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Abstract. Finite-size behavior near the first-order phase boundary of fer-
romagnetic spherical models is investigated for block- and cylinder-shaped
systems in d dimensions. The bulk thermodynamic singularities are rounded
and, asymptotically for large size, obey appropriate scaling laws. Both short-
range interactions and long-range couplings, decaying like l/rd+σ with σ > 0, are
analyzed: the short-range results agree precisely with a recently developed
scaling theory for O(ή) symmetric systems in the limit n -• oo. More generally, the
scaling functions are universal, depending only on σ. Explicit aspects of the shape
and interactions enter only in the "spin wave" or "Goldstone mode" contri-
butions which appear, technically, as "corrections to scaling." An appendix
analyzes the truncation error in the approximation, by many-fold sums, of
multivariate integrals with integrands diverging like Qjfl/0*]~A as 0->O.

1. Introduction

The spherical model of a ferromagnet [1] was devised by Kac and is of interest, in
particular, because it can be solved in closed form in the thermodynamic limit [2-5].
For dimensionality, d9 exceeding d = 2, it exhibits a phase transition if the
interactions are of short range. However, it is soluble also for long-range, power-law
interactions. Furthermore, it exhibits a nontrivial variation of the critical exponents
with dimensionality and interaction decay, which makes it a valuable tool in
studying bulk and surface critical behavior [6,7]. The model is also tractable when
one or more of the linear dimensions are large but finite. Thus it has been employed
to test the theory of finite-size scaling [8,9] which describes the rounding or
distortion of the bulk critical singularities that must occur in a system with restricted
dimensions. These developments have been reviewed by Barber [10]; see also
[11-13] for some more recent studies.
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Another well known property of the spherical model is its equivalence to the
properly normalized limit of the O(n)-symmetric vector spin model when n -• oo
[14,15]. This correspondence is exact in the thermodynamic limit [15], but is also
valid for systems of finite size provided all spins are equivalent under some symmetry
operation. For the standard space lattices this is ensured by periodic boundary
conditions. It is of especial interest to us here that a bulk ferromagnetic spherical
model exhibits singularities, such as a diverging susceptibility when the first-order
transition boundary is approached by letting the magnetic field, if, vanish at
temperatures, T (>0), below the bulk critical temperature, Tc. These singularities
are the direct analog of the so-called "spin-wave" or "Goldstone mode" singularities
which characterize all systems with broken O(n) symmetry for n ^ 2.

The present work studies the rounding of the first-order transition and of the
"spin-wave" singularities in ferromagnetic, d-dimensional spherical models with
large but finite dimensions. We focus on those aspects that can be used to check the
predictions of a general finite-size scaling theory [16,17] for O(ή) symmetric models
in the vicinity of a bulk first-order transition that breaks the symmetry. This theory
extended a similar analysis [18] for (n = l)-component or scalar spin systems. (For
further references, see the literature cited in [16-18].) For a "block" system of
volume V — Ld

0 that has all linear dimensions L1,L2,...,Ld comparable as V-> oo,
the theory predicts that the singular part of the reduced free energy density should
obey the asymptotic scaling law

fs(T,H)*V-ιW{n){yv\ (1.1)

in which the basic scaling combination is given by

yv = m0(T)HV/kBT, (1.2)

while mo(T) is the spontaneous magnetization density (and kB is Boltzmann's
constant). The scaling function W{n){ ) is expected to depend on n but not on other
details of the system. However, in the case of a "cylinder" geometry in which one
dimension, L|( = L t , greatly exceeds the others, a second scaling combination should
be needed in (1.1), namely,

^ (1.3)

For n ^ 2, the special correlation length entering here is given by

-l)kBZ (1.4)

where T(n)(T) is the helicity modulus [19] or "spin wave stiffness," while A =
L2L3 - Ld is the cross-sectional area of the cylinder. We will, in fact, prove that
these expectations are fully valid for the spherical model. In addition, we will obtain
explicit expressions for the scaling functions, including the extensions that account
for the rounding of the spin wave singularities: these are missing in (1.1) since they
occur on a scale of magnetic field set by the new combination ys =
mΌ(T)\H\Lo/Y(n)(T) being of the order unity. Both short-range interactions, as
contemplated in the general theory, and long-range power law interactions decaying
like l/rd+σ with σ > 0 will be analyzed.

In outline we proceed as follows: known results for the thermodynamics of finite
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spherical models on hypercubical lattices [5,6] and various definitions of range and
shape parameters are presented in Sect. 2. Section 3 is devoted to analyzing the
rounding of the first-order transition in block shapes. The leading scaling behavior is
easily found, but the nature and rounding of the spin-wave singularities requires
further work. The analysis rests on the Appendix which obtains expressions for the
discretization errors in the approach of various many-fold sums to limiting
multidimensional integrals with diverging integrands: these discretization errors
enter directly in the calculations of the finite-size scaling functions describing the
rounded spin-wave regime, in the corrections in the first-order regime, and in the full
scaling-with-corrections form in terms of yv and u = \ys/yv\ (applicable when d<
2σ). The rounding of the first-order transition in a long cylinder is taken up in Sect.
4. Explicit scaling expressions for the limiting behavior and for the crossover to
block shape are obtained. In contrast to the block limit, the scaling function
describing the rounding of the transition in leading order depends on the interaction
exponent σ.

2. Equation of State for Finite Spherical Models

This section describes the models of interest and summarizes the results and
definitions needed for the subsequent calculations. We address the thermodynamics
of spherical models defined on d-dimensional simple hypercubical lattices of spacing
a and finite dimensions, denoted L or N, on which periodic boundary conditions are
imposed. Specifically, we write

L = { L k } k = w , N = { # * } * , w , Lk = Nka, (2.1)

V=f\Lk = Ll N=f\Nk^Nd

0, V = Nad. (2.2)

Each lattice site i, with cartesian coordinate vector r(f) = (r(ί)Λ) (/c=l,...,d), has an
associated continuous scalar "spin" variable st. The spins interact via the
Hamiltonian

* = - Σ J(*u) - *<iM - Hd* Σ st - ζ Σ sf, (2.3)
(ij) i = 1 i = 1

in which the sum on (ij) runs over all distinct pairs of sites. The factor ad is included
for convenience in comparing with the general scaling theories [16-18]. The
coefficient ζ represents the so-called spherical field. At all T and H it is fixed by
imposing the mean spherical constraint [4-6]

Σ<sfy = V/ad^(L0/a)d, (2.4)
i

in which <•> denotes a thermal average computed with Jf.

The Interactions. The interactions, J(r), enter the exact expressions for the free
energy only through the Fourier transform

Σ έ * '(oJ(r(<)). (2.5)
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In order to discuss the approach to the thermodynamic limit, L -» oo, we thus choose
to define the interactions by specifying the transform J(q), over the Brillouin zone,
which we fix, independent of L. The original couplings, J(r), appearing in (2.3) then
follow by inverting (2.5) by summing, for a finite periodic system, over the
appropriate set of discrete wave vectors [see (2.14)—(2.16) below]. Unless, in the
infinite system, J(r) is of strictly finite range (i.e. of bounded support) this means that
J(r) in a finite system contains a definite but asymptotically negligible dependence on
L corresponding, physically, to summing over interactions with all periodically
repeated images. To describe "simple ferromagnetic interactions" we assume that
J(q) attains a unique maximum, J(0), at q = 0 and is analytic for q Φ 0. To
characterize the long-distance decay of the potentials, which affects the existence of a
transition and the values of the exponents describing the spin wave and critical
singularities, we introduce a positive exponent σ and assume

J(q) = J{0)[l -(idΓ1 ^ Σ R2

kqή/ + O(\q\' + δ ) \ (2.6)

with δ > 0. The value σ = 2 (with, typically, δ = 2) characterizes short-range
interactions; it follows that values σ > 2 are nonphysical in general, although the
analysis is not affected. Values satisfying 0 < σ < 2 correspond to long-range
potentials decaying essentially like l/ro

d + σ with

rl = CO i/Ki)2 + (rJRi)2 + -+ (rJRΛn (2-7)

Evidently the Rk specify the anisotropy of the interactions. It transpires that there is
no phase transition unless

σ<d, (2.8)

which condition we shall thus presuppose whenever needed.

The Equation of State. The computation of the partition function, Z, for the spherical
model as specified here is described in detail in Refs. [4-6]. From the reduced free
energy density,/= F/kBTV = — V~ίlnZ, one computes the magnetization per spin

m(H, T; L) = N"1 £ <s, > = - (df/dh)τ, (2.9)
i

where it proves convenient to put

h = H/kBT and K = J(0)/2dkBT. (2.10)

The result can be written

m = adHd/J(0)φ = adh/2Kφ, (2.11)

where φ(H, T L) represents the appropriately shifted and scaled spherical field [6],
which must be determined via the constraint

m^~^, (2-12)
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in which the interactions enter through

Ωq = Ω(θ) = 2d\_\ - J(q)/J(0)l (2.13)

The wavevector sum runs over the discrete values specified by

Plj...^pΛ (2.14)

where the integer vector, p = (pk), is determined by

P* = 0 , ± l , ± 2 , . . . , (modiVfc). (2.15)

Thus one has the alternative form

q PI = O Pd = o p

It is convenient to specify dimensionless interaction ranges, pk, via

Rd

0 = Y\ Rk tfnd ρk = Rk/a, (k = 0,1,... ,d), (2.17)

and system shape ratios, I = {lk}, by

I =L/L = L /V1/d = N /N . (2.18)

Then as |0|->O, one has, from (2.6),

ησ/2

(2.19)

where here, as usually below, we do not display explicitly the error estimates
following from the \q\σ+δ term in (2.6). For small |p |/N 0 this may be transcribed into
the useful form

ίl-πn \σV d ~\σ/2

(2.20)

which serves to show that the finite-size effects depend, asymptotically, only on the
parameters ω = {ωk} with

ωfc = {pJPok? = (Rk/Lk)
2/(R0/L0)

2. (2.21)

For interactions and system shapes respecting full cubic symmetry one has ωk = 1
(all k).

Finally, note that in the thermodynamίc limit, L -• oo, taken with φ Φ 0, the sum
in (2.12) becomes an integral over the basic zone. Eliminating φ with (2.11) then
yields an implicit equation for the magnetization m(H, T). As H -• 0 + below Tc, m
should approach the spontaneous magnetization mo(T): if this is nonvanishing we
obtain from (2.11),

φ«adh/2Km0(T), as #-»0+, (2.22)
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for T <TC. From (2.12) the spontaneous magnetization must then be given by

Ah y

^ Ω - \ θ \ (2.23)

where j = \ddθ/(2π)d denotes a multiple integral over the rescaled zone Θ =
Θ

{θ; \θk\ < π}. The critical temperature, at which mo(T)->O + follows from

2Kc^J(0)/dkBTc=$Ω-\θ). (2.24)

The integral here is formally divergent for d ̂  σ which, on paying closer attention to
the details, shows (as mentioned) that there is no transition unless σ < d. On
combining (2.22) and (2.23) one finds simply

. (2.25)

3. Rounding of the First-Order Transition in Block Geometries

We will now investigate the form of the rounding of the first-order transition below
Tc that occurs in block geometries: more precisely we consider the limit V, Lo -» oo
with the shape ratios, lk = Lk/L0, asymptotically fixed and nonvanishing.

Now, as seen in deriving (2.23), the vicinity of the phase boundary corresponds to
φ small and T < Tc. As φ -»0 in a finite system the q = 0 term in the sum in (2.12)
diverges. Accordingly, in the equation of state (2.12) we separate off this term,
ad/Vφ = \/Nφ, and subtract expression (2.23) for ml(T). Gathering up matching
terms then yields

2K(m2

0 - m2) = l/Nφ - eo(N) - φU^φ N), (3.1)

in which all the dependences on T, or K, φ and L = Nα have been displayed while,
more generally,

( N ) W ^ (12)

provided (i + l)σ < d so the integral exists, and

~ 1 ^ 1
(3.3)

Our main task is thus to analyze e0, the difference between an integral with a
divergent integrand and an approximating sum, and the sum U^φ) which, since
d > σ, should be well approximated by an integral as N -> oo provided φ > 0. The
former problem is considered generally in the Appendix from which one finds that e0

vanishes as \/Nd

0~
σ: see further below. The latter question is taken up in detail

shortly: here we observe merely that when φ^O one has φUί(φ) = O(φ{d~σ)/σ)-+0.

Leading Scaling Behavior. The observations regarding e0 and U1 enable us to

obtain the leading behavior near the first order transition directly. For finite N and
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φ ->Ό the first term on the right of (3.1) dominates e0 and φUί. Then by using (2.11)
we obtain the asymptotic equation of state,

m2

0-m2πm/hV, (3.4)

where the nature of the corrections will be made precise later. This result may be cast
in the anticipated scaling form

m(H,T;L)xmo(T)Yo(yv), (3.5)

where the appropriate scaling combination of magnetic field and volume is

yv = m0(T)VH/kBT = H/Hv, (3.6)

just as expected generally [16-18]. The scaling function is found to be

(3.7)

which also agrees precisely with the prediction of the phenomenological theory [16].
To interpret these results [16-18] note the limiting forms.

It follows from these, with (3.6) and (3.5), that for \H\ » Hv ~ 1/V the magnetization
takes the values sgn(f/)mo(T), while for H « Hv it passes smoothly through 0; note
that the zero-field susceptibility diverges as

χ(H = 0,T;L)*m2

0(T)V/kBT, (3.9)

when V -> oo. Thus the jump from — m0 to + m0 across the phase boundary in the
limiting bulk magnetization is smoothly rounded off, as it must be in a finite system,
on a scale \H\^HV. Note, further, that none of the leading asymptotic behavior at
the first-order transition depends on the dimensionality, on the actual shape of the
lattice, or on the details of the interaction decay or anisotropy.

Spin Wave Singularities. Before studying the corrections to the leading scaling
behavior it is appropriate to examine the full equation of state, (2.12), in the
thermodynamic limit and to obtain the behavior of the magnetization for small H
(below Tc). This entails the integral

QX(φ^ί2Kc-φUi{φ;^ (310)

which is of a well-studied type [e.g.: 5,6,20]. The first / — 1 derivatives of Q°°{φ) are
bounded at φ = 0 +, where / = I(d, σ) is the integer defined by

Iσ<d^{l+\)σ. (3.11)

For d φ (I -f l)σ, one readily finds

I 1 ( d V (3.12)

as (/>->0; on the borderline d = (/+ l)σ the final, singular term becomes b^φ^n φ) x
[1+0(1)]. The coefficients bo = 2Kc, bί9...9bI-ί depend on the details of
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however, the singular amplitude b^ is a function only of d, σ, and the range ratio p0:
see (3.22) et seq.

By (2.22) φ varies as h/m0 when /z->0+ in the thermodynamic limit, so we
conclude that the bulk isotherm has a parallel expansion of the form

,, - n i + od)], (3-13)

for H->0 +. Note, in particular, that the Ith order nonlinear susceptibility χj(T, H) =
(5/m/δ///)τ diverges as the phase boundary is approached. This divergence is a
symptom of the 'spin wave' singularities characterizing broken O(n) symmetric
systems for all n ̂  2 including n -• oo [16,19]. These singularities must, clearly, also
be rounded in a finite system, but the leading scaling form (3.5)—(3.7) contains no hint
of them. We will show, in fact, that they are rounded but primarily on a second scale,
Hs, which is asymptotically much larger than Hv (although both vanish as V -+ oo).

Asymptotics of ei and Uv To proceed further one needs more concrete information
about eo(N) and U^φ; N): these functions may be conveniently regrouped to mirror
(3.10) as

One may

Q(φ;N) = 2Ke-e0(N)-4

then expand, in parallel to (3.

βW;N) = /Σ[6 i-e ί(N
; = o

12),

)](-

Np*oΦ

to obtain

- φ)1 + (— φYUji

1
+ Ω(Θ)

0;N), (3.15)

where ef(N) and Uj{φ9N) are given by (3.2) and (3.3).
As mentioned, the truncation error, e^N), is analyzed for N = Nd

0 -> oo in the
Appendix. One finds

ejN)« D{d9 (ί + l)σ; ω)/(2πpof
+ 1)σNd

0~«+ 1 ) σ, (3.16)

for i = 0,1,. . . ,/— 1 where for fixed d, σ, ω and /, the residual corrections decay more
rapidly with iV0. Note that the ef(N) themselves decrease most rapidly for small i.
Explicit expressions for the amplitude D are constructed in the Appendix: it depends
only on d, on σ, and on the individual shape/anisotropy ratios ωk defined in (2.21).

Now the spin wave singularity in (3.12) arises from Uj(φ; N) in the limit N -> oo, as
a divergence of the limiting integral like l/φλ/σ for λ = (I + l)σ - d > 0, but as In φ for
λ = 0. Since this divergence arises from small values of 0, we may invoke (2.20), which
we write as

Ω(θp)*[2πpoPp(ω)/Nor with P2

p(ω) = J > k A

2 , (3.17)

in order to obtain the leading singular behavior of Uj as N -> oo. It is appropriate to
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define the scaled spherical field as

= φLσ

o/R°. (3.18)

Then we expect Uj(φ; N) to be approximated asymptotically by

^4^s{v;ωi (3 i9)^4
Po iVo

where we presuppose λ = (I + l)σ — d φ 0, so that

In fact it is straightforward although tedious to examine the difference (7j(φ;N) —
Uj(v), and to show that at fixed v it vanishes as N -• oo. In this calculation it is
natural to restrict p in (3.20) to the bounded domain (2.15). However, as |p | -• oo the
summand in (3.20) decays as l/|p| ( / + 1)σ when |p | -> oo which, since λ > 0, means the
leading behavior is preserved if the sum is extended to all nonzero integer vectors:
this extension will be understood as the meaning of (3.20). When u->oo an
approximating integral suffices for estimation and one finds

S{v\ω)^Gdy
dlσ)-I-\ ast;->oo, (3.21)

there being no limiting dependence on ω since

G

From this one obtains φΉj « Gd>σpQdφ(d~σ)/σ, which reconfirms (3.12) and provides
the result bi(ί = {-)IGdJpd

0.
In the borderline case λ = (I + l)σ — d = 0, the truncated sum in (3.20) cannot be

extended and, in place of (3.19), one obtains

£/,(</>;N)« O^v) = Po dlCd\nN0 + S > ; ω ) ] , (3.23)

where the coefficient Cd depends only on d, while S^ is given by a form generalizing
(3.20) which we will not explore. Indeed, since our main purpose is to study the
generic scaling behavior, we will focus below only on the cases d/σ nonintegral
(λ Φ 0). One knows from many studies that logarithmic factors commonly appear at
borderline dimensionalities; but this is a technical complication which poses no real
theoretical mysteries! Nevertheless, we should admit that for short range forces,
when σ = 2, we will not be exhibiting further results for the theoretically fashionable
case d = 4.

Finally, on assembling the results in (3.13) we may write (for d/σ nonintegral)

Q(φ; N) -2KC=- βo(N) - φU^φ;N)

Σ (v; ω), (3.24)

where the basic "spin wave" scaling function with argument (3.18) is

^ y S ( v ; d , σ ; ω l (3.25)



536 M. E. Fisher and V. Privman

where now, if [x] is the integral part of x, we can take / = [d/σ], while S is defined in
(3.20) and D in (A7). Recall also that the coefficients bt depend on the details of J(q)
through (3.10) and (3.12).

Asymptotic Equation of State. We can now study all the corrections to the leading
equation of state (3.4) by combining (3.24) and (2.11) in (3.1) to obtain, finally, the
basic formula

in which Έί = ( — ad/2KJbi (and d/σ is nonintegral). This result gives the limiting
behavior and leading asymptotic corrections for small \H\( <a~dJ(0)mo) by
whatever route L o (or V) diverges. To study its implications note first that at fixed
H > 0 the first term on the right vanishes when K-» oo, while the last, spin-wave term
contributes asymptotically only through S(υ) with v-+oo. Thus with the aid of (3.21)
one checks that the bulk result (3.13) is reproduced, the spin wave singularity arising
entirely from S(υ) and its amplitude, χ+9 following from (3.22).

To proceed further, we introduce two additional scaling combinations, ys and w,
and a new field scale, Hs [16]. Thus, recalling (3.6), we rewrite (3.18) as

v = ys I mo/m I = uyv(m0/m\ (3.27)

through which the spin-wave scale, Hs, is set by

= ad\h\Nσ

0 =dad\H\U0 JH\
y s 2Kmopl J(0)moR

σ

o Hs

9 l ' j

while the ratio of the scales is

u(τ.L)_ Λ _Hy_ ( da%T

Note that this parameter is essentially the prefactor of the Ys term in (3.26): it is
independent of H and vanishes as L -• oo. In renormalization group terms u
represents the scaled form of the leading irrelevant variable which controls the
dominant corrections to scaling (see [16]). For systems with short range interactions
it can be written [16], using (2.25), as

u(L) = kBT/Y0(T)Ld

0-\ (σ = 2), (3.30)

in which Y0(T) is an isotropic (geometric) average helicity modulus [19] derived from
the individual helicity moduli,

Yk(T) = (J(0)R2

k/dad)[\ - (T/Tc)l (k = 1,...,d), (3.31)

which measure the response to an imposed "twist" of the order parameter along the
lattice axes. For isotropic nearest neighbor couplings this formula has been
established by Barber and Fisher [6]; an alternative derivation of the general result
follows from the analysis of the next section.

Spin Wave Regime. In the regime H»HV~ 1/F, there will be no evidence of
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rounding of the first-order discontinuity in m(H, T; L) but the spin wave singularities
will be rounded when H < Hs. To see this explicitly note that the term m/Vh in (3.26)
may now be dropped, the equation may be solved iteratively, and then to sufficient
accuracy one may put m = m0 in (3.27), the argument of Ys in (3.26). This yields

m(ff, T L ) « sgn(ff)Γmo(Γ) + ^ U ^ H ? + mo(T)u(T;L)Ys(ys;ω)\ (3.32)
L * = i ι ! J

where the bulk nonlinear susceptibilities, χh were introduced in (3.13). The sum in
which they appear represents what, in critical point studies, is often called the "bulk
analytic background." The last term evidently represents the spin-wave singularity
rounded on the scale \H\ ~H s set by ys = 0(1): recall that Ys is defined explicitly
through (3.25) and (3.20).

Full Scaling Form. If one has σ < d < 2σ, so that / = 1, the sum in (3.26) is absent and
the spin-wave singularities in the bulk limit dominate the background terms. In that
case both spin-wave and first-order rounding can be encompassed in a single scaling
formulation. Specifically, with (3.29) and (3.6) we may write

m(H, T;L)« mo(T)Y(yVfu;ω), (3.33)

where the scaling function Y(y, u) satisfies the equation

>=l + 2uYάuy/Y;ω). (3.34)

Now u(L) is small in all regimes as L -• oo, and so we may solve this equation by
expansion in u provided we preserve the "irrelevant but dangerous" [16,18,21]
combination uy (which varies as ys when L -• oo). By iteration this yields

Y{y9 u) = Y0(y) + uYx(y9 u; ω) + O(u2), (3.35)

where Yo is given by (3.7) while

Yx{y9 u; ω) = 2y(l + 4y2)~1/2 Ys{\u[_\ + (1 + V ) 1 ' 2 ] ; ω}. (3.36)

These scaling expressions, valid for d < 2σ, confirm the n -> oo limiting behavior
predicted by the general theory for σ = 2 [16].

First-Order Regime. For d > 2σ (or / ^ 2) the sum of powers of h/m in (3.26) plays a
role and the corresponding background terms now dominate the spin-wave
singularities in sufficiently large fields. An iterative procedure may still be used to
find explicit approximations for Y = m/m0 if one substitutes h/m = yv/ml YV, but the
formulae are more complex because of the interference between "corrections" and
"background." Simpler results can, however, be obtained in the rounded/ϊrsί-order-
region: yv = 0(1) or | h \ < C/m0 V with C bounded. Indeed, the ratio | h/m | then ranges
only from l/kBTχ(O, T L ) « 1/wgK in zero field, using (3.9), to \h/mo\ < C/m%V, and
so is negligible when V -• oo. Accordingly, the sum in (3.26) can be dropped leaving
the spin-wave term, Ys(v; ω), whose argument satisfies

v « uyv/Y0(yv)«tι[l + (1 +4y 2 ) 1 / 2 ] = O(u)->0, (3.37)

as L -* oo. Thus to leading order in u we require only Y^O; ω) which is represented by
the i = 0 term in (3.25).
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In summary, the rounding of the first-order transition on the scale | H \ = O(HV) is
described correct to first order in u by

m(H, T; L) * mo(T)yv

where, as before, yv = m0HV/kBT and D is given in (A.7). Inspection of the
arguments yielding this result reveals that it is valid for all d/σ > 1, since only the
ί = 0 term in (3.25) is entailed: this is equivalent to eo(S) in (3.24) for which (3.16)
remains correct even when d = (/ + l)σ. By differentiation we extend the result (3.9)
for the zero-field susceptibility to

χ ( ° ' J ' L ) ~ kBT
 V + (2πγj(0)R°o °' { '

where subsequent terms are 0(1,L%σ~d). These expressions again agree precisely
with the results of the general scaling theory [16] in the limit n -> oo (although factors
like n/(n + 2) regrettably remain unchecked). It should be remarked, however, that
the lack of temperature dependence in the second term in (3.39) is an accident of the
spherical model: more generally [16] there should appear a factor ml(T)/Y0(T)
which, for more realistic models, varies significantly with T [19].

This completes our analysis of the block limit. We consider now cylinder shapes
with one very long or even infinite dimension.

4. Cylinder Shapes

To discuss a cylinder, with periodic boundary conditions, in which one dimension,
say L 1 ? can become indefinitely large or even infinite relative to the remaining
dimensions, some supplementary notation is helpful. With

Nx=Np LX=LV θ, = θv Pί=pv etc, (4.1)

we write

N = (N,,,N1), L = (L,,,L1), θ = φvθL\ p = (p l l,p1), etc., (4.2)

and define the cross-sectional area

A^f\Lk^Ld-^{NLa)d-\ (4.3)
k = 2

Since we wish to study the rounding of a first-order transition in a system of finite
cross-section even in the limit Ll{ = oo we must take σ ̂  1, to exclude a transition in
the latter case, but σ < d, to have a transition in the full bulk limit (L | |5 A -> oo). To
avoid unilluminating mathematical complications, we will neglect the borderline
case σ = l and restrict attention here to range

1 < σ < d. (4.4)

To proceed we need an exact expression for the equation of state which parallels
(3.1) but which suitably separates the longitudinal, ||, terms from the transverse, 1,
terms in such a way that the infinite cylinder limit L l | /L 1 ^oo may be taken.
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Accordingly, using (3.2) and (3.3) in (3.1), we remove from the sums on p those terms
with q± = p± = 0. Then, writing

Ωφv 0) = β,,^,)«(2πP l/ΛΓ | |r |pB \σ, (0,, - 0 ) , (4.5)

and regrouping yields

2K{ml - m2) = -^ + ^ T liytφ; JV,,) - 4(N) - (/>£/j(</>; N), (4.6)

in which

< 4 9 )

Apart from the restriction p± # 0 in place of p / 0, the last two definitions precisely
parallel (3.2) and (3.3).

For large JV̂  and small φ we may use (4.5) in (4.7) to obtain the asymptotic result

UUΦlN^WM/p^-1^ (4.10)

where the scaled argument, to be compared with (3.18) and (3.28), is

(2πp1)
σ (2π)σJ(0)mKί' v ' ;

while the scaling function is

which satisfies

^(w)^π-1C(σ)w ( σ-1 ) / < τ, as w ^ 0 + , (4.13)

ϊ^(oo)=l/σsin(π/σ). (4.14)

Consider next the truncation error, eQ(Np N±), in the limit TV,, -> oo. The sum on
p1 ( = Pn) then becomes an integral and with d! = d—\ one obtains

where one finds that the operand behaves as

g±(θ±)« [Γ(^)/2 v ^ r ( ^ ) P l ] f ξ pfc

2. + & + Λ , (4.16)

when |β ± | ->0, with σ' = σ—1. An appeal to Appendix A then establishes the
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asymptotic form

> (4 1 7 )

where ρd

±~* = Πfc = 2 Pk a n ( * the cross-sectional shape enters through ωL, defined in
analogy to (2.21). Evidently, as in the block case, the truncation error is essentially
proportional to l / L ^

One may further consider the difference

^ ^ r (41S)

which vanishes as N^oo. We have not analyzed this in details but one may
anticipate that it decays like 1/N*~σ times a bounded factor depending on the shape
through ω [see (2.21)].

The last contribution, Ui(φ,N), can be analyzed as in Sect. 3 in parallel to
Uiiφ, N). For our present purposes it suffices to approximate the sum by an integral
to conclude

φUΪ(φiN) = O(φ% δ = min[ l , (d/σ)- l ] , as 0->O. (4.19)

Asymptotic Equation of State. On collecting the asymptotic results the equation of
state can be written

Vh • V J(0) J PlA

(4.20)

where w(h/m, T LJ is given by (4.11). This may be compared with the block result
(3.26); the remainder terms here evidently describe the background terms of order
(h/mf (i= 1,2,...) and the spin-wave corrections which are controlled in relative
magnitude by the parameter u OCLQ d+σ defined in (3.29). We will not discuss these
higher order effects explicitly for cylinders.

To elucidate the scaling features of (4.20), consider first the zero-field suscepti-
bility, χ0 = limΛ_0(m/7z), of an infinite cylinder for T <TC. From (4.20) one finds

σ/iσ ' I (4.21)

which, for short-range interactions (σ = 2) yields a divergence as A2 (in agreement
with [16-18]).

Longitudinal Correlation Length. Now, guided by the heuristic arguments [16-18]
we would like to introduce a new scaled field variable

yA = hm0(T)Aξιι(T;Al (4.22)

in which £(| is a measure of the scale of decay of the correlations along the length of an
infinite cylinder of finite cross-section. In the case of short-range interactions this
decay is exponential and is controlled by the location, at qγ = ± ί/ξ^, of two poles in
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the zero-field propagator or susceptibility ίo )(^i,q 1 = 0), these being the closest
singularities to the real qλ axis. The propagator is always proportional to
l/[φ(0, T; oo, L±) -f Ωiq^a, 0)] but, for general σ, is singular at q1 = 0, resulting in a
scale-free, power law component in the decay. However, poles which yield the
longest spatial scale are still present and we use them to define ξl{ by taking

T; oo, L | t )] 1 / σ = Pι[J(O)χ$/dd*-*}1**,

" (4 23)

For nearest-neighbor interactions of strength J o = J(0)/2d we have σ = 2 and

px = 1, and so obtain

ξιι(T;A)x4J0m
2

0(T)A/ad-2kBT. (4.24)

According to the phenomenological theory [16,17] this correlation length should
be related via (1.4) to the helicity modulus, Y(T) [19]. This relation is, in fact,
precisely verified since for the spherical model one has [6]

Y(T) == lim YJ(n -1) = 2Jom&T)/ad-2. (4.25)

More generally, for spatially anisotropic interactions of finite range one may, as
mentioned in Sect. 3, introduce a helicity modulus tensor with diagonal components
Yk(T) (k = 1,... ,d). By using (4.23) for other orientations of the cylinder axis, one sees
for any short-range spherical model that this should be given by Yk(T) =
[J(0)RΪ/dad] m&T) in agreement with (3.31).

Scaling Forms. With the aid of the scaled variable yA we may write the equation of
state for an infinite cylinder asymptotically as

, T; oo, L ± ) « mo(T)YJyά (4.26)

The scaling function, Y^, follows from (4.20) in which w-> oo by (4.11): it is the
solution of the equation

YJ{\ - YiY^-v = σsin(π/σ)yΛ. (4.27)

For short range forces (σ = 2), this expression confirms the result obtained in [16]
for the limit n -• oo.

Finally, we expect [16] the crossover from the cylinder limit, LJLL -> oo, to the
block limit, L1/L1 and Lk/L0 bounded, to be described by

m(H,T;L)*m0Y(yv,yAl (4.28)

where, as before, yv = mohV. To derive an equation for the two-variable scaling
function, Y, note that we can rewrite (4.11) in scaled form as

w = (2πΓ°σ sin (π/σ)(yv/yAΠyA/Y(yv, yA)l (4.29)

Then (4.20) yields

1 - Y2 = (Y/yv) + iσsiniπ/σnV'iY/yJ'-W'Wiw), (4.30)



542 M. E. Fisher and V. Privman

in which w is to be given by (4.29).

To check that this reduces correctly for long cylinders note that

with τ = (d-1 )/(σ - 1), (4.31)

where X{1 is defined by (4.23), and we can write

w = yA{L,/L\Πσ sin (π/σ)/(2πX/Yl (4.32)

Thus yv and w diverge at fixed yA when L^/L^ -> oo and (4.27) is then recaptured. To
understand the other limit note that one also has

ισ7, (4.33)

where ω1 =(Pi/po'i)2> a s before, while u~ \jh%~σ is the correction parameter of
(3.29). Hence, in the block limit at fixed yV9 one has w ->0 and, on appealing to (4.13),
one finds that the last, i.e. the cylinder term in (4.30) vanishes as

o(w)]. (4.34)

On comparing with the full block scaling form (4.20) one sees that cylinder term can
be regarded merely as part of the spin wave corrections to scaling: clearly, once LJL\
is sufficiently small that L^L0 is of order unity the terms originally neglected in (4.20)
become of comparable importance to the cylinder term. Conversely, the cylinder
term is only significant when L{l/L0 becomes large and then appears as a "dangerous
correction to scaling" [21].

This completes our analysis of finite-size effects at first-order transitions in
general ferromagnetic spherical models. The asymptotic behavior in block and
cylinder limits is described by universal scaling functions, and the exact expressions
confirm in detail the general but nonrigorous theory [16-18] for ̂ -component spin
systems when the limit n -• oo is taken.

Appendix: Approach of a Sum to a Multivariate Singular Integral

Let g(θ) = g(θ1,... ,θd) be a function periodic in each argument, θj9 with period 2π,
which is real and analytic in θ except at 0 = 0 , where it diverges as

with σ, δ > 0 and

Pj>0(*Άj) and pdo=f[pj. (A2)

In addition we assume σ < d, so that the integral

n AC) π Af)

I = I(d,<r,p)=ίg(θ)= J ψ - f ψg(θ) (A3)
β - π zπ - π zπ

over the basic zone, 6>, is well-defined. To construct an approximating sum we let
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the integer vector N = (N1,... ,Nd) with

N = Nd

0=flNj and Nj = ljN0 {J=l^Λ (A4)

become infinite in such a way that the ratios /,- approach bounded, nonzero limits.
Then we may discretize the variable θ via

θ9 = l(ΘJj = 2πPj/Nj-]9 (A5)

where p is a vector with (positive or negative) integral components, pj9 identified
modulo Nj. The identification gp = g(θp) fails for p = 0 (pj = 0, all j), so it is natural to
define an approximating sum and difference via

ΔN = ΔN{d,σ;p) = I-SN = I ~ Σ 9 r ( A 6 )
i V

 P # 0

Note that the sum contains N — 1 elements.
The aim of this appendix is to demonstrate that as N o -• oo the difference

between integral and sum vanishes according to

ΔN « D(d, σ; ω)l{2πPoγNd

o-\ (A7)

where ω = (coj) and

ωj = (pj/polj)\ (A8)

and to show how expressions for the coefficient D may be obtained. The terms
neglected in (A7) are of higher order in 1/NO, but will not be bounded explicitly.
For ease of exposition we discuss first the simplest case d < σ + 2. Next we
consider the range σ + 2 ^ d < σ + 4; how to handle the higher order cases,
σ + 4 5 ^ d < σ + 6, etc., will then be apparent.

To make progress we decompose the integral, /, into a sum of terms. To that end
let y(p) denote the rectangular cell in 0-space centered on 0p, and defined explicitly by
θj = 2π(pj + Vj)/Nj with -\^ v ̂  \. We then have

1 = 1'^ w i t h '*N=ί0(*λ (A9)
p y(p)

where the integral is defined by analogy with (A3). The origin term, / 0 N , may be
evaluated easily when No^>ao, using (Al) which yields

ΛN = /0>N « Do{ω)l{2πPoγNd

o-\ (A10)

in which the numerical coefficient can be written

2 ) ( A U )

where, for any function, /(v), the cell average is defined by

1/2 1/2

= J dVl... J dvdf(vl9...,vά (A12)
-1/2 -1/2
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Substitution of (A8) in (A6) and rearrangement yields

N ~ N N ~ N " " A T 2 ^ P ' v )

p#0

where

δ p = <fcp(v)> with 6p(v) = flfp(v)-fifp(O), (A14)

in which, here and below, we take

' 2 π , ^ 2 π ,
— {Pi + υ1)9...9—{pd + υd) I. (A15)

Now if, in place of (Al), the periodic function g(θ) were analytic at θ = 0 the
correction ZlN would decay exponentially fast with N o [6]. Conversely, any slower
decay must be associated only with the behavior of g(θ) near the origin that is for
|0 p | « 1 or |p | « No. In this region we can use (Al) and thus have

&p(v)«(ΛΓ0/2πp0)
σcp(v;ω), (A 16)

where

cp(v;ω) = lP(v)T°-Poσ, (A17)

in which, for brevity, we have written

^2(v) = Σ HPJ + VJ)2 Ξ ^o + 2 Σ ωjipj + ivj)vj (A18)
7 = 1 J = l

with P o ΞΞ P(v = 0).
To investigate the coefficients δp, let us expand bp(w) in a Taylor series about

w = 0, and average using (A 12). This yields

i H Ά (A19)

where the subscript p on the derivatives indicates evaluation at v = 0. For |p | « No

we thus have, in particular,

(d2b/dvj)p«(N0/2πpQy (dtydvf)^, (A20)

where

On noting that cojjtj + Vj)2/P2(v) is bounded by unity for all p, we see that the second-
order b derivative is of order 1/Pζ+2 when |p | -> oo, while the subsequent terms in
(A19) are of order l/Pσ

0

+2k with k = 2,3,....
We may now consider the asymptotic replacement of the coefficient 5p in (A 13)

implied by (A 16). The convergence of the sum on p in (A 13) as No -> oo is then like
No/2

that of J cpp
d~ιdp. Thus, accepting the estimate c = (c ) = O(l/P% + 2) =
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O(l/|p|σ + 2), which follows from (A19)-(A21), we see that the upper limits on p in
the sum may be neglected asymptotically provided σ + 2 > d: this is just the first case
anticipated above. Collecting up terms and recalling (A 10) finally confirms the claim
(A7) and yields the coefficient

D = D 0 ( ω ) + Σ < c

P ( ™ ) > . (A22)
P#0

where (All), (A 12), (A 17) and (A 18) provide the necessary definitions, while the sum
runs over all nonzero p and converges absolutely when σ + 2 > d.

To deal with the case σ + 2 ^ d, it is evidently necessary to obtain a more rapidly
convergent expression for D than (A22). To this end we endeavor to find a
modification of the coefficient, δp, in which the leading large | p | behavior, fixed by the
second derivative term in (A 19), is cancelled out. Accordingly consider the region
Θ~ = 6>\y(0), i.e., the whole θ zone but with the origin cell, y(0), deleted, and the
corresponding integrals

5 ) = Σ δ J

P , N , (A23)
aυ1j p_,0

in which Q^N is the same form of integral but restricted to the cell y(p). Now, except
for the deleted cell, y(0), the integral over Θ ~ represents an integral of a derivative of
an analytic function: consequently, its value is entirely determined by the function
on the boundary of y(0). (Of course, this is just an example of the divergence
theorem.) Explicitly we find

djy(0)Z

where the (d — l)-fold integral runs over the two faces of y(0) normal to the θj axis. By
using (A 15) this may be rewritten

)'M5U
where the + or — is determined by the sign of Vj. Finally, for |p | « No we have, as
before, \θp\« 1 and can use (Al) to estimate

Qit« D^)(Nj/2n)2/(2nPoYNd

o-% (A26)

where

IV d Π-(σ + 2)/2\

Dj(ω) = σωj ( Uω,- + £ ωtf ) . (A27)

On the other hand, we may analyze the individual integrals in the sum in (A23).
On rewriting in terms of fop(v) we have
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where the second line follows by the reasoning that lead to (A 19) and employs the
same notation. By the same token, the leading correction, arising from the fourth-
order derivatives, decreases as 1/PS+4 ( m the region |p | «N0). Consequently, by
comparing (A 19) and (A28) we see that the modified coefficients

N d 4π2 / N

decay as 1/P£+4 = 0( |p |~ σ ~ 4 ),when|p | » 1 (with |p | «iV0); likewise the correspond-
ing modified functions

42)(v; ω) = [1 - iVj]cp(v; ω) = cp - £ £ {d2cjdυ% (A30)

yield, on averaging over v, coefficients decreasing as | p | " σ ~ 4. It follows that one may
replace <frp

2)> in a sum over p(τ^O) by <cp

2 )>, and extend the sum to infinity
provided only that σ + 4 exceeds d, a weaker condition than previously.

Consequently, on adding to and subtracting from ΔN the combination of
integrals β;jN corresponding to (A29), we rederive (A7), but with the amplitude given
by

fl = W + i I Dj(ω)+Σ <42)(v;^)>- (A31)

The necessary definitions are (All), (A 12), and (A30), which entails (A 17), (A 18), and
(A21). The sum runs over all nonzero integer vectors, p, and converges absolutely
when d < σ + 4. Of course, this expression yields the same value as (A22) when the
latter converges (as it does for d < σ + 2).

How to extend the treatment to d ^ σ + 4 should now be clear. The procedure is
to define, in analogy to (A30), cp

4), cf\... by subtracting off fourth order derivatives,
sixth order derivatives, and so on. The correct linear combinations follow by using
(A 19), including the further terms, together with the corresponding terms arising in
(A28) and from subsequent higher order subtractions. The combinatorics involved
in the general term seem formidable but it is clear that explicit expressions valid for
d < σ + 2/c for k = 3,4,... can be obtained by brute force. The leading behavior of A N

is always of the form (A7). However, higher order corrections, which we have not
discussed, arise in particular from the O(\θ\δ) terms in (Al) which clearly enter into
the determination of the degree of approximation of frp(v) by cp(v): see (A 16) and
(A17).

It is worth remarking that alternative tactics can be used which lead to
expressions for D which are simpler in that it is not necessary to do the integrations
over V2cp(v) implied by (A31). Instead of cancelling the second derivative term in bp

and cp by adding and subtracting an integral over a continuous second derivative,
one can use a sum over a discrete, lattice second derivative, say [gp + j + gp_i — 2#p]
(where j is a unit vector along the/ Λ axis). The simpler answers however, require a
few more steps to derive.

It should also be mentioned that an alternative strategy to deriving (A7) can be
based on the Ewald summation technique [13,22]. This approach yields, indeed,
expressions which are computationally superior since they typically converge very
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rapidly: see Refs. [13,22,23] and the references cited, for numerical calculations for
several values of σ. However, from an analytical viewpoint, the expressions obtained
are less satisfactory (containing an essentially arbitrary "range splitting' parameter).
The derivation presented here is also advantageous from a scaling view-point, since
the parameters p0 and No enter very naturally, and the dependence of the amplitude
D on the shape/anisotropy parameters is seen at an early stage.
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