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Abstract. Consider a one-dimensional independent bond percolation model
with p; denoting the probability of an occupied bond between integer sites i and
i+j,j=1.1f p; is fixed for j = 2 and lim j?p;> 1, then (unoriented) percolation

occurs for p, sufficiently close to l.JThis result, analogous to the existence of
spontaneous magnetization in long range one-dimensional Ising models, is
proved by an inductive series of bounds based on a renormalization group
approach using blocks of variable size. Oriented percolation is shown to occur
for p, close to 1 if lim j*p; > O for some s < 2. Analogous results are valid for one-

j=o
dimensional site-bond percolation models.

1. Introduction and Main Results

We consider translation-invariant one-dimensional independent site-bond percol-
ation models in which each site i€ Z is alive (respectively dead) with probability A
(respectively 1 — ) and in which the (non-directed) bond between any distinct i, je Z
is occupied (respectively vacant) with probability p; _ (respectively 1 —p, ;). All the
sites and bonds are mutually independent. We will treat both nonoriented and
oriented percolation. In ether case the cluster of i, C(i), consists of those living sites
for which there is a path of occupied bonds starting at i, ending at j, and touching
only living sites; in particular ieC(i) if and only if i is alive. In nonoriented
percolation, any such path is allowed; in oriented percolation only paths that move
to the right at each step are allowed. Such site-bond models reduce to pure bond
models when 4 =1 and to pure site models when each p;=0 or 1.

A special case is bond percolation with 4 = 1 and p; = 1 — exp(— ]| ~*) for some
s, $=20. It is an elementary fact that for s=<1, percolation occurs (iec.,
P, = P(|C(0)|| = o) > 0, where || C|| denotes the number of sites in C) for any § > 0;
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the fact that moreover (in the nonoriented case) C(0) = Z [GKM] will not concern
us in this paper. It can also be shown that for s > 2, percolation does not occur for
any B, while for 1 <s <2, percolation does not occur for small g (i.e., when

2 Y p;<1)[Sc]. Our first main result is a proof that for 1 <s < 2, oriented (and a
i=1

fortiori nonoriented) percolation (and hence a phase transition) occurs for sufficient-
ly large B. This is analogous to the occurrence of a phase transition in long-
range one-dimensional Ising models having an |i —j| ~* interaction with 1 <s<2
[D]. Our second main result (which applies only in the nonoriented case) is that for
s = 2, percolation (and hence a phase transition) occurs for large . This is analogous
to the corresponding Ising model result [FS].

We note that the question of percolation in long-range one-dimensional models
was posed by Erdds several years ago [Sh]. In [AN], further results for the s = 2 case
are presented which go beyond what was currently known for Ising models. In
[ACCN], the results of [AN] are extended to Ising (and Potts) models; in the
process, the relation between the percolation results presented here and the Ising
results of [FS] is clarified.

We conclude this section by stating our main results for general one-dimensional
site-bond models whose p;’s satisfy appropriate asymptotic hypotheses. Theorem
1.1 corresponds to oriented percolation for 1 < s < 2 and Theorem 1.2 to unoriented
percolation for s=2. Our results on the occurrence of unoriented percolation are, in
a certain sense, optimal (see Remarks 1.3 and 2.4 below). Our results on the
occurrence of oriented percolation can perhaps be improved. It is not clear, for
example, whether oriented percolation can occur for s = 2. The proofs of Theorems
1.1 and 1.2 are based on a renormalization group analysis. In Sect. 2, this analysis is
introduced in terms of natural “continuum-bond” models with simple scaling
properties. It is then shown that the proofs of our main results can be reduced to
certain asymptotic results concerning iterated mappings on two (for Theorem 1.1) or
three (for Theorem 1.2) dimensional parameter spaces. In Sect. 3 (for Theorem 1.1)
and Sect. 4 (for Theorem 1.2) these iterated mapping results are shown to be valid. As
expected, there are many more technical details involved in the proof of Theorem 1.2
since it treats the critical value of s. It may be worth remarking that although most
renormalization group analyses are approximate or heuristic, ours produces
rigorous bounds. See [ACCFR] for another (but different) rigorous renormalization
group argument in a percolation context. See [AYH] for a pioneering (nonrigorous)
renormalization group analysis of 1/|j — i|* Ising models.

In the statements of both theorems, p; and 4 are regarded as parameters with p;
fixed forj > 1. A will be one of the parameters in both parameter spaces introduced in
Sect. 2. There will also be a parameter 8, essentially lim j*p;, which controls the long

J
range behavior of the model. In the two parameter space (for Theorem 1.1) the short
range parameter p, is dropped while in the three parameter space (for Theorem 1.2)
it is replaced by a closely related cutoff parameter ¢.

Theorem 1.1. If a one-dimensional site-bond model has liminf j*p;>0 for some s <2,
j o

then (with p; fixed for j > 1) percolation (both oriented and nonoriented) occurs when p,

and A are sufficiently close to 1.
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Theorem 1.2. If a one-dimensional site-bond model has liminfj*p;> 1, then (with pj
j— oo

fixed for j > 1) nonoriented percolation occurs when p, and A are sufficiently close to 1.

Remark 1.3. The hypothesis of Theorem 1.2 is essentially as weak as is possible, since
itis proved in [AN] that percolation cannot occur if lim sup j’p; < 1. See Remark 2.4
below for further discussion of this point. Note that in the pure bond model with
p;j=p/j* for j =2 1, where p is necessarily restricted to the interval [0, 1], it follows
from Theorem 1.1 that for s <2, the critical value of p for (either oriented or
nonoriented) percolation is some p. < 1, while it follows from the result of [AN]
mentioned above that for s=2, p,= 1.

Remark 1.4. 1t can be shown that in the parameter region where the proofs of
Theorems 1.1 and 1.2 apply, the conclusion that percolation occurs (i.e., that an
infinite cluster exists with probability one) can be strengthened to the conclusion
that a positive density infinite cluster occurs with probability one. Note in this
regard that by arguments used in [NS], it suffices to show that C(0) has positive
lower density with positive probability, which is indeed shown at the beginning of
Sect. 2. Presumably, it is the case in this parameter region that the infinite cluster is
unique. This does not exclude the possibility that at the critical point of s=2
models, there may occur infinitely many distinct zero-density infinite clusters, a
phenomenon first considered (for d-dimensional site percolation models) in
[NS].

2. Scaling Arguments and a Renormalization Group Approach

Theorems 1.1 and 1.2 are based on a renormalization group analysis which allows us
to estimate the size of certain “block variables” of the original model by comparison
with a sequence of independent site-bond models. We remark that the analysis leads
to site-bond models even when the original model is pure bond.

In the case of unoriented percolation, we define B(K) as the largest cluster in the
finite model in which the infinite integer lattice is replaced by the block, {1,...,K}.In
the case of oriented percolation B(K) is the set of sites touched by the longest
(oriented) path in {1,...,K}, i.e, B(K) is the largest set of living sites of the form
{i1,...,iy} with 1 i, <i, <--- <i, < K and the bond between i; and i;, ; occupied
for each j. In the event of a tie, B(K) is chosen in either case as the leftmost, but this
rule will play no role in our analysis. The number of sites in B(K) is denoted || B(K) |.

Roughly speaking, in order to prove the existence of percolation, we will estimate
the (random) density, || B(K)|/K, and show that (with positive probability) it does
not tend to zero as K — oo. More precisely, we will show that sequences K,,, ¥,,, and
A, can be chosen (with lim K, = oo and liminfy,4, > 0) so that the sequence of

n—oo n— o

random variables, W, = | B(K,)||, satisfies
PW, /Ky Z ) 2 4. @1

Before beginning our discussion of scaling arguments, we prove the intuitively
reasonable fact that such a sequence of inequalities implies percolation. The
intuition in, e.g., the unoriented case is that according to (2.1), a fraction 4, of blocks
of size K, contain clusters of (local) density at least i, so that at least a fraction 4,y
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of all sites belong to clusters of (local) density at least i,,. Thus the origin should have
a probability of at least lim inf 4, of belonging to an infinite cluster with (global)
density at least liminf . The following proof is related to this intuition but has
some extra factors of 1/2 needed for technical reasons and for the case of oriented
percolation.

For either oriented or nonoriented percolation and for any i in {1,...,K},
the random variable [|C(0)n{0,...,K—1}| has the same distribution as
I1C@H)A{,...,K—1+i}|, which in turn is larger than ||C()n {i,..., K} ||. Hence,

PICO)n{0,...,K~1} /K2 ¥/2)
2 P(ICG)n{i,....,K} /K2 ¢/2 and ieB(K))
2 PieBK) and |B(K)n{i,....K}| 2 ¥K/2), (2.2)

where the latter inequality is valid because C(i)n{i,...,K} is bigger than
B(K)N{i,...,K} whenever ieB(K). Let us denote by W the number of sites i in B(K)
with || B(K)n {j,...,K)| = ¢ K/2. Then the sum of the right-hand side of (2.2) over all
i in {1,...,K} is just E(W). If |B(K)|=yK, then W =y¢K/2 and hence
E(W) = (yK/2)P(| B(K)| = K). Summing (2.2) over i thus yields

left-hand side of (2.2) 2 K™ *E(W) = (y/2)P(| B(K)|| = y K). (2.3)

It follows immediately from (2.3) that if (2.1) is valid for all n (with K,— o0 and
liminfy,4, > 0), then C(0) is infinite (in fact has a positive lower density) with

positive probability.

Although a renormalization group approach can be applied directly to any
model satisfying the hypotheses of Theorem 1.1 or 1.2, it is both more convenient
and more natural to apply it to a special class of models with

jt+1

p=pih=1-e( -5 '{

Iy—xl"‘dydx), unless j=1and s=2, (2.4)

1 2
pi=pB =1 —exp(— ﬂg fly— x("'dydx), for s=2, (2.5)
ly—x|>¢
where f =0 and 0 < ¢ < 1. The &-cutoff is needed for s =2 to avoid having p, = 1
because of the logarithmic divergence in the integral. Such a model may be obtained
by discretizing a continuum bond (or ¢-bond) model in which the occurrence of a ¢-
bond between the pair of real numbers, x < y, corresponds to the occurrence of a

particle at (x, y) in a two-dimensional inhomogeneous Poisson point process with

. )0 ifly—x|<¢ and s=2
density at (x,y )—{Bly—xl“, otherwise

We recall that in a Poisson process, the numbers of particles in disjoint spatial
regions are independent random variables, each with a Poisson distribution whose
mean is the integral of the density over the region. To obtain (2.4)—(2.5), the c-bond
model is discretized by declaring that the (discrete) bond between i and j is occupied
whenever a c-bond occurs between some x in [i,i + 1) and some y in [,j + 1). The
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key to the success of our approach is the fact that under the scaling transformation,
(x, y) = (Kx', Ky'), the density 8|y — x| ~*is transformed to K> *8|y’ — x'| %, so that
for s < 2, the model is forced toward = oo as,K— oo. For s=2, f§ is unchanged
under this transformation but ¢ is transformed to £/K so that the model is forced
toward £ =0 (or p; =1) as K— 0.

To prove (2.1), we will not take K, as C" for some fixed scale factor C, but rather
we will scale at a rate that increases with each step. A block at stage n will consist of
C, “stage-n sites” each of which is a block of C,_, of the next lower level site.
Consequently stage-n blocks contain C, C,_ ---C, = K, elementary (i.e., stage-1)
sites. We will inductively define for stage-n sites the notions of “living” or “occupied
bond” by taking each stage-n site to be a block of stage-(n — 1) sites and requiring
that its largest cluster or oriented path (of stage-(n — 1) sites) is sufficiently large or
that there be an appropriately located stage-(n — 1) occupied bond between the pair
of largest clusters or oriented paths. The precise definitions of sufficiently large and
appropriately located will be made to insure that a living stage-n site when
considered as a block of K, elementary sites will have W,/K,, = .. Some light can be
shed on these definitions by rewriting (2.1) as

P< Wn/[wn— 1Kn—cl(¢n/¢n— 1)1/2] g (wn/wn— 1)1/2> g /1" (26)
for the oriented case and as
P(W/‘”TK 2 Yl ) >, @7)

for the nonoriented case. These formulas will soon be seen to have direct meaning in
terms of our iterated mappings since it will be the ratios y,/{y,,_, and C, = K,/K, _
that will be significant in those mappings. Inequality (2.6) should be regarded as an
extension of the simpler (2.7) required by the fact that when a number of oriented
paths are connected by occupied bonds, the length of the longest resulting oriented
path may be less than the sum of the previous lengths (when the new occupied bond
does not connect the end of one oriented path to the beginning of the next).

We now introduce families of mappings f, (for the oriented case) and g, ¢
(for the unoriented case) indexed by a (positive integer) scale size C and a number
0e(0,1] which is essentially the Y, /i, ; of (2.6)—(2.7). For s <2, we will only consider
the oriented case (i.., f; c) since nonoriented percolation follows a fortiori. f; ¢ is a
mapping on a two-dimensional space of parameters while g, - acts on a three-
dimensional space. f; ¢ (respectively gy ¢) should be thought of as mapping from
stage-(n — 1) to stage-(n) effective values of 4 and f (respectively 4, f and &).

With fixed s<2, 6 and C we define (4, f') = f; o(4, f) by beginning with the
independent site-bond percolation model with site parameter A and bond para-
meters p; given by the p,(B) of (2.4) for all j= 1, and proceeding as follows. Let B,
denote the set of living sites touched by the longest oriented path (through living
sites)in H; = {(i — 1)C + 1,...,iC} (with the usual convention for ties). Note that B,
is identical to the previously defined B(C). We say that the i block H, is “alive” if
| B;||/C = 6'%, and then define

A= P(H; is “alive”) = P(||B;||/C = 6*/?). (2.8)
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For i < j, we say that there is an “occupied bond” between H; and H; if there is an
occupied bond (of the original sort) between some k in B; and some [ in B; with the
fraction of sites in B to the right of k and the fraction of sites in B; to the left of [ each
bounded above by (1 — 6'/?)/2. We next define p; for j2 1, as the minimum over all
site-bond configurations within H; and H;, ; (not including bonds from H; to H;. )
for which H; and H;,; are “alive,” of the conditional (with respect to the
configuration) probability that there is an “occupied bond” between H; and H; . ;. p;
is a worst case lower bound for the probability that a “living” H; and a “living” H, , ;
have an “occupied bond” between them. Finally, we define

B = sup{b:p; = p{b) for all j= 1}. (2.9

Theorem 1.1 will be shown later in this section to be a consequence of the
following theorem whose proof will be given in Sect. 3.

Theorem 2.1. Given s€(0,2), there exist sequences C,€{2,3,...} and 6,€(0,1] with
[T 6k > 0 such that
k=1

(An» Br) Efon,cn(“'(foz,cz(fol.cl('lo’ Bo))))—(1,00) as n— o, (2.10)

providing A, is sufficiently close to 1 and B, is sufficiently large.

Now, with fixed s= 2, § and C, we define (4, ', &) = go.c(4, B, £) by beginning
with the independent site-bond percolation model with site parameter A and bond
parameters p; given by the p(f) of (2.4) for all j=2 with s=2 and by the p,(g, &) of
(2.5)for j= 1. We now let B, denote the largest (unoriented) cluster in the finite model
consisting only of sites and bonds within H;. The block H; is called “alive” if || B; ||/
C 2 6, and we define

A= P(H, is “alive”) = P(|| B;||/C = 0). (2.11)

For i # j, there is said to be an “occupied bond” between H; and H; if there is an
(original) occupied bond between some k in B; and some [in B;. Next, p; is defined as
the minimum conditional probability that there is an “occupied bond” between H;
and Hj, conditioned with respect to site-bond configurations of H; and H,, ; for
which both blocks are “alive.” We then define

B’ =sup {b:p; = p,(b) for all j= 2}. (2.12)
Finally, we define
¢ =inf {x:p\ = p,(f,x)}. (2.13)

Note that & may be equivalently defined by requiring p,(f’, &) = pi.
Theorem 1.2 will be shown later in this section to be a consequence of the
following theorem whose proof will be given in Sect. 4.

Theorem 2.2. If f,> 1, then there exist sequences C,€{2,3,...} and 6,€(0,1] with
[T 6« >0 such that defining
k=1

(Ans Bns &) = gen,c"("‘(gel,cl(']»o’ Bo»Eo)))s (2.14)
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we have (4,,,&,) —(1,0) and liminf B, > 1, providing A, is sufficiently close to 1 and & is
sufficiently small.

Proof that Theorem 2.1 Implies Theorem 1.1. We fix s€(0, 2) and call the independent
site-bond model with p; = p/(p) for all j= 1, the canonical mode! with parameters 1
and . In the first part of the proof we show via (2.1) or (2.6) that for A sufficiently
close to 1 and g sufficiently large, the canonical model percolates. In the second part
of the proof we show that this result for canonical models implies percolation for
general models satisfying the hypotheses of Theorem 1.1. A portion of the second
part will be stated separately as Proposition 2.3; it is used again in the proof that
Theorem 2.2 implies Theorem 1.2.

Using the sequence C, and 6, of Theorem 2.1, we choose K, = ﬂ Co, V.=

H 0,,and (4, B) = (4, Bo) such that (2.10) is valid. Since K, — oo, and lim inf A/, =
ﬂ 6, > 0, percolation for the canonical model with parameters 4,, f, would be
1mphed by the validity of (2.1) for all n.

We recall the inductive definitions of “living” or “occupied bond” for or between
stage-n blocks (which are also stage-(n + 1) sites), which were discussed (incom-
pletely) prior to Eq. (2.6). For n = 1, the definitions are those used in the definition of
fo.c with 0 =60, and C = C;. For general n > 1, one considers the stage-n block as a
union of its stage-n sites for which (as stage-(n — 1) blocks) the notions of “living” and
“occupied bond” are already defined, and again takes the definitions used for f ¢
but with § =0, and C = C,. To prove (2.1) it suffices to show that for each n the
following two statements are true:

P({1,...,K,} is “alive” as a stage-n block) = 4,. (2.15)
If {1,...,K,} is “alive,” then W,/K, = ,. (2.16)

If a stage-1 block is “alive,” it contains by definition an oriented path touching
(6,)'72C, living (stage-1) sites. If a stage-n block (with n > 1) is “alive,” it contains an
oriented “stage-n path” touching (6,)*>C, living stage-(n) sites by the definition of
“occupied bonds” between stage-(n) sites, this means that it contains an oriented
“stage-(n — 1) path” touching at least (6,)*/2C,[1 — 2(1 — (6, _,)"/*)/2](0,- ,)"/*C, -,
=(0,)"*C,0,-,C,_, stage-(n— 1) sites. Thus we see inductively that any “living

stage-n block contain an oriented (stage-1) path containing (6,)'*C, n 6,C,
=(0,)” Y*y,K, = y,K, (stage-1) sites and thus (2.16) is valid.
The proof of (2.15) is of course based on the definitions (2.8)—(2.10). We denote by
H,; the stage-n block, {(i — 1)K, + 1,...,iK,}. Inequality (2.15) is equivalent to
P(H,,is “alive”) = 4,. 2.17)

We also define p;; as the minimum over all configurations of (stage-1) sites and
bonds within H,; and H, j for which H,; and H, ; are “alive” of the conditional
probability that there is an “occupied (stage-n) bond” between H,; and H,; ;. We
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consider (2.17) together with
Pnj Z DBy for all j= 1, (2.18)
where p{p) as before denotes the right-hand side of (2.4). We claim that the combined

inequalities (2.17)—(2.18) follow from (2.8)(2.10) by induction on n. The validity of
(2.17)-(2.18) for n =1 is clear. Now assume (2.17)—(2.18) for some (n — 1). Consider
the “stage-n model” consisting of stage-n sites (the H,_,)’s) and stage-n bonds
between them. This is not an independent site-bond model; however the sites alone
are independent and the bonds are conditionally independent when the configur-
ations (of stage-1 sites and bonds) within each H, _ ,; are specified. It then follows by
(2.17)—(2.18) for (n — 1) that the stage-n model dominates an independent (canonical)
site-bond model with parameters 4,_, and §,_, precisely in the sense that the left-
hand sides of (2.17) and (2.18) are no less than the correspondingly defined quantities
for the independent model, but by (2.8)—2.10) the corresponding quantity for (2.17)
equals 4, while the corresponding quantity for (2.18) is no less than the right-hand
side of (2.18). The first part of the proof of Theorem 2.1 is now complete.

It remains to show that the occurrence of percolation in the canonical models for
arbitrary s <2 implies Theorem 1.1. We first note that if lim inf j*' p; >0 for 5’ <2,
then by choosing se(s’,2) we have that for any f, p; > p(p) for sufficiently large j
(depending on p), where again p{p) denotes the right-hand side of (2.4) with the
chosen value of s. Theorem 1.1 now follows immediately from the next proposition.

Proposition 2.3. Suppose oriented (respectively nonoriented) percolation occurs in a
one-dimensional site-bond model with site parameter 7 in (0, 1] and bond parameters p ;
in [0,1) (for j=1,2,...). Let N> 1 be a fixed integer and consider a second one
dimensional site-bond model with parameters A and p; such that the p;’s are fixed for
j 22 and satisfy p; 2 p; for j2 N. If 2 < 1, then oriented (respectively nonoriented)
percolation occurs in the second model for A and p, in (0, 1) sufficiently close to 1. If
Z = 1, then oriented (respectively nonoriented) percolation occurs in the second model
for A=1 and p, in (0,1) sufficiently close to 1.

Proof. We suppose 4 is in (0, 1); the proof when 1 =1 is essentially the same but
easier. We define a model which has ordinary bonds between j and jfor|j—i| > 1 but
in which the nearest neighbor bond from I/ to [ + 1 is replaced for each [ by a family of
nearest neighbor links (indexed by (I,i,j) with i <I,j =1+ 1 and j—i < N) and the site
at [ is replaced for each | by a family of cubicles (indexed by (I,i,j) withi <[, j =l and
j—i< N). All bonds (indexed by (i,j)), links (indexed by (i, )) and cubicles (indexed
by (1,i, j)) are independent. The bond occupation probability is j,_, for |j—i| = N
and zero for 1 <|j— i| < N; the link occupation probability is p =’ (independent of
D); and the cubicle occupation probability is AV~ ! (independent of ). For a given [,
the probability that at least one (/, i, j)-link is occupied is 1 — IT(1 — pY~"), and the
probability that at least one (], i, j)-cubicle is occupied is 1 — IT(1 — AY~"), where the
product in each case is over the appropriate set of (i, j)’s.

We next construct a related independent site-bond model (of the usual type) by
defining site | to be alive if the (I, [)-cubicle is occupied, by defining the bond
between i and j to be occupied for j—i = N if the corresponding bond is occupied in
the original model, and by defining the bond between i and j to be occupied for 1 <
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j—i<Nifforeachl=ii+1,...,j—1, both the (I,i,j)-link and the (I, ,j)-cubicle are
occupied. This constructed model has A = A9, p, = p; for j= N, and p; = (AVp}y for
1 < j< N and thus percolates if A® 2 Zand (A9p?Y 2 p; for 1 < j< N. On the other
hand, it is clear that if the constructed model percolates, then so does the model with
A=1—-H(1—-2979), p;=p; for jZN, p;=0 for 1 <j<N, and p; =1—II(1 —
pY~P). Thus, by choosing 29=7 and pYV=29=(p;?i for 1 <j< N, we see that
the second model of the theorem percolates prov1d1ng

N 2N o

Az1-(=7) 1 TI aQ=@-)2i=m),
i=1 j=N
15j—i<N

and

=
llV
)R W :2

2N -

H (1 — (-9,
=N+

<N

which completes the proof.

Proof that Theorem 2.2 Implies Theorem 1.2. This proof has essentially the same
structure as the proof just given above that Theorem 2.1 implies Theorem 1.1. The
details are omitted.

Remark 2.4. In the context of Theorem 1.2, we note that if limsupj®p; > 1, then
oriented percolation may occur even when lim inf j?p; < 1. For a simple example of
such a situation, suppose pay+ 1 ~ B1(2k + 1)~ 2, while p,, ~ B,(2k)~?; by considering
only even integer sites, one sees that percolation will occur (for p, and 4 close to |
and hence by Proposition 2.3 for p; and 4 close to 1) providing ff, > 4,evenif f, < 1.
It is possible to apply the renormalization group arguments of this chapter to obtain
a corollary to Theorem 1.2 which yields better results in many such situations.
Beginning with a model with parameters A and p;, and with some choice of 6, C, we
may define ', p) asin the definition of gy .. For a given integer C, we choose 6 so close
to 1 that (1 — 6)C < 1; Thus a block will be “alive” only if all its sites are living and
belong to a single cluster. Consequently,

C (k+1)C
p=1-11 [I (—pi- (2.19)
i=1j=kC+1
and thus
C (k+1)C C (k+1)C
Y pj_igp}‘gl—exp<— Yo ¥ pj_i>. (2.20)
i=1j=kC+1 i=1j=kC+1

It is easy to see that (4, p\)—(1,1) if (4, p)—(1, 1). Thus, if

C (k+1)C

liminfk? Y Y p;_i>1for some C=1,2,..., (2.21)

k- i=1j=kC+1

then by Theorem 1.2, percolation occurs in the (4, pj)-model and hence in the (4, pi)-
model for p, and 1 close to 1. It similarly follows from the results of [AN] (see
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Remark 1.3 above) that if

C' (k+1)C

limsupk? > Y p,_;<1forsome C'=1,2,..., (2.22)
i=1j '+1

k— o0

then percolation cannot occur. A sufficient condition for (2.21) to be valid may be
obtained by defining a coarse-grained average of p;,

. 1 i+C
ps = min (— Y pj>, (2.23)

kgi<k+C Jj=i

and requiring that for some C, lim inf k?p{ > 1; an analogous sufficient condition for
(2.22) can be similarly obtained. Applying these arguments (with C= C = 2) to the
simple example with py ., ~ B2k +1)"2? and p, ~ B(2k)™2, one finds that
percolation occurs for large p; and A if (and, by [AN] and (2.22), only if) (8, + f,)/
2>1.

3. Proof of Theorem 2.1
We choose g > 1, @€(0,1), and take
0,=1—0k™%, C,=2k. 3.1

It will be seen (from (3.3) below) that for the given se(0, 2), r (which for simplicity is
taken to be an integer) must be chosen to satisfy

r>2q/2—s) 3.2)

We will prove (2.10) by showing that for 4, 8, sufficiently large, the following are
valid for all n:

B 2 (HY K3 5() ™20 = QH'Y(nly 2 =972 (33)
Az21—=(@/M4)n+ 1) 3.4)

where H' >0 depends (only) on s, ¢, and r.

Since fj o(4, f)—(1,0) as (4, f)—(1, c0), it follows that for fixed s, g, r, H’
and O, and any N < 0, (3.3)—(3.4) can be made valid for all n< N by choosing 4, B,
sufficiently large. It consequently suffices to prove that for some H’' >0 and all N
sufficiently large, the validity of (3.3)—(3.4) for n = N implies its validity forn = N + 1.
The proof of this large N induction step is an elementary consequence of the
following proposition, as can be seen by setting A = Ay, =By, 0 =0y, 1,C=Cy+ 1,
A =2Ay+1,and B = fy, . Infact a much improved version of (3.4) follows from (3.6)
below.

Proposition 3.1. Let (X, B')=fo.c(4, B) with 1 — 02 2 (3/2)(1 — 2) and 6 2 1/2. Then

B'= BHC?~5(01/%(1 - 01/2)/2)* 2 BHC? (1 — 0Y/2)/2/2)* 2 B(H/32)C* (1 - 6)>
(3.5
for some H > 0 depending only on s and

-4 Sexp(—C(1 — /1)/16)+<§>exp(—ﬁ(c+ 1)7). (3.6)
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Proof. Inequality (3.5) is a consequence of the fact that in the canonical model, the
probability that there is no occupied bond between two disjoint sets of sites S and §’
is

TTTTQ = pu_i(B). (3.7)

keS leS’

If we take i < j, assume that H; and H; are “alive,” and let §; (respectively S;) denote
the rightmost (respectively leftmost) subset of B; (respectively B; containing
(approximately) a fraction (1 — '/2)/2 of the sites of B; (respectively B)), then since
IB;ll, | B;l = 8'/2C, we see that (3.7) with S = §; and §’ = §; is bounded above by

exp[—BIO'2C, (j—i)C+ (1 —0YH)C,0"*(1 —6'*)C/2)], (3.8)

where, for x; <y, and 4 20,

xy y1t+4
I(x;,y,,4)= fA [ (y—x)"dydx. (3.9)
B2 Y1

Thus (3.8) is an upper bound for 1 — p;,_;. Lemma 3.2 below implies that (for 6 > 1/2)
p; Z p{HC*70"(1 — 6'%)/2)*p), (3.10)

and thus, by the definition (2.9), yields (3.5).

To obtain (3.6), we denote by V' the number of dead sites in H; and use the fact
that if V < (1 — 6*/?)C and if there is an occupied bond between every pair of (living)
sitesin H,, then H, is “alive.” This leads to the simple estimate (but sufficient for our
purposes) that

I-VsPVz(1-0")0+ Y (1-p-iB) (3.11)

1gl<ksC

We obtain (3.6) by noting that for each I, k appearing in (3.11), (1—p,_(f)) < 1—
Pc-1(B) S exp(—B(C + 1)7°), and by using Lemma 3.3 below to control the first
term on the right-hand side of (3.11) involving the binomial random variable V with
parameters C and 1 — 4.

Lemma 3.2. Let s€(0, 2) be fixed. There exists H > 0 (depending only on s) so that for
any 0 = 1/2, C>0, and positive integer j,
I(HI/ZC,jC + (1 . GI/Z)C, 01/2(1 _ 91/2)C/2)__>__ HC2—5(01/2(1 '—01/2)/2)21(1,j, 1)
(3.12)
Proof. By the change of variables x = 0'/2C + 6'/*(1 —6'/*)C(x’ — 1)/2 (and similar-
ly for y) we may rewrite the desired inequality as

1(1 j+ 126124 912(1—912))2

0721 — 67%)2
The left-hand side of this inequality is bounded below by
I(1,j(8**(1 — 6'72)/2)~ 1, 1),
since I is decreasing in y, for fixed x, and 4, and since 1 — 20/2 + §'/*(1—6"/?)/2<0
for 0Y2 = (-3 + \/ﬁ)/Z and hence for 6 > 1/2. Finally, since I(1, y, 1) is asymptotic

,1 ) = HOY*(1—6Y2))28I(1, 3 1). (3.13)
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to y~* as y— oo, we have I(1,xj, 1) = Hx*I(1, 1) for all x, j= 1, where

H=[inf y’I(1, y, ) }/[sup y’I(1, y, 1)],

yz21 y21
which completes the proof of Lemma 3.2.

Lemma3.3. Let V have a binomial distribution with parameters n and p; then for
h=1/2,

P(V/nz (1 + h)p) < exp(—np/16). (3.14)

Proof. 1t is a standard large deviation estimate, that

P(V 2 n(1 + h)p) < inf E('Y ~"1*MP)=exp[ninf {In(1 — p + pe’)— (1 + h)pt} 1.
120 +20 (3.15)
The desired result is now obtained by using (with h = 1/2)
inf{In(1 - p + pe) — (1 + h)pt} <inf{p(e' — 1) — (1 + h)pt}
t20 t20

=p(h— (1 + h)In(1 + k) < p(h— (1 + h)(h—hK?/2))= —h*(1 — h)/2.

4. Proof of Theorem 2.2
We choose g > 1, ©€(0,1), and take
6,=1—-0k™9% C,=[2K], (4.1)

where [ y] denotes the greatest integer less than or equal to y. We will find it useful to
choose r (and g) so that

l<gq<r=4/3, 4.2)
e.g., r =4/3 and ge(1,4/3); these two parameters are henceforth fixed. We define
Un=1] 0, ¥=1] b (4.3)
k=1 k=1

© will be chosen sufficiently small (depending on f,) so that the 8,’s, {,’s and ¢ are
all uniformly close to 1. We will prove Theorem 2.2 by showing that if 8, > 1, then
for @ sufficiently small (depending on f,), 4, sufficiently close to 1 (depending on j3,
and @) and &, sufficiently small (depending on 8, and ®), the following are valid for
all n:

ﬁngOSﬁn—lz Sﬁo, (44)
£, <2e(1—0)=2e0n9, (4.5)
A21—(O/4)n+ 1) (4.6)

Since gy (4, 8,&)—(1, f,0) for some >0 as (4, £)—(1,0) with fixed §, 0 and C, it
follows that for fixed g, r, f,, and @,and any N<o0,(4.5)-(4.6) can be made valid for
all n<N by choosing 4, sufficiently close to 1 and &, sufficiently small. It
consequently suffices to prove first that (4.4) is true for all n and second that if f, > 1,
then for some @ sufficiently small (depending on f,), and all N sufficiently large, the
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validity of (4.4)—(4.6) for n = N implies the validity of (4.5)—(4.6) for n= N + 1. The
first proof and half of the second proof (i.e., the validity of (4.5) for n= N + 1) are
immediate consequences of the following Proposition 4.1. By (4.4), given , > 1, one
may choose ® so small that °8, (and hence each f,) is bounded below by some
B > 1. The rest of the second proof is thus an immediate consequence of Proposi-
tion 4.2 below.

Proposition4.1. Let (', ', &) = gg (4, B, &) with 0€(0, 1) and £€(0,1). Then

B = 6%B. 4.7
If in addition, (1 — 0)C =1 and (1 — 0)2e £ 1, then
&< 2e(1—06). (4.8)

Proposition 4.2. With fixed f§, ©, q and r satisfying f>1, ©>0and 1 <q<r=4/3, let
(An> Bys €)= go.c(4, B, &), where 0=1—ON"9, C=[2N"], i=1—(O/4)(N+1)"*
and £ =2e@N 4. Then

lim N1 — Ay) =0, (4.9)

and hence for all sufficiently large N,
AN=21—(O/4)(N +2)74.

Proof of Proposition 4.1. This proof is similar to that of (3.5) above. Using the
notation of (3.9) with s =2, we have

1 —pi_;Zexp(—BIOC, (j—i+ 1 —6)C,00)). (4.10)

This inequality is valid for j—i>=2 and if (1 —6)C = 1, then it is also valid for
j—i=1. Now

10C,(k+1 _e)c,ec)=1(1,"*1“’,1):1(1,“(’”#—_@,1)

0
Lt/ (ke 1)(1-60)  \72
=11 <y+(H§ )—x> dydx = HI(1,k, 1) for k=2, @.11)
where
. . (y—x)? . ( (’<+1)(1—9)>'2
H=inf f =inf{ 1 +————
Z‘;u_lgl‘_‘,w( K+ D=0\ s\ Ok-1D)
YT
=(143(1—0)6)2
9 2 02
= =
[l +2(1—9):| “+(1-01
>0°[1—(1—6)]*=06° (4.12)
Combining the s =2 case of (2.4), (4.11) and (4.12) we have
P = p(6°B) for all k=2, (4.13)

which, by the definition (2.12), yields (4.7). Next, if (1 — 8)C = 1, we may use (4.10)
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with j—i=1 and the identity (for s=2, A >0 and x, < y,),

o o - 3 (v, — x; + A4)?
N T R I . [t |

(4.14)
to obtain

, 26y s1-0) " ,
l—pléexp{—ﬁln[z(z_zg)]}é{[1+(1_9)]2} <[4(1-0)]", (415)

where the second inequality is due to the fact that (when s =2) §’ < f since ' = ff for
0 =1 by the scaling invariance of I. On the other hand, combining (2.5) with the
identity (for 0 <& < 1)

1

|

ly=x|>¢

ey N

(v — x)~2dydx = 1!:‘:[(1 )T — (2= x)1dx

+ f [ —(2—x)""]dx = —In(2&) + 1 = —In(2¢/e),
B (4.16)

we have

pi(B,x)=1—(2x/e)’". 4.17)

Comparing (4.15) and (4.17), we see that if 2¢(1 — ) < 1, then (4.8) follows from the
definition (2.13). This completes the proof of Proposition 4.1.

The remainder of the paper is devoted to a (lengthy) proof of Proposition 4.2. The
proofis analogous to that of (3.4) and (3.6) above but it is considerably more difficult
because, whereas 8, — oo for s < 2 (see (3.3) and (3.5)), B, - oo for s = 2 (see (4.4) and
4.7)). With f, -5 co, we must rely on the fact that £, — 0 (see (4.5) and (4.8)), i.e., in
the context of Proposition 4.2, § is fixed while £ >0 as N — o0, so that p(f, &) is fixed
for k =z 2and only p,(f, £) > 1 as N - co. The lower bound needed (in order to obtain
(4.9)) for 1y, the probability of the block H, = {1,2,...,C} being “alive,” must be
based largely on the high probability of nearest neighbor bonds being occupied. This
contrasts with the previous proof of (3.4) and (3.6) which utilized the high probability
(due to f, — o0) of all bonds in H; being occupied.

Proof of Proposition 4.2. Throughout this proof we suppress the subscript N.
Recalling the definition of A’ given by (2.11), we must obtain an appropriate upper
bound for the probability 1 — A’ that H, is not “alive.” This will require a number of
new definitions.

We denote by V the number of dead sites in H, by R the set of living sitesin H,. A
nonempty interval, A = {k,k+1,...,k+1}, in H, will be called a run (of length ||A |
=1+1) if the site k+i is alive for each i=0,...,l and the (nearest neighbor) bond
from k+ito k+i+1is occupied for each i =0,...,I—1; it will be called a maximal
run if in addition neither {k—1,...,k+1I} nor {k,....k+1+1} is a run (in H,). We
parition R into maximal runs, R = A, U --- U A, with A; to the left of A, , ; for each
i=1,...,M—1. An obstruction will be said to occur between A; and A, , | if there is
no occupied bond between any site in A; and any site in A, ; A, and A, will be
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said to be involved in the obstruction. Such an obstruction will be said to be bridged if
there is an occupied bond between some site in A; U---UA; and some site in
A u-Udy.

A A, will be called short (respectively long) if || A;|| < N%' (repectively || A, | >
N%), where g, will be a fixed constant satisfying

0<g <r—g (4.18)

so that N?' <((1 — 0)C/2) for large N. In addition to (4.18) there will be another
restriction on g; depending on f (see (4.87) and (4.89) below). An obstruction
between A; and A, ; will be called an interior obstruction unless both max(A;) and
min(A;, ) are in {1, 2,...,[N®]}u{C—[N*]+1, C—[N"]+2,...,C}.

Our bound on 1 — 1’ will be based on estimating the probability that none of the
following occur, and hence that H, is “alive™: ¥ > (1 — 6)C/2, more than one
obstruction occurs between a long A; and a long A, ;, more than one of the short
A’s is involved in an obstruction (but a single short A; may be involved in two
obstructions, one to its left and one to its right), there is simultaneously an
obstruction involving a long A, and a long A, ; and an obstruction involving a
short A;., and finally some interior obstruction is not bridged. We claim that if none
of these events occur, then H, will contain a cluster at least as big as C — (1 —6)C/2 —
N%_ hence at least as big as 6C (for large N) and thus H, will be “alive.”

To see why this is so, suppose that none of these events occur. If no obstructions
occur, then all C — V living sites belong to a single cluster and ¥V < (1 — 6)C/2. If an
obstruction involving two long maximal runs occurs then it is necessarily an interior
obstruction, hence bridged, and no other obstruction occurs; thus again all C— V
living sites belong to a single cluster. If an obstruction involving a short A; occurs,
then there can be either one or two obstructions involving that A, (each of which can
be interior or not) but no other obstructions. There are now several possibilities. If
there is one obstruction and it is bridged then again all C — ¥V living sites belong to a
single cluster. If there is one obstruction and it is not bridged, then it cannot be an
interior obstruction and hence there is a cluster containing at least C — ¥V — N
sites. If there are two obstructions and both are bridged, then all maximal runs
except (possibly) one short A, belong to a single cluster which must therefore have at
least C— V — || A;]| = C~ V — N% sites. If there are two obstructions and only one
is bridged, then the unbridged one is not interior and hence either there is a cluster
containing all maximal runs except a single short A; or else there is a cluster
containing all (including those in A;) except at most N7 living sites (either in
{1,...,[N*]} or in {C~[N*]+1,...,C}). Finally if there are two unbridged
obstructions, then neither is interior and (for large N) either both are in
{1,...,[N"]} or both are in {C—[N"]+1,...,C} so that there is a cluster
containing all except at most N living sites.

We define three random variables related to obstructions. I} is the number of
obstructions involving a long A; and a long A, . I? is the number of short A;s
involved in obstructions. I3 is the number of interior obstructions which are not
bridged. Our basic bound which will eventually lead to (4.9) is

1-VSPV>(1-0C2)+P(L'+ 722+ P(I> 2 1). 4.19)
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In order to prove (4.9), we will show that for f > 1, g, can be chosen so that each
term on the right-hand side of (4.19) is o( N %) as N — co. As to the first term, Vis a
binomial random variable with parameters C=[2N"] and (1-—1)=(©/4)
(N +1)79 so by Lemma 3.3

P(V>(1-6)C/2)=P(V/C>BON"Y2)< P(V/C=2(1— 7))

<exp(—C(1—-2)/16)=0o(N"9 as N - oo, (4.20)

since C(1 — A1) ~const N""? and g <r. It remains to prove
NeP(L' + 2 2 2)-0, 4.21)
NP(L? 2 1) 0. 4.22)

We will first prove (4.22) and then return to (4.21). We denote by U (k= 1,
2,...,C) the event that for some i < M, there is an unbridged obstruction between A;
and A, , and either k = max(A;) or k = min(A, ,). The indicator random variable
of an event U is denoed by 1,. Then

c-N"]
s Y g, (4.23)
k=[N""]+1
and so
C—[N"]
PPz )SEI)S Y PUY. (4.24)
k=[N"1+1

For k # 1 or C, the event that k = max(A;) or min(A,) for some i is identical to the
event U,, that k is a living site and either k — 1 is dead or k + 1 is dead or the bond
between k — 1 and k is vacant or the bond between k and k + 1 is vacant. Thus by
4.17),

P(U) = A[1 = 2*(py(B,&))* T < A[1 — A((1 —4ON9*] ~const N2 (4.25)

In order that U} occur it is necessary that k be the endpoint of some A; and that
every bond between a living site (in H,) to the left of k and a living site (in H,) to the
right of k be vacant. Let us denote by X the indicator random variable of the event
that k is a living site. Then for k#1,2, C—1 or C,

PU}) < P(Uk)'E< I:I [T d—p;- .(ﬁ))x X’)

i=1j=k+2

gconstN"’E< [ J; _iXin:D, (4.26)
1 1) k+2

where

1j+1

=[ [ ly—xPPdydx~j? as j—oo. (4.27)

0 j
Let us define for n, n' = 1,

-2 n
Yow= 2 X Ji-iXiXj; (4.28)
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then by translation invariance,

P(U}) < const N™“E(exp[—BYi—1,c-+]). (4.29)
We further note that Y, is increasing in both n and n'. Hence if we define

-2 n
Y,=Y,,= Y Z Ji-i XX (4.30)
i=—nj=

then Y, . = Yiinw.an Which, together with (4.24) and (4.29) implies that
C/2]

P(I?=1)<const N4 E(exp[—BY:]). 4.31)

i=[Na1)

—

It immediately follows from (4.31) that in order to prove (4.22), it suffices (by
dominated convergence) to show that for some N, sufficiently large,

Y sup {E(exp[—pY,])} < co. (4.32)
n=2NzN,
This follows easily from the next lemma.

Lemmad4.3. Let ...X_,, X,, X,,... be independent random wvariables with

P(X;=1)=4, P(X;=0)=1—1 for each i. Let J; 2 0 be a numerical sequence such

that lim j*J ;= 1 and define Y, by (4.30). Then for fixed n, {J ;} and B, E(exp [ — BY,]) is
jm®

decreasing in i. Moreover if A28 > 1, then

Y E(exp[— BY,]) < 0. 4.33)
n=2
Proof of Lemma 4.3. To see the monotonicity in A, Let Z; be independent and

uniformly distributed on (0,1) and write X;=1 z,<2- To obtain (4.33), it will be
convenient to define for [ > 1,

vie 3

sothat Y, = Y7.Since Y} is decreasing in / and is independent of J, for j < 21, it is easy
to see that to obtain (4.33) (for general J;) whenever A*f > 1, it suffices to take
J;j=j~? and show that for every fixed I > 1,

i Elexp(—pY,)) < o0 434

whenever A2 > 1.
To do this, we use the identity (where min(j,n) is denoted j A n)

8

n n kan
Z Jivipxopx;= -Z‘lx—‘ Z (Jiwir — s +x)< Z X )

k=1 j=1

k'An kan
fm(z x_,.,><zx,.>, 439)
1 i'=1 ji=1

8

1
N

Ik’
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where

- 6k> + 12k + 4
Jk=(Jk_Jk+l)_(Jk+l—Jk+2)=m>o'

For [, in {I,...,n} and ¢ < 1, we define the event A4,(c, [,) as

k k
YXi<(l—edk—Il+Dor ¥ X_,<(l—eiMk—1+1)
= =1

for some k = 1,.

In the complement of A,(s, I,), one has (by using (4.35) twice)

00

Y,z k_Z Z Te el =2 2%(K Am)— 1+ 1)((k An)—1+1)

zu—ewff A (21)<21)
k=lnk'=1, i'=ln Jj=ln
=2 % 3
r=1 :,

Thus,
Elexp(—BY3)) < P(AJe, 1) + CXP( — Bl —¢)*2? i i (J+ i')_2>-
i'=lpj=lIn

The second term on the right-hand side of the last inequality can be made summable
over n by choosing & so small that f(1 —¢)?A? > 1 and choosing [, so that

lim [,/n’ = 0 for every 6 > 0.
This is a consequence of the elementary fact (based on (4.14)) that [, = O(n’) for every
J > 0 implies

lim (In(n))~*

n— oo i’

(J+1)' =1.

five
i

nj

To prove (4.34) and complete the proof of Lemma 4.3, it only remains to show
that there is a sequence [, (which is O(n°) for every § > 0) such that for every ¢ > 0,

S P(Ae 1) < . (436)

From the definition of A,(e, [,) and (3.15), we have

P(A,e1)) =2 Z P<ZX <(1—8)/l(k—l+1))

+81—l>(1_'1)>

—22 P(Z(l— X)>(k— l+1)<1
<23 exp(—(k—1+ )W)=2exp(—(l,— I+ HW)-(1—e"")1,

k=l j=1
k=ln
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where

W= —inf{ln(A + (1 — A)e') — (1 — A+ ed)t} > 0.

t=0

Since P(A,(e,1,)) is Oexp(—1,W)) and W > 0, (4.36) will be valid providing

lim [,/In(n) = co.
A choice of I, = [In(n)]? will satisfy this and be O(r°) for every & > 0 which completes
the proof of (4.36) and thus of Lemma 4.3.

We have now proved (4.22). In order to complete the proof of Proposition 4.2, it
remains to prove (4.21). Toward this end, we will find it convenient to compare the
A’s (i=1,...,M), which are the successive maximal runs in the block H,, to the
successive maximal runs in the half space, {1,2,3,...}, which we denote by A; (i =1,
2,...). Both M and the A;’s may be constructed from the A;s:

M= min {itAi+lﬁH1 = Q}, (437)
A, if i<M
Ai"{/\inyl it i=M (4.38)

The lengths | A;]| of the As and the spacings between them, G;=min(A;, )
—max(A;) (with Go=min(A,)), are independent random variables but this is not
the case for the A;’s. Note that G; — 1 is the number of dead sites between A; and
A; . The distributions of these random variables are given by:

Pl Al =k =1 —p A A k=1,2,... (4.39)
for all i, where p; = p(B, &) (see (2.5)),
PGy=k=M1-A"" k=12,..., (4.40)

_ oy J A =p)/d = pid), k=1
RG=h= {[(1 D= p A — P k=23,
forall j 2 1. These formulas are all easily derived; e.g., the k = 1 case of (4.41) is simply
the (conditional) probability that site j+ 1 is alive conditioned on the complement of

the following event: site j + 1 is alive and the nearest neighbor bond from jto j+ 1 is
occupied. We note that by (4.17),

pi=p:B)=1-(4ON,

(4.41)

so that
1—p;A~const N74 (4.42)

We define two sequences of events involving the A;’s which are closely related to
the I! and I2 defined above in terms of the A,’s. W} is the event that || A;|| > N*,
|| A;+1 1l > N7 and an obstruction occurs between A;and A, ;. W? is the event that
| A;ll £ N and an obstruction occurs involving A; (for i=1 this must involve A,
and A ,). We also define the corresponding events involving the A;’s. W} is the event
that M >, || A;| > N%, | A, ]| > N* and an obstruction occurs between A; and
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Ai+,. W} is the event that M =i, || A; <N and an obstruction occurs involving
A; (for i=1 this must involve A, and A, while for M =i thus must involve A,,_, and
Ay). Thus

L= i 1= 'i 1y for j=1,2.
Returning to (4.21), we define the (nonrandom) integer m by
m=min{m:m 2 (3/2)C(1 — p, A},
and note that by (4.42)
m~ const N 79— 0. 4.43)
We use the estimate
P(L! + I* 2 2) < P(M > m) + P(L* + [* 2 2, M < 1)
SPM>m)+P(L' 22, M <m)+ P22, M<m)+P(I' 2 1,122 1,M <m)
<PM>m)+ 22: i P(W{ and W occur for some i <k <M, M < ).

i=1i=1
(4.44)
Thus, to prove (4.21), it suffices to prove the following limits:
NP(M > m)—0, (4.45)
NP(Wi and W{ occur for some i<k < M,M <m)—0 (4.46)
forj,j'=1,2. '

We use the fact that A; = A, fori < M and the (left-right) symmetry between {A,}
and {A,,_;,,} to bound the probability in (4.46) by

m—-3 m-2 M-2
TS P(W{,W{)+P( U W{(,_l,Mérﬁ}>

i=2k=1+1 i=3

M-1 .
+P< (Wi, Wip, M <m}
i=3

M-2
+P( U (Wi, wi, Mérﬁ})—t—P(Wﬁ,W{,_,)-q-P(WQ,WM
k=2
_ . m=3 @2 o
POV, W)+ POV, W) S Y. Y POVE, W)
i=2k=i+1
=2 -2

2 o,
+ Y POVE, Wi+ Y [P, Wi+ POVL, Wi T+ Y POV, Wiy iv).
k=3 k=2 Lir=1

(4.47)
We then use the following estimates

PWY, W) =PWHPW}Y)=[PWH]* if k—i>1, (4.48)
PW!,Wi,)=PWi, W3), (4.49)
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P(W{,W{)= P(W)P(WY)
< P(WHP(W2%) if k—i>2 and exactly one of (j,j') =2
[PWHI? if k—i>2 and j=j =2

P(W2,WR<P(| A SN%, | Al SN =[P(|A, | SN2 if k—i=1or2,
@.51)

(4.50)

PWL W) S P(|A, | SNY)P(WY) if k—i=1or2
and exactly one of (j,j') = 2. 4.52)
_ 3 M
P(W], Wi-is1) £ P<kZI(Gk— 1+ 1Al > C/2)+P<k, ;_Z(Gk’ +lApl)> C/2>

M

3
+P(W{, Wit-ivn 2 (G- +1AIDSC2, Z_Z(Gk’+llAk’]l)§C/2>

zp(ki Goor + 1 A1) > C/z)

=1

3 3
+P(W ) Z, (Ge—1 + “Ak“)éC/2>'P<W{;aklzl(Gk’~l + “Ak'”)§c/2>

(3,
4t

IIA

(Ge—1 + 1 ALl) > C/Z) + P(W)P(WY)

IMu llMu

H/\

(Ge-1 + ”Ak”)>c/2>

whHi? ifj=j =1 (4.53)
+ P( hpw?) if exactly one of (j,j') =
[Pw3)1? ifj=j'=2
Combining (4.45)-(4.53) and the fact that m — oo (see (4.43)), we see that (4.21)
would be a consequence of (4.45) and the following limits:

N’ [P(W1)]* -0, (4.54)

N [P(W3)]* -0, (4.55)
N*mP(W}, W}) -0, (4.56)
N*m[P(| A, || = N*)]* -0, (4.57)
NmP(|| A, | = N®)P(W}) -0, (4.58)
N"P< __il G-y +11Ail) > C/2> -0. (4.59)

Note that all these limits involve the half-space maximal runs, A; (rather than the
statistically more complicated H, maximal runs, A;), and their related random
variables M, | A;|l, G; and Wi. We first prove (4.45), (4.59) and (4.57).

To prove (4.45), we note that by (4.37),

PM>m) 2 P([A [ + -+ [[A;] < C). (4.60)
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The [|A;|’s are iid. random variables with, according to (4.39), a geometric
distribution of parameter 1 — p, 4; thus the left-hand side of (4.60) equals P(V = m),
where ¥ is a binomial random variable with parameters C and 1 —pA.
Consequently,

P(M > m) < P(V/C 2 3(1 — py ) S exp(— C(1 — p, 4)/16) (4.61)

by the definition of /2 and by Lemma 3.3. By (4.42), this yields (4.45) since r > q.
To prove (4.59), we note that by (4.39)-(4.42), the probability in (4.59) is bounded
by

[P(G;-, 2 C/12)+ P(|| Al 2 C/12)] = O((1 = A2 72 + (p, Y1271

it

= O(exp[ —const N'™1]),
which yields (4.59).
To prove (4.57) we use (4.39) and (4.42) to obtain
P(| A SN =1—=P(| A, > N") <1 —(p, AV

S1—[1-N"(1—p,;4)]=O(N"""). (4.62)
By (4.43) and (4.62), the left-hand side of (4.57) is O(N?*r—4+2@-a)—

O(N ~2@-ri2-av) Thuys (4.57) will be valid providing
q,<q—r/2 (4.63)
But it follows from (4.2) that r — g < g — /2, so that (4.63) is a consequence of (4.18).
We have now proved (4.45), (4.59) and (4.57). It remains to prove (4.54), (4.55), (4.56)

and (4.58).
We begin by writing

P(W1) £ PG, >3)+ P(W}, G, <3). (4.64)
PW3) S PG, >3 or G,>3)+ P(W3, G, <3, G,<3)
<2P(G,>3)+ P(W3%, G, <3, G, <3), (4.65)
PW1, W3 <2P(G, >3)+ P(W}, W3, G, <3,G,<3, (4.66)
By (4.41),
P(G; >3)=0((1 — )*"?)=O(N29), (4.67)

so that by (4.43), N9 P(G, > 3)= O(N?*" "4~ 24) = O(N"~?%) while N*m*[P(G, >
3)]1? = O(N9*2~a~4qy = O(N2"~39), Since (4.2) implies that r —2g <0 and 2r —
59 <0, it follows from (4.43), (4.62) and (4.64)—(4.67) that in order to obtain (4.54),
(4.55), (4.56) and (4.58) (and hence obtain (4.21) and complete the proof of
Proposition 4.2), it suffices to prove the following four limits:

N -92P(W!, G, < 3)0, (4.68)
N 2PW2, G, £3, G, < 3)-0, (4.69)
N'PW!, WL, G, <3, G, <3)—-0, (4.70)
Nra-ap(wl G, < 3)—0. 4.71)
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We have, as in the proof of Lemma 4.2 (see particularly (4.14)), that
P(every bond between A; and A, is vacant|||A;| =1,G;=d, |Aix | =1)

Ll+d+1'—1 )
exv( - B(s) Hj (y—x)"*1—- 1x>l—l.y<l+l)dydx> ifd=1

li+d+1U'—-1 )
CXP(—ﬁg Hf 1 (y-x)zdydx) ifd>1

I-1l1+d+1'—-1
éexp<—ﬂg IL (y—x)‘zdde)

=exp(—pln(l+d)+In(d+])—In(l+d+1'—1)—In(d+1)])

: 20+ D)V if 2d+1) < min(, !
=[(d+1)(l+l+d~1)]ﬂ§ [ml—n(ﬁ—)] if 2(d+1) < min(l,l')

; 4.7
(+a)l'+d) 1 , otherwise “4.72)
Similarly,
P(every bond between A; and A, and between A, and A5 is vacant|
A =1, Gy=dy, 1A =1, Gy =d,, [ A3l =13)
2Ad +1) P 20d,+1) P
< . . 4.73
_l:min(ll,lz):l [min(lz,l3) (4.73)

It follows that if we define Q; = min(|| A;|[, [|A;+ ), and Qi= min([[A; [, | A; s
| Ais2 1), then

B
PW!, G, <3)< E{[Qi] -1Q1>Nm}, (4.74)

1

, 8 [8 7 g
il [§ ][4 e 3])

64 ¢
P(Wi, W3, G =3, Gz§3):<:E{l}éTQ—2:| .1Q1>N""1(.72>N‘“}

E 8 T 4.76
< ~ 1 q1 .
- {[Ql] v } (476

The |A;|l’s are independent random variables with a common geog}etric
distribution given by (4.39). It is a standard fact that consequently Q = Q, or O, has
a geometric distribution,

PQ=k=y1-y" k=12.., (4.77)
where (see (4.42))

~ {1 —(PA*=0(N"9, for Q=0 (4.78)

1=} =0(N"9, for Q=0,

Estimates for the expectations appearing in (4.74)-(4.76) follow from Lemma 4.4
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below which immediately implies that

E([Q,17P 14, o) = O(N 971~ Dy, 4.79)
E([Q,177)=O(N""), (4.80)
E([0,172 15, o) = O(N 48~ i), (481)

Combining (4.74)-(4.76) with (4.79)-(4.81) yields
P(W1,G, £3)=0(N 47~ Dar) 4.82)
P(W3,G;<3,G,<3)=0(N"9, (4.83)
P(W!, W1 G, <3, G, <3)=0(N 928~ ay) (4.84)

Thus we see that

r—(3g/2) — (B — 1)q; <0 implies (4.68) which implies (4.54), (4.85)
r—(3¢9/2) < 0 implies (4.69) which implies (4.55), (4.86)

r—q—(2p — 1)q, <0 implies (4.70) which implies (4.56), 4.87)

r—2q— (f— 2)q, <0 implies (4.71) which implies (4.58). (4.88)

The inequality in (4.85) is a consequence of the inequality in (4.86), since > 1

and g, > 0, which in turn follows from (4.2). The inequality in (4.87) is equivalent (for
B>1/2) to

q:>(r—q/28-1). (4.89)

Since > 1 implies 28 — 1 > 1, ¢, can be chosen so that (4.89) and (4.18) are satisfied
simultaneously. Since 2g —r > 0 (by (4.2)), the inequality in (4.88) is automatically
valid for f = 2; for 1 < <2, itis equivalent to g, < 2(q — #/2)/(2 — B) which follows
from (4.63) (which itself is a consequence of (4.2) and (4.18)) and the fact that
22-p=z1

With g, chosen to satisfy (4.18) and (4.89), all the inequalities in (4.85)—(4.88) are
valid. We thus have (modulo (4.79)-(4.81) which follow from Lemma 4.4 below)
proved (4.54),(4.55),(4.56) and (4.58) which in turn (together with the already proved
(4.45), (4.57) and (4.59)) imply (4.21). The desired (4.9) is finally a consequence of
(4.21) and the already proved (4.19), (4.20) and (4.22). The proof of Proposition 4.2
will be complete after the following lemma is stated and proved.

Lemma 4.4. Suppose Q is a random variable with the geometric distribution (4.77) and
B> 1. Then

EQ N <yBiB—1), (4.90)
EQ Mg )Sy/LB—1)(z— 1] for z>1 4.91)

Proof of Lemma 4.4. Inequality (4.91) is a consequence of

EQ Pl )= Y 1=y kP<y Y kP<y | ufdu
-1

k=[z+1] k=[z+1] z
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To obtain (4.90), we use (4.91) to write

E(Z~

=PZ=1)+EZ ", )<y +9/[B-D— 1] for 1<z<2,

and then let z tend to 2 from below. This completes the proof of Lemma 4.4 and of
Proposition 4.2.

References

[ACCFR] Aizenman, M., Chayes, J. T., Chayes, L., Frohlich, J., Russo, L.: On a sharp transition from

[ACCN]
[AN]

[AYH]

[D]
[FS]
[GKM]
(NS]
[Sc]
[Sh]

area law to perimeter law in a system of random surfaces. Commun. Math. Phys. 92, 19— 69
(1983)

Aizenman, M., Chayes, J. T., Chayes, L., Newman, C. M.: Discontinuity of the order
parameter in one-dimensional 1/|x — y|? Ising and Potts models. (in preparation)
Aizenman, M., Newman, C. M.: Discontinuity of the percolation density in one-dimensional
1/|x — y|? percolation models. (in preparation)

Anderson, P. W,, Yuval, G, Hamann, D. R.: Exact results in the Kondo problem. I, scaling
theory, qualitatively correct solution, and some new results on one-dimensional classical
statistical mechanics. Phys. Rev. Bl, 4464-4473 (1970)

Dyson, F.J.: Existence of phase-transition in a one-dimensional Ising ferromagnet.
Commun. Math. Phys. 12, 91-107 (1969)

Frohlich, J., Spencer, T.: The phase transition in the one-dimensional Ising model with 1/r?
interaction energy. Commun. Math. Phys. 84, 87-101 (1982)

Grimmett, G. R, Keane, M., Marstrand, J. M.: On the connectedness of a random graph.
Math. Proc. Camb. Philos. Soc. 96, 151-166 (1984)

Newman, C. M., Schulman, L. S.: Infinite clusters in percolation models. J. Stat. Phys. 26,
613-628 (1981)

Schulman, L. S.: Long range percolation in one dimension. J. Phys. A. Lett. 16, L639-L641
(1983)

Shamir, E.: Private communication

Communicated by A. Jaffe

Received May 8, 1985








