
Communications in
Commun. Math. Phys. 103, 693-699 (1986) Mathematical

••%• •

Physics
© Springer-Verlag 1986

2- and 3-Cochains in 4-Dimensional SU(2)
Gauge Theory

M. L. Laursen1, G. Schierholz1'2, and U.-J. Wiese3

1 Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52,
Federal Republic of Germany
2 Institut fur Theoretische Physik der Universitat, D-2300 Kiel,
Federal Republic of Germany
3 Institut ίϊir Theoretische Physik der Universitat, D-3000 Hannover,
Federal Republic of Germany

Abstract. Explicit formulae are derived for the 2- and 3-cochains ΩfflQ(iJ, k)
and ΩfJρσ(iJ9k,£) in SU(2) gauge theory in 4 dimensions. It turns out that
ΩffρσiUj, k> 0 is given by the volume of a spherical tetrahedron spanned by the
gauge transformations relating the gauges ij9 k, I.

I. Introduction

Higher-order cocycles

(here written for 4 space-time dimensions), where Ω^\m is the rc-cochain, play an
important role in group representation theory, in the investigation of the structure
of anomalies, Wess-Zumino effective actions and groups associated with a Kac-
Moody algebra [1] as well as in the derivation of a closed expression for the
topological charge [2]. It is therefore of great interest to know Ω^ explicitly. In
this paper we shall consider the case of gauge group SU(2) in 4 dimensions and
derive explicit expressions for Ωfflρ and Ωμ

3

vρσ.
The starting-point is the Chern-Pontryagin density

where the index i specifies a particular gauge. The 4-dimensional integral of P is the
topological charge, which is an invariant. The Chern-Pontryagin density can be
written as a total divergence,

P = dfίΩf\ί), (3)

where

^ δ ρ 4 + f 4 4 ] (4)
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is the Chern-Simons density or 0-cochain. The latter is gauge variant. What
interests us naturally is its gauge variation, which is given by the coboundary
operation,

»y 13¥»y»y 1 dQυφΐ}

x dσυtj]

Λ T [d}vΰ MjJ, (5)

where vtj relates the gauges i and j ,

Aί^ΓjHAί + dJυtj. (6)

ΔΩ^XUj) can again be written as a divergence [3],

AΩf\ίJ) = dvΩ^(ιJ), (7)

where Ω$(iJ) is the 1-cochain given by

μV(U) = - g^i0~sinαcosα)εμ v ( ? σeα (δρeα x dσea)

tjvΓj'A],-], (8)

and

Vij = exp (m τ) = cos α + i sin αeα τ. (9)

The expression for the 1-cochain has been extended to any semi-simple and
compact Lie group in [4].

II. 2- and 3-Cochains

It is known that the descent (from the 0- to the 1-cochain, cf. Fig. la and b)
continues, and we shall turn to the higher-order cochains now.

The gauge variation of Ω$(iJ) is given by the coboundary operation

= ~ ^ W[(α-s inαcosα)e α (3ρeα x <

. (dρeβ x dσeβ)

-(y- sin γ cos y) e y (dρeγ x δ σ e y )]

"" 7~T βμvρσE(^ραeα + S i n α C 0 S α ^ρ^a + S ^ 2 α β α X ^ρeα)

• (dσβeβ + sinβ cosjβ 3σe, - sin2βeβ x δσe.)]. (10)
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P = d Ω ( θ ) ( i ) (a)

(b)

i,j,k) = 3 p V p

( 2 ) ( i , j ; k) (c)

(d)

(e)

Fig. 1. Pictorial view of the cochain reduction from the Chern-Pontryagin density down to the
"local winding number" n

In deriving (10) we have made use of the cocycle condition

and written

Vtj = exp(iα τ), vjk = exp(iβ τ), vik = exp(iγ τ).

(11)

(12)
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The cocycle condition (11) defines a spherical triangle by

cosy = cosoccosβ — sinα sin/?eα e^,

sinyey = sinα cosβea + cosα sin/te^ — sinα sinβeα x e^,

as indicated in Fig. lc. AQ$(iJ9k) is again a total divergence,

ΔΩfrXiJ, k) = dfl$Q(i,j, k), (14)

where ΩfJβJ, k) is the 2-cochain.
We find the expression [5]

— 77-^βμVρσ(l + 2 cosα cosβ cosy — cos 2 α — c o s 2 β — c o s 2 y ) ~ ι

• {(α + β-γ) (sinαej [dσ(smβeβ) (sinyey)-ύnβeβ dσ(sinyey)]

+ (α + P - γ) (sin βeβ) [3σ(sinyey) (sinαeα) - sinyey dσ(sinαeα)]

+ (α + P-γ) (sinyey) [δ^sinαej (sin/fe^-sinαe. βσ(sin/Je^)]}. (15)

The derivation of (15) is quite tedious and relegated to the appendix. It can be
shown that for infinitesimal gauge transformations (15) reduces to the form given
in [1].

The gauge variation of Ωfjjij, k) combines 4 spherical triangles to form a
spherical tetrahedron as indicated in Fig. Id. I.e.

ΔΩ$Q(iJ9 k, I) = ΩfflfiJ, k) - Ω$β(iJ, I)

We show in the appendix that (16) can be written in the form

1

where A, B, Γ, A, E, Z are the angles between two spherical triangles intersecting
along the hinges α, β, y, δ, ε, ζ (for the explicit expressions see the appendix).

We recognize that the term in brackets on the right-hand side of Eq. (17) is
Schlafli's differential form [6] for the volume V(ίJ,kJ) of the spherical
tetrahedron of Fig. Id, i.e.

) = dσV(iJ,kJ) (18)

This allows us to give an explicit expression for the 3-cochain ΩfJρσ(iJ, k, I) defined

j , k,t) = dσΩ$ρσ(iJ, k, ΐ). (19)

That is
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The volume V(iJ, fc, /) can be constructed explicitly from the angles A, B,Γ,A, E,
Z following [7].

The gauge variation of Ω$Qσ{U j , k, I) combines 5 spherical tetrahedra (see
Fig. le),

ΔΩ$βσ(iJ,kJ,rn)

+ Ωl%σ(i,j, I, m) - Ωtgji, k, I, m) + Ω™eσ(j, k, I, m)

= ^Ίε,veσlV(i,j, k,ϊ)- V(i,j, k, m)

+ V(i,j, I, m) - V(i, k, I, m) + V(j, k, I, m)] , (21)

which wind around S3, the group space of SU(2). The volume of S3 is 2π2, so that
we can write

tfQUj,k,l,rn) = εμvQ*n9 (22)

where

neZ. (23)

The latter is a consequence of the fact that the 5 spherical tetrahedra together are
compact and so cover S3.

III. Discussion

The result, that the 3-cochain is given by the volume of the spherical tetrahedron
V(iJ, k, I), is not really surprising. E.g. in 2-dimensional U(l) gauge theory the
corresponding 1-cochain is a segment of S1.

As will be discussed in a subsequent paper [2], Eq. (22) allows us to derive a
local, fully algebraic expression for the topological charge in SU(2) and SU(3)
gauge theory.

Appendix

We shall first derive Eq. (15). Noticing that γ in Eq. (10) can be expressed in terms
of α, β by using the cocycle condition (13), the most general ansatz for the tensor
structure of Ω$Q(i,j9 k) is

> k) = - -^2 W [ / i d*a + Si

σea (eα x eβ)+f6dσeβ (eα x e,)] (A.I)

with

St=fi(*,β,e*'*β). (A.2)
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Equation (14) is then equivalent to the following set of coupled partial differential
equations:

df df . ny — sinycosy n , . x9_,

sπry sπry

~ - 1—ycoty Λ . ny — sinycosy
= - 2 s m α c o s α — ^ — - -2smαcosj8- r4 -,£ ~, , = 2 s m α c o s α ^

_0 a/4 a/2 _0
δ(eβ e/() ' δjβ 3(eβ e/))

3(eβ e/))
 r sin2y ' " J i

dfs_^:»..^0ys™ycosγ δ/ 5 _. . , 1-ycoty
^ 4 , ^ = 2 s i n α r

sin y δβ sin

eβ e/J)
 F ^ sin2y

+ ^ ^ 2 s i n α c o s α s i n ^ ^ ^
eβ) d(ea efi)

 P sin2y

. v sinycosy , 4 N

+ 2cosasinjB- r4 -, (A3)
sm^y

i i i 1 J sm^y

which can be solved giving '

sinαsinjg

/ f i - ~ 2 l - ( e α e /

Inserting (A.4) into (A.I) gives after a straightforward calculation Eq. (15).
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We shall prove now Eq. (17). The angle A is given by (cf. Fig. Id)

t a n Λ = - *-*'***-. (A.5)
(eαxe^) (eαxeε)

The other angles B, Γ,... follow from (A.5) by permutation. From (A.5) we derive

= ll- (eα eβ)
2~\ " x [e α e^ e^ (eα x δ σ e α ) + eα x

- [1 - (e« eε)
2] " ' [eα eε eε (eα x dσej + eα (ee x <9σeJ]. (A.6)

By summing over all terms on the right-hand side of Eq. (17) we obtain (16)
expressed in terms of the (non-symmetric) expression (A.I).
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