±k,r) . ^ , , φ(/c,/)/( ± fc, r)

F(±fc) f°r Γ-r aΠd -~F(±fcΓ~" f°r

and the formulas (2.1), (2.3).
The orthogonal projections onto the subspace of absolute continuity of H and

the span of all eigenvectors of H are given by Pac:=I-E0 and Pe:=E0

= X( - oo, o](#)> respectively.
The functions φ(k, r), /(/c, r), and F(k) admit analytic extension in k to the

whole fe-plane. A resonance is defined to be a point k0 = α — ίβ (α, β > 0), where F(kQ)
=/(fe0,0) = 0. We define the resonance energy £ and the width Γ by k2

) = α2 — β2

— ί2αβ = E — ίΓ/2. For R^RSWQ introduce truncated Gamow functions fR given

Using that /(fe0, r) is solution of ( — -j^ + V(r)-kJ,} φ(r) = 0 we find,

d
- W(f(k0, r), /(/c0, r)) = (P0 - kl)\f(k0, r ) \ 2 . (2.4)

Similarly for fceRΛ,

k r\ f(k r\\ — (k2 — k2\rf)(k r\ f(k r} (Ί SΊ
\., I Jy J ^/vQ? )) \ θJ T \ ? V/o/ V^O' ) ' \"^)

3. The Mathematical Results

Throughout this section a resonance fc0 is fixed. In the Lemmas 3.1-3.3 to be given
below we fix R ̂  Rs.
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The formula in Lemma 3.1 is well-known. It was applied for instance by
Ashbaugh and Harrell [2, 5] to express β in terms of f(k0, r). However, for our
purpose the formula is useful of the form where ||/Λ|| is given in terms of β.

R £2βR

Lemma 3.1. ||/J2= f \f(kQ,r)\2dr= -^.
o 2p

Proof. We integrate (2.4) and use the known boundary properties of /(fc0, r) at
r = R together with the resonance condition /(fc0,0) = 0.

Lemma 3.2. For k > 0,

> = Γ
o

•-„].
Proof. By integrating (2.5) and using the known boundary conditions, we obtain

f φ(k, r)f(k0, r)dr = jf^ ( - φ(k, R)ik0e
ik°R

0 K KQ

(3.1)

We apply (2.1) in the following calculation:

- φ(k, K)ik0e
ikoR + ~ ψ(k, R)eikoR

- φ(k, R)ikeikR + ~ <p(k, R)eίkR + φ(k, R)eikRi(k - fc0)

eίkRίS(k)f(k, R)-f(-k,
2k

R - 1] . (3.2)

Now the lemma easily follows from (2.3), (3.1), and (3.2).

Lemma 3.3. The following estimate holds true.

Proof. Using ||Pac(/R)||2= f \<ψ+(k, }JR}\2dk, (2.2) and Lemma 3.2 we find

π o l/c — KOI
(3.3)
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where

α = l ,

and

c = Re^-fc°

597

C Γvr

We now prove that the right-hand side of (3.3) is equal to

-- ί ̂ 7
e2βRc (i e the other terms cancel).2 — T2\2n o \k — KQ\

The following two integrals, calculated by changing the contour of integration
(0, oo)->(0, — oo) and using Cauchy's theorem, are useful:

y »
r i

[dk 2_k2ί

According to Lemma 3.1 and (3.4),

| | 2 =2 2/ | J t<5

n o

It follows from (3.3) and (3.6) that

(3.4)

(3.5)

(3.6)

v- j ι*-ιv - 2 l 9 ) '

π o |fc — fcol'

We remark that b = -ί -p 1 1 , and thus (3.4) and (3.5) imply that
2\ k )

1 1

The identity

.2 k2 |2 l

πΓΊk 2 -fc 2 ol
(3.7)

is proved.
To complete the proof of the lemma the following estimates are useful.

T 1

o \k + k0\
: • <α-i (3.8)
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and

iL22 o Ifc2-*2,!2

1/*V'* /a

1/2

(3.9)

In the last step of (3.9) we have used (3.4) and (3.8).

From (3.7), the estimate |c| rg

ately get that

k-k0

k

1
1 2

k-k0

k
, (3.8) and (3.9), we immedi-

/2 fi
+E_

2β π

Hence, taking also Lemma 3.1 into account, the lemma is proved.

Remark 3.4. The bound in Lemma 3.3 does not depend on R. However (as
expected), it is true that ||Pe(/Λ)||/||/Λ|| ̂ 0 for R^oo. This fact follows from (3.7)
and the Riemann-Lebesgue lemma.

In the remaining part of this section we fix R1 ̂  Rs.

Lemma 3.5. Introducing R2 = ί, ί^O, we have the estimate

Proof. By Lemma 3.2,

1 / 2 2

"+41

40j

F^>s(-*>

— k
S(-k){a + b + c},

2k '"'-"]

where
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and

c = e ~~ itk2ei(k° ~ k}R !( 1 - eίt(k2 ~ k&ei(k° ~ fe)2αί)

Using Cauchy-Schwarz' inequality we find

= - \x(k, t)\2dk
n o

599

l/2

1/2

l/2\2

(3.10)

Because , (3.8) immediately provides the estimates

(3.11)

(3.12)

The proof of the following estimate will be given later.

oo J^2r 11 "v i ιθ

1 / 2 2 1 / 2V2 3
+ττ

10
(3.13)

We insert (3.11)-(3,13) into the right-hand side of (3.10) and prove the lemma:

~ίtH

JR2)

π
/ g \ l / 2 \ - 2x | ι + ι o(

1 / 2 2

1/21 2

1/2

"3 / / / Λ l / 2 \ 2 / //?•

έ-^T+Kϊ) ) (1+10(ί^^-2 _ 3,1 / 3 Ί 2+
40

Proof o/ (3.13). C/eαr/y
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By inserting k2-k% = 2oί(k-
— iΓ/29 we obtain

E. Skibsted

and (fc0 - fc)2α = - 2α(fc - α)

We shall utilize the following inequality valid for all x ̂  0 :

. (3.15)

Remark that (1 +x)
~CQSX

Equations (3.14) and (3.15) provide the estimate

^-k0\
2

-/CnΓ

^ and that ( - + 1 ) (1 -cosx)^ (-4-1)2.
2 \x J \x J

We now proceed as follows, using (3.16):

oo JU2

(3-16)

a\2 l + t\k-a\2

-αί1/2

1/2

z + 2ί1/2α 1+z2

(10((Γ)'/2 oo \

ί + ί
-αl1/2 10(fΓ)'/2/

10(£Γ)1/2 + ί1/2

10(ίΓ)1/2

l / 2 \ 2

7 , 1
+ ί έfe-2

lO(ίΓ)1/2

1 / 2 X - 2 ^

The proof of (3.13), and hence the lemma, is complete.
Our main result is the following theorem.

Theorem 3.6. Let R2 = ί, ί^O. Then

where

1 / 2 2 l /2\-2 3 | l /2^2

+ 40J
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Proof. We use that

The first term is estimated as in Lemma 3.5. The second as follows:

(Lemma 3.3)

(Lemma 3.1).

We have finished the proof.
Theorem 3.6 almost immediately implies the following Corollaries 3.7 and 3.10,

which concern two different "measures of decay."

Corollary 3.7. For all ί^O,

where |x(ί)| ̂  eΓί/24π' 1/2K(α, ft ί)1/2

Proof.

tfi^-^M/^

=*-^IIΛJ2χ{l+* f t^^^

Cauchy-Schwarz' inequality and Theorem 3.6 now complete the proof.

Remark 3.8. There exists another proof of Corollary 3.7 based directly on Lemmas
3.1-3.3. One "extracts" the term

Wπ^Jdke-^-ϊ^ from (PΛJRi9e-mfRl)\\fRί\Γ2

9
0 |fC — /C0|

and then uses Cauchy's theorem on the integral (as in the proof of Lemma 3.3). A
slight improvement of Corollary 3.7 is obtained [the factor (ίΓ)1/4 is avoided].

Remark 3.9. The bad behaviour of the bound in Corollary 3.7 as £-* oo is expected.
In fact, it can be proved that there exists no g φ 0 such that for all t>Q,\(g,e~ itHg)\
<Ke~ε\ K, e>0. This is well-known, see for instance Simon [8].

Corollary 3.10. LetR3^Rί be given and define D = mm{eΓt,e2β(R*-Rl)},t^O. Then

(^^Λ^(o,^"^

where
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Proof.

(e-*HfRl,X(0,R3)e~ilHfRi)
itHfRί-e~M2°fRJ,χ(0,R3){e^^

By Lemma 3.1 the first term is equal to

e~Γ<D\\fRl\\2 and h(Q,R3}e'^fR2\\ =

As before we can now complete the proof using Cauchy-Schwarz' inequality and
Theorem 3.6.

4. The Physical Applications

Within the framework of our simplified α-decay model we now present a proof of
the validity of the exponential decay law for some time-interval. We calculate the
probability Pί? that an α-particle is detected during the time-interval (0, £). Letting
#3 be the radius of detection we have according to Corollary 3.10 [D and y(t) given
there] that

i^^a) is assumed to be the α-particle state at the time ί = 0. Thus for

(4.1)
The "delay" term 2β(R3-R1)Γ~i is due to finiteness of the speed of the

escaping α-particle. In fact, explicitly 2β(R3 — Rί)Γ~1 = (R3 — R1)Vcl~
1, where

Fcl = 2α is the classical speed of a free α-particle with energy E ~ α2. In most
experiments R^ = R3 is the "right" choice of R^.

If for some time-interval (2jS(K3-JR1)Γ~1,ί0), \y(t)\ is "small" compared to 1,
then (4.1) is precisely the law of exponential decay [an integrated exponential
distribution function then has the form (4.1)]. Table 1 below indicates the lengths
of time-intervals (2β(R3 — Rί)Γ~i

)t0) for RaC, RaA, and Ur respectively, such
that \y(t)\ < 0.2 or \y(t)\ < 0.01. The data in the first two rows have been taken from
[4], The third row gives 2/?jR3 in the case R3 = 1m, the fourth row Γ/E. We remark
that in the evaluation of \y(t)\ we can use \ Γ/E instead of the quantity β/α. Also we
remark that 2βR3 <ζ t0Γ for physically realistic values of R3 (the third and last row),
so also in the case Rί <R3, 2β(R3 — Rί)Γ~ί is negligible compared to ί0.

Table 1

Lifetime Γ"1

Speed
2β#3, JR3 = l m
Γ/E

Mί)|<0.2fort0Γ =

Wί)|< 0.01 for ί0Γ =

RaC

4.4KΓ8mi.

1.92109cm/s
210~ 2

310-1 7

12

6

RaA

4.4 mi.

1.69109cm/s
210'10

410'25

21

15

Ur

4.410

1.410

310-

15 mi.
9cm/s
25

610-40

37

32
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It is interesting to note that the sharp cutoffs fRl are chosen only for technical
convenience. For instance we could use smooth cutoff approximations of the
Gamow function as well. This is due to the fact that in a part of the space defined by
r^Rs, and for instance r<R^ = 1 m, |/Kl(r)|2 is "very small" so that

ί \fRl(r)\2dr^ ί \fRί(r)\2dr (the third row and Lemma 3.1) .
Rs 0

Hence it is clear that any smooth cutoff (in distance larger than Rs) approximation
of the Gamow function is "very close" (measured by the L2-norm) to some sharp
cutoff approximation /Λl, and thus we could use our mathematical result to handle
smooth cutoff approximations also.

Justified by Theorem 3.6 it is interesting to calculate the propagation radius
(e-^fRvre-Wfdllf^r2 of the state «Γ"fc*Λ2 HΛJΓ 1 . This straightforward

RI
calculation is omitted. We remark that the trivial inequalities, 0< J r\fR2(r)\2dr

ρlβRl Rί R2 °

< R], -^TΓ-, and the decomposition (fR2,rfR2)= ί + ί are utilized. The result is
2p o RI

(e-WfR29re-*k*fRJ\\fRιr^ (4.2)

where Rcl = R2 = Rί + 2ut, Vcl = 2u and

We can assume 2βR1<ΐ. The physical interpretation of (4.2) is obvious: The
propagation is delayed corresponding to nucleus confinement for a lifetime.

Using e ~ ίtk°fR2, we can calculate the outgoing flux at distance R<R2(R^ Rs) :

- ÎIJEco.*)*-^^ (4.3)

Thus at fixed t the flux increases as R increases. This is physically expected. Larger
R corresponds to earlier escape, and hence larger outgoing flux from the barrier
[this time dependence of the flux also follows from (4.3)]. The above calculated flux
is also given by

H
At I 0

Acknowledgements. It is a pleasure to thank K. Taulbjerg and E. Balslev for discussions and
reading of the manuscript.

References

1. Albeverio, S., Ferreira, J.C., Streit, L. (eds.): Resonances - models and phenomena. In: Lecture
Notes in-Physics. Berlin, Heidelberg, New York: Springer 1984

2. Ashbaugh, M.S., Harrell, E.M.: Perturbation theory for shape resonances and large barrier
potentials. Commun. Math. Phys. 83, 151-170 (1982)



604 E. Skibsted

3. Gamow, G.: Zur Quantentheorie des Atomkernes. Z. Phys. 51, 204-212 (1928)
4. Gurney, R.W., Condon, E.U.: Quantum mechanics and radioactive disintegration. Phys. Rev.

33, 127-132 (1929)
5. Harrell, E.M.: General lower bounds for resonances in one dimension. Commun. Math. Phys.

86, 221-225 (1982)
6. Menon, V.J., Lagu, A.V.: Normalizable resonance wave function analyticity and decay law.

Phys. Rev. Lett. 51, 16, 1407-1410 (1983)
7. Newton, R.G.: Scattering theory of waves and particles. Berlin, Heidelberg, New York:

Springer 1982
8. Simon, B.: Resonances and complex scaling: A rigorous overview. Int. J. Quantum Chem.

14, 529-542 (1978)
9. Skibsted, E.: Truncated Gamow functions and the exponential decay law (to appear)

10. Skibsted, E.: On the evolution of two- and three-body resonance states (to appear)

Communicated by B. Simon

Received May 21, 1985; in revised form January 9, 1986




