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Abstract. SU,-valued lattice gauge fields are studied on a 4-dimensional
simplicial lattice. If u has sufficiently small plaquette products, then there is a
unique principal SU,-bundle & admitting transition functions, defined on the
intersections of adjacent dual cells, which take values within #/8 of u. An
algorithm is explicitly given which associates an integer to every u off a certain
set of measure zero. This algorithm only involves evaluation of 4 x4
determinants and the solution of quadratic equations. When u is as above, the
integer produced is the second Chern number of &, i.e. the topological charge
of u.

1. Introduction

This article has a theoretical and a practical side. It analyzes the circumstances
under which an SU,-valued lattice gauge field determines a principal SU,-bundle,
and it also presents an explicit algorithm which then computes the second Chern
number of that bundle, the topological charge, directly from the lattice data. This
algorithm, which involves no more than 4 x 4 determinants and the solution of
quadratic equations, has been used (in joint work with Gordon Lasher) for a
Monte Carlo calculation of topological susceptibility; the details and results are
reported elsewhere [15].

For early work on this problem, see [ 5, 6], and also [13, 17]; our work grew out
of an attempt to find an appropriate mathematical context for Martin Liischer’s
construction [18]. Liischer’s algorithm has recently been programmed [9]; other
topological charge algorithms have been given in [14, 24, 30, 31], and have been
discussed in [21, 22].

Lattice gauge fields were introduced by Kenneth Wilson in 1974 [29] (see also
[257]) to represent classical field configurations in Monte Carlo evaluations of path
integral solutions of quantum field theories. Here is the context. (We shall assume
for simplicity in this work that we are dealing with a compact space-time X; as
usual, the time coordinate has been rotated in the complex plane to give X a
Euclidean metric.) Let us fix a compact Lie group G. The set of gauge fields on X
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with group G, which is the set over which the Feynman-type integration would
have to be carried out, has the following properties. It has (in general) infinitely
many connected components, one for each principal G-bundle over X. Each
connected component is the space of gauge fields, or connections, in the
corresponding bundle. As a function space it is infinite-dimensional. Wilson
replaces X with a finite cell complex, or lattice, A (cubical in his formulation),
admitting as variables only the symbols associated to the various-dimensional
cells of A; in all, a finite collection. A gauge field on X is represented, once fiber
coordinates have been chosen at the vertices «, f, ... of A, by the parallel transport
it induces along each 1-cell {af) of A. This corresponds to an element u,; of G
(these “transporters” clearly satisfy uz, = u,;") and any such assignment u of group
elements to 1-cells is called a G-valued lattice gauge field on A. Thus the infinite
collection of infinite dimensional function spaces has been replaced by the
compact, finite-dimensional set G x ... x G, one factor for each 1-cell in A.

Mathematically speaking, this procedure is somewhat mysterious, and it
seemed all the more so when for G=SUy one of the quantities calculated by
integrating over G x ... X G (i.e., computing the path integral) was the topological
susceptibility (Q?)»/Volume; Q is the topological charge, which is known to be a
bundle invariant, in fact equal to the second Chern number. Does this mean that a
non-trivial bundle can be defined without reference to coordinate systems? The
answer is almost yes.

First of all it is fairly obvious that since Q is an integer-valued function on the
connected space G x ... X G, any reasonable algorithm assigning bundles to lattice
gauge fields must be discontinuous on some subset K of G x ... x G, and locally
constant elsewhere. It turns out that once an appropriate set K has been excluded,
then every remaining lattice gauge field can be interpreted as determining a
principal G-bundle over A, and therefore as having a well-defined topological
charge. This is proved in [23] for G=U (see also [10]); there the definition of K is
very simple: a lattice gauge field belongs to K if any one of its plaquette products
equals —1.

The corresponding statement for G=SU, is the main theoretical result of this
work. In this case it is most convenient to work with a simplicial lattice [2-4, 7]
(this greatly simplifies the dual geometry); the plaquettes are now triangular. The
set K still has measure zero, but its definition is less simple and perhaps less
natural, because the algorithm we use to construct a bundle from a lattice gauge
field requires additional information: the choice of a local ordering o of the vertices
of A. The excluded set K depends on o, and a single lattice gauge field may
determine different bundles with different orderings; see Example 3.20. (It may be
that such a choice is unavoidable in working with a non-abelian gauge group; for
evidence, besides the other topological charge algorithms referred to above, see
[16]. This pathology does not occur with lattice gauge fields which are sufficiently
smooth: we will prove that then there is an algorithm-independent closest principal
SU,-bundle. Here is the exact statement. (Complete definitions are given in
Sect. 2.)

Theorem A. Let u be an SU ,-valued lattice gauge field defined on a 4-dimensional
simplicial complex A. Suppose u satisfies hypothesis HI or the stronger H2.
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HI. The product of the transporters along any simple closed edge path in any
simplex of A is within n/8 of the identity.
H?2. Each plaquette product of u is within /24 of the identity (distances are in the
unit-sphere metric on SU,).

Then there exists a unique principal SU ,-bundle & with the following property:
& can be trivialized over the 4-dimensional dual cells {c,} of A in such a way that,
for each pair o, B of adjacent vertices, the transition function v,s:c,ncy;—SU,
relating the fiber coordinates over c, and c; takes values in the ball of radius m/8
about the transporter u,.

The proof of this theorem occupies Sect. 2 (existence) and Sect. 3 (uniqueness)
below. The existence proof uses an explicit algorithm to construct a set of
transition functions. In addition we will prove (Theorem 3.6) that, under the
hypothesis derived from H1 by replacing 7/8 with 7/2, the bundle produced by this
algorithm does not depend on the local ordering. The n/2 bound can be weakened
slightly; see (3.19); but Example 3.20 shows a lattice gauge field satisfying H1 with
n/8 replaced by approximately 27/3, to which our algorithm, with two different
orderings, assigns two different bundles.

Our more practical results solve the problem of identifying the bundle
constructed from an SU,-valued lattice gauge field by our algorithm, ie. of
calculating its topological charge. This work is in Sect. 4. We will show that an
extension of our bundle-algorithm leads to a rule assigning an integer to every
lattice gauge field uin the complement of a larger set K’ (still of measure zero). This
integer is the second Chern number of the corresponding principal bundle, i.e. the
topological charge of u.

From the mathematical point of view, this study of lattice gauge fields yields a
new way of computing the second Chern number of a principal SU,-bundle £ over
a triangulated 4-manifold M, if £ has a connection w; this method works almost
always when the curvature of w is sufficiently small relative to the triangulation.
Namely, if M is triangulated as a simplicial complex A, there is a straightforward
way of using the linear structure of the simplexes of A and parallel transport by w
to trivialize ¢ over each dual cell c,,, once a fiber coordinate has been chosen at the
vertex u. The set v of transition functions relating these trivializations is given by
v,p(x)=the group element (in the vertex f coordinate) reached by parallel-
transporting I (at vertex o) by w along the broken path axf. Let p,z=<af>nc,
Ncg. If we define a lattice gauge field u on A by u,;=v,4(p,) (this is in fact the
standard way of constructing a lattice gauge field from w) then u and v will be
related as in the conclusion of Theorem A as soon as (*) parallel transport by w
around the triangular path axfo takes I back to within #/8 of itself, for every x in
c,Ncg. Then the uniqueness part of Theorem A guarantees that the integer
calculated by applying the algorithm of Sect. 4 to uis in fact C,(&). This should be
compared with the usual calculation [8, 19] of C,(¢) from w, namely

Ca(O)=(1/87) [ (@A @)= (~1/4n?) | det@,

where Q is the curvature 2-form of w. The algorithm rejects a measure-zero set of
w’s, hence the “almost always” above.

It is fairly clear that (*) can be guaranteed by controlling Q. More precisely, let
T represent the triangle with edge-path 0T=oaxfo. Then the element reached by
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parallel-transporting I around T may be written as P | w, where P represents
oT

the path-ordered or “product” integral. There is a product-integral version of
Stokes’ Theorem [20, 26], which we may write symbolically as () P | =P [| Q.
oT T

The point is that if we choose a Riemannian metric on M, and let ||Q2|(p)
=sup|Q(v, w)|, where for A € su,, written as 4 =a,i+a,j+a;k, |4|=(>a?)"/? and
the supremum is taken over all orthonormal pairs v, w of tangent vectors at p, then
it is straightforward to deduce from (**) that the distance from I to P j w is

bounded by ” Q] dA.

Remarks on the Method of Proof

It will become clear to the reader that our theoretical and practical results are all
attained by the same general proof-scheme. The scheme is quite simple, although
the details of its implementation become somewhat elaborate. It has three parts.

Part one is the interpretation of a lattice gauge field u as giving, for each pair c,,
¢y of adjacent dual 4-cells, the value of a transition function v, : ¢,nc;—~SU, at the
point p,s, where the bond <{af) intersects c,Nc,:

vaB(paﬂ) = Uyp

(see Fig. 2.1). The problem is then to extend this one value to a function defined on
all of ¢,nc, in such a way as to satisfy the cocycle condition on triple intersections,
while staying as close to u,; as possible.

Second, one attacks this problem separately inside each 4-simplex ¢ containing
o and f. Inside ¢,ncyna the form of the expression giving v,; depends on the
relative position of x and fin the ordering induced by o on the vertices of g; the way
it depends is dictated by the “as constant as possible” principle: if o and f are order-
adjacent in ¢, then v,;=u,; on c,NcyNa; if there is exactly one vertex y order-
intermediate between them, then v, only varies, on ¢,ncyNa, as a function of the
(modified) barycentric coordinate corresponding to y; etc.

Third, the way v,, varies with whatever barycentric coordinates are required by
the second part is determined geometrically and consists in mapping straight lines
in o to unique shortest geodesics in SU,, proportionally to length. A configuration
will belong to the set K precisely when the unique shortest geodesics required here
do not exist.

This scheme, which will be explained in detail in Sect. 2, is applied to the
complex A in order to define the bundle determined by a lattice gauge field; to the
augmented complex A (the cone on A), defined by adding a new vertex and
connecting it to all the simplexes of the lattice, in order to calculate its topological
charge (the resulting algorithm is computationally efficient because Parts 2 and 3
of the proof-scheme above are geometrically so simple); and to the product
complex A x [0, 1] whenever it is necessary to prove that two bundles are the same.

2. Statement and Proof of the Existence Theorem

2.1. The main problem underlying the work in this section is the reconstruction
(when possible) of an SU,-gauge field from an SU,-valued lattice gauge field
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cancﬁ—v—; SU,
a

Fig. 2.1. Relationship between an SU ,-valued lattice gauge field u and a coordinate SU,-bundle v

defined on a 4-dimensional simplicial complex A. (At the end of Sect. 3 we shall
indicate what modifications are necessary to extend this work to other gauge
groups and higher-dimensional complexes.)

What we actually construct is an intermediate object.

2.2. Definition. Given a simplicial complex A and a Lie group G, a coordinate
G-bundle v on A [27] is the assignment, to each pair «,  of adjacent vertices, of a
continuous map v,4: ¢,Nc;— G defined on the intersection of the corresponding
dual cells. These maps must satisfy the cocycle condition:

UpaX) =0,5(x) "1 for xec,ney,

(2.2.1)
D5y (X) = V,p(x)p,(x)  for xec,ncgnc,.

A coordinate bundle v is in fact a mixed topological-geometric object: it has an
underlying principal bundle ¢, and it determines a connection in & up to the choice
of a partition of unity [1, 23].

2.3. Our construction of v from a lattice gauge field u requires some additional
information: a local ordering o of the vertices of 4, i.e. a partial ordering of the
vertices in which the vertices of every simplex are totally ordered.

2.4. Notation.Ifa, B, 7, ..., 6, e are vertices of a simplex of 4, the notation u,g, ;. will
represent the product u,,ug,...u;. Furthermore if ¢ is a simplex of A, u,(o) will
represent the product u,,_,, where a < <... <{ are the vertices of ¢ as ordered
by o.

We identify SU, with the group of unit quaternions; geometrically this is the
unit sphere in R*. We denote the distance between X and Y in the unit-sphere
metric by d(X, Y). The identity element of SU, is represented by I or 1.

If o and B are adjacent vertices, let p,; = {af>Nc,Ncy be the point where the
bond between them intersects the common face of their dual cells. (Note that we
are using the topological dual, described explicitly in (2.9) below, and not the
metric dual of [2], so each simplex intersects its dual in its barycenter. For the
random lattices of [2], the two duals are isomorphic complexes, but their relative
positions with respect to a given lattice may be different.)

2.5. Theorem. Let u be an SU,-valued lattice gauge field on a simplicial complex A,
and let A be a positive number, A <t/2. Suppose that there exists a local ordering o of
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the vertices of A suchthat, for every simplex t of A,d(I,u,(t)) <A. Then there exists
a coordinate SU ,-bundle v on A such that

Vop(Pag) =ty for every adjacent pair o, f, (2.5.1)
d(v,p(x), uyp) <A for every xec,ncy. (2.5.2)

2.6. Remarks. 1. The existence part of Theorem A follows from Theorem 2.5 (with
A =m/8). Since balls of radius 4 <=/2 in SU, are geodesically convex, Theorem 2.5
will be an immediate consequence of Theorem 2.8 below.

2. The problem of constructing an SU,-coordinate bundle from u would
become trivial, and its solution meaningless, if we required only that v satisfy
(2.5.1); because in fact, given any principal SU,-bundle ¢ on A, such a coordinate
bundle v can easily be constructed for &.

3. The variation 4 of v,; on ¢,Nc,; cannot be made arbitrarily small while
preserving (2.5.2) and (2.2.1). Suppose for example that there were a plaquette
{afy) in A such that d(I, u,p,,) = 34. Then (2.5.2) and (2.2.1) would imply that, for

X € camcﬂncy > d(vaﬁ(x)vﬂy(x)vya(x)a uaﬁya) = d(I’ uaﬂya) < 3A s
giving a contradiction.
4. The v promised by this theorem is produced by an algorithm with a larger
domain of application (see below). Moreover the exact nature of the functions v,

generated by this algorithm is important, since it will allow a simple calculation of
the topological charge of the underlying &.

2.7. Definition. Given a 4-dimensional simplicial complex 4, and a local ordering o
of its vertices, let K(o) be the set of SU,-valued lattice gauge fields on A which fail
to satisfy the following condition:

Continuity condition with respect to o: On every 4-simplex o = (01234 (the vertices
are o-ordered by their numbers), one or the other of these conditions is met by u: (If
A does not have the property that every simplex is a face of a 4-simplex, additional
analogous conditions should be added for the lower-dimensional simplexes.)

Condition A(e). Each of the following five sets of elements of SU, is linearly
independent in R*:

1) I, Uop120, Uo12405 Uo12340>
2 I, ugi40, Uor2405 Uo12340>
3) I, Uo140, Uo13zao>  Uo12340>
“4) I, uo340, Uor3s0>  Uo123a0>
(5) I, Uo3s0> Uoz3s0, Uo12340-

Condition B(o). For each 2,3 or 4-face t of g,
d(Lu,(x))<m/2. 2.7.1)
(Le. the sixteen elements ugq,0, .- Us231s ---» Up12340 are all within /2 of the
identity.)
Note that K(o) is gauge-invariantly defined; furthermore, it is a set of measure
zero in the space of all lattice gauge fields on A, if that space is metrised as
SU, x ... xSU,, one factor for each bond.
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2.8. Theorem. Suppose u does not belong to K(0). Then there exists a v satisfying

Vap(Dop) = Up 2.8.1)
and the following condition.

If xec,ncpno, let n be the number of vertices of o which are
o-between o and 8. Then v,5(X)u,;" is in the geodesic convex
hull of the 2" points uy(t), where t=<o...8) is a face of o with
lowest-ordered vertex o and highest-ordered vertex . (2.8.2)

[The B(o) part of the hypothesis can be weakened slightly; see (3.19).] Theorem
2.8 will be proved after we have set down some additional definitions and
conventions about notation.

2.9. Notation Regarding A; Modified Barycentric Coorindates; Geodesics. In this
section we use a, f8, 7, 8, &, and A, g, v to denote vertices of 4, and g, o, © for simplices
of dimension = 1. For the sake of simplicity we suppose that dim ¢ =4 in the rest of
(2.9), but the terminology will also be used (with appropriate modifications) in case
dimo <4 (and in later sections, when dimo =5). We write g = {affyde).

We will write <o to mean 7 is a proper face of o, and t1<X¢ when equality is
also allowed.

Set ¢I=c,na. With respect to barycentric coordinates t,,...,t, on a, cJ
={(ty .-, 1) 1058y, 1, 15, t, <t,}. We introduce modified barycentric coordinates
on cy.:

s;=t,/t, for A=p,7y,9,c¢.

Now let cj3=c,Ncyno; this is the intersection of ¢ with the domain of the
transition function v,, to be constructed. In modified barycentric coordinates, cg;
is identified with the 3-cube {(s,, s;,5,) : 0<5,, 55, 5. < 1}. The faces of cj are given
by requiring of one or more ¢, that it be either 0 or equal to ¢, and t;; this is
equivalent to requiring that the corresponding s, be 0 or 1 respectively. In
particular the vertices of cj; are the barycenters of those simplexes t such that
(ap)>=<Xt=<Xo. The pairs of opposite 2-dimensional (maximal) faces of c7, can be
described thus (see Fig. 2.2): Foreach A=, , ¢, set (1) = the face opposite 4 and set
copa=cipnc,; then ¢ ={s; =0} and ¢J;; = {s, =1} are opposite faces of cg;.
Set:
ez =U{ci: 2=7,0,¢},

aI(C:B) = U {c:ﬂl tA= Vs 5’ 8} 5
s0 dcgp=0°La", and 0°(cgp) = czpndo.

We will need expressions for the intersections between 2-dimensional faces of
Cap- Let 4, pe {y,9,¢e} be distinct, and set t=1(4), t"=1(u). Then

cpncip=cly, where 1'=1N7]
T g . 4 .
CapMCapu=Capys

CapaNCap,=(c,ncgnc;Ne, )N, denoted  cgpy, -
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S
(0,0,0)
(1,0,0) a
P
0 ~o
- 0-Cy B
(0,0)

(1,0)

Sy

Fig. 2.2. Modified barycentric coordinates on = <{afyd)

We will also use the linear structure on cJ; provided by the coordinates
(s,» S5, 5,) to express cgz as a cone with vertex the point p,;=(0,0,0), and base 9'cg,
={(5,, 55, 5;) :maxs,; =1}. We write cg;=p,z* 0" cZ;.

When we speak of a geodesic g in SU, from X to Y we mean a path g:[0,1]
—SU, such that g(0)= X, g(1)=Y, and g is a geodesic parametrized proportionally
to arc length.

2.10. Proof of Theorem 2.8. The theorem is proved by exhibiting an algorithm
which goes from u and o to a family v of functions v,,:c,nc;—SU, satisfying
(2.2.1), (2.8.1) and (2.8.2). This algorithm will construct v,, by piecing together
functions v3; : ¢5;—SU,, one for each triple o, «, ff, where « and f8 are vertices of o.

These functions will be defined inductively on the dimension
of o, beginning with all ¢ of dimension 1. (2.10.1)

For a fixed o it is enough to construct vj; when o o-precedes B. Let n be the
number of vertices of ¢ which are o-between o and f.

For a fixed o, the functions vg, are constructed by induction
on n. (2.10.2)

The domain cj; of vy, is parametrized by (s;, ..., 8, ..., S, ...), Where 4, ...
o-precede a, 4, ... are o-between o and f (there are n of these); and v, ... o-follow f.
(We will continue to use 4, g, v in this sense.) Let o =<a, 4, ..., B> be the face of o
whose vertices are o, f and the n vertices of o that are o-between o and f. Then ¢, is
parametrized by (s, ...). Our algorithm has the following feature.

If 00, 03p(S3 ey Spp vvvs Sy o) = 095(S,s - - (2.10.3)
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This feature expresses the “as constant as possible” principle mentioned in the
Introduction. In particular

When o and 8 are o-consecutive in o, v, is constant and equal
to u,p. (2.10.4)

Finally, when ¢ =g, so that « is the o-first, and f§ the o-last, vertex of g, then our
algorithm will use the conical structure cg; = p,; * 8¢5z 0f (2.7). For every x € 8" g,
vy; must map the generator p,,x into the shortest geodesic g in SU, from u,,
=Ugp(Dyp) to v35(x); more explicitly,

Ugp((1 = 8)pap+sx) =g(s) . (2.10.5)

The features (2.10.1-5) of our algorithm determine it completely. The
remainder of this proof serves to check that the procedure is coherent, that it yields
U,s’s satisfying (2.2.1), (2.8.1) and (2.8.2), and that it can in fact be carried out (i.e.
that the shortest geodesics mentioned in (2.10.5) actually exist).

Checking the coherence of the procedure means verifying

When {afy<Xt<0, then vj|ci;=v},. (2.10.6)

The cocycle condition (2.2.1) becomes
Upglse =1 oOn g4, (2.10.7)
Ugs=UgUps oD cqp, When lopBd<o. (2.10.8)

Conditions (2.8.1) and (2.8.2), describing how close v fits to u, become

Uap(Pap) =tag » (2.10.9)
vg5(x) - ugs' € convex hull{u,(r): of><t<xo}, forall xec. (2.10.10)

2.11. Checking the Algorithm. According to (2.10.1) and (2.10.2) we must proceed
by a double induction, first on dimo, and then on dimg. The initial step, dimo =1,
is given by (2.10.4); in that case v, = u,;. When we come to define vj; with dimo > 1,
we find that this function is already defined on some (or all) of the maximal faces of
Cop: by vy on ¢y for {afy <7< 0o and dimt =dimo —1 [see (2.10.6)]; and by vy,v,
on ¢, for p o-between o and f [see (2.10.8)].

2.12. Lemma. These functions agree on common intersections. Specifically,

V=V OM  CopNCip (2.12.1)
Uup=UaVhp  ON  CopMCp (2.12.2)
VauUpp=Vau Vg O CaupMCoup. (2.12.3)

In case ¢ # o and we define vy, by (2.10.3), we must check that this is compatible
with the way vy, was prescribed above.

2.13. Lemma. When g+o0:

Ugp=Usp ON  Cop; (2.13.1)
Ugp =V, Usg ON  Coup. (2.13.2)

In case ¢ =0 the only compatibility requirement is:
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2.14. Lemma. When ¢ =0, v3; =105 O Cyp.

2.15. Finally,in order to apply (2.10.5) we must verify that there is indeed a unique
shortest geodesic from u,; to v34(x) for every x in 0'cy,; in other words, that u,; and
vg,(x) are never antipodal points of S°.

2.16. Lemmas 2.12-2.14 can be straightforwardly proved by an induction
argument following (2.10.1) and (2.10.2). What we shall do now is run through the
inductive construction of v from the beginning, concentrating on the general
position requirement just mentioned, and on checking (2.10.10).

The construction of the vgy’s starts with

2.17. Dimg = 1. This case is covered by (2.10.4): cg, is simply the barycenter p,; of
<OCﬁ>, and UZﬂ(pa/)) = uaﬁ'

2.18. Dimo =2. We are assuming that every 2-simplex is a face of a 4-simplex, say
<01234) with its vertices so o-ordered. For example, ¢ ={012). We first consider
the cases =0, f=1 and a=1, f=2, following (2.10.2). In the first of these cases
0=<01), and (2.10.4) applies:

UG =08y =uy; Is the constant map.

Similarly v{, =u,, is constant, too. We are left with the case x=0, f=2; here we
must apply (2.10.5). The domain of v§, is the 1-cube cf,, parametrized by s,. Its
boundary consists of two points: s; =0 at p = p,, =c},, the barycenter of 7= (02;
and s; =1 at g=c§,,, the barycenter of ¢ (see Fig. 2.3).

Fig. 2.3. Construction of v, v{,, and vg,, when dimo =2 of

Now
v32(p)=vo,(p) by (2.10.6)

=Upz;
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while
082(9) =151(q)v2(q) by (2.10.8)

=Ug Uy =Up12-

We now need to know that (*) there is a unique shortest geodesic g, , from u,, to
U1, The isometry, right multiplication by u,,, matches these points with I and
Ug120; €ither Condition A(o) [line (1)] or Condition B(o) shows that these two
points cannot be antipodal; the existence of g,;, follows. Finally, (2.10.9) and
(2.10.10) are immediate from the construction. [ For the other 2-faces of {01234,
similar arguments reduce the analogues of (%) to 4(o) and B(o).]

2.19. Dimo =3. Again, we assume every 3-simplex is a face of a 4-simplex, say
<01234). For example, 0=<0123). We start with vJ,, where ¢=(01) has
dimension 1. By (2.10.4), v§,(s,, S3) =u,, is constant, and so are v, =u,, and v},
=Uy3-

Now consider v,, where ¢=<{012) is 2-dimensional. By (2.10.3), v3,(s, s3)

=09,(51) = go12(51)- Similarly, v]3(so,5,) =g123(55)-
It remains to define v35(s;, $,). Set 1=<{013), t"=<023). Then, by (2.10.6) and
(2.10.8), v5 is determined on 0cl,:

V53(81, 0) =0p3(s1)
=G013(s1), on co3;
0530, 85) = vh5(s>)
=8023(52), on ch3;
U0a(s1, 1) =0g2(s)v33(1)
=G8o12(S)U23, ON G323
v53(1,82) =5 (Dv]s(s2)
=U018123(52), on g3y -

It follows from Lemma 2.12 that these maps, defined on the 1-faces of ¢g5, do
indeed agree at its vertices; in fact

v53(0,0) =13,
53(1,0) =103,
63(0, ) =ug23,
voa(l, D) =ug123.

To extend v5 over ¢ we are required by (2.10.5) to regard cJ5 as a cone from
Pos (Where s; =s,=0) on d'cd; (Where s, =1 or s, =1), and to map generators into
shortest geodesics from vg;(po3) =uy3 to points of v;(0'c3). It must therefore be
shown that (**) u, 5 is not antipodal to any point of v55(8'cg ). Now g5 consists
of two 1-cells, ¢35, (where s, = 1) and ¢}, (Where s, =1). We shall show that 5 is
not antipodal to any point of v35(c35,); the argument for ¢35, is completely
analogous. Under v{, ¢35, is mapped into the geodesic ug, g3 from ug,u 3 =u413
tO g Uy .3 =Ug,3- Right multiplication by u5,, takes the three points ugys, g3,
Uo123 TO Ug340s Uo1340> Uo12340- BY Condition A(o) (line 4) these last three points,
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v? CONSTANT ALONG EACH LINE

@ v9 CONSTANT

Fig. 2.4. Construction of v3, for 6={0123>

and therefore the first three, are linearly independent in R*; but if the great circle
through uy,5 and uy,,5 contained —uy; it would also contain ug5, so the first
three points would lie in a single plane through the origin, contradicting linear
independence. Otherwise Condition B(o) implies that w3, g3, and uyq,5 lie in
an open ball of radius /2 in SU,=S>; and such balls are strictly convex. In
either case, we obtain the desired result. [For the other 3-faces of {01234),
similar arguments reduce the analogues of (#*) to A(0) and B(o).].

We may therefore define vg; by (2.10.5). We shall also use the notation
Bo123(51,5,) for this map. Its image (see Fig. 2.4) is the union of two geodesic
triangles in S°. As before, (2.10.9) and (2.10.10) are immediate from the
construction.

2.20. Dimo=4. Say 0=<01234>. Applying (2.10.3) and (2.10.4) as before, we
obtain the following.

Vo1 =Uoy, Via=Uiy, V33=Upz, V34=Us,
are constant maps.
U02(815 53, 84) =8012(51) ,
V13(805 825 54) =8123(52) ,
54(50 51, 53) =8234(53) ,
U63(S15 52, 84) =Do123(51, 52)

74(505 525 53) =D1234(52, 53) .
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We turn finally to the definition of vg4(sy,s,,55). On 0cd,, v, is already
prescribed:

on 8°9, by
5400, 52, 53) =D0234(52,53) »
04(51,0,53) =Do134(51,53)
V54(51,52,0)=Do124(51, 52);
on d'c3, by
U34(1, 82, 83) =031014

=U01D1234(82,83), on  ¢fuq,
V3a(s1, 1,83) =053,054

=8012(51)8234(s3), 0N 4z,
V04(S1, 82, 1) =133034

=D0123(51552)U34, ON  Ca3.

(To show these are compatible, we appeal to Lemma 2.12.)

To extend v], over ¢3, according to (2.10.5) we must join v3,(0,0,0)=u,, to
every point of v,(0'c,) by a unique shortest geodesic; so we must show that no
such point is antipodal to uy,. Now v§,(8'¢c3,) consists of four geodesic triangles
and a quadrilateral, doubly ruled surface.

A typical one of the geodesic triangles has vertices ug 4, tg124 a0d Ugq 534 [this
one is half of v ,(c3,,)]. By Condition A(e) (line 1) these three points together with
Uy, are all in general position; by Condition B(e) all four lie in an open n/2-ball. In
either case it follows that there is, as required, a unique shortest geodesic from u,
to every point of the geodesic triangle. Thus we can carry out the construction of
(2.10.5) to extend v}, over the join of py,=(0,0,0) to the half of ¢J,, under
discussion. This argument shows how vJ, can be defined on the entire cone from

(0 g
Poa O1 Cpq1YC043-

2.22. It remains to be verified that there is a unique shortest geodesic from u,, to
each point of v4(c34,).

Case 1. ¢ satisfies B(o). The vertices of v7,4(c24,) are tg,4, Ug1 24> U234, ANA Ug1234-
These all lie in the open ©/2-ball B about u,,; for if we multiply the four vertices by
40 On the right we obtain four “increasing” loop-products, which by B(o) are all
within /2 of I. Since B is geodesically convex, the geodesics §g;,8234(0) from ug,,
to Ug;,4 a0d Gg120234(1) from ug, 5, to Uy, 534 both lie in B. That is, for any s,,
9012(51)8234(0) and go1,(s1)8,34(1) are in B. Hence the geodesic go15(51)8234
between these two points also lies in B. In particular, for any s, and s5, the point
§012(51)8234(53) is in B; and therefore there is a unique shortest geodesic to it from
Ugy, a8 required.

Case 2. o satisfies A(0). Suppose u,, were antipodal to some point of v3,(ch4,)-
Then we should have

8012(51)9234(s3) = — oy, for some s; and s;.
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Fig. 2.5. Geometry of the map fy;534 Uo24 Uot234

We rewrite this as
8234(53)Ug0= '—(9012(51))_1 .

Now g,34t40 is a segment of the geodesic circle S through u,,u,=u,,, and
Uy 34Uao=Us340, While (go;,) ! is part of the geodesic circle S through ug,! =u,,
and uy 5 =u,,,. We are thus supposing that S contains a point antipodal to some
point of S’; this implies that S and S’ together lie on some geodesic 2-sphere in S°.
That 2-sphere, which is the intersection of S* with a 3-plane through the origin in
R*, must contain the points u,49, Us340, Uz0, and u,;,, Which thus have to be
linearly dependent. But if we multiply these four points on the left by ug,, we
obtain Uy 240, Yo12340» Yo120- a1d I, which are independent by Condition A(e), line
1. This is a contradiction.

So in either case there is a unique shortest geodesic from u,, to every point of
v34(c342), as required.

We will use the symbol f;,,5, for the extension of v}, to all of ¢§,. Again,
(2.10.9) and (2.10.10) are immediate consequences of the construction. This
completes the proof of Theorem 2.8.

For use in Sect. 4, we remark that implicit in the definition of f,,,34 is a
partition of the cube cJ, into four simplexes and a square-based pyramid (see
Fig. 2.5). Each simplex is sent by f,;,34 to a spherical simplex in S3, and the
pyramid to the geodesic cone on a quadrilateral, doubly ruled surface.

3. The Uniqueness Problem

3.1. The last section presented an algorithm (Theorem 2.8) which, given an SU,-
valued lattice gauge field u defined on a 4-dimensional simplicial complex A4,
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together with a local ordering o of the vertices of A, produces a coordinate
SU,-bundle v with trivializing sets the 4-cells dual to the vertices of A. [u must not
belong to the exceptional set K(0).]

The next section will give an extension of this algorithm, going from v to the
second Chern number C,(¢) of the underlying principal bundle £&. We would like to
think of this number as “the topological charge of u,” but first we must ask to what
extent the number C,(¢) really does depend only on u. That is the problem
addressed in this section. We will work on the uniqueness of &, an equivalent
problem in this context.

3.2. The coordinate bundle given by the algorithm satisfies the equation

UaB(paﬁ) = uaﬂ 3

where p,, is the center of the common face of the dual cells ¢, and cg; so the
construction can be thought of as stretching the transporter u,; over the face c,nc,
so as to satisfy the cocycle condition at the edges. It is fairly clear, however, that
unless the stretching is controlled, the topological type of the underlying principal
bundle ¢ may be quite arbitrary; the control we will use comes from placing
bounds on the function d(v,4(x), u,), x € c,Nc;. Working back to the lattice gauge
field we can prove uniqueness results, which can be summarized as follows.

In the space G of all SU ,-valued lattice gauge fields on A there is the subset F of

flat fields: those giving transporter product = I around any plaquette, and there are
three increasing open sets containing F: FCA; CA,CA;CG with the following
properties. If u € 4, then it has a “best approximation” v in the sense that any v’ as
close to u as v is will define an isomorphic principal bundle; this v is produced by
our algorithm. If ue 4,, then the principal bundle determined by applying our
algorithm to u does not depend on the local vertex ordering employed. If ue 4;,
then the algorithm will produce a coordinate bundle when applied to u and a local
vertex ordering o, although different orderings may give different topological
types; see Example (3.20). The complement of A5 is the union of the sets K(o),
where o runs over the set of all local vertex orderings, and is therefore a set of
measure zero.
3.3. Definitions of A,, A,, and A5. The sets K(o) were defined in Sect. 2, and 45 is
the intersection of their complements in G. So A5 consists of those u such that for
every 4-simplex, and for every ordering, the continuity hypothesis [either A(o) or
B(o)] holds.

For a simplex t, let = {afy...(> be any ordering of its vertices, and set u,;,, ,
=U,pgllp,. ..Uy, as usual. The set A, consists of those u such that

AT, tyy,. ) <72 (3.3.1)

for every ©=<{afy...(> and for every ordering of the vertices of t. In other words,
B(0) holds for every 4-simplex in every local ordering o.
Finally, let 4; be the set of those u such that, for some ordering o,

d(I,u,(t))<n/8 for every simplex t. (3.3.2)

This is condition B(o), except that the right-hand side has been reduced from 7/2 to
7/8. Furthermore, when 7 is a 2-simplex, condition (3.3.2) is independent of o (this is
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easy to check). On the other hand for any 7 in A and any orderinga<f<y<...<(
of its vertices, the element u,g, ., can be decomposed into a product of at most
three terms of the form u,,.,. This argument shows that (3.3.2) implies (3.3.1), so
A CA,.

3.4. Proposition. Suppose given an SU,-valued lattice gauge field u and an SU,-
coordinate bundle v, both defined on a 4-dimensional simplicial complex A, such that
for every pair o, f of adjacent vertices.

afyo

A(,p(x), uup) <m/8  for every xec,Nncy. (3.4.1)

Suppose v’ is another coordinate bundle on A, also satisfying (3.4.1). Then the
principal bundles ¢ and & determined by v and v’ respectively are isomorphic.

3.5. Note that Proposition 3.4 applies in particular when u is in 4,; for then the
algorithm of Theorem 2.8 gives us a coordinate bundle v which satisfies the
hypotheses of the proposition.

3.6. Proposition. Given a 4-dimensional simplicial complex A, a lattice gauge field u
on A, belonging to A,, and two local orderings 0 and o’ of the vertices of A, letvand v’
be the corresponding coordinate bundles constructed, according to Theorem 2.8, by
our algorithm. Then the principal bundles £ and &’ determined by v and v’ respectively
are isomorphic.

3.7. The proofs of these two propositions share a common strategy. In both cases
we shall construct a coordinate bundle v* on A x [0, 1] which extends v on A x {0}
and v/ on A x {1}. Once this is done, v* will determine a principal bundle £* over
A x I which restricts to £ over 4 x {0} and to & over A x {1}. It is then standard
that £ and & are isomorphic (see, for example, [27]).

In the proof of Proposition 3.6, since we shall be working in the context of our
algorithm of Theorem 2.8, it will be possible to construct v* simply by extending
that algorithm. The proof of Proposition 3.4 requires an analogous but different
algorithm.

3.8. Proof of Proposition 3.4. We will abbreviate the notation for the vertices of
Ax[0,1] to a=(x,0) and o’ =(a, 1). The 5-cells dual to these vertices (see Fig. 3.1)
are c¥=¢, x [0, 1/2] and ¢ =c¢, x [1/2, 1]. Their 4-dimensional pairwise intersec-
tions are
ch=c¥ncf=c,px[0,1/2] and

chp=cCupx[1/2,1] for every {af) in 4;

ck.=c,x{1/2} for every vertex o of A.
These are the domains of the SU,-valued functions v}, v}, and v}, to be

constructed.
We define v} and v}, for every {af), by

Ui, D) =0,5(x),  UEp(x, 1) = 05p(X)
for every xec,, te[0,1/2], ' e[1/2,1].
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Fig. 3.1. The cell complex 4 x [0,1] and its dual

The definition of v,=v¥,:c,—»SU, (identifying c¥nc} with ¢,) is made
following the same principles as the definition of the v,,’s in (2.8). In order to use
induction we pick, once and for all, a local ordering o of the vertices of A. To
support the analogy with the proof of Theorem 2.8, we may also introduce the
lattice gauge field u* on A x [0, 1] defined by

uly=uty =u,; for every (af) in A, and
uf, =1 for every vertex .

3.9. For any simplex containing o, let ¢J=c,no. In parallel with (2.10.1) and
(2.10.2), we define v7 : ¢ —SU, by a double induction, first on dimo, then in each ¢
proceeding from the lowest-ordered vertex to the highest. Each ¢ is an affine cube
(see Fig.2.2), with modified barycentric coordinates (s, ...,5,,...), where 4,...
o-precede o, and g, ... o-follow a. Let =<4, ...,a>. Then in parallel with (2.10.3)
and (2.10.4) we will set v§(s;,...,5,,...) =v&(s;, ...), and v,(«)=1. Finally, when
0 =0, so that « is the o-last vertex of o, we use the conical structure ¢ =o * d'cg,
where 0'c? is the set on which at least one of the modified barycentric coordinates
isequal to 1. The values of the function v will already be determined by the cocycle
condition on this set.

3.10. Assertion. The hypotheses and the construction guarantee that these values
lie in the complement of —1.

3.11. This assertion will be proved below. Then in parallel with (2.10.5) we can
define, for each x e d'c and for each s, 0<s<1,

V(1 —s)a+sx)=g(s),

where g is the unique shortest geodesic from I to v(x). The coherence of the
procedure is proved by a transposition to this context of Lemmas 2.12-2.14.
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3.12. Proof of Assertion 3.10. Let us consider the worst case, when ¢ is a 4-simplex,
say o = {afyde), ordered as listed. Since « is lowest-ordered, the rules above give
vg=1I on ¢j. For vertex f, o=<ap), and on 0'cj we have vj=uv}v7v},. By
hypothesis v}, = v, is within 71/8 of ug,, and v} ; = v, is within 7/8 of u,;. So on 0 ¢}
the vf values lie in B(n/4), the open ball of radius 7/4 about I. Since the extension is
performed by coning from I, the new values also lie in B(n/4).

For vertex y, o=<afy), and 61c§’=(cynca)u(cvmcﬁ). On the first set, v]
=0,,03V,,- These values lie in B(n/4) just as was shown above. On the second, v]
=10,,050p,. The first factor is within 7/8 of u,; the second within /4 of I'; and the
third within 7/8 of u,,. So these values lie within B(r/2), and so do those of their
extension to all of cJ.

Proceeding in the same way for vertices § and ¢, we find that the construction
gives v mapping c§ into B(3n/4) and that for v7 (here g = o) the values on 8'¢? all lie
in B(w). This completes the proof of the assertion and of Proposition 3.4.

3.13. Proof of Proposition 3.6. 1t is sufficient to prove the proposition under the
extra hypothesis that o’ differs from o merely in the transposition of two
o-consecutive vertices, say y and J, such that y o-precedes .

As in the proof of Proposition 3.4 we denote the vertices of A x[0,1] by
o=(a, 0) and o’ =(a, 1). Here, however, we will work on a simplicial subdivision A*
of Ax[0,1]. This subdivision, which is part of the “prism construction” in
simplicial homology theory [11, 28], does not introduce any new vertices, and is
defined as follows. Let o =<af...{) be any simplex of 4, its vertices written in
increasing o-order. Then ¢ x [0, 1] is subdivided in A* to

{{o.. AV A=a, ..., (3.

The new 1-simplexes of A* are (see Fig. 3.2)

{{ap>|{ap) € A and « o-precedes B} .

3.14. Next we define a local ordering o* of the vertices of A* by requiring that o*
restrict to o on the vertices of A x {0} and to 0" on those of A x {1}; and that all the
vertices of A x {0} precede any vertex of A x {1}. For example there are four
possibilities for the o*-ordering of the vertices of t* =<a...A4"...{".

(1) If y and ¢ are both vertices of o, then:

(a) if y o-precedes A, then the o*-order is a...yd...44"...(";

(b) if y o-follows A, then the o*-order is «...44"...07"...(’;

(c) if y=4, then the o*-order is «...p6y"...0".

(2) If y and 6 are not both vertices of g, then the o*-order is a...A4"...(".

We observe that in case (a), A and A" are consecutive, and otherwise the
o*-ordering is the same as the o-ordering of the vertices of ¢. Similarly in case (b),
except that the o*-ordering is based on the o”-ordering of the vertices of ¢. In case
(2), these two descriptions coincide. Case (c) is exceptional in that y and y” are not
consecutive.

We now define an SU,-valued lattice gauge field u* on A* by the rules: u*, =
for every vertex « of A; and uly=uly =u¥; =u,, for every 1-simplex (af) of 4,
ordered so that o o-precedes f.
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Fig. 3.2. a The subdivision A* of A4 x [0, 1], where dim A =1, with respect to a local ordering o in
which « and y precede . b A 2-simplex ¢ of A and the subdivision of ¢ x [0,1] in A*; here «
precedes f and f precedes y in o

3.15. In order to apply the algorithm of Theorem 2.8 we first show that the
5-dimensional analogue of B(o) holds for every simplex of A*, namely:
B(o*). For every simplex t* of dimension =2 in A%,

A1, u(t*)) <m/2.

We shall examine only the case that t* has the form <«...AA"...") discussed
above; other cases, such as {a...u"...(’>, are similar. In case (1a), and also in case

2),
ugT*) =Ugp carw..ova
=Ufg. U UL U U,
=Uype . Uy LUy, gy,
=Upp...xap...00
=u,(o), where g is a simplex of A.

Since uisin A,, the condition B(o) holds for ¢; and so B(0*) holds for * in this case.
Case (1b) is similar: we obtain u}(t*)=u,{0), and since B(0o") holds for o, B(o*)
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follows for t*. Lastly, in case (1c),
ug(T*) =UJg ysryu. 0ta
= uaﬂ. . .u,cyuy‘;u(;yuw e uOCuCa
=uy(0), Wwhere g is the face of ¢ opposite J;

and B(o*) follows in this case too.

3.16. We can now apply the algorithm used in the proof of Theorem 2.8; the
increased dimension here does not affect the argument. We obtain a coordinate
bundle v* on A*,which restricts tovon A x {0} and to v’ on A x {1} because vand v/
were constructed by the same algorithm applied to restrictions of the data A*, u*
and o*. As in the proof of Proposition 3.4, this implies that ¢ and £” are isomorphic,
as required.

Extensions and Improvements

3.17. To Different Gauge Groups. Let G be an arbitrary Lie group, and r its radius
of convexity (i.e. the largest number such that the open ball of radius  about the
identity is strictly convex). Then Theorem 2.5 holds for G-valued lattice gauge
fields with any 4 <r; and Theorem 2.8 holds under a new hypothesis on u: namely
that, on each 4-simplex, u satisfies the condition B(o) with /2 replaced by r.
Proposition 3.4 holds for G-valued lattice gauge fields and coordinate bundles
satisfying (3.4.1) with /8 replaced by r/4; and Proposition 3.6 holds if A, is defined
as in (3.3.1) but with n/2 replaced by r.

3.18. To Higher-Dimensional Simplicial Complexes. Let A be any finite-
dimensional simplicial complex. Continuing with an arbitrary Lie group G as
above, Theorem 2.5 holds without further change; Theorem 2.8 should be further
modified by requiring (2.7.1) for every simplex 7 of dimension =2. In Proposition
3.4 the hypothesis on v is now (3.4.1) with =/8 replaced by r/dimA; no further
change is necessary in Proposition 3.6.

3.19. In case G=SU, hypotheses involving condition B(e) can be weakened by
replacing 7/2 with n/2+e¢, where ¢ decreases with dimA. For Theorem 2.8
(dim A =4) we calculate that we can use approximately 7/2 + 0.3 radians, and for
Proposition 3.6, 7/2+0.2 radians (in the definition of A4,). This allows us to
construct examples having the standard unit quaternions i, j, k as plaquette
products, knowing that the bundle produced by our algorithm will not depend on
the choice of local ordering. On the other hand, the bound in the definition of 4,
cannot be allowed to exceed 27/3, as the following example shows.

3.20. Example. Here the lattice is 04°, the complex of proper faces of the 5-simplex.
Topologically, this is a 4-sphere. Let us label the vertices a, 5, y, 9, ¢, {, and consider
the SU,-valued lattice gauge field u on 04° (see Fig. 3.3) defined by u,; =j', u,, =K',
Uys =1, U = @', ug, = —j” and all other transporters=1. Here 1, i, j, k refer to the
standard unit quaternions, @ = —1/2(1 +i+j+k), and the " and ” indicate small
perturbations of the quaternion values, chosen so as to make u generic. The
products Uyy.q Ugpeass ANA Ugpegear TOT a, b, ¢, d, e in a 4-simplex, all lie within 27/3
(neglecting perturbations) of 1.



Calculation of Topological Charge 619

¢

Fig. 3.3. An SU,-valued lattice gauge field on 84°. (In this rendering of the 1-skeleton of 04 the
vertex { has been projected to infinity)

When our algorithm is applied to u and to the ordering a<f<y<d<e<(it
produces a nontrivial bundle (Q =1), whereas the ordering f<a<y<d<e<(
gives a bundle with Q=0. The topological charge is calculated following the
procedure described in the next section.

4. The Calculation of Topological Charge

4.1. Ifuis a SU,-valued lattice gauge field defined on a 4-dimensional simplicial
complex A and satisfying the continuity condition (2.7) with respect to some local
ordering o of the vertices of A, then the algorithm of Theorem 2.8 produces an SU,-
coordinate bundle v from u and o. In this section we will show how this algorithm
can be extended to yield the second Chern number of the principal bundle ¢
underlying v. In the range where ¢ is independent of the construction (e.g. in the set
A, of (3.2)) this can be called the topological charge of u.

For a principal SU,-bundle over a 4-complex, the second Chern number C,(&)
coincides [ 19] with the Euler number of £, i.e. the obstruction to the existence of a
section in &; in this context, obstruction has the following precise meaning.

4.2. Let n: E(¢)— A be the projection from the total space of ¢ onto its base. A
section over a subset X C A is a continuous map S : X — E(&) such that n(S(x))=x
for every x in X.

We will show how to construct a section S over the 3-skeleton A, of A.
Choosing a trivialization @ : 1~ *6— 0 x SU, over a 4-simplex ¢ of A identifies S|do
withamap S, : do—SU,, and it is clear that S can be extended as a section over ¢ if
and only if S,, which is topologically a map between two 3-spheres, is null-
homotopic. What is less obvious is the following theorem.

Let us assume the ¢’s and the &’s have all been coherently oriented
(orientations will be discussed more in detail below).
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Fig. 4.1. The complex 4, its dual cells and the lattice gauge field U. Here A is 1-dimensional. A is
the cone from y on A

4.3. Theorem [19, 27]. Let N, enySU,=Z be the degree of S,. Then the
integer 3 N, does not depend on S and is in fact the Euler number of &.

ogeA

This explains how in our context C,(&) can be characterized as the obstruction
to the existence of a section in &.

4.4. We will show presently that C,(&) can also be described as the obstruction to
extending v over the augmented complex A formed by coning A from a point .
(This complex has one new vertex y, one new 1-simplex <oy for each vertex o of 4,
etc.; see Fig.4.1) This last obstruction can be realized by the following
construction. First extend u to a lattice gauge field U on A by defining U,,=1for
each new 1-simplex, and extend o to a local ordering O of the vertices of A by
placing y after all the vertices of A. In particular this defines a lattice gauge field and
a local vertex ordering on the 4-skeleton A(4) If U does not belong to the
exceptional set K(O) on A(4) (this means additional measure-zero continuity-type
conditions on u; see below) then the algorithm of Theorem 2.8 may be applied to U
and O to give an SU,-coordinate bundle V defined on /1(4).

4.5. Hereis how to interpret V as a section S over A 3,. Let g be a k-simplex of A3,
so k<3,and X =y * g the corresponding (k + 1)-simplex of A(4) For any vertex o of
o', the set cg=0nc, has modified barycentric coordinates s,,...,s;, where

..,A¥a are the other k vertices of o. The set cax—chach has modified
barycentrlc coordinates with exactly the same names. Define SJ:c;—SU, by
S5(Sys > 52)=VirSys -, ;). We will write simply S =

4.6. Proposition. The maps S, fit together to give a section in & over A,
Proof. First note that if o € 6N, then on ¢INcf

Se=V2=Vy=S,, where T=y*t,
the middle equality from (2.10.6).
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Now suppose x € 6nc,Neg. Then

Sai(x) =V (x)

=(Vp()Vi(x)) by (2.10.8)

=vg5(x)Vj,(x) since V extends v
=0g(x)S3(x)

i.e the S7’s transform as the local coordinates of a section in £&.

4.7. Note. The continuity hypothesis guarantees in fact that the algorithm will
produce V2, on any set of the form ¢}, as long as dim > <4 or dim ¥ = 5 and « is not
the first vertex of 2. It follows that the section S is defined over any set ¢g except
when o0 =<01234) is 4-dimensional and «=0. So the integer N, of Theorem 4.3
becomes the homotopy class of S|dc] or, equivalently, the homotopy class of
Vo,l0cg,A, where X =y * o={01234y).

4.8. Calculation of N, (Beginning). The map Vg,|0cg, has a specific geometric
form due to the algorithm. To write it explicitly, let us review the definitions made
in the extension of v to A 4.

Ve, =Uy,=I,

Vszx = 9341(54) .

(Note that g,,, is the unique shortest geodesic from I to uz,.)

Vi =9234,(53,54) »
Vlzx =f1234x(52a 53,54) .
Finally, on the boundary of ¢§,, V5, is prescribed:

on 9°c3, by
g V(,Ex(s4=0)=f0123x(sl,Sz,s3),

Vozx(ss‘ =0)= f0124;5(31, 52,54) 5
Vozx(sz =0)=10134,(51,53,54) s
Vor(s1=0)=%0234,(52, 53, 54); (4.8.1)
on d'cg, by
Vgx(54 =1)= VOZ4V421= 01234(51,52,53)
I/})Ex(s3 =)=V V3Ex= D0123(51552)834,(54) »
Voxx(sz =)=V, szx =8012(51)D234,(53,54) 5
Vozx(sl =)= V021 Vlfxz “01f1234x(52a 53,54) - (4.8.2)

Note that implicit in these definitions is a partition of each face of dc§ , into sub-
polyhedra. When the map is of type f or u - £, these are four simplexes and a square-
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based pyramid (see Fig. 2.5); when itis of type by - g or g - b, these are two triangular
prisms (compare with Fig. 2.4).

4.9. Theexistence of all the unique shortest geodesics required for the definition of
these maps requires an additional set of continuity conditions. In terms of u, on
each 3-simplex {0123) of A one of the two following conditions, coming from
applying A(O) and B(O) to {0123y), must hold.

* from A(0). The following five sets of elements must be linearly independent:

(1) I, Up120, Uo12> Uo123>
2 I, upy, o1z, Uoi23s
(3) I, ugy, U1z, Uorzz,
4) I, ugz, U1z, Uo123s
&) I, upz, Uz, Uoi23;

* from B(O).The following elements must all lie within 7/2 of I:
Upr>  Ugas  Ugz, Uiz,  Upz,  Uzz,
Up12 > Upr3>  Up23>  Upz3,  Upgraz-

4.10. Note. Condition A(O) is satisfied on the complement of a set of measure zero
in the space of all lattice gauge fields. Note however that the new conditions are not
gauge-invariant; also, B(0O) is a much stronger condition than B(O). Clearly B(O)
always holds in the “continuum limit;” but if u satisfies B(O) for every 4-simplex of
A, then it can be shown that C,(u)=0 (compare with [23, Proposition 1.12]).

4.11. Orientations. Nobody likes to think about orientations. Here it is unavoid-
able, because the Vj’s have an intrinsic orientation coming from the local
ordering, and this must be compared with a global orientation of A and of & if we
want the various N,’s to add up correctly.

Suppose A is an oriented 4-dimensional simplicial manifold. One way of
defining “oriented” is to begin with the concept of an orientation of a simplex: this
is the choice of an equivalence class of vertex-orderings, where two are equivalent if
they differ by an even permutation. An orientation of A is then the choice of an
orientation for each 4-simplex of A (we will call the distinguished orientations
“positive”) in such a way that two adjacent simplexes induce opposite orientations
on their common 3-face. To say that A is oriented means that such a choice can be
and has been made.

4.12. We can define an orientation of a smooth manifold M as a continuous
assignment of a sign (+ or —) to each tangent n-frame. If M is triangulated as a
simplicial manifold A, then an orientation of A gives one of M:ifaframe vy, ..., v,1s
at a point of a simplex ¢ =<012...n) with vertices t}il;ls positively ordered, slide it
over to 0 and compare it with the frame 01, _ﬁ, ...,0n. It is easy to check that the
sign so determined does not depend on g.

4.13. Induced orientations: we follow the convention that the orientation induced
on a boundary face is that which, preceded by an outward-pointing vector, gives
the orientation of the interior.
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4.14. Next suppose ¢ is an oriented principal SU,-bundle over A, in the following
sense. Take the group SU, as being oriented as a smooth manifold, say with the
orientation induced from the standard orientation of R* (see 4.23). Then the local
fiber coordinates may all be coherently oriented, since any two of them differ by
multiplication by an element of SU, (this preserves orientation). We suppose that a
coherent orientation has been chosen, and we call those fiber coordinates
“positively oriented.”

4.15. Calculation of N, (Continued). We now have an oriented SU,-bundle &
over an oriented 4-dimensional simplicial manifold A; suppose in addition we
have alocal ordering o of the vertices of A. Given a 4-simplex ¢ = (%234}  of 4, the
vertices listed in their o-ordering, let ¢,(¢)= +1 if the frame (01,@, 03, (ﬁ) is
positively oriented, and — 1 otherwise. Let ¢ be oriented by (ﬁ,@, 03, 04) and give
dcg, [identified with dcf as in (4.5)] the induced orientation. Let N () be the degree
of the map Vg, : dcg,—SU, with respect to that orientation and a positive fiber
coordinate. Then we may take

N,=¢,(0)N,o(0). (4.15.1)

The rest of this section will be devoted to the calculation of N (o).

4.16. Our algorithm for computing the homotopy class of ¥, is based [12] on
picking a point y in SU, which is generic with respect to the image of ;, in a sense
to be made precise soon. For now it is enough that y be chosen so that (V)™ '(y) is
a finite set of points x, ..., x, and Vg, is a local homeomorphism at each x,. Then
we assign to each x, a number ¢,, which is 1 or —1 according as Vg, preserves or
reverses orientation at x,. Finally, the value of N (o) is ¢, +... + ¢,

To compute the numbers ¢, we exploit the precise geometry of the construction
of V5, As remarked in (4.8), this map implicitly subdivides dc{ into a complex K
whose 3-cells are simplexes, pyramids or prisms. On cells of each type, Vg, is
geometrically the same; for example V7, maps each simplex onto a convex,
geodesic simplex in SU,,.

4.17. The genericity requirement on y can now be stated: in addition to the
conditions given above, the x, must all lie in the interiors of the 3-cells of K; that is,
y must be in general position with respect to the image under Vg, of the 2-skeleton
of K.

4.18. Our program consists of the following steps.

(1) Usingjust the local ordering o, we shall define an “intrinsic” orientation for
each 3-cell D of K.

(2) We then calculate the relative orientation &(D; 0cg) which is +1 or —1
according as the orientation of D agrees with the orientation of dc§ described
above or not.

Then, depending on whether D is of type I (simplex), type II (pyramid) or type
111 (prism) we shall give

(3) a criterion, satisfied on an open, dense set in SU,, for when a point y is
generic with respect to ¥,|D.
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We shall also give and justify algorithms to determine

(4) the number n(D) of points x, in (V5,) ™ *(y)nD (this number will turn out to
be 0, 1 or 2);

(5) and when n(D)=1, the orientation &5, of V3, (considered as a map from D
to SU,) at the single x, = x(D); this is 4 1 if Vj, preserves orientation at x(D), and
—1 otherwise. [We will show that when n(D)=2, the map Vg, has opposite
orientations at the two inverse image points.] Finally,

Nyo)= X &D:0cq)exp)- (4.18.1)

D:n(D)=1

4.19. First some notation for the vertices of ¢J. In the modified barycentric
coordinates (s, 5,, $3, S4) of (2.9) these are the 16 points where each coordinate is O
or 1. Each vertex v may then be identified by the subset H C{l, 2, 3,4} made up of
the indices of the coordinates which it has equal to 1. It will be convenient to label v
by the set H'= {0} UH, the elements written in increasing order, because then the
image V5, (v) can be read off directly from the label.

VE (o) = I if H'={0}
O Vg o if H'={0,i,j, ...k}, i<j<...<k. (4.19.1)
J

[For example, the vertex with s; =s,=s,=1, s3 =0 would be labelled 0124, and
Vo (0124) =ug 154 =g Uy 5tz4.]

4.20. We will label the 8 faces of ¢ by C'={s;=1} and C,= {s;=0}. Each of these
faces has its own intrinsic orientation determined by the local ordering: C* and C;
have coordinates s;, sy, 5; with j <k <[in the ordering; we will orient them by the
ordered basis (0/0s;, 0/0sy, 0/0s)).

4.21. Finally each 3-cell D of K has an intrinsic orientation; the simplest way to
describe it is to say that it is determined by the first four of the vertices of D as they
are listed in the table below. If these vertices are v,, v4, v,, v3, in that order, then the
orientation is given by either one of the equivalent 3-frames (vyb,, U0, VoUs) OF
(U;{’n Uﬁz, Uﬁs)

4.22. The following table gives for each 3-cube CCdc§ the corresponding Vg, ¢
and lists the 3-cells D which it contains. Each cell is identified by its vertices; its
combinatorial type is also noted. In addition the table lists for each C the sign
&(C, 0c3) relating its intrinsic orientation to that of dcg, and for each D the sign
&(D, C) relating its intrinsic orientation to that of C. The sign &(D, 0c?) is the
product of these two.

Before we can continue our program we need some more notation.

4.23. Notation for R* and S*. The rest of our program makes use of the geometry
of SU, which we identify with the group of unit quaternions, geometrically the
sphere S* of radius 1 in R*.

The term line will mean an affine line in R*, with L[y,, y,] the line through
points y, and y,. A segment is a closed interval on a line; [y, y,] means the
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Table 4.1. Combinatorial type and relative orientation of the 3-cells D of 0cj. Here 6 =<01234) isa
simplex of 4, its vertices so ordered. The algorithm splits 8c§ into 8 cubical faces, the C* and C;, and
maps each of them into SU, either as the union of a pyramid and four simplexes or as the union of
two prisms. A vertex labelled 0 is mapped to I, a vertex labelled ab to u,, a vertex labelled abc to
Ugpe = UgpUpes etc.

3-cube C &(C, 0cd) Type of D Vertices of D &, C)
C, -1 Pyramid 0, 03, 023, 0234, 034 -1
(Foz234,) Simplex 0, 02, 023, 0234 +1
Simplex 0, 02, 024, 0234 -1
Simplex 0, 04, 024, 0234 +1
Simplex 0, 04, 034, 0234 -1
C, +1 Pyramid 0,03, 013, 0134, 034 -1
(Fo134y) Simplex 0,01, 013, 0134 +1
Simplex 0,01, 014, 0134 -1
Simplex 0, 04,014, 0134 +1
Simplex 0, 04, 034, 0134 -1
C, -1 Pyramid 0, 02, 012, 0124, 024 -1
(Fo124y) Simplex 0,01, 012, 0124 +1
Simplex 0,01, 014, 0124 -1
Simplex 0,04, 014, 0124 +1
Simplex 0, 04, 024, 0124 -1
C, +1 Pyramid 0,02, 012, 0123, 023 -1
(Fo123,) Simplex 0,01, 012, 0123 +1
Simplex 0,01, 013, 0123 —1
Simplex 0, 03, 013, 0123 +1
Simplex 0, 03, 023, 0123 -1
ct +1 Pyramid 01, 013, 0123, 01234, 0134 -1
(uo1t1234y) Simplex 01, 012, 0123, 01234 +1
Simplex 01,012, 0124, 01234 -1
Simplex 01,014, 0124, 01234 +1
Simplex 01, 014, 0134, 01234 -1
Cc? -1 Prism 02, 012, 0123, 01234, 023, 0234 +1
(0122345 Prism 02, 012, 0124, 01234, 024, 0234 —1
c3 +1 Prism 03, 013, 0123, 01234, 034, 0134 +1
(01238345 Prism 03, 023, 0123, 01234, 034, 0234 —1
c* -1 Pyramid 04, 024, 0124, 01234, 0234 -1
(o1234) Simplex 04, 014, 0124, 01234 +1
Simplex 04, 014, 0134, 01234 -1
Simplex 04, 034, 0134, 01234 +1
Simplex 04, 034, 0234, 01234 -1

segment with endpoints y; and y,. The term geodesic will stand for a closed,
minimal geodesic in S3; if y,, y, are points on S3, y, + —y,, then s[y,, y,] will
represent the unique minimal geodesic between them.

Let 0 denote the origin in R*. For any set X CR*, the notation cX represents the
infinite cone on X :cX ={ty|ye X, 0=t <oo}.
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We set s(X)=cXnS>. This defines a map s:R*—{0}—S3; note that s(X)
=s(cX). For example, if [y,, y,] is a segment which does not contain 0, with y,, y,
on S3, then s([y;,y,]) is the geodesic s[y,, y,].

More generally, suppose that X is convex and does not contain 0. Then s(X) is
strictly convex; that is, any y,, y, in s(X) can be joined by a unique (minimal)
geodesic (in S*) which lies in s(X).

Finally, if y,, y,, y3, ys4 are points in R* det(y;, y,, 3, y,) means the
determinant of the matrix with those four vectors as columns; if that matrix is
nonsingular, then sdet(y,, y,, y3, y4)= + 1 or —1 is its sign. For ae R*, let det(a;
Y1> V2, V3, Va) be the determinant formed by replacing y; with a.

Ifdet(yy, y2, 3, ¥4) £0, then (y,, y5, V3, v4) is a basis for R*, and the coordinates
of a in this basis are

ti(a)=det(a; y1, ¥2» V3, ya)/det(yy, V2, Va5 Va). (4.23.1)

4.24. Calculation of N, (Continued). Given a generic y € S*, the calculation has
been reduced, by (4.15.1), (4.18.1) and the orientation coefficients given in the table,
to the computation of n(D) and, where appropriate, ¢y, for a 3-cell D of the
complex K.

We now continue with parts (3)~(5) of the program of (4.18) in the three cases: I
(D is a simplex), IT (D is a pyramid) and III (D is a prism). Suppose D has vertices v,
vy, ... listed in the order given in Table 4.1.

Notation. In what follows we will shorten “Vg,” to V™.

4.25. Case I: D is a simplex, with vertices vy, v, v, v3. Set y;= V(v;). Then V(D) is
the convex hullin S° of y, y,, ¥,, y3. The continuity hypothesis guarantees that y,,
Y1, V2, V3 are in general position, so V(D) is a strictly convex spherical 3-simplex.

(L3) A point yeS; is generic with respect to V(D) provided no t(y)=0,
i=0,1,2,3, where t; is defined as in (4.23). This condition is satisfied on an open,
dense set in S3.

(I.4) ye V(D) if and only if y € ¢cV(D), which happens if and only if all ¢,(y)
>0; and then n(D)=1.

(L.5) In Case I, V either preserves or reverses orientation simultaneously at
all points of D, according as det(y,, ¥1, ¥, V3) is positive or negative. Hence

&xp)=54€t(Vo, V15 V25 V3)-

4.26. Case 11: D is a pyramid with cone point v, and base the square R with vertices
vy, Uy, U, U4 (in cyclic order).

Again, set y;=V(v;). The continuity hypothesis guarantees that y,, y,, y3, V4
are in general position in R*. Let ¢, ..., t, be coordinates with respect to this basis,
as in (4.23).

The 3-cell D (see Fig. 2.5)is part of a 3-cube C parametrized by (s,, s4, 5,); where,
in the H’-notation, v, =v,u{a}, v,=v,U{f}, v,=v,0{y} (and v3=v,U{f,7}).
Here s, isOat v, and 1 on R, and D has the structure of a cone with base R: D ={(s,,
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Sps SN0 =55, 58,5, S 1} I x = (5, 85, 8,), and x vy, set v=(1, 5,/s,, 5,/s,) € R; then
x=(1-s,)vo+s,0. On R, s; and s, run from 0 at v, to 1 at v, and v, respectively.

4.27. We shall need the equation of the map V: R—S>. Now V was defined on R as
the product of two geodesics:

V(l’ S/i’ Sy) = gﬂ(sﬁ)g'y(sy)-

Since multiplication by a fixed unit quaternion is an isometry, as s, varies the
length of the geodesic s;— g(s4)g,(s,) is a constant, say 6,; and similarly the length
of each gy(s;) - g, is a constant §,. Thus 0, is the spherical distance, or angle,
between y, and y,, and also between y, and y;; while 0, is the angle between y, and
¥4, and also between y, and y;. It now follows that

1 0 = N . 1)
V{1, 5,0 sinf, ! sinf, Y2
sin(1—s,)0 sins,0
1 = [2ad] B7B o
V(55 1) sinf, 4 sinf, 3
Hence
sin(1—s,)0 sins. 0
V 1’ b = : y y 19 b . y y 1’ b 1
(1,s4,5,) sind, V(1,s,0)+ sind, V(1,54 1)

=>t;y;, where
ty =[sin((1—s4)0,) sin((1 —s,)0,)]/sinbj sin6,,
t, =[sin(s;0,) sin((1 —s,)0,)]/sin6;sin0,,
t3 =[sin(sz0,) sin(s,0,)]/sin0, sin0,,,
ty=[sin((1—sz)0,)sin(s,0,)]/sinO;sin 6,
4.28. Using the coordinates (¢, t,, t3, t,) with respect to the basis y,, ..., y,, define

q:R*>R by
q(ty, ty, ts, ty) =titz—1tty; (4.28.1)

Thengo V=0o0n R, so V(R)liesin the variety {g =0}, which is a cone cQ since gisa
homogeneous polynomial. We may take Q =s(cQ), so V(R) is a portion of Q. In
fact V(R)={(t;, t,, t3, t;) €S*|q(ty, L5, t3, t,)=0 and all ¢;=0} (see Fig. 4.2.).

4.29. The continuity hypothesis guarantees that +y, ¢ Q; so for each z in Q there

is a unique shortest geodesic from y, to z. Let A(z) be the angle between y, and z.

Then the extension of V over D is given by

sin((1 —s,)A(z)) sin(s,A(z))
sind(z) °°" sind(z)

where x=(s,, 84, 5,), v=(1, s4/s,, 5,/5,) as above, and z=V(v).

V(x)= V),

4.30. Let z=(ty, t,, t3, t,)=> t;y;. The differential dg|, has components (5, —1,,
t,, —t,) in the basis of the cotangent space at z dual to the basis (y;, y,, V3, Va)-
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Fig. 4.2. The map V of a pyramid D into S3

That is, if X =(x,, X,, X3, X,)=2 x;y; is regarded as a tangent vector at z, ie.
X e T,R*=R*, then it acts on X by

dqlz(X)=t3x1—t4X2+t1X3——t2X4. (4.30.1)

4.31. (IL.3) Our first constraints on y are that it not lie in the boundary portion of
V(R). To ensure this we require that y not lie in ¢Q, nor in any of the 3-planes
through the origin determined by (yo, y1, ¥2), by (Vos ¥25 ¥3), bY (¥o, ¥, y4) 01 by

(Yo» V15 Ya)-
The numerical criteria are that each of the following quantities be non-zero:

‘I(t1(y), sy t4(y))’ det(y’ Yo> Y1s y2)a det(ya Yos Vas Y3)= det(y’ Yo, V3 y4)’ det(y7 Yo> V15
Va)-

4.32. Our other condition is that the geodesic circle through y, and y not be
tangent to Q. This is equivalent (see Fig. 4.3) to requiring that the line L through y
parallel to y, not be tangent to cQ. We may parametrize L as

L(t)=y—1y,. 4.32.1)
Then
q(L(1)) = *q(yo) +tdql, () +q(») -

Roots of this polynomial in ¢ give intersection points of L with cQ; a tangency
corresponds to a double root. The discriminant

p(»)=[dql,,(»1* —44(yo)a(y)

is homogeneous of order 2 in y, so the variety {p=0} is a cone cP. Our final
constraint on y is that it not lie in P=s(cP); it is sufficient to require p(y)=0.

These six constraints exclude 2-dimensional sets in 3, so the set of remaining
y’s is open and dense.

4.33. (I1.4) We calculate n(D) in three steps. First we count the number of points in
which the geodesic semi-circle from y, through y to — y, meets Q. We then see how
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Fig. 4.3. A suitable choice of the point y with respect to V(D) when D is a pyramid

many of these points actually lie in V(R). Among such points we finally check
which ones have y between themselves and y,.

Now s(L)is the relative interior of the geodesic from y, through y to — y,. Since
yo and — y, are not in Q, the number of points in which the geodesic meets Q is
equal to the number of points in which L meets cQ. This is the number of solutions
of q(L(t))=0. We have excluded the possibility of a repeated root, so there are
either none or two, according as p(y) <0 or >0.

If p(y) < 0 we are done, since then n(D) =0. So assume p(y) >0, and let ¢ and ¢”
be the roots of the equation g(L(t))=0. Then s(L(t")) and s(L(t")) are the points
where the semi-circle meets Q (see Fig. 4.4). Now s(L(t)) lies in V(R) if and only if all
of its coordinates t,(s(L(t))) = 0. In fact, by our choice of y, none of them can be
zero. Since L(t) is a positive scalar multiple of s(L(t)), we may calculate the number
of ¢’s (this can be 0, 1, or 2) such that g(L(t)) =0 and t,(L(t))>0fori=1, 2, 3, 4. If
this number is 0, we are again finished, since n(D) =0. Otherwise, y is between y,
and s(L()) on the semi-circle if and only if ¢ is strictly positive.

4.34. To summarize, n(D) is the number of real roots ¢ of the equation
£2q(yo) —tdgl, (y) +4(») =0
such that
t(L@#)>0, i=1,2,3,4
and
t>0.

[Here q is given by (4.28.1), dg by (4.30.1), L(¢) by (4.32.1) and t,(a) =det(a;
V1> V2, V3, Ya)/det(yy, ¥2, V3, v4) are the coordinates of a in the basis yy, y,, ¥s,
Va-]
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¥

Fig. 4.4. Values of n(D) for different choices of y. D is a pyramid. When y is at a point marked x,
then n(D)= +1; if y is at a point marked o, then n(D)=0

4.35. (IL.5) The configurations giving a nonzero n(D) are shown in Fig. 4.4. The
geodesic sL(t) from y, to yintersects the ruled surface V(R) beyond y in exactly one
point z, [with dist(y,, zo) <7]. Our task is now to determine the appropriate sign
&(D): we assume that v,...v, is positively oriented (i.e. that the curve v,v,v5v,0;,
traversed as listed, gives the positive orientation on the boundary of the pyramid)
and we calculate the sign of dV|,, where x=V"1(y).

Let z be the corresponding intersection point of L(t) with cQ, so the points 0,
Yo, V> z and z, are all in the same 2-plane in R*. Set h(z)=signdq|,(z—y,)
= —signdq|,(y,). Since gradg|, is perpendicular to ¢Q={g=0}, and since
dql,(z—yo)=<gradq|,, z—y,, if this sign is positive it means that L(t) is crossing
at z from {q <0} to {g>0} (in the direction of increasing t), and it gives us the same
information about how the geodesic sL(¢) crosses Q at z,.

4.36. Suppose sdet(y,, ¥,, V3, V4)>0. We may then simplify the argument by
assuming that y, = e;, the i'" element of the standard quaternionic basis 1, i, j, k of R*.
Then the function g becomes t,t; —t,t, in the standard R* coordinates, and gradg
=(t3, —t4,t,, —1,). Projecting grad g onto > at 1 gives the vector (0, 1,0)=je T'S3.
At 1 the tangent space to V(R) is spanned by i and k. If 1ijk1 is to be a positively
oriented circuit on V(R), theni, k is a positive basis for TV(R),. With respect to this
basis j is a negative normal vector, since the basis i, j, k for TS; gives the positive
orientation of $3; i.e. grad q is a negative normal vector at 1 and therefore on all of
V(R). So in this case if h(z) is positive then sL(t) is crossing V(R) in the negative
direction at z,, and ¢gp(x)= —1.

4.37. In general,

ep(x)= —h(z) sdet(yy, Y2, V3, Va) s

where z is the intersection point of L(t) = y—ty, with cQ and h(z) is given in
(4.35).

4.38. The last sentence of (4.35) gives a geometric interpretation of h(z), from
which it follows that if n(D) =2, then the two &’s cancel. This is in accordance with
what we claimed in (5) of (4.18).
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4.39. Case I11: D is a Prism. There are two subcases. (a) D is of type (1-simplex)
x (2-simplex) These are the two prisms of C?, where V5, (which we shall continue
to abbreviate as V) is given by V(sy, s3,54) = 8012(51)D234,(53, 54). The two prisms
of C? are of the form D = (2-simplex) x (1-simplex); this subcase (b) is similar and
will be dealt with briefly after subcase (a).

We write vy, ..., vg for the vertices of D in the order listed in Table 4.1, and y;
=V(v;) as usual.

One of the prisms of C?is D=A" x A%, where A* =<02, 012) and 4?=0, 23,
2345. (The other has 24 instead of 23.) 41 is parametrized by 0<s,<1, and 4% by
0 <53, 8,51, 5325, We will work on this prism, but state our results in terms of

., Ve S0 they will be applicable to both.

Let ¥, and V, denote the restrictions of ¥ to 4" and A2 respectively. V; maps 4*
to the geodesic s[ug,,ug,,] and V, maps 42 to the convex spherical 2-simplex
which we will write as s[I, u,3, U,34], Where as usual uy,, means uqg; u,,, etc.

4.40. (I1a.3) Our first task is to analyze the set of points at which V is not a local
difftomorphism. (For this section and the next, refer to Fig. 4.5.) Let X! and X?
represent the geodesic circle and 2-sphere determined by V; and V, respectively.
Define f:X!x X? to be quaternionic multiplication, f(&,n)=¢n. We want to
know when, for £ X! and ne 22,

dflem: Te @ x 22> T, S

is not one-to-one. We may identify T, (2" x 2?) with Tig(Z' - 1)@ Tigyy(¢ - 27).

Now f is a diffeomorphism on each of X' -y and ¢- 22, so if df |(§ » 1 not one-to-
one, it must be the case that Tj,(X" - 1) C T (& - 22). Slnce 2'.nisa geodesic and
&- 2% is a great 2-sphere, this implies that X' -y C&- 22 If ¢ is any other point of
X1, left-multiplication by £'¢~ ! takes X to itself; it follows that X!-#C¢& - 2?;in
particular &y belongs to uy, - 22 and to ug, , - 2*. Conversely, if £ is any point of
Uy X2NUgy, - 2%, then X1 -nC&- X2 Thus df |, » fails to be one-to-one if and
only if &5 lies in Z =g, 22Ny, , - 2. The continuity condition implies that X’

is a circle.

In conclusion, for x e D, dV|, is one-to-one provided y=V(x) is not in 2.

4.41. Our other constraint on yis thatit notliein V(dD). Forj=1,2,3let X} be the
geodesic circle determined by I,u,,, u23 4+ leaving out the ji! element Then V(0D)
consists of portions of ug, - 22, ugy, - 2%, and X' - X}, j=1,2,3. Since 2’ Cug, - 22,
the constraints on y are all taken care of by requiring that ynot bein any of the five
surfaces just mentioned.

Now forany ue S, y¢ u- 22 provided det(y, u, uu, 5, uti,3,) +0. So we require:

det(l’»)’ia)’S,%)*O and det(y>y29y3’ y4)=i:0’

where y,= V(v;) as before.

To detect whether or not y is in X' - X} we could use functions of the type of
q:R*—R defined in Case IL. But there is a simpler method, which is more easily
explained in the course of showing how to calculate n(D).

4.42. (111a.4) To calculate n(D) we observe that y e s[ug,, Ugy2] - SLI, Uss, Uyzs] if
and only if the geodesic segment s[z, y] intersects the great spherical triangle
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Fig. 4.5. A suitable choice of the point y with respect to V(D) when D is a prism. (Geodesics in X2
and S® are represented by straight lines)

Uy + SLL, Uy, Uy34], Where z=u,,,y. This can be detected in two steps. First we
check whether or not s[z, y] intersects uq, - 2. If they meet in a point «, then by
our choice of y (so far) k is neither z nor y, and s[z, y]is not tangent at x to ug, - 2.
It follows that z and y are on opposite sides of the 3-plane determined by u, - 2.

Let ty, ..., t, be coordinates on R* with respect to y, y;, ys, and y,. Then the
3-plane of ugy, - S? is {t; =0}, and £;(y)=1. So yes[ug,, Ug;,]-S? if and only if
t,(z)<0. Here

ti(z)=det(z, y1, Vs, Y6)/det(y, ¥1, Vs, Vo) -

The numerator equals det(ug, 0¥, V1, Vs» Ve)=det(y, v,, Vs, Va) because
quaternionic multiplication (by u,,;, in this case) is an orientation-preserving
isometry. Hence our first necessary condition is

ye V(D) Only lf det(y7 Va5 y3s y4)/det(ya y17 Vs y6)<0 (442*1)

Now to say that y € s[ug,, Ug;,] - S[L, ty3, Uy34] 1S to say that k € ug, - S[1, U,5,
Uyza] =5[> Ugzss Ugazal- In other words, t,(k) =0 for i=2,3,4. In fact, if any
t(k)=0, then ke X}, so ye Z'- X1. So our extra constraints on y in (4.41) are:

t(k)*£0 for i=2,3,4.

These constraints will be elucidated shortly.
The coordinates t,, t5, t, are in constant proportion on the 2-plane through y,
K, and the origin. These three coordinates are 0 at y; and since « is in the convex
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VG
D—V5 p V‘l
D N X |
]
Vg
V.
V(D) ' ?

Ya

83

Yo

Y2

¥s part of

Zl
Uoia =2

Fig.4.6. Comparison of orientations at y and y,. (Geodesics in S are represented by straight lines)

sector cs[ug,10Y, ¥], they each have the same sign at x and at uy,;,y. We may
therefore require, in addition to (4.42.1),

titoz10y)>0 for i=2,3,4.
Here, for example,

t2(Ug210y) =det (¥, Upa10)> Vs> Ve)/det(y, yi, Vs, Vo) -

If these conditions are met, then y can be written as &, with & e s[ug,, 4g;,] and
nesll, u,s, uy34]. Here € and y are uniquely determined by y; and since V; and V,
are diffefomorphisms, it follows that the coordinates s, and (s3, s,) of a point x in D
such that V(x) =y are also uniquely determined. Of course if any of the conditions
is violated, then n(D)=0.

4.44. (Il1a.5) It is clear from Fig. 4.6 that if 2’nV(D)+0, then the sign of dV|,
depends on the position of y with respect to 2”. In fact sign dV|, =signdV],, if the
geodesic segment s[y,, y] does not intersect uy;, - 22, i.. if y and y, are on the
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same side of the 3-plane through 0 determined by y,, y,, and y,; equivalently, if
det(y, 2, ¥3, Ya) det(yy, ¥, ¥, ¥4)>0. To calculate the sign of dV],,, observe that
since 0/0s,, 0/0s5, 0/0s, form a positively oriented basis at 02, then so do v,v,, v,vs,
v10g; s0 the sign of dV|,, is the sign in S? of the frame y, y,, y,ys, 1 Vs, 1.€. sdet(y;,

Y2, Vs> Vo). Finally

ep(x)=sdet(y, y,, 3, ya)sdet(yy, ¥, V3, Va)sdet(yy, ¥z, Vs, Vo) -

4.45. Case I11b. Here D= A% x A*, where in one prism 4% =<03,013,0123) and 4!
={0,34) (in the other, 42=<03,023,0123>). Again, we will work with the first
prism but give results in a form applicable to both. The vertices of D, in the order in
which they are listed in Table 4.1, are v; =03, v,=013, v;=0123, v, =01234, v;
=034, v,=0134. D is part of a cube parametrized by s, s,, and s,; A" is
parametrized by s, and 42 by (s;, s,), 5; =5,. As before, V(sy, 55, $4) = V5(s1, $5)
- Vi(s4). The argument is now exactly as in case (a), except that the order of
multiplication in §> is systematically reversed.

4.46. (I11b.3) Let 2% =s[ugs, U1 3, Uoy23] and Z' =s[1, uy,]. We define f:2? x 2!
—5% by f(n,&)=né. We find that df|, »: T, »(2* x X")>T,S° is one-to-one
unless ¢ is on the circle 2'=X2N%%-uy,, and dV|,: T,D— Ty ,,S> is one-to-one
provided y = V(x) is not in 2". The constraint that dV'|, be one-to-one at x=V "1y
is thus included in the requirement that y not be in the portion of V(dD) given by
s[y1, ¥2s ¥3l; it is sufficient that det(y, y,, ¥,, y3) 0. Similarly, y will not lie in the
opposite triangular face if det(y, y4, ys, ) 0.

The other constraints on y are that it not lie in the three lateral portions of
V(D). These can be guaranteed by

det(y, yuas, o3, Uo13) *0,
det(y, yuss, Ug13s Uo123) +0,
det(y, yugs, Ugy23s Uo3)F0.

4.47. (I11b.4) The condition that ye 2?-s[I, us,] is t,(z) <0, where ¢4, ..., t, are
coordinates on R* with respect to y, y;, y,, and y;, and where z= yu,;. Now

ti(z)=det(z, y1, y2, y3)/det(y, y1» ¥2, ¥3),

so our condition is

det(y, ys, Ve» Va)/det(y, y1, ¥2, ¥3)<0.

To ensure that y e V(D) we must further require ,(z)>0, for i=2, 3, 4.
Here, for example,

ty(z)=det(y, yuss, ¥, ya)/det(y, yi, ¥, ¥3)-

If these conditions are satisfied, then n(D)=1; otherwise, n(D)=0.
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4.48. (I11b.5) Arguing as in (4.44) we obtain

ep(x) =sdet(y, y4, Vs, V6)sdet(V1, Va, Vs, Vo)sdet(yy, Yz, V3,5 Vs).
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