2- and 3-Cochains in 4-Dimensional $\operatorname{SU}(2)$ Gauge Theory

M. L. Laursen ${ }^{1}$, G. Schierholz ${ }^{1,2}$, and U.-J. Wiese ${ }^{3}$
1 Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, Federal Republic of Germany
2 Institut für Theoretische Physik der Universität, D-2300 Kiel, Federal Republic of Germany 3 Institut für Theoretische Physik der Universität, D-3000 Hannover, Federal Republic of Germany

Abstract

Explicit formulae are derived for the 2- and 3-cochains $\Omega_{\mu \nu \Omega}^{(2)}(i, j, k)$ and $\Omega_{\mu v \rho \sigma}^{(3)}(i, j, k, \ell)$ in $\mathrm{SU}(2)$ gauge theory in 4 dimensions. It turns out that $\Omega_{\mu v \varrho \sigma}^{(3)}(i, j, k, \ell)$ is given by the volume of a spherical tetrahedron spanned by the gauge transformations relating the gauges i, j, k, l.

I. Introduction

Higher-order cocycles

$$
\begin{equation*}
\omega^{(n)}=\int \alpha^{3-n} \sigma_{\mu \ldots . .} \Omega_{\mu \ldots}^{(n)} \tag{1}
\end{equation*}
$$

(here written for 4 space-time dimensions), where $\Omega_{\mu \ldots . .}^{(n)}$ is the n-cochain, play an important role in group representation theory, in the investigation of the structure of anomalies, Wess-Zumino effective actions and groups associated with a KacMoody algebra [1] as well as in the derivation of a closed expression for the topological charge [2]. It is therefore of great interest to know $\Omega_{\mu \ldots .}^{(n)}$ explicitly. In this paper we shall consider the case of gauge group $\mathrm{SU}(2)$ in 4 dimensions and derive explicit expressions for $\Omega_{\mu v \varrho}^{(2)}$ and $\Omega_{\mu v \varrho \sigma}^{(3)}$.

The starting-point is the Chern-Pontryagin density

$$
\begin{equation*}
P=-\frac{1}{32 \pi^{2}} \varepsilon_{\mu v \varrho \sigma} \operatorname{Tr}\left[F_{\mu \nu}^{i} F_{\varrho \sigma}^{i}\right], F_{\mu \nu}^{i}=\partial_{\mu} A_{v}^{i}-\partial_{v} A_{\mu}^{i}+\left[A_{\mu}^{i}, A_{v}^{i}\right], \tag{2}
\end{equation*}
$$

where the index i specifies a particular gauge. The 4 -dimensional integral of P is the topological charge, which is an invariant. The Chern-Pontryagin density can be written as a total divergence,

$$
\begin{equation*}
P=\partial_{\mu} Q_{\mu}^{(0)}(i) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{\mu}^{(0)}(i)=-\frac{1}{8 \pi^{2}} \varepsilon_{\mu v \varrho \sigma} \operatorname{Tr}\left[A_{v}^{i}\left(\partial_{\varrho} A_{\sigma}^{i}+\frac{2}{3} A_{\varrho}^{i} A_{\sigma}^{i}\right]\right. \tag{4}
\end{equation*}
$$

is the Chern-Simons density or 0-cochain. The latter is gauge variant. What interests us naturally is its gauge variation, which is given by the coboundary operation,

$$
\begin{align*}
\Delta \Omega_{\mu}^{(0)}(i, j)= & \Omega_{\mu}^{(0)}(i)-\Omega_{\mu}^{(0)}(j) \\
= & -\frac{1}{24 \pi^{2}} \varepsilon_{\mu v \varrho \sigma} \operatorname{Tr}\left[v_{i j}^{-1} \partial_{v} v_{i j} v_{i j}^{-1} \partial_{\varrho} v_{i j} v_{i j}^{-1} \partial_{\sigma} v_{i j}\right] \\
& -\frac{1}{8 \pi^{2}} \varepsilon_{\mu v \varrho \sigma} \partial_{v} \operatorname{Tr}\left[\partial_{\varrho} v_{i j} v_{i j}^{-1} A_{\sigma}^{i}\right], \tag{5}
\end{align*}
$$

where $v_{i j}$ relates the gauges i and j,

$$
\begin{equation*}
A_{\mu}^{j}=v_{i j}^{-1}\left(A_{\mu}^{i}+\partial_{\mu}\right) v_{i j} \tag{6}
\end{equation*}
$$

$\Delta \Omega_{\mu}^{(0)}(i, j)$ can again be written as a divergence [3],

$$
\begin{equation*}
\Delta \Omega_{\mu}^{(0)}(i, j)=\partial_{v} \Omega_{\mu \nu}^{(1)}(i, j) \tag{7}
\end{equation*}
$$

where $\Omega_{\mu \nu}^{(1)}(i, j)$ is the 1 -cochain given by

$$
\begin{align*}
\Omega_{\mu \nu}^{(1)}(i, j)= & -\frac{1}{8 \pi^{2}}(\alpha-\sin \alpha \cos \alpha) \varepsilon_{\mu v \varrho \sigma} \mathbf{e}_{\alpha} \cdot\left(\partial_{\varrho} \mathbf{e}_{\alpha} \times \partial_{\sigma} \mathbf{e}_{\alpha}\right) \\
& -\frac{1}{8 \pi^{2}} \varepsilon_{\mu v \varrho \sigma} \operatorname{Tr}\left[\partial_{\varrho} v_{i j} v_{i j}^{-1} A_{\sigma}^{i}\right] \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
v_{i j}=\exp (i \alpha \cdot \tau)=\cos \alpha+i \sin \alpha \mathbf{e}_{\alpha} \cdot \tau \tag{9}
\end{equation*}
$$

The expression for the 1-cochain has been extended to any semi-simple and compact Lie group in [4].

II. 2- and 3-Cochains

It is known that the descent (from the 0 - to the 1 -cochain, cf. Fig. 1a and b) continues, and we shall turn to the higher-order cochains now.

The gauge variation of $\Omega_{\mu \nu}^{(1)}(i, j)$ is given by the coboundary operation

$$
\begin{align*}
\Delta \Omega_{\mu \nu}^{(1)}(i, j, k)= & \Omega_{\mu \nu}^{(1)}(i, j)-\Omega_{\mu \nu}^{(1)}(i, k)+\Omega_{\mu \nu}^{(1)}(j, k) \\
= & -\frac{1}{8 \pi^{2}} \varepsilon_{\mu \nu \varrho \sigma}\left[(\alpha-\sin \alpha \cos \alpha) \mathbf{e}_{\alpha} \cdot\left(\partial_{\varrho} \mathbf{e}_{\alpha} \times \partial_{\sigma} \mathbf{e}_{\alpha}\right)\right. \\
& +(\beta-\sin \beta \cos \beta) \mathbf{e}_{\beta} \cdot\left(\partial_{\varrho} \mathbf{e}_{\beta} \times \partial_{\sigma} \mathbf{e}_{\beta}\right) \\
& \left.-(\gamma-\sin \gamma \cos \gamma) \mathbf{e}_{\gamma} \cdot\left(\partial_{\varrho} \mathbf{e}_{\gamma} \times \partial_{\sigma} \mathbf{e}_{\gamma}\right)\right] \\
& -\frac{1}{4 \pi^{2}} \varepsilon_{\mu \nu \varrho \sigma}\left[\left(\partial_{\varrho} \alpha \mathbf{e}_{\alpha}+\sin \alpha \cos \alpha \partial_{\varrho} \mathbf{e}_{\alpha}+\sin ^{2} \alpha \mathbf{e}_{\alpha} \times \partial_{\varrho} \mathbf{e}_{\alpha}\right)\right. \\
& \left.\cdot\left(\partial_{\sigma} \beta \mathbf{e}_{\beta}+\sin \beta \cos \beta \partial_{\sigma} \mathbf{e}_{\beta}-\sin ^{2} \beta \mathbf{e}_{\beta} \times \partial_{\sigma} \mathbf{e}_{\beta}\right)\right] . \tag{10}
\end{align*}
$$

Chain of descent

Geometry of Crauges

$$
P=\partial_{\mu} \Omega_{\mu}(0)(i)
$$

i
(a)

${ }_{\mu v} \Omega^{(1)}(i, j, k)=\partial_{\rho} \Omega_{\mu v \rho}{ }^{(2)}(i, j, k)$

(C)
$\Delta_{\mu \nu \rho}^{(2)}(i, j, k, 1)=\partial_{\sigma_{\mu \nu \rho \sigma}}{ }^{(3)}(i, j, k, 1)$

Fig. 1. Pictorial view of the cochain reduction from the Chern-Pontryagin density down to the "local winding number" n

In deriving (10) we have made use of the cocycle condition

$$
\begin{equation*}
v_{i j} v_{j k}=v_{i k} \tag{11}
\end{equation*}
$$

and written

$$
\begin{equation*}
v_{i j}=\exp (i \alpha \cdot \tau), \quad v_{j k}=\exp (i \boldsymbol{\beta} \cdot \tau), \quad v_{i k}=\exp (i \gamma \cdot \tau) \tag{12}
\end{equation*}
$$

The cocycle condition (11) defines a spherical triangle by

$$
\begin{gather*}
\cos \gamma=\cos \alpha \cos \beta-\sin \alpha \sin \beta \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta} \tag{13}\\
\sin \gamma \mathbf{e}_{\gamma}=\sin \alpha \cos \beta \mathbf{e}_{\alpha}+\cos \alpha \sin \beta \mathbf{e}_{\beta}-\sin \alpha \sin \beta \mathbf{e}_{\alpha} \times \mathbf{e}_{\beta}
\end{gather*}
$$

as indicated in Fig. 1c. $\Delta \Omega_{\mu \nu}^{(1)}(i, j, k)$ is again a total divergence,

$$
\begin{equation*}
\Delta \Omega_{\mu \nu}^{(1)}(i, j, k)=\partial_{e} \Omega_{\mu \nu \varrho}^{(2)}(i, j, k) \tag{14}
\end{equation*}
$$

where $\Omega_{\mu v Q}^{(2)}(i, j, k)$ is the 2 -cochain.
We find the expression [5]

$$
\begin{align*}
& \Omega_{\mu v \varrho}^{(2)}(i, j, k) \\
&=-\frac{1}{8 \pi^{2}} \varepsilon_{\mu v \varrho \sigma}\left(1+2 \cos \alpha \cos \beta \cos \gamma-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma\right)^{-1} \\
& \cdot\left\{(\boldsymbol{\alpha}+\boldsymbol{\beta}-\gamma) \cdot\left(\sin \alpha \mathbf{e}_{\alpha}\right)\left[\partial_{\sigma}\left(\sin \beta \mathbf{e}_{\beta}\right) \cdot\left(\sin \gamma \mathbf{e}_{\gamma}\right)-\sin \beta \mathbf{e}_{\beta} \cdot \partial_{\sigma}\left(\sin \gamma \mathbf{e}_{\gamma}\right)\right]\right. \\
&+(\boldsymbol{\alpha}+\boldsymbol{\beta}-\gamma) \cdot\left(\sin \beta \mathbf{e}_{\beta}\right)\left[\partial_{\sigma}\left(\sin \gamma \mathbf{e}_{\gamma}\right) \cdot\left(\sin \alpha \mathbf{e}_{\alpha}\right)-\sin \gamma \mathbf{e}_{\gamma} \cdot \partial_{\sigma}\left(\sin \alpha \mathbf{e}_{\alpha}\right)\right] \\
&\left.+(\boldsymbol{\alpha}+\boldsymbol{\beta}-\gamma) \cdot\left(\sin \gamma \mathbf{e}_{\gamma}\right)\left[\partial_{\sigma}\left(\sin \alpha \mathbf{e}_{\alpha}\right) \cdot\left(\sin \beta \mathbf{e}_{\beta}\right)-\sin \alpha \mathbf{e}_{\alpha} \cdot \partial_{\sigma}\left(\sin \beta \mathbf{e}_{\beta}\right)\right]\right\} . \tag{15}
\end{align*}
$$

The derivation of (15) is quite tedious and relegated to the appendix. It can be shown that for infinitesimal gauge transformations (15) reduces to the form given in [1].

The gauge variation of $\Omega_{\mu v e}^{(2)}(i, j, k)$ combines 4 spherical triangles to form a spherical tetrahedron as indicated in Fig. 1d. I.e.

$$
\begin{align*}
\Delta \Omega_{\mu v Q}^{(2)}(i, j, k, l)= & \Omega_{\mu v Q}^{(2)}(i, j, k)-\Omega_{\mu v}^{(2)}(i, j, l) \\
& +\Omega_{\mu v Q}^{(2)}(i, k, l)-\Omega_{\mu v Q}^{(2)}(j, k, l) . \tag{16}
\end{align*}
$$

We show in the appendix that (16) can be written in the form

$$
\begin{equation*}
\Delta \Omega_{\mu v \varrho}^{(2)}(i, j, k, l)=\frac{1}{4 \pi^{2}} \varepsilon_{\mu v \varrho \sigma}\left(\alpha \partial_{\sigma} A+\beta \partial_{\sigma} B+\gamma \partial_{\sigma} \Gamma+\delta \partial_{\sigma} \Delta+\varepsilon \partial_{\sigma} E+\zeta \partial_{\sigma} Z\right) \tag{17}
\end{equation*}
$$

where $A, B, \Gamma, \Delta, E, Z$ are the angles between two spherical triangles intersecting along the hinges $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta$ (for the explicit expressions see the appendix).

We recognize that the term in brackets on the right-hand side of Eq. (17) is Schläfli's differential form [6] for the volume $V(i, j, k, l)$ of the spherical tetrahedron of Fig. 1d, i.e.

$$
\begin{equation*}
\frac{1}{2}\left(\alpha \partial_{\sigma} A+\beta \partial_{\sigma} B+\gamma \partial_{\sigma} \Gamma+\delta \partial_{\sigma} \Delta+\varepsilon \partial_{\sigma} E+\zeta \partial_{\sigma} Z\right)=\partial_{\sigma} V(i, j, k, l) . \tag{18}
\end{equation*}
$$

This allows us to give an explicit expression for the 3-cochain $\Omega_{\mu v e \sigma}^{(3)}(i, j, k, l)$ defined

$$
\begin{equation*}
\Delta \Omega_{\mu v \varrho}^{(2)}(i, j, k, l)=\partial_{\sigma} \Omega_{\mu v \varrho \sigma}^{(3)}(i, j, k, l) \tag{19}
\end{equation*}
$$

That is

$$
\begin{equation*}
\Omega_{\mu \nu \varrho \sigma}^{(3)}(i, j, k, l)=\frac{1}{2 \pi^{2}} \varepsilon_{\mu \nu \varrho \sigma} V(i, j, k, l) \tag{20}
\end{equation*}
$$

The volume $V(i, j, k, l)$ can be constructed explicitly from the angles A, B, Γ, Δ, E, Z following [7].

The gauge variation of $\Omega_{\mu v \rho \sigma}^{(3)}(i, j, k, l)$ combines 5 spherical tetrahedra (see Fig. 1e),

$$
\begin{align*}
& \Delta \Omega_{\mu \nu \varrho \sigma}^{(3)}(i, j, k, l, m) \\
&= \Omega_{\mu \nu \varrho \sigma}^{(3)}(i, j, k, l)-\Omega_{\mu \nu \varrho \sigma}^{(3)}(i, j, k, m) \\
&\left.\quad+\Omega_{\mu \nu \varrho \sigma}(i), j, l, m\right)-\Omega_{\mu \nu \varrho \sigma}^{(3)}(i, k, l, m)+\Omega_{\mu \nu \varrho \sigma}^{(3)}(j, k, l, m) \\
&= \frac{1}{2 \pi^{2}} \varepsilon_{\mu \nu \varrho \sigma}[V(i, j, k, l)-V(i, j, k, m) \\
&\quad+V(i, j, l, m)-V(i, k, l, m)+V(j, k, l, m)] \tag{21}
\end{align*}
$$

which wind around S^{3}, the group space of $\operatorname{SU}(2)$. The volume of S^{3} is $2 \pi^{2}$, so that we can write

$$
\begin{equation*}
\Delta \Omega_{\mu v \varrho \sigma}^{(3)}(i, j, k, l, m)=\varepsilon_{\mu v \varrho \sigma} n, \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
n \in \mathbb{Z} \tag{23}
\end{equation*}
$$

The latter is a consequence of the fact that the 5 spherical tetrahedra together are compact and so cover S^{3}.

III. Discussion

The result, that the 3-cochain is given by the volume of the spherical tetrahedron $V(i, j, k, l)$, is not really surprising. E.g. in 2-dimensional $\mathrm{U}(1)$ gauge theory the corresponding 1 -cochain is a segment of S^{1}.

As will be discussed in a subsequent paper [2], Eq. (22) allows us to derive a local, fully algebraic expression for the topological charge in $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ gauge theory.

Appendix

We shall first derive Eq. (15). Noticing that γ in Eq. (10) can be expressed in terms of $\boldsymbol{\alpha}, \boldsymbol{\beta}$ by using the cocycle condition (13), the most general ansatz for the tensor structure of $\Omega_{\mu v e}^{(2)}(i, j, k)$ is

$$
\begin{align*}
\Omega_{\mu v \varrho}^{(2)}(i, j, k)= & -\frac{1}{8 \pi^{2}} \varepsilon_{\mu v \varrho \sigma}\left[f_{1} \partial_{\sigma} \alpha+f_{2} \partial_{\sigma} \beta+f_{3}\left(\partial_{\sigma} \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)\right. \\
& \left.+f_{4}\left(\mathbf{e}_{\alpha} \cdot \partial_{\sigma} \mathbf{e}_{\beta}\right)+f_{5} \partial_{\sigma} \mathbf{e}_{\alpha} \cdot\left(\mathbf{e}_{\alpha} \times \mathbf{e}_{\beta}\right)+f_{6} \partial_{\sigma} \mathbf{e}_{\beta} \cdot\left(\mathbf{e}_{\alpha} \times \mathbf{e}_{\beta}\right)\right] \tag{A.1}
\end{align*}
$$

with

$$
\begin{equation*}
f_{i} \equiv f_{i}\left(\alpha, \beta, \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right) \tag{A.2}
\end{equation*}
$$

Equation (14) is then equivalent to the following set of coupled partial differential equations:

$$
\begin{gather*}
\frac{\partial f_{2}}{\partial \alpha}-\frac{\partial f_{1}}{\partial \beta}=2 \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}-2 \sin \alpha \sin \beta \frac{\gamma-\sin \gamma \cos \gamma}{\sin ^{2} \gamma}\left[1-\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)^{2}\right], \\
\frac{\partial f_{4}}{\partial \alpha}-\frac{\partial f_{1}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}=2 \sin \beta \cos \beta \frac{1-\gamma \cot \gamma}{\sin ^{2} \gamma}+2 \cos \alpha \sin \beta \frac{\gamma-\sin \gamma \cos \gamma}{\sin ^{3} \gamma}, \\
\frac{\partial f_{3}}{\partial \beta}-\frac{\partial f_{2}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}=-2 \sin \alpha \cos \alpha \frac{1-\gamma \cot \gamma}{\sin ^{2} \gamma}-2 \sin \alpha \cos \beta \frac{\gamma-\sin \gamma \cos \gamma}{\sin ^{3} \gamma}, \\
\frac{\partial f_{3}}{\partial \alpha}-\frac{\partial f_{1}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}=0, \quad \frac{\partial f_{4}}{\partial \beta}-\frac{\partial f_{2}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}=0, \\
\frac{\partial\left(f_{4}-f_{3}\right)}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}=2 \sin ^{2} \alpha \sin ^{2} \beta \frac{1-\gamma \cot \gamma}{\sin ^{2} \gamma}, f_{4}-f_{3}=2 \sin \alpha \sin \beta \frac{\gamma}{\sin \gamma}, \\
\frac{\partial f_{5}}{\partial \alpha}=2 \sin \alpha \sin \beta \frac{\gamma-\sin \gamma \cos \gamma}{\sin ^{3} \gamma}, \frac{\partial f_{5}}{\partial \beta}=2 \sin 2 \alpha \frac{1-\gamma \cot \gamma}{\sin ^{2} \gamma}, \\
\frac{\partial f_{6}}{\partial \alpha}=-2 \sin ^{2} \beta \frac{1-\gamma \cot \gamma}{\sin ^{2} \gamma}, \frac{\partial f_{6}}{\partial \beta}=-2 \sin \alpha \sin \beta \frac{\gamma-\sin ^{2} \gamma \cos \gamma}{\sin ^{3} \gamma}, \\
f_{5}+\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right) \frac{\partial f_{5}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}+\frac{\partial f_{6}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}=2 \sin 2 \sin \beta \cos \beta \frac{1-\gamma \cot \gamma}{\sin ^{2} \gamma}, \\
f_{6}+\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right) \frac{\partial f_{6}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}+\frac{\partial f_{5}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}=-2 \sin \alpha \cos \alpha \sin { }^{2} \beta \frac{1-\gamma \cot \gamma}{\sin ^{2} \gamma}, \\
{\left[1-\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)^{2}\right] \frac{\partial f_{5}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}-2\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right) f_{5}=2 \alpha-2 \sin \alpha \cos \alpha \frac{1-\gamma \cot \gamma}{\sin ^{2} \gamma}} \\
-2 \sin \alpha \cos \beta \frac{\gamma-\sin \gamma \cos \gamma}{\sin ^{3} \gamma}, \\
{\left[1-\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)^{2}\right] \frac{\partial f_{6}}{\partial\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)}-2\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right) f_{6}=-2 \beta+2 \sin \beta \cos \beta \frac{1-\gamma \cot \gamma}{\sin { }^{2} \gamma}}
\end{gather*}
$$

$$
\begin{align*}
& f_{1}=(\boldsymbol{\alpha}-\boldsymbol{\gamma}) \cdot \mathbf{e}_{\alpha} \\
& f_{2}=-(\boldsymbol{\beta}-\boldsymbol{\gamma}) \cdot \mathbf{e}_{\beta} \\
& f_{3}=-f_{4}=-\gamma \frac{\sin \alpha \sin \beta}{\sin \gamma}, \tag{A.4}\\
& f_{5}=2 \frac{(\boldsymbol{\alpha}+\boldsymbol{\beta}-\gamma) \cdot \mathbf{e}_{\beta}}{1-\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)^{2}} \\
& f_{6}=-2 \frac{(\boldsymbol{\alpha}+\boldsymbol{\beta}-\gamma) \cdot \mathbf{e}_{\alpha}}{1-\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)^{2}}
\end{align*}
$$

Inserting (A.4) into (A.1) gives after a straightforward calculation Eq. (15).

We shall prove now Eq. (17). The angle A is given by (cf. Fig. 1d)

$$
\begin{equation*}
\tan A=-\frac{\mathbf{e}_{\alpha} \cdot\left(\mathbf{e}_{\beta} \times \mathbf{e}_{\varepsilon}\right)}{\left(\mathbf{e}_{\alpha} \times \mathbf{e}_{\beta}\right) \cdot\left(\mathbf{e}_{\alpha} \times \mathbf{e}_{\varepsilon}\right)} . \tag{A.5}
\end{equation*}
$$

The other angles B, Γ, \ldots follow from (A.5) by permutation. From (A.5) we derive

$$
\begin{align*}
\partial_{\sigma} A= & {\left[1-\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}\right)^{2}\right]^{-1}\left[\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta} \mathbf{e}_{\beta} \cdot\left(\mathbf{e}_{\alpha} \times \partial_{\sigma} \mathbf{e}_{\alpha}\right)+\mathbf{e}_{\alpha} \cdot\left(\mathbf{e}_{\beta} \times \partial_{\sigma} \mathbf{e}_{\beta}\right)\right] } \\
& -\left[1-\left(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\varepsilon}\right)^{2}\right]^{-1}\left[\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\varepsilon} \mathbf{e}_{\varepsilon} \cdot\left(\mathbf{e}_{\alpha} \times \partial_{\sigma} \mathbf{e}_{\alpha}\right)+\mathbf{e}_{\alpha} \cdot\left(\mathbf{e}_{\varepsilon} \times \partial_{\sigma} \mathbf{e}_{\varepsilon}\right)\right] . \tag{A.6}
\end{align*}
$$

By summing over all terms on the right-hand side of Eq. (17) we obtain (16) expressed in terms of the (non-symmetric) expression (A.1).

Acknowledgements. We thank M. Göckeler, K. Meetz, and J. Rieger for helpful advice. One of us (U.-J. W.) thanks P. Sauer for encouragement and discussions.

References

1. Zumino, B.: Les Houches Lectures 1983. In: Relativity, groups and topology II. DeWitt, B.S., Stora, R. (eds.). Amsterdam: North-Holland 1984
Stora, R.: Cargèse Lectures 1983. In: Progress in gauge field theory. Lehmann, H. (ed.). New York: Plenum Press 1984
Faddeev, L.D.: Phys. Lett. 145 B, 81 (1984)
Zumino, B.: Nucl. Phys. B 253, 477 (1985)
Jackiw, R.: MIT preprint CTP-1230 (1984)
2. Göckeler, M., Laursen, M.L., Schierholz, G., Wiese, U.-J.: DESY preprint 85-142 (1985)
3. Jackiw, R.: In: Gauge theories of the eighties. Raitio, R., Lindfors, J. (eds.). Lecture Notes in Physics, Vol. 181. Berlin, Heidelberg, New York: Springer 1983
4. Cronström, C., Mickelsson, J.: J. Math. Phys. 24, 2528 (1983)
5. The formula given by R. Jackiw in [1] for the 2-cochain is only valid for infinitesimal gauge transformations
6. Böhm, J., Hertel, E.: Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung. Basel: Birkhäuser 1981
7. Coxeter, H.S.M.: Q. J. Math. 6, 13 (1935)

Communicated by G. Mack

Received August 10, 1985; in revised form November 4, 1985

