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Abstract. In this paper we study a classical mechanical system of weakly coupled
rotators on a one-dimensional lattice. Such systems are of interest in statistical
mechanics. We prove that for any site in the system there is a "large" set of initial
conditions for which there exists a canonical change of variables such that the
trajectory of that site, in the transformed system, is essentially indistinguishable
from that of an integrable system for a long (but finite) time. Alternatively, the
trajectory of this site lies very close to a torus in the phase space of the system for
times very long in comparison with the typical period of the unperturbed
rotators. All the estimates in this theory are independent of the number of degrees
of freedom in the system. We propose this mechanism as an explanation of
certain numerical experiments.

1. Introduction and Main Results

In this paper we analyze the behavior of trajectories in the classical mechanical
system with HamiJtonian

) = iI I + ε t cos(φt-φi+1)9 (1.1)
ί = l

where IeUN and / / i s the usual Euclidean inner product. More specifically given
je{l,... ,N} we will be interested in the behavior of {/,(£)> </>/0}> for long but finite
times. In [8] Galgani and LoVecchio have studied a system of weakly coupled
oscillators numerically. Looking at the trajectory of a single oscillator in the chain
they find that as they increase the energy/mode of the system a transition occurs
from a state in which the trajectory of the oscillator is confined to a relatively small
region about the trajectory it would follow if uncoupled from the rest of the chain, to
a state where the trajectory wanders over a large part of the phase plane.
Furthermore they find that the energy/mode at which this transition occurs is the
same whether the number of degrees of freedom, N = 20 or 100. Further numerical
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studies seemed to confirm the fact that the point at which this transition occurs is
independent of the number of degrees of freedom in the system [5,6]. One possible
explanation of this phenomenon is that the transition represents the destruction of
the invariant tori which the Kolmogorov-ArnoΓd-Moser theory guarantees exist
in weakly coupled systems. However, all estimates to date [7,11] seem to show that
the strength of the coupling for which the KAM theory applies must go to zero as N
increases.

In a preprint of this paper we suggested that the mechanism described in the
present work might explain these results. However, Benettin, Galgani and Giorgilli
[2] have recently pointed out that the short range coupling in these models is
destroyed when action-angle variables are introduced. Since the theory described
below depends crucially on the short range nature of the interactions it will not apply
to the above calculations. However, in [2] the authors also present the results of
numerical experiments on the system with Hamiltonian (1.1). Their findings agree
very well with our results. They observe that if the initial conditions of the system are
such that some of the rotators are in resonance with their neighbors, the motion of
those rotators has very little effect on the remainder of the system, i.e. the
non-resonant regions undergo quasiperiodic behavior to a high degree of accuracy.
This is precisely the prediction of the theory below. Namely, we show (Theorem 2.1)
that given any set of initial conditions one can construct a canonical change of
variables which results in a Hamiltonian consisting of three parts—an integrable
part, a resonant part, and a non-resonant part. The effects of the resonant part of the
interaction are localized in those regions where the initial conditions are resonant
(i.e. give rise to small denominators in the iterative scheme used to construct the
canonical transformation) while the non-resonant part is extremely small. Thus
those sites in the non-resonant regions of the system behave essentially like an
integrable system, and in Theorem 1.1 we show that given any site in the system
"most" initial conditions are such that this site lies in the non-resonant region.
Benettin, Galgani and Giorgilli have not yet studied the large N limit of (1.1), but
they speculate that the behavior they observe should persist in that limit because of
its essentially local character. Our theory predicts that this is indeed the case since all
estimates presented below are independent of the number of degrees of freedom in the
system. Thus even though the system is probably ergodic for large JV, one would
have to wait a very long time for the system to explore a significant portion of its
phase space. We note that in [2], evidence is presented that inside the resonant
regions of the system a kind of "local chaos" occurs. We have not been able to prove
that such an effect is present, for as is often the case, the presence of chaos seems
much harder to demonstrate in these systems than its absence. Because the
Hamiltonian (1.1) is similar to those studied in statistical mechanics it is interesting
to ask what the implications of this "weak chaos" are for the ergodic hypothesis, and
even whether or not these phenomena could be observed in one dimensional
physical systems.

Benettin, Galgani and Giorgilli interpret their results in light of classical
perturbation theory and in [1] they show that the classical perturbation theory is
well defined for the model (1.1) to any finite order in ε. The large JV limit has not yet
been studied, and it is not clear whether classical perturbation theory can handle the
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more general short range interactions considered in [10], but their method may
provide an alternate way to prove the results of the present paper for the system of
rotators (1.1).

In order for a theory like that above to hold we expect that the "perturbing
energy/mode," which in (1.1) is measured by constant ε, should be small in
comparison with the "unperturbed energy/mode," Eo, which in this case is

N

Σ (ify/N. Thus we consider initial values of the action variables / in the N-
J = I

dimensional (Euclidean) sphere, SR9 of radius i? = x/2£oiV, for Eo some fixed
positive constant.

Theorem 1.1. Suppose ε<c,for 0<c a constant independent of N, (but which may
depend on Eo). Then for allje {1,... , JV} there is an open set Jί) aSRxTN such that if
(I,φ)eJ^j, there is a canonical change of variables C:(/',φ')-»(/,</>), such that the
trajectories of the system with Hamiltonian H{1'φ') = H°C(I\φf) and initial
conditions (/'0, φ'o) = (C~ ̂ (/Q, ΦO) satisfy

\Γj(t)-ΓOj\^e-^a (1.2)

for some positive constant a > 0, independent ofN. The inequality (1.2) holds for all
0 ^ t S T= l/ε(1~b), where the constant b>0 may be chosen as small as one likes.
Finally, JTS satisfies vol Jίi ^ (1 - λ(ε))\ol(SR x T% where λ(ε) ~ Θ(εa) for a some
small [N independent) constant.

Thus, the trajectories in the transformed system behave in a way, which for ε
small is essentially indistinguishable from an integrable system. Note also that the
time T for which (1.2) is valid is much longer than a typical period for the
unperturbed system which is Θ(EQ 1 / 2 ). Given the form of the Hamiltonian (1.1) it is
not surprising that we should be able to obtain some sort of estimates on the
behavior of the trajectories for times of order 1/ε. What is important here, is that we
can control them to such a high degree of accuracy and that this control is in-
dependent of the number of degrees of freedom of the system. It seems likely that a
result like Theorem 1.1 holds for times much longer than 1/ε, in light of the numerical
experiments of [2], and in the appendix we present some ideas as to why this might
be, but at the moment these ideas fall far short of a proof. We can restate the theorem
in terms of our original variables as follows. Let C be the canonical transformation
constructed in Theorem 1.1, and let (J'o, φ'o) be as above. Consider the trajectories
Γ(t) = Γθ9 φ\t) = {dHldΓ)\{ϊ'oφ'o) t + φ'o (where φ\(t) is evaluated mod(2π),) and set

= C(Γ{t)9 φ\t)). We°then have

Theorem 1.1/ Ifε<c,andO^t^T,

e-1/εα,\φff)- $j(t)\ ^e~^\ (1.3)

for some a > 0.
Here (/(ί), φ(ή) is the trajectory of the system with Hamiltonian (1.1), and initial

conditions (/0, φo)sJίj. Thus the trajectories lie very close to the image of a torus for
0 S t ̂  T, a result consistent with the numerical experiments described earlier. We
won't provide the details of the proof of Theorem l.Γ. It follows easily from the proof
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of Theorem 1.1 and the bounds on the canonical transformation, C, which are
implicit in [10].

The results of the present work are related to the studies of Nekhoroshev [9].
Nekhoroshev was able to show that given a nearly integrable Hamiltonian system,
and any initial condition, (I0,φ0)9 then for 0 ^ t ^ T = e1/εα, ^ | / / ί ) - / o y | ^ε 5 , for

j

some b > 0. Note that while Nekhoroshev does not have such good control over the
trajectory at a particular site as Theorem 1.1 provides (partly because he is not
working with systems with short range interactions and partly because he is
considering arbitrary initial conditions) his result holds for an enormously long
time. In particular it tells us that any ArnoΓd diffusion which occurs in such a system
must happen at a very slow rate. (The diffusion constant—if it exists—is bounded
by e~1/ε". See [4] for a (non-rigorous) discussion of these matters.) The drawback of
Nekhoroshev's result from our point of view is that the constant a, as well as the
degree of non-integrability which is allowed in order to apply the theorem, all go to
zero as the number of degrees of freedom becomes large, which is the situation in
which we are interested. (For instance, the constant a~N~2 in [9].) The
implications of results like those of Nekhoroshev, for systems studied in statistical
mechanics is discussed in [3].

2. The Proof of Theorem 1.1

We review the results and terminology of [10] that we need below. Given a set
V c: UN, an N-vector p, and ξ > 0, define

W(p,ξ;V)= \J{(lφ)eC2N\\Ii-Γi\<pi,\Imφi\<ξϊori=l...,N}.
I'eV

Theorem 1.1 and Corollary 1.2 of [10] imply

Theorem 2.1. Given the Hamiltonian (1.1), and initial conditions (Iθ9φo), ifθ<ε< c,
for some universal constant c, there is a canonical transformation C; analytic and
invertibleon W{p, 1; {/'0}), with (J'o, φ'o) = (C~ *)(/0, φ0), and β defined below. We write

#(/', φ') = HoC(Γ, φ') = K{Γ) + / — n t ( Γ ? φ>) +/nonreβonant(/,> ̂  £.1)

where

sup

3 7nonr

dl'j

3 ^nonr

(2.2)

for k0 = integer part of(B3

 1\\nε\) for B3 some large constant. We emphasize that
the constants c and a are both independent of the number of freedom in the system. We
discuss the definition of, and bounds on, / r e s o n a n t below.

Theorem 2.1 was proved by an inductive procedure. Given the Hamiltonian
(1.1), let h°(I) = ίI I and define ω°{l) = dh°/dl ( = 1). Let Lk = 4(3/2)k and Mk =
(3/2)k|lnε|/(5, for δ some universal constant that could be determined in the course
of the proof. We note that it is convenient not to use the constant ε in (1.1) to measure
the size of the interaction term in the Hamiltonian, but rather ε0, which we define to
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be the supremum of the interaction term over W{p9 ξ, V). It is easy to check that
εo~Θ(εe2ξ). Define Xk = {veZN\d{suppv)^Lk, 0 < | v | ^ M f c } , where d(suppv) =
diameter of the support of v, considered as an integer valued function on the

N

lattice {1,2,...,ΛΓ}, and | v | = Σ |vt |. The primary resonances of order zero are

for some constants 0 < β < 1 and Bx > 1, (which could again be determined from the
proof) while the secondary resonances of order zero are

for some VeR°p).

Here supp v = {i, i + 1,..., j — 1, j}, for i and; respectively the leftmost and rightmost
sites in supp v. We then defined canonical transformations C°, and C° such that
#'(/',φ') = H°°C°(lφ') = h\Γ) + / 1 Γ(J',Φ') +/1'nr(//,</>'), with h\ΐ) = h°(Γ) +
/o(/') (By /?(ί) w e rnean the vth Fourier coefficient of the interaction term in our
original Hamiltonian H°(Lφ\ For the Hamiltonian (1.1), /?(/) = 0.) If we define

f\lφ) = H\Lφ)-h\I\ then / 1 Γ(/,Φ)= Σ / ί W Λ whileZ1 •»•'•(/',Φ')=Σ

fl(I)^vφ. The canonical transformations obeyed C°oC0 = C0°C° on their common
domain, and we also defined (/x, φ j = C°(/o, φo) The canonical change of variables
C° was chosen so that while flj was still Θ(εo\ fUn r - Θ{εl12). Continuing
inductively we defined a sequence of canonical transformations C\ C 2 , . . . ,C*°, and
their inverses C1, €2,.. ,Cfco, where fc0 = integer part of (Bϊ1 |ln ε|) for B3 some large
constant. Corresponding Hamiltonians were defined by

H\I\ φf) = Hk-^Ck~l{I\ φ') = h\Γ) +/*(/', φ') = ^(/') +/k'r(//, Φ')+f'n riI\ φ').

In each case Λk(/) = Λk-1(i)+/S~1(Λ and /*•'(/', φ')= Σ / tU)^ 0 , with Λk =

IJ RpϋΛJ1. As is typical in these accelerated convergence methods

tfώ = £(o3/2)k. If ωk(l) = dhk/dl (I) and (/fc,φk) = e k - 1 (/*-i,Φ f c -iλ the
resonances of order k were given by

while the secondary resonances of order k were given by

+ 1\(RkuRk

p)\suppvnsuppv' Φ0).

(The resonance vectors actually depend on the initial conditions (I0,φ0) but we
suppress this dependence in the notation.)

The kth order sites, S\ are all sites such that:

(i) esuppv for some ve/^u/?*" 1 (for /c = 0 take R;1 = 0.)
(ii) jφ
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Define

0
ifi
otherwise.

(2.3)

Here 0<Ci < 1 is some universal constant, and p m + 1 is defined inductively by
po = \ipm+1= pmεβ[B2e

2Mk + 2Lk] ~ *, for J32 > 1 some universal constant. Finally set

U if iφ[)s*

if i
(2 4)

m = 0,...,/c-2.

The canonical transformation C in Theorem 2.1 is the composition Cko~ * ° ° C°,
while p = pfco. The following proposition is immediate given Corollary 2.2 of [10].

Proposition 2.2. lfH{Uφ) is the Hamiltonian constructed in Theorem 2.1 then

sup

< <

3 Tresonant

g(l/4)(3/2)*o <

e(l/4)(3/2Γ

for some constant α > 0
fco-l

(2.5)

if

wiί/ί ί/iβ supremum taken over W(p, 1; {/}). We remark that the factor of (1/4) in the
exponent on the right-hand side of (2.5) could be replaced by any constant c < 1
without difficulty.

Proposition 2.3. IfT= \/ε\ 0 < b < 1, then for allO£t<T, (/'(ί), φ'(ί))e W(& 1; {J'o}),
where (Γ(t), φ\t)) is the solution of Hamilton's equations, with Hamiltonian H(I\φ')
and initial conditions (Γo,φ'o). (Recall (J'o,φ'o) = (C~ι)(I0, φ0) = (Iko, φko).)

Proof. By Hamilton's equations

^Tresonant

(2.6)

By (2.2) and (2.5) we can bound the right-hand side of (2.6) by 2ίe (1/4)(3/2)k° if
fcfco-l

jφ (J S fm,and2ίε(1/4)(3/2)n,ifyGS"forsomeπ,aslongas//(ί)isin M p , 1; {/ό}). On the

other hand, Γ(t) will be in W(p, 1; {/ό}) so long as |/;<ί) - / ^ | < βj. (φ'(ήeTN and
hence always in W(β, 1; {/Ό}) The definition of p implies pj ̂  (l/2)pm + 1 if;GSw, and
p. = pko otherwise. Using the definition of pk this in turn implies that we must have

^ s ϊθΐ a l j m = Q ? ] ^ Provided ε is
sufficiently small (but independent of m) we see that this inequality can be satisfied
for all 0 ̂  t < l/εb, for all 0 < b < 1/4, by picking δ large and β small. Using our
remark above we can replace the factor of (1/4) in the exponent on the left-hand side
of this expression by any constant c, with 0 < c < 1, and we see that this allows us to
pick 0g; t < l/εb for 0<b< 1.
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Remark. Note that if there are no resonances of order m0 or lower in the system

( mo \

i.e. (J [ΛpURΠ = 0 U the trajectory (J'(ί), Φ'(t)) will remain in W(p,U{I'o})
for all time 0 ^ t < l/εM3/2)m°, and Theorem 1.1 will apply for a correspondingly
longer time. Thus associated to the sites of order m, S™, is a characteristic time scale.
Remark. It is quite likely that Theorem 1.1 actually applies for a time much longer
than 1/ε*, since when the trajectory leaves the region W{β, 1; {Γo}\ we can reapply
Theorem 2.1 to construct a new canonical transformation, with new initial
conditions chosen to be the image (with respect to Q of the point at which we left
W(ρ, 1; {/*}), and then reapply Proposition 2.3.

One must control how the resonance vectors Rk

p change during this process, and
so far I have not been able to do that. However, in the appendix I suggest a way to
control the zeroth order resonances which would extend the applicability of the
theory to time of 0(1/ε2).

ko

Let Jί} dSRx TN be the set of initial conditions (Jo, φ0) for which jφ [j Sm.

From the conditions defining the resonances we see that Jί7 is open. Furthermore,
by Hamilton's equations and Proposition 2.3 we see that for (I0,φ0)eJf}, and

0 ^ t < Z \ΐj{t) - I'oj\ S 1/εV1^ ^ e~^\

so (1.2) is satisfied. Thus, the proof of Theorem 1.1 will be complete if we can show
that vol Jίj ^ (1 — εα)vol SR. (We assume that the volume of TN is normalized to
one.) Let

Γj = \(I,φ)eSRx TN\iϊ ve ( j Rk

p for (/,</>), then dist(;, supp v )^ 3L f c oj.

Proposition2.4. Γ} c Jf..

Proof. If je (J Sm, but ^suppv for some ve (J R™, (for (/, φ)) we must have
m = 0 m = 0

Λo-1

jesupp v, for some ve (J R™. But every point in supp v for veR® must be within a
m = 0

fco

distance Lx of some point in supp v', for some v'e (J /?^ (in fact for v 'e/φ. Similarly,
m = O

every point in supp v, for VGR] must lie within a distance Li + L2 of some point in
ko

supp v' for v'ejRp u i?p c: | J K^. Continuing in this fashion, we find that any point

_ o

in supp v, for veΛ*0"1, must lie within a distance ]Γ L7-^ 3Lfeo of some point in
I

ko

supp v;, for v'e [) R™. But the definition of Γj forbids this, so jφ [j Sm,andΓj^tΛ
r

j.
m=0 m=0

Proposition2.5. vol Γj; ̂  (1 — εα) vol SR,for some small constant a.
By the remarks above, vol Jί j ^ vol Γj ^ (1 — εα) vol S κ , so the proof of Theorem

1.1 is complete.
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The idea behind the proof of Proposition 2.5 is a simple geometrical argument.
Let Γj be the set with no zeroth order primary resonances within a distance 3Lko of/
For the Hamiltonian (1.1), ω°(/) = /, so (assuming vol TN = 1)

voi[(sRxr")\r°]^ Σ ί di.
veX0 |</,v>|^ε/?[β1e<3/2)|vhLO]-l

dist(y,suppv)^3Lko

The integral on the right-hand side of (2.7) is a slice of thickness ε/*[51e
ί3/2) | r |+L°]~1

out of an N dimensional sphere, and hence can be bounded by εβBEό1/2

lB1έ
3/2M+L°y1 vol SR, for some constant B. Since there are at most 2 2 M 2 L vectors

v with |v| = M, d(suppv) = L, and leftmost point in suppv fixed, and since
there are at most (3Lko 4- Lo 4- 1) choices for the leftmost point in supp v,
vol[(SΛ x TN)\r<fi ^ (3Lk0 4- Lo + l)εβEό1/2 (2/e)Lo, iϊBί is sufficiently large. Since
εβLko = ε<*> P r o v ided the constant B3 in the definition of Lko is sufficiently large we
obtain vol Γ*} ̂ ( 1 — εα)volSΛ. One continues to estimate the contributions of
higher order resonances in the same fashion, but the procedure is somewhat more
complicated due to the fact that <ωk(/), v> is required to be small rather than just
</, v>, so we leave the details for the next section.

3. The Proof of Proposition 2.5

Throughout this section and the next we will assume that ε < c, the constant in
Theorem 1.1, and won't continue to restate this hypothesis. Let

Rx TN\3ve (J R?,withdist(;,suppv)<
m = 0

(Recall that R™ depends on (/0, φo\ but we have suppressed this dependence in the
notation.)

Lemma 3.1. There exist α > 0, B > 1 such that

volRl ύUt BLJX + (2/ec)Lo + - + (2/ec)L~)t
m = 0

+{2/ec)Lo+ ••• +{2/ec)Lk) \ε*vo\SR, (3.1)

for c = 1 — εy, and y some small positive constant.
Note that Rkj°3LkQ = (SR x TN)\Γj. Thus, since Lfcoε

α < εα', provided the constant
B3 in the definition of fe0 is large enough, Proposition 2.5 follows.

Proof. The proof is by induction on k. Note that the k = 0 case follows easily from
the discussion following Proposition 2.5.

Now consider the case k = 1. Recall that ω\I) = ω°(7) 4- {dβ/dl){l)9 and (Il9φι) =
Φoϊ^Vo + Ψ^IoiΦoX Φo + π°Uo>Φo))' T h e last equality coming from

(3.14) of [10]. Hence ω^IJ = ω 1 ^ + ψo(Io,φo)) Ξ ώjo(/o). Thus we have a function
defined on SR x TN with the property that veK* (of (/, 0))if and only if v ^ ° , veX l 9



Bounds on Trajectories of Weakly Coupled Rotators 29

and I (ώφ(I\ v>| ^ εβ[B1έ
7>βM+Lι~\~ι. Note that since there are only a finite number

of choices for the sets of zeroth order resonances there will be only a finite number of
different choices for the generating function of the canonical transformations C° as
our initial conditions range over SR x TN. Furthermore, the estimates of [10] show
that if the generating function is fixed, (/', φ') = C°(/, φ) depends smoothly on (/, φ).
The boundary between regions where different canonical transformations (i.e.
those with different generating functions) are defined is determined by the conditions
|<ω°(/),v>| = ε^[β 1e ( 3 / 2 ) | v | + Lo]- 1, for veX 0 . (To keep our notation uniform, define
ώφ{I) = ω°(/).) Thus, ωj(/) may be discontinuous across these hyperplanes. How-
ever, by deleting a set of arbitrarily small volume about these hyperplanes we obtain
an open subset ^ 1 c SR x TN on which ώι

φ is smooth, and where the estimates of
[10] can be used to bound its derivatives.

Now consider the case of arbitrary k. Suppose we have constructed (for each
{Io,Φo)εSR x T*)the sequence ofhamiltonians H°(Lφ),H1(lΦl...tfk(lΦland the
sequence of points (Ij9 φj) = Cj~lo- o C°{Io,Φo\ for j = 1,... ,/c. (To save writing let
Cj = Cjo ...o c°.) As before there are finitely many choices for C} corresponding to
all possible different choices of sets of resonance vectors. Write Cj{I,φ) = (I
+ φJ(I9 φ), φ + πJ(I9 φ)) and define ωj

φ(I) = ωj(I + φj~ *(/, φ)). Once again the discon-
tinuities in ώ\ occur when |<ώJ

0(/),v>| = ε^[J31β
(3/2) | v |+L0"1, for some veX j 5

vφRjJ = 0,...,fc— 1. It is easy to show (using the estimates of [10]) that the set
of (/, φ) for which one of these equalities is satisfied is just the union of a finite number
of hypersurfaces in SR x TN. (One shows that <ωφ(/),v> is a small perturbation of
< /, v > and then uses an inverse function theorem argument.) Thus by excluding a set
of arbitrarily small measure it is possible to construct an open subset &k c SR x TN

on which ώk

ώ(I) is smooth, and where one has:

Lemma 3.2.

sup

The proof of this lemma is presented in the next section.
Given a set A c SR x TN, let χ{A) denote its characteristic function, and let Rkf

denote the complement of Rk

r Then

• = ί lAR&UdΦ
TNSR

* ί ί X(Rj/λκ)dIdφ + f f χiR^φχKWdφ, (3.3)

N N

where dl= Π dh and dφ=\\ {dφi/2π). By the induction hypothesis, (3.1) bounds
i = l i = l

the first integral on the right-hand side of (3.3) by

{(1 + (2/ec)Lo + ••• + (2/ec)Lk-W + Lk)B

4- 3 * Σ BLJ\ + (2/ec)L° + ••• + (2/ec)L")}ε*volSR. (3.4)
m = 0
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The second term on the right-hand side of (3.3) is controlled by

where δ bounds the volume removed from SR x TN in constructing @>k, and may, as
we remarked, be chosen arbitrarily small. We note that the presence of the factor of
χiRjZ+φ in the integrand on the right-hand side of (3.5) allows us to ignore the
contributions of all resonances of order less than k, in the sum over v. The right-hand
side of (3.5) is bounded with the help of the next lemma which we prove in Sect. 4.

Lemma 3.3. //dist ( , supp v) g /, and veXk,

f dφ\dIχ{Rk^φ S εβe-^e-cL«{vo\ SR)/Ehl2 (3.6)

where c is the same constant as in Lemma 3.1.
Since there are at most 2 L 2 2 M vectors v with |v| = M, d(suρpv) = L, and the

leftmost point in supp v fixed, and also at most {Lk -+• ^ + 1) choices for the leftmost
point in supp v given that dist(y, supp v) ̂  /, we see that (3.6) bounds the right-hand
side of (3.5) by

δ + Σ Σ {
M=1L=O

ύ δ + B(Lk + 1 + l)(2/^c)Lk^(vol 5R)/£έ/2, (3.7)

which when combined with (3.4) yields the general case of Lemma 3.1. (We use the
fact that εβ/Eo12 can be taken less than £α, for some α < β.)

4. The Last Lemmas

We finish by proving Lemmas 3.2 and 3.3. We first need some additional results from
[10]. Let ξo = i | lnε | , ξk = ξk-γ - 3(<5 + 2), for δ some constant that could be
determined from the proof of [10]. Note that if the constant B3 in the definition of k0

is large enough ξko^ 1. The transformations Ck and Ck whose construction was
discussed in Sect. 2 are analytic on W(pk+\ ξk+ί; {/fc+i}) and map this set into
W(P\ξk;{Ik}). Define

S(pk;(l Φ)) = {(/',φ')eC2N\ \Γj - 77 | < (pk)j and | φ ) - φj\ < (pk)j}.

Recall that Ck(Ik + i,φk+ί) = (/k,Φk) (or equivalently (Ik+uφk+]) = Ck(Ik,φk).) This
fact, combined with the bounds on Ck in [10] imply that if ae(0,1], the image of
S(apk+ι;(Ik+uφk + 1)) with respect to Ck actually containsjS(αp*+1/0 +^ 1 / 2);(/ k,φ k))
(with εk = ε ( 1 / 2 ) ( 3 / 2 ) kχ which implies in particular that Ck maps this set (which is
contained in its domain of analyticity) into S(apk + 1; {Ik+1, φk + J). Define x and x\
elements of C 2 N by *,• = {/,• if l^i^N, φ(-N if N<i^2N} and set xj = {/; if 1 ̂
ί^iV, Φ -ΛT if N<i^2N}. Then on the appropriate domains we have χ =
x(x') = C\x') and x' = x'(x) = C(x). Lemma 4.2 of [10] gives
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Lemma4.1. Let 9= W(pk+\ξk + 1;{Ik + 1}). Then

sup
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(4.1)

for some small positive α, m = ^|lnε|, ηk = kcιlko + c2 X (3/2) j, for cx and c2
7 = 0

universal constants chosen so that ηko < 1/8, 8βk = cjko -f c2(3/2) fe, with cx and c2

the same constants as in the definition of ηk, and δ(i9j) = |f(mod JV)—7'(mod JV)|.
By the analytic inverse function theorem, the matrix of derivatives (dx!i/dxJ)(x) is

the inverse of the matrix {dxjdx'^x'). Using your favorite method for inverting
matrices, for example the expansion of Appendix B of [10] we find.

Lemma 4.2. Let 2 = S(pk+i/(\ + εk

1/2);(/fc, φk)). Then

sup ^ min (ε \ Bδ{iJ)e (4.2)

where the constant B in (4.2) may not be the same as that in (4.1).
Note that given the bounds of Lemma 4.2 on x'(χ) = C°(x), and χ'(χ) = C 1 (x\ we

can apply Lemma 4.1 of [10] to bound derivatives of x'(x) = Cι°C°(x), for x in
S(p2/2; (/o,Φo)) Continuing inductively we obtain

φ)) = ck(I,φ) = Ck°Ck~lo 'oC°(I,φ). Then if x is asLemma4.3.Lei (/'(/,φ),
above and x'{x) = Ck(x),

sup

/or ® = S{pk+1/2; (/0, </.o)), and fe = 0,...,k0 - 1.
Next recall that by (2.9) of [10] on W{pk, ξk; {Ik}),

o-{l-ηt\m\i-j\ jf

(4.3)

8ωl

Bk0

i f *' =

(4.4)

Also, since ω°(/) = / for the present example, and ωk(I) = ωk 1{I) -f (5/c/3/)(/), the
bound (2.5) of [10] implies |ωf(/)-/ ί | ^2ε 0 for i = l , . . . , N , and / in W(pk,ξk/{Ik}).
Since Ck: S(pk+1/2; (Io,Φo))-*W(pk+1,ξk+ί; {/fc + 1}) we can bound derivatives of
ωk(Γ(I, φ)) on this domain, using Lemma 4.3, (4.4) and Lemma 4.1 of [10], obtaining

Lemma 4.4. On S(pk+1/2; (/0, φ0))

dωk ,3/8 if i=
l)e-m(l-ηk+1)δ«J) jf

(4.5)

On the other hand, if (/0, φo)e@k, ώk

φo{Io) = ωk(/'(/0, φ0)), so (4.5) proves Lemma 3.2.
(/'(/, φ) is as in Lemma 4.3.). We remind the reader that in [10], the constants cγ and
c2 in the definition of ηk were chosen so that ηk < (1/8) for k = 0, 1,... ,fco Note also
that our remarks above, and the bound on \(Ik+ί)i - {Ik)i\ that comes from (3.15) of
[10] imply that on 9k, \ώk

φι(I) - It\ ^ 2ε1/2, an observation we will find useful later.
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We now turn to Lemma 3.3. We will prove that for any φeTN, ζ > 0, veXfc, and
dist(7,suppv)^/,

ί dl g (2 V' L f c ) vol SR/Eι

0

12, (4.6)

(l,φ)eS!knRk

jy
 c + Lk

for some y > 0, from which (3.6) follows. We assume, to simplify some of the
subsequent notation that if jesuppv, then je{l,...,Lk}. This results in no loss of
generality. Let Θ be an orthogonal transformation (from [R^-^IR^) such that
Θv = e1\v\, where (έjj = δiy Then if y = 01, and Ω{y) = Θώk

φ(Θ~ίy),

ί dl= J dy, (4.7)
|<ωJ(/),v>|<C \Ωi(y)\ύζ/\v\

yeΘ{@>nR)

where we have suppressed the superscripts and subscripts on 2 and R to save space
and the notation yeΘ(@nR) means (Θ~1y,φ)e@nR. Now let zi = Ωi(y) if ί =
1,... ,Lk, and z, = y{if i = Lk -f 1,...,JV. We will show below that T: y->• z is one-to-
one on the set of y such that (0 " ιy, φ)e9 π î , and that |det(δT/3j;)"11 ^ ^ L f c on that
set, for some σ > 0. Thus,

j dy^f'1" J dz, (4.8)

where zeT(Θ(@nR)) means T~\z)eΘ{9nR). Let z = (z2,...,z iV). Let (T;ι

ί(z))j =

(Γ~ 1(z1,f))J for j=2,...,JV and set y= Γ~Hz). Note that T " 1 is one-to-one for all

(zι,z)eT{0{2nR)). We show below that sup|det(^T~ 1/dz)\ ^ / ' \ so that the

right-hand side of (4.8) is bounded by

2(ί/ |v |)^ σ + e σ '^sup J dy.

But since Θ is an orthogonal transformation, and @ aSRx TN, (yί,y)eΘ(^nR)

implies {yi,y)eSR, and hence that \\y\\ ^ y/2E0N, where || || is the Euclidean norm

on IR^"1. Thus, J dy^ volume of an N— 1 dimensional sphere of radius

y/2E0N and (4.6) follows easily.
We now bound the two Jacobian determinants and show that T(y) is single

valued. First note that Θ may be chosen so that Θu = δ^ if either / or j> Lk. Also,
(dTJdyj)(y) = δu if i ovj> Lk. Thus, άet(dT/dy) is equal to the determinant of the Lk x
Lk block in the upper left-hand corner of this matrix. An easy calculation shows
that (dT/dy)(y))f ^Θ'dδωl/dDiΘ-'y))' Θ~v. Here, if M is an N x N matrix M
means the restriction to elements M l 7 with j, jrg Lk. Thus,det(dT/dy) = det(dώk

φ/dl)' =
exp[trίln(δώ*/δ/);)]. If we write (δώk

φ/dl)' = 0 +((dώφ/δI)-K)\ then Lemma 3.2
bounds \(dώk

φ/dl)- 0)̂ 1 by ε3 / 8 if / = ;and ε(1/8)||-^Ί if iφj. This information makes it
easy to estimate the power series for ln[0 + {{dώφ/dl)(l) — 0)'] inductively, and we
find \tr\nA(dώk

φ/dI)Ί\^εσLk for some σ > 0 . (In fact σ = (l/10) suffices.) Hence

e-°Lk ^ \det(8T/dy)\ ^ e?"Lk

9 verifying the first of our bounds. (Note that this is not
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enough to ensure that T is one-to-one, because the domain on which T is defined is
not connected.)

Now note that ((dT~ ι/δz)(z))~ί is equal to the matrix {(δT/δy)(y))' with its first
row and first column struck out. Since det(5T/Sy)' is the amount by which the
transformation (dT/dy)' changes the volume of an Lk dimensional cube in ULk we
estimate |det(dT~ 1/δz)~ί)\ by bounding the amount by which (dT/dy)' can increase
the volume of an arbitrary Lk — 1 dimensional cube (in RLk). A little calculation
(using Lemma 3.2) shows that ifx is any unit vector in ULk, \\(dT/dy)'x\\ ̂ ( 1 + εσ)1 / 2,
for some σ > 0, (we used the fact that εσ Lk < εσ for k = 0,... ,/e0 in this calculation)
and hence, (δT/dy)' cannot increase the volume of an Lk — 1 dimensional cube by
more than a factor of (1 + εσ)iLk~1)/2 ^ / L \ which implies \dQt{δT~ι/δiy11 g / L*
as claimed.

Finally, we show that on Θ(9ΓΛR\ T(y) is single valued. Suppose T{yι) = T{y2).
Note first that this implies y) = y) ϊorj> Lk, and (Θώk

φ (Θ~ V)),- = (Θώk

φ (0~ V)),. if
I Sj^ Lk. This last fact in turn implies ώk

φj(Θ~1y1) = ωk

φ£Θ~ιy2\ for ; = 1,... ,Lfc. If
71 = Θ~xy\ I2 = 0~ιy2, then I) = I2 for ;> Lk. This fact, coupled with the fact that

J c - l

II and I2 are both in R^+ζ implies that any ve \J R™ (for either (71, φ) or (72, φ))
m = 0

k-1

must satisfy supp vn {1,2,... ,Lfc} = 0 . Since 1) = I2 forj > Lk, we see that (J i?^ is
w = O

the same for both (I\φ) and (I2,φ).
Since (71, φ) and (72, φ) have the same sets of resonance vectors, the generating

functions for the canonical changes of variables C™, m = 1,... ,/c — 1 will be the same

for (7\ φ) and (72, φ). (See Sect. 3 of [10] for an explanation of the construction of

these generating functions.) Next note our observation following Lemma 4.4 implies

K J ^ - ώ y / 2 ) ! έ | / i - ί£l - 4E1'2, so that we can assume sup|/j -Ij\ S 4ε1/2.
j

Since 4ε1/2 <px if the constant c in Theorem 1.1 is sufficiently small, we have sup|/j —

I]\<p1. Let € be such that p ,^sup | / ) - J?| < ρ , _ , . (If sup \l)-ί]\<ρk, the
j j

necessary modification of the argument below is very easy.) Suppose

sup|Jj-J? | = | J i - # l Write

U
Recall that ώj j/ 1 ) = ωjU/jί/1,0)λ (where (/,-, ̂ ) = C7_ ̂ Z1, φ)) so that

<//') - H'm

 ι u1)=&£r %d\ Φ)) - <' %- i(Λ Φ))+d-^-

Using (2.5) of [10] and the remark following (4.5) to bound δf^ιjδlm and 1(7^-
{Ij-iW respectively, we readily establish that l ώ j j / 1 ) - ^ 1 ^ 1 ) ! ^ ^ 3 - ! ^ O n t h e

other hand, ώ^il1) is an analytic function on S(p'/2; (I1, φ)) and ώ^il1) is analytic
on S(///2; (72, φ)). Since the sets of resonance vectors for (71, φ) and (72, φ) are the
same, these functions will agree on the (non-empty) intersection of these two
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domains so we have an analytic function on S(pe, (J1, φ))uS(p^, (J2, φ)\ There is a
path γ contained in this domain, joining J 1 to J2, and made up of Lk pieces, yh of
length 11\ — If | along which only the component Jf varies. By the fundamental
theorem of calculus

where we used (4.5) to control the derivatives in the integrand, and the fact that
|/i-/il^|/?-/?l for all I But this implies IcB^α1)-^^/2)! ^ |/i-/il
( l - J ϊ e ( 1 / 1 O ) ) - 2 2 ε , 1 / 2 ^ P / ( l - B e

( 1 / 1 0 ) ) - 2 \ 1 / 2 >0 . This contradicts the assump-
tion that ώ^m(/1) = ώ^(/ 2) and establishes the fact that T(y) is single valued.

Appendix

We outline a method we hope will extend Theorem 1.1 to all times t< 1/ε2, as well as
lead to other results such as a bound on the diffusion constant for ArnoΓd diffusion.

Given an initial condition (I0,φ0)eJί ^ construct the canonical transformation
C which eliminates non-resonance harmonics. Let the trajectories of the transfor-
med system evolve until

|</(ί),v>| = (3/4)Bvε
βy3l2^+Loy\ (A.I)

for some v = (0,... ,0, + 1 , ± 1, 0,... ,0), where (/(ί), φ{ή) = C{I\t\ φ'{ή) and Bv = 1.
Note that if this doesn't occur for O ^ ί ~ 0 ( ε ~ 2 ) we're done. Furthermore, that
(J'(ί), φ'{t)) will not leave the region on which C is defined before (A.I) occurs is
guaranteed by the observation following Lemma 3.1 of [10] that we could define C
on the largest connected domain in SR x TN with a fixed set of resonance vectors.

Next note that because the canonical transformations, C and C, differ from the
identity only by Θ{ε), and since Hamilton's equations imply that to Θ(\) Γ{t) =

ro + Σ υ

/(ί)S/'0+ Σ/^Vr (A.2)

We now define B v = i if v' = (0,...,0, ± 1 , + l,O,...,O)and<v/,v> ^ 0 , where vis the
vector in (A.I). If v' is of this form, and if <v',v> # 0 , we say v' is a zeroth order
primary resonance for I(t) if and only if | < /, v' > | ^ Bvε

β [^3/2)l v | + Lo] " ι . If < v', v > = 0, v'
is a zeroth order primary resonance vector for I{t) if and only if it was in R° for J o .
Such a definition allows us to begin the iterative procedure used to prove Theorem
2.1. Furthermore, (A.I), (A.2) and the fact that all VjβR* are of the form (0,... ,0, ± 1,
0,...,0) imply that the set of zeroth order resonance vectors for 7{t) must be
contained in that of/0. Thus, the fact that the motion of the system is dominated by
the zeroth order resonances for times t < Θ(ε~2) means that the number of zeroth
order resonances cannot increase.

One then reapplies Theorem 2.1 to (/(t), φ(t)). One will in general encounter new
higher order resonances in this procedure, but they will be localized in the sense that
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their support will be close to the support of that v which appears in (A.I). (One
probably has to define the higher order resonances by a formula like (A.3), with Bv

less than one if v' is close to v.) Having constructed the new canonical transformation
for (J(ί), φ(t))9 one repeats the entire procedure, and continues in this fashion until
t ~ Θ(ε~2). A few remarks are in order:

1) The biggest stumbling block in the above program is the fact that if the same
vector v appears in (A.I) many times in this process, β v->0, and since the value of ε
which allows us to apply Theorem 2.1 must be less than J3V, the value of ε to which
Theorem 1.1 applies goes to zero. We note that this difficulty could be avoided if we
could show that the set of zeroth order resonance vectors for (/(ί), φ(ή) was strictly
contained in the set of resonance vectors for (I0,φ0).

2) Since we generate new higher order resonances at each stage in this process,
fco

we might worry that the site y, which originally was not an element of \J S"1 might
o

'fall into" one of these sets and we would lose control of it. However, since the effects
of the "renormalized" interactions in the theory decay as 0(ε|i~ /l), where i and j are
the sites under consideration, and since the site j of interest is at least a distance Lko

from any zeroth order resonance such effects should be Θ(εLk°) = Θ(e~ 1/ε°) and hence
easily controlled.

3) Since the theorem on the elimination of non-resonant harmonics in [10]
applies to any initial condition a result, like that of this appendix, which allows one
to control the resonance vectors of the resulting trajectories for times longer than
ε~ \ would yield a bound, independent of the number of degrees of freedom, on the
rate of ArnoΓd diffusion in the system, assuming it occurs.
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