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Abstract. Let M be a complete Riemannian surface with constant curvature
— 1, infinite volume, and a finitely generated fundamental group. Denote by
λ(M) the lowest eigenvalue of the Laplacian on M, and let ψM be the associated
eigenfunction. We estimate the size of λ(M) and the shape of ψM by a finite
procedure which has an electrical circuit analogue. Using the Margulis lemma,
we decompose M into its thick and thin parts. On the compact thick
components, we show that ψM varies from a constant value by no more than

0(]/λ(M)). The estimate for λ(M) is calculable in terms of the topology of M
and the lengths of short geodesies of M. An analogous theorem of the compact
case was treated in [SWY].

Let M be a complete Riemannian surface with constant curvature — 1, infinite
volume, and a finitely generated fundamental group. The lowest eigenvalue of the
Laplacian, λ(M), belongs to (0,1/4] and if λ(M) belongs to (0,1/4), there is a unique
positive eigenfunction ψM for λ(M) of L2 norm one (see [PI, S, S2]). If one writes
λ(M) = D(l - D) with D > 1/2 then D is the Hausdorff dimension of the limit set of
the Fuchsian group representing M. Also the value of ψM lifted to the unit disk at a
point p is just the (packing) Hausdorff D-measure of the limit set in the metric on
rays from p (see [S, S2]).

In this paper we will describe a finite procedure for determining the size of λ(M)
and the shape of ψM. The procedure has an electrical circuit analogue which could,
in principle, be used to compute this size and shape.

As a corollary let Γε be the Fuchsian group generated by z-* — l/z and the
translation by 2 + ε. Our Theorem 1 implies the Hausdorff dimension of the limit

set of Γε differs from one by the quantity |/ε. This estimation implies the derivative
of the dimension at the critical value s = 0 is +00 (see [P2]).

Furthermore, the estimate has the simple interpretation often observed in
dynamically defined Cantor sets on the line, namely that when the dimension is
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near one, the discrepancy from one is on the order of the size of the largest gap in
the Cantor set.

To describe this procedure we divide M into the thick part Mτ (in which each
point is the center of an embedded disk of a definite convenient radius) and the
complementary thin part Mt (which is proven to consist of cusps, or pseudo-
spheres, and cylinders, which are approximately doubled truncated cusps) see [T].

The thick part Mτ has finitely many components: some compact of bounded
geometry, called nodes here; and others non-compact which, up to bounded pieces,
are made of canonical pieces called funnels (see Fig. 2).

Fig. 2
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Fig. 3 Fig. 4

We associate a finite graph and a circuit diagram to this decomposition as
follows. There is one vertex for each compact component of MΓ, and one vertex
called ground which is associated to all the non-compact components. There is an
edge between two vertices for each cylinder. For reasons which will become clear
below, one may forget the cusps in the formation of this graph.

From this graph one forms a circuit diagram where each nodal vertex has a
variable voltage with respect to the ground vertex (at zero potential), and each edge
becomes a resistor with resistance the reciprocal of the length of the short geodesic
of that cylinder.

The finite procedure is to form the quantity

ma = inf Σ (<5/)V
/ edges

where / is a vertex function of square norm one ( Σ /(^)2 = 1\ /(ground) = 0,
vertices

(5/(edge) = difference of values of / at either end, and t is the length of the edge.
The size of the number ma can be calculated physically as follows: create a

voltage of one at a node and using an ammeter record the maximum of
(current)2 (resistance) across each resistor. The minimum mc over the nodes of
these maxima has the same size as ma. Denote by m the size of either of these
quantities.

Theorem 1. λ(M) and m have the same size, i.e. their ratio is bounded above and below
by constants depending only on the topology of M.

Proof. To see that m is an upper bound we construct a test function. To see that m is
a lower bound we use conformal invariance of the energy in dimension two to
show that the basic eigenfunction for λ(M) resembles this test function.

/. The Upper Bound

By definition, λ(M) = inΐJ |gradφ|2, where ψ ranges over smooth functions with
ψ

compact support and square integral one. Thus upper bounds for λ(M) can be
found by considering test functions. For example, choose constant functions
Vl9V29... for each compact component of Mτ (the nodes) and choose zero on each
non-compact component of Mτ (the ground). In the unit tubular neighborhood of
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the short geodesic of each cylinder interpolate a linear function between these
constants. If ( is the length of the short geodesic and Fl5 V2 are the constants, the
energy J |gradt/;|2 on this part is about (V± — F2) V. In each cusp we can interpolate
the constant to zero so far out in the cusp that the energy is negligible (by the
above). If the maximum constant is one, the L2 norm of our test function is
comparable to one, and the energy is comparable to the maximum of (Ft — F2) Y
over the cylinders.

If the one occurs at a certain node, the circuit analogue chooses the other
voltages V^ between zero and one to minimize the sum of the energy terms
(current)2 resistance which are just the terms (Fi — F2)Y.

This completes our discussion of the upper bound.

//. The Lower Bound

Now the fun begins. We will show that the actual basic eigenfunction ψM resembles
one of the test functions above, thus proving that m gives a lower bound for λ(M).

We suppose λ(M) is much less than m, for otherwise we would be done.

1) Since J(gradφM)2 = /l(M)<ξm, the L2 norm of (gradφM)<^j/m. Thus the

derivative of gradφM <^ j/m at any point of Mτ by Harnack. Thus if gradψM is not

much smaller than j/m at a point of Mτ then gradφM would have the size j/m on a
ball of definite radius. (See Harnack principle in Appendix.) So the f (gradφM)2

would have at least the size m, contradicting our assumption λ(M) <ζ m. Thus we
deduce, using the uniform bounds on diameters of compact components of MΓ,

2) the variation of ψM on each compact component of Mτ is <^ j/m.
3) Define a test function /, as above, where Vt is the average of \pM on the

corresponding component of Mτ. We claim a) the L2 norm of/ is not much smaller
than the L2 norm of ψM which is one, b) the energy of/ is not much bigger than the
energy of \pM which is λ(M). From the claim we deduce the lower bound.

4) Proof of b). Consider any cylinder. Let t be its waist size and suppose / is Vv

at one end and V2 at the other. Recall the energy of / in the cylinder is (Ft — F2)Y.
Let C be the cylinder where this energy contribution to / is a maximum. Then of
course, the total energy of / is comparable to (Vί — F2)Y, since there is a fixed
number of cylinders.

Now ιpM must also vary across the cylinder by 2). Namely if Vί < F2, ψM= ^Ί

= Fi + (small fraction of j/m) at the Fi end and ψM^C2 = V2 — (small fraction of

j/m) at the F2 end, using 2). By Lemma 2, the energy of ψM in the cylinder is at least
(Cj. — C2) V. (An easy calculation shows the modulus of a cylinder of waist t is I//.)
Since (Fi — F2)Y is comparable to m, so is (C1 — C2)V. This proves b).

The proof of a) takes several steps. We continue to pretend that λ(M) <^ m. This
assumption now entails that each Vl is much less than one, for otherwise /
determines a normalized test function showing λ(M) and m are comparable.

We will use this information to show each contribution to the L2 norm of ψM is
small, contradicting the fact that the L2 norm of \pM is one.

5) (the structure of \pM in a cusp) If ψM(x) is c for x in the boundary of a cusp,
then ψM has the size of c on the entire boundary (Harnack). By [PI] and [S] there
is an upper bound φM(y)^cexp(l-D)JR, where R = distance(x,y) and λ(M) is
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D(l — D), D> 1/2. The width of the cusp at distance R is e~R, thus the square
integral of ψM in the cusp has the size c2. If the cusp touches a compact component
of Mτ, then c is comparable to one of the ΐ?s and thus the L2 norm of ψM in the
cusp is small. If the cusp touches a non-compact component we deduce this
contribution to the L2 norm of ψM is small using 6) below.

We note that the estimate is easy to derive using the fact that ψM belongs to L2,
and an argument like 7) below. However, this estimate is proved independently
of this fact in [PI] or [S] to show ψM belongs to L2.

6) (structure of ψM in a non-compact component of MΓ) We study ψM on the
non-compact part of Mτ by isolating each end by closed geodesies. There are two
cases: i) the component of Mτ containing that end is itself an annulus entirely
contained in a larger annulus between a (short) closed geodesic and infinity, ii) the
end of Mτ may be isolated by a geodesic in that component of Mτ (see Fig. 5).

In either case if k is the value of ψM at a point x of that geodesic, then for any y
between the geodesic and infinity, ψM(y) has the size fc(exp — DR) where

R = distance (x, y) and D = 1/2 + ]/[l/4-λ(M)] (see [S]). Thus in both cases i) and
ii) we see that the contribution to the L2 norm of ψM from a funnel is comparable to
the size of ψM in the boundary of the funnel. (Recall that the boundary component
has diameter of size one.) If c is this value, by Lemma 1 the energy of ψM in the

funnel is at least size c2. Thus the size of c is smaller than J/% which is smaller than
one.

We note that this estimate follows easily from the geometric observation that
as a point moves away from the closed geodesic its image in the universal cover is
moving away from the convex hull of the limit set (where the boundary measure of
ψM is concentrated) at the same rate, up to an additive constant.

7) (structure of ψM in a cylinder) Average ψM over the rotations of the cylinder
to construct a new function φ. By Harnack ψ has the same size as ψM. Also, ψ
satisfies a second order differential equation with two independent solutions φ +

and ψ_. When one symmetric half of the cylinder is close to a cusp these solutions
are close to yD and y1 ~D (upper half plane model). If c < 1 is the value of φ on the
boundary and the L2 norm of ψ is less than or equal to one, a calculation (see
below) using ψ = A+ψ++A_ψ_~A+yD + A_yί~D yields boundary values of ιpM

and the eigenvalue controls its L2 norm on a cylinder.
Here is the calculation: If in the upper half plane model f=A+y° + A_yl~D on

O^xrg l , 1 ̂ yrg l/^ (recall this rectangle is approximately isometric to half of a

Fig. 5
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cylinder with short geodesic of length f) then, letting L= l/t, the L2 norm of / is

or (*) (~l)A2+L2D~'L + 2A-.A+\θj>L + A2-.(~ϊ). We now calculate the energy in
the half cylinder. In the upper half plane model, grad(yα) = y (a/~ *) = aya. Thus

Since φ is positive and A++A_=c, there are three possibilities: 1) A+ and the
magnitude of ^4_ have the same size, 2)A+~c and is much greater than the
magnitude of X _ , or 3) the magnitude of A+ is much smaller than that of A.9

which is approximately c. In cases 1) and 2) using the facts that D>\ and L is
large, we see that the dominant term is A2+L2D~l in both the energy and the L2

norm expressions. Thus the L2 norm and the energy in the half cylinder have the
same size and this size is dominated by λ(M) which is small. In case 3) using the
above facts and assuming that A+A_logL dominates the L2 norm expression
leads to the contradiction that A_$>c. Thus either λ(M) controls the L2 norm, as
in the previous cases; or, if A+ is small enough, A2_ and hence c controls it. This
completes the proof of Theorem 1.

Shape of the Basic Eigenfunction ψM. We summarize the information about ψM

derived from the proof of Theorem 1.
1) On each compact component of MΓ, ψM varies from a constant value by no

more than 0(]/I). A definite proportion of the L2 norm of ψM lives on these
compact components.

2) In the cusps, cylinders and funnels, the size of ψM is determined by the sizes
on the boundary and the eigenvalue.

3) The test function produced from the constants on the compact components
of the thick part by linear interpolation on the cylinders has the correct size energy
and L2 norm to compute the magnitude of λ(M).

4) We have not shown that the energy of ιpM is situated in the same place as the
energy of the test function.

Appendix

Harnack Principle. 1) The value of a positive eigenfunction at a point controls its
values on a unit neighborhood. 2) A bound on a disk neighborhood for any
eigenfunction controls any finite number of derivatives on a centered disk of half
the radius. 3) The L2 norm of the gradient of an eigenfunction on a disk of definite
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size controls a finite number of derivatives on an interior centered disk of half the
radius.

The basis for these general facts can be found in references on elliptic equations.

Lemma 1. Let M be a Riemannίan surface homeomorphic to Sίx[Q, oo). Let ψ be a
positive smooth function greater than or equal to a constant C on dM and such that
φ-»0 as x->oo. Then energy(φ)^C2/πιodulus(M).

Proof. We assume that modulus (M) < oo and note that the energy of a function is a
conformal invariant of the metric. Let h be the harmonic function on M with the
same boundary values as \p and which vanishes at infinity. Recall that energy (h)
^ energy (φ).

By Sard's theorem, there exists C0 arbitrarily close to C, C0 < C, for which the
level set ξ = [x e M: h(x) = C0} is a compact one-manifold. If this one-manifold
separates an interior piece of M, then h is identically constant. Thus ξ is a
connected curve separating dM from infinity. Let M0 be the subannulus between ξ
and infinity. Note that modulus (M0)^ modulus (M) and h is constant on δM0.

We can map M0 conformally to a right circular cylinder. On the cylinder, the
function h becomes the linear function with energy C2(modulus of the cylinder)"1.

By a similar type of reasoning, we obtain

Lemma 2. // M is a Riemannian surface homeomorphic to S1x[0,1] and ψ is a
positive smooth function greater than or equal to a constant Ci on one boundary
component of M and less than or equal to another constant C2<Ci on the other
boundary component, then

energy (ψ) ̂  (C1 - C2)
2/modulus(M).
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