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Abstract. In this paper, we give a new proof of the localization formulas of
Berline and Vergne [9] and Duistermaat and Heckman [18]. When interpre-
ted in the framework of Atiyah [2], the probabilistic heat equation proof of the
Index Theorem given in our paper [12] appears as the rigorous infinite
dimensional version of this new proof of the localization formulas in finite
dimensions. The results of Quillen [25] on superconnections are briefly
presented. The heat equation proofs [15] of the Index Theorem for families are
described. It is shown that in this framework, the superconnections formalism
is the operator theoretic description of integration along the fiber in the loop
space.
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Introduction

In this paper, we want to develop some relations of Index Theory to the
equivariant cohomology of the loop space.

Let us recall that in [2], Atiyah, describing an idea of Witten, had shown that at
least formally, the Index of the Dirac operator acting on the spin complex of a spin
manifold M° could be written as the integral over the loop space M of a differential
form which is equivariantly closed (in the sense of Berline and Vergne [9] and
Witten [26]), with respect to the action of Sί on M by rotations. By applying
formally a localization formula of Berline and Vergne [9], Duistermaat and
Heckman [18], Atiyah showed that the local Index formula could be obtained in
this situation.

In [13], we extended Atiyah's formalism to the case of a twisted spin complex.
We proved that the same formal result was still true when replacing the spin
complex by a twisted spin complex. In particular, the natural lift to M of the Chern
character of a bundle ξ over M° appears naturally as the characteristic class
associated with an infinite dimensional bundle whose structure group is a Kac-
Moody group.

Reviewing the main aspects of localization formulas in equivariant coho-
mology and K-theory, Atiyah and Bott [4] suggested that a direct proof of
localization in infinite dimensions should be given. The differential geometric
proofs of Berline and Vergne [9], Duistermaat and Heckman [18], seem to be
difficult to adapt in infinite dimensions, because they make use of Stokes formula
to equal an integral over the whole space with an integral over a small sphere. As is
well known, spheres have pathologies in infinite dimensions.

Our first purpose is to show that the well known heat equation method in
Index Theory, which was introduced by McKean and Singer [24] and Atiyah et al.
[5], when correctly interpreted in the loop space via Brownian motion, is by itself a
rigorous proof in infinite dimensions of a localization formula in equivariant
cohomology on the loop space. Essentially, we give another proof in finite
dimensions of the localization formulas of [9, 18]. The heat equation method,
when interpreted probabilistically, appears naturally as the obvious analogue in
infinite dimensions of this new proof. The merit of this proof is that it reproduces in
a finite dimensional situation the main steps of the probabilistic proof of the Index
Theorem of Atiyah-Singer which we gave in [12], inclusively in its intermediary
computations.

In [14], now inspired by the finite dimensional new proof, we gave a direct heat
equation proof of the infinitesimal Lefschetz formulas of Atiyah and Singer [6].
We also refer to Berline and Vergne [27] for the application of such formulas to the
orbital formulas of Kirillov.
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We were then interested in finding a heat equation proof of the Index Theorem
for families of Dirac operators (see Atiyah and Singer [7]) not in the X-theoretic
sense, but only in the sense of rational cohomology. Our idea was that Atiyah's
formalism could also be extended in this case, replacing an integral on the loop
space by integration along the fiber in a fibered loop space.

Now there is an obvious "integration along the fiber" version of localization in
equivariant cohomology. In the manner of Atiyah [2], we first checked that
formally, we obtained the Index Theorem for families of Dirac operators. We then
had to make a rigorous proof of this formalism. Recall that in infinite dimensions,
there is still no natural cohomological formalism, and no Poincare duality. So we
first wrote a differential geometric proof of localization with "integration along the
fiber" inspired from our initial simple proof of localization.

On the other hand, by using superconnections, Quillen [25] had given a
construction of the Chern character of a finite dimensional difference bundle
E0 — Ex when the Z2 graded bundle E = E0®E1 is endowed with an "odd" linear
mapping D exchanging Eo and Ev Quillen was explicitly thinking of extending his
formalism to an infinite dimensional situation.

In [15], we succeeded in extending Quillen's formalism to infinite dimensions.
More precisely, we showed, using pseudodifferential techniques, that the "heat
equation" analogue of Quillen's formulas for the Chern character of a finite
dimensional difference bundle was in fact the Chern character of KerD — CokerD.
Translating this formalism on the loop space, we found that our heat equation
formula was the integration along the fiber version we were looking for. Inspired
by the finite dimensional proof of localization, we could then choose the right
superconnection to obtain the Index Theorem for families. We also obtained a
second proof based on a slightly different principle.

In this paper, we describe in detail the new differential geometric proofs of
localization in equivariant cohomology. We analyse our probabilistic proofs of the
Index Theorem, of the infinitesimal Lefschetz formulas, and of the Index Theorem
for families, and we show how in this context, the Z2 gradation formalism is the
natural way by which operator theory calculates integration along the fiber in the
loop space.

We do not review in more detail the papers of Alvarez-Gaume [1], Berline and
Vergne [8], Friedan and Windey [19], and Getzler [20,21] which contain different
proofs of the Index Theorem for Dirac operators. Let us just point out that in this
framework, because of the intimate relationship of the loop space to operator
theory, any statement in the loop space has a natural translation in operator
theory, so that all the direct proofs of the classical Index Theorem are intimately
connected with probability. In particular, the computations in Getzler [21] have a
direct probabilistic interpretation, in terms of certain stochastic area formulas of
P. Levy, as should clearly appear in [12]. Also the evaluation of the A polynomial
as related to the determinant of the exponential mapping in SO(rc) - which is
crucial in Berline and Vergne [8] - has a natural probabilistic interpretation since
classically (see [10, Sect. 4]) such determinants can be expressed in terms of path
integrals. On the other hand, it seems that the supersymmetric arguments in
Alvarez-Gaume [1] and Friedan and Windey [19] could be translated in the
language of the equivariant cohomology of the loop space.



130 J.-M. Bismut

Our paper is organized as follows. In Sect. 1, we prove localization formulas in
equivariant cohomology in finite dimensions. The proofs are given in more detail,
or are even longer than necessary, because we need to use objects which can be
extended in infinite dimensions in an obvious way.

In Sect. 2, we analyse the probabilistic proofs of the Index Theorem [12], and
of the infinitesimal Lefschetz formulas [14] in the light of Sect. 1.

Section 3 describes our proofs of the Index Theorem for families and also
discusses their relations with Sect. 1.

I. Localization Formulas in Equivariant Cohomology

In this section, we give an expanded treatment of the localization formulas of
Berline and Vergne [9] and Duistermaat and Heckman [18]. As pointed out in the
Introduction, our purpose is not to give another proof of these results, but to build
a proof which has two qualities:

• It is very simple in finite dimensions.
• It has the property that our heat equation proofs of

- the Index Theorem of Atiyah and Singer [12],

- the infinitesimal Lefschetz formulas [14],

- the Index Theorem of Atiyah and Singer for families [15]

reproduce in detail the various technical steps of this proof in finite dimensions.
It is mostly based on the fact that if X is a Killing vector field on a Riemannian

manifold, if X is identified with a 1 form by the metric, as t[[0 the Gaussian

shaped differential form exp < > produces the desired localization on

{X = 0). Let us point out that Quillen [25] and Mathai and Quillen [23] have also
introduced Gaussian shaped differential forms to study problems related with
localization.

In a), we introduce the main assumptions and notations.
In b), we give two proofs of the localization formula of Berline and Vergne [9]

and Duistermaat and Heckman [18]. The first proof is closely related in spirit to
Berline and Vergne [9], Duistermaat and Heckman [18], although it uses the
previously mentioned Gaussian shaped form. As we shall see in Sect. 2, b) is useful
to understand the main steps of the proof [12] of the Index Theorem.

In c), we prove a localization formula with two commuting Killing vector fields.
We will verify in Sect. 2 that c) is the exact model for our proof of the infinitesimal
Lefschetz formulas [14].

In d), we give two proofs of an integration along the fiber version of the
localization formulas. As we shall see in Sect. 3, these two proofs are the models for
our two proofs of the Index Theorem for families in [15].

Since we need to produce proofs which have infinite dimensional analogues,
some proofs are more developed than needed in finite dimensions.
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a) Assumptions and Notations

M is a C00 connected compact oriented Riemannian manifold of dimension n. X is
a Killing vector field on M. Λ(M) is the algebra of C00 differential forms over M,
which splits into

where ΛP(M) is the set of p-forms.
The exterior differentiation operator d and the interior product operator ix

send Λ(M) into itself.
Following Berline and Vergne [9], Witten [26], we set the following definition.

Definition 1.1. μeΛ(M) is said to be X equivariantly closed if:

μ = 0. (1.1)

Let us recall that if B is an oriented submanifold of dimension p, if
μ = μ° + ... + μn, with μι of degree i, then by definition

Definition 1.2. Mx is the submanifold

N is the normal bundle of Mx in M, and π is the projection N->MX.
For x e Mx, we have

TXM=TXM
X®NX. (1.2)

fey) A Gaussian Proof of a Formula of Berline and Vergne
and Duistermaat and Heckman

Let Jx be the infinitesimal action of X in N. Jx is an antisymmetric element of
EndiV which defines a non-degenerate 2-form on JV Y, 7 ' e JV-><Y, JXY'}. N is
then naturally oriented. Since M is oriented, it follows that Mx has a natural
orientation. Also, if AeEnd(N) is antisymmetric, the Pfaffian Pf(^4) is well-
defined.

Mx is totally geodesic in M. It then follows from (1.2) that if V is the Levi-Civita
connection of TM, V. induces an Euclidean connection on JV.

If R is the curvature tensor of M, for x e Mx, 7, Z e TXM
X, Nx is stable under

RX(Y, Z), and ΛΛ(y, Z) commutes with Jx.

In what follows the Pfaffian Pf — of— is taken as the Pfaffian of
[_ 2π J 2π

antisymmetric matrices acting on N.
We now prove the result of Berline and Vergne [9], Duistermaat and

Heckman [18].

Theorem 1.3. If με Λ(M) is X equivariantly closed, then

M
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Proof. We give two proofs.

Proof No. 1. This proof uses a linearization technique which also appears in [9,
18]. However, the localization is obtained using a different method.

For any y e JV, using the connection V. restricted to JV, we can split TN into

TN=THN®TVN. (1.4)

TVN is made of vectors living in the fiber JV, and THN corresponds to the parallel
displacement of y e JV in the "horizontal" directions. For Ye TN, YH, Yv denotes
the components of Y according to the splitting (1.4).

Also using the exponential mapping, we can identify a tubular neighborhood of
Mx in M with a neighborhood V of M* (considered as the zero section oΐN) in N.
Using this identification, for y e V, we have

X(y) = Jxy. (1.5)

Let α be the one form on JV

YeTN-+a(Y) = (Jxy,Yv)>. (1.6)

It is easy to verify that if Y, Z e ΓΛΓ,

dα(y, Z) = 2 < J x r ^ , Z κ > + <Λπ y(π,y, π,Z)y, Jxy}. (1.7)

Then for y e F,

α ( X ) H X | 2 . (1.8)

Also we identify X to a 1-form using the metric of M. By using a partition of

unity argument, we can find a C00 one form β on TM having the following

properties.
• It coincides with α on a neighborhood F7C V of M* in M.
• Also

Let T be a maximal torus in the group of isometries of M such that X is
contained in its Lie algebra t. By averaging β over T, we find that we can also
assume that β is T invariant so that

Since Lx = (d + ίx)
2, it follows that

(d + ix)ί(d+ix)β)-]=O. (1.9)

We claim that for any s ̂  0,

iμ=\exp{-s(d + ix)β}μ. (1.10)
M M

To prove (1.10), we note that

(1.11)
M M
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Also the assumption on μ and (1.9) show that

and so (1.11) is equal to

- ί (d + ix)ίβftxp{-sid + ix)β}μ] = O. (1.13)
M

The right-hand side of (1.10) is constant in 5. For s = 0, equality holds in (1.10) so
that (1.10) has been proved.

For t > 0, we have found that

As t II0, since XφO out of Mx,

M M

x

We identify Jx with the 2-form on TN

Y,Z-+(YV,JXZ
V), (1.16)

and R with the 2-form

Using (1.7), (1.8) we find that the right-hand side of (1.15) is equal to

it j e x p 1 Ϊ

We now do the computations on one given connected component of Mx. Let n'
be the dimension of N (which is even).

By making the change of variables y = ]/ty\ we find that (1.18) is asymptotically
equal to

( u 9 )

By expanding exp — , we find that the only term which is not killed by tn'/2 is

n'/2

= (WJχ)dy, (1.20)
— 11

where dy is the volume form of N which defines the orientation of N. On the other
hand, the vertical components of μ are killed as ί j. j 0. So we find that the limit of
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(1.19) is

φ J - W v W . M U ^ l (L21)
MX\_NX I 2 2 J J

Let R' e End JV^ be antisymmetric and assume it commutes with Jx. Then JxR
f

is symmetric. It follows that if R' has a norm which is small enough,

f ί <R'y,Jxy) \Jxy\2\, (2π)"'/2

 π

Since ή is even, we have

Also recall that
Since (1.22) is analytic in R! for \R!\ small enough, we find

Pf [J
(1.23)

Recall that exp -j — - — > is a finite power series in the variable R, so

we can use (1.22), (1.23) with R( , ) instead of R'. Equation (1.3) is proved.

Proof No. 2. We identify X with a 1-form by the Riemannian metric. Since X is a
Killing vector field, as a one form, X is Lx invariant so that

0 (1.24)

As in (1.14), we find for ί > 0 ,

ίM=ίexpj-(^U. (1.25)
M M I LI )

As in (1.15), we can prove that as ί j jO, the right-hand side of (1.25) is
asymptotically equal to

r f
ίexpj

Also it is trivial that if 7, Z e TM,

,Z). (1.26)

Note that on M x , J x and V.X coincide on N. Also since V. is X invariant, it can be
easily proved (see Berline and Vergne [9]), that

[FV(|7.X)]+K(X,7) = 0. (1.27)

We now evaluate (1.25). Take xeMx, U an open ball in Mx such that
Nv~ U x Rn. We also assume that for c > 0 small enough, {(x, y) e Nv; \y\ ^ ε } has
been identified with a neighborhood of U in M by a diffeomorphism fυ which
sends (x, 0) e Nv into x e ϊ/, whose differential d/^ is the identity mapping at (x, 0):
a natural candidate is the exponential mapping but other choices are also possible.
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As 1110, by making the change of variables y = γty\

μ~t2 J exp-^ -f-^-
V'n(xeU) { 2ί

+ | X | fcl/^H μ ( x ? yTty). ( L 28)

Also since

(VyX)(x,0) = Jxy, (1.29)

we find easily that

V~ \Jxy\2

It
[ '

d d
If 7. Z are taken among the vector fields —r, -—, if D denotes the covariant

dxι dya

derivative operator for the Levi-Civita connection along the path (x, ]/ty), we find
using (1.27)

(dX)(x,}/ty)(Y,Z)

It

(1.31)

Because of the factor f'/2 in (1.28), it should be clear that in the limit, only those
monomials in the vertical form dyι... dyn> should be kept whose weight is exactly

-^τj2 . It follows that in the expression

Y, Z> + (JXY
 DZ»

a non-zero contribution could appear only if one of the 7, Z is in the family —r,
ox1

P P

and the other in the family — . However, Jχj-j =0. Similarly, in the term

_ <R(Jxy,y)Y,Z) + 1 β 2 ^ z

2 2

both 7 and Z have to be in the family —r. This kills <JXD
2 Y,Z} + (Jx 7, D2Z),

d
since Jx^r-j =0.

ox
For 7 G ^ 0 ) M X , set

y — YH 4- yF
 YH (=. T MX γv <= /v
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As ί J40, in (1.28), we should then replace -r-{x9]/ty) by the 2-form

<Jx(Yv + D YH), Zv + DZH)- <R{Jχ^ ^ YH>ZH> . (1.33)

Since Jx is non-degenerate on JV, integrating in the vertical variables y means that
we can ignore DYH, DZH in (1.33). Also the well-known symmetries of the Levi-
Civita tensor R imply that

(YH, R{Jxy, y)ZH) = (R(YH, ZH)y, Jxy). (1.34)

We finally find that the limit of (1.33) is exactly

f m i , α.35,
MX[N I 2 2 JJ

which coincides with (1.21). D

Remark 1. The proof No. 1 is simpler than the proof No. 2. However, as we shall
see, the proof No. 2 has two qualities.

• The aspects of the proofs of Berline and Vergne [9] and Duistermaat and
Heckman [18] which were impossible to extend in infinite dimensions - namely
the explicit use of Stokes formula - have disappeared.

• When correctly interpreted, the heat equation proof of the Index Theorem
of Atiyah-Singer coincides with the proof No. 2.

Remark 2. If M is non-compact, and μ has compact support, (1.3) still holds. If μ
does not have compact support, (1.3) does not hold any more. However, under
adequate growth conditions on \X\,

is still well-defined. A proof similar to (1.36) then shows that under adequate
conditions, (1.36) does not depend on t >0. If an adequate control at infinity of the
integral (1.36) is possible, Proof No. 2 will also show that for any t > 0

M { It ) M* p f

c) The Case of Two Commuting Vector Fields

Let Y be another Killing vector field such that

[JSί,y]=O. (1.38)

Equation (1.38) writes

VXY-VYX = O. (1.39)

Using (1.27), we find that if x e Mx, Z e TXM,

^vzχY-VVzYX = 0. (1.40)
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The antisymmetric tensor V.Y commutes wuth Jx on Mx. N is then stable
under V.Y.

We now extend Theorem 1.3.

Theorem 1.4. // μe Λ(M)®RC is X + iY equivariantly closed, then

π

(1.41)

2π

Proof. As in the Proof No. 2 of Theorem 1.3, we can write that for any t > 0

M M

Observe that

exp-
2ί

so that as ί | | 0 , the integral (1.42) localizes as in Theorem 1.3. Also, using the
notations of the Proof No. 2 of Theorem 1.3, we have

^ , Y) + (X, VyY})(x,γty). (1.43)
oyt

Using (1.39), we have for ί = 0

<VyX,Y}=-(VYX,yy=-(VxY,y} = 0. (1.44)

At ί = 0, (1.43) is 0. Also at ί = 0, using (1.27) and (1.39) again, we have:

y yY}. (1.45)

The integral (1.35) is then modified into

Mx N I

Proceeding as in (1.22), (1.23), the proof is finished. D

d) Integration Along the Fiber and Localization

B is another compact connected oriented Riemannian manifold. Y is a Killing
vector field over B. Let Bγ be the submanifold of B

Bγ = {yeB; Y(y) = 0}. (1.47)

/ denotes a submersion of M onto B, which is such that f^X = 7. For yeY, set

Cy^rx{y}. (1.48)

For every y e B, Cy is a submanifold of constant dimension. y-*Cy defines a locally
trivial fibration of M.
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Note that since M and B are oriented, TC is an oriented bundle over M. Also
the fibration C is X invariant, i.e. esX sends a fiber Cy in the fiber CesYy.

TC is a subbundle of TM. Let T H M be the orthogonal bundle of TC in TM.
Then for every x e M , /„. is an isomorphism from T^M onto Tf{x)B.

Note that it we lift in 7]fM the scalar product of Tf{x)B (while leaving the scalar
product of TC and the orthogonality of THM and TC unchanged), it is easy to
verify that X is still a Killing vector field for this new metric, essentially because C is
X invariant, so that THM is also X invariant.

So from now on, we assume that THM inherits the metric of TB.

Definition 1.5. Mγ denotes the submanifold f~1(Bγ) of M.
For )/ e Y, we define

Gy=CynMx. (1.49)

Note that for x e M y , f*X{x) = 0, so that X e TC. X is then a Killing vector field
over M γ , and also if y e Bγ, X is a Killing vector field over Cy. It follows that if
y ε Bγ, Gy is a submanifold of Cy.

We now briefly describe Mx in directions transverse to C.

Theorem 1.6. Tα/ce xeMx. Then T?MnTxM
γCTXM

X. For each yeBγ, Mx is
transversal to Cy and intersects Cy orthogonally. In particular, yeBγ-^Gy is a
(finite union of) locally trivial fibrations of Mx.

Proof. Take x e Mx. Let Jx be the infinitesimal action of X in TXM
Y. Jx is an

antisymmetric element of End(TxM
γ). Since the fiber Cf{x) is X invariant, TXC is

invariant under Jx. Its orthogonal in TXM
Y TxMn TXM

Y is then also invariant
under Jx.

Now for s 6 R, esj'x (which acts on TXM
Y) coincides with {esX)^. If Jx was non-

zero on Tx

HMnTxM
γ, we could find ZeTx

HMnTxM
γ, ZφO, and s such that

e " * Z = - Z , i.e. (β s X)^Z= - Z , which implies fit(e?\Z= -f+Z, i.e.

(^V*^=-/*Z. (1.50)

Since Z e 7;HM, f^Z φ 0. Moreover, /^Z e T/(JC)J5y. Since on 5 y , βsY is the identity,
(^sY);5c is also the identity on Tf{x)B

γ. This contradicts (1.50). Jx is then equal to 0 on
/ γ

Now TXM
X is equal to KerJ^. It follows that TX

ΉMΓΛTXM
YCTXM

X. Then
TXC + TXM

X = TXM
Y, so that Mx is transversal to C. Also if Z ε TXM

X is orthogonal
to TxM

xn TXC, Z 6 Ker J^ and is orthogonal to Ker Jxn TXC. Then necessarily, Z is
orthogonal to TXC. This shows that Mx intersects C orthogonally. •

Definition 1.7. Nx (respectively Nγ) denotes the normal bundle of Mx (respectively
Bγ) in M (respectively B). Jx (respectively Jx, Jγ) denotes the infinitesimal action of
X (respectively X, Y) in Nx (respectively NxnTC,Nγ).

We can lift Nγ through / as a subbundle of THM. We still note Nγ the lifted
bundle. We also lift Jγ in a similar way.

We now have the key result.

Theorem 1.8. NxnTC coincides with the normal bundle of G in C, and with the
normal bundle of Mx in Mγ. Moreover, Nx splits into

Nx = (NxnTC)®Nγ. (1.51)
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On Mx, Jx coincides with Jx on NxnTC, and with Jγ on Nγ.

Proof. Since Mx intersects C orthogonally, NxnTC coincides with the normal
bundle of G in C. For the same reason, Nxn TC coincides with the normal bundle
of Mx in Mγ.

Also on Mγ, we have TM=TMY®NY, and TMY and Nγ are orthogonal in
TM. Moreover, TMX C TMY. It follows that ZeNx if and only if its projection on
TMY is orthogonal to TMX. Equation (1.51) is now obvious.

Clearly, Jx coincides with Jx on Nxn TC. Since Nγ is orthogonal to Nxn TC in
Nx, Nγ is stable by Jx. Moreover, since f^X = Y, on Mx, we find that

f*Jχ = Jγf*- (1-52)

Since Nγ is stable under Jx, we find from (1.52) that on Nγ, JX = JY, •

Let VL be the Levi-Civita connection on the manifold Mγ. Let RL be the
curvature tensor of VL. Mx being totally geodesic in Mγ, the Levi-Civita
connection VL induces an orthogonal connection on the normal bundle of Mx in
M y , i.e. on NxnTC.

Also NxnTC is naturally oriented by the two form Z,Z'sNxnTC
-^(Z,Jf

xZ'^. Since TC is oriented, it follows that the fibration G is naturally
oriented over Bγ. If Z, Z'eTMγ, Jx + RL(Z,Zf) is an antisymmetric element of
End(iV*nTC), whose Pfaffian P f [ J i + ΛL(Z,Z')] is well defined.

Also by Bott and Tu [17, Chap. I], the integral along the fiber C (or G) of any
C00 differential form is well-defined and produces a C00 differential form on the
base. We note J or J the integral along the fiber operators.

c G

Also, if v, υ' G Λ(BY\ we write

v = v' (1.53)

if v- t/is exact. Finally, let i be the embedding Mx -^ MJ the embedding Bγ -+ B.

We now have the key result.

Theorem 1.9. Take μ e Λ(M) which is X equivariantly closed. Then

7*//

(1.54)

2π

Proof. We give two proofs.

Proo/ JVo. 7. This proof is very similar to the Proof No. 2 of Theorem 1.3. To prove
(1.54), we may as well assume that B = BY, i.e. that 7 = 0 , so that M = MY.

X e TM can be identified with a 1-form over M y , which we still note X. We
claim that for any seR

(1.55)
c c

In fact, as in (1.11), we have

j exp{ - s(d + ix)X}μ = - j (d + ix) [exp {- s(d + ix)X}μ] . (1.56)
c c
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Now by Bott and Tu [12, Chap. I], j" and d commute. Also since XeTC,

J i x ... =0 . So we find from (1.56) that
c

c

j s Jexp{-s(d + ix)X}μ = -dΓJexp{-s(d + ix)X}μ], (1.57)

and so (1.55) has been proved.
For any ί > 0, we get

(1.58)

The proof now proceeds exactly as the Proof No. 2 of Theorem 1.3. In
particular, we use (1.31), (1.34) and the fact that by Theorem 1.8, the infinitesimal
action Jx of X on TM coincides with Jx on Nxn TC and is 0 on the orthogonal of
NxnTC and also that Jx is non-degenerate on NxnTC. The theorem is
proved. D

Proof No. 2. Take v e Λ(BY\ which is Y-equivariantly closed. j*v is then closed on
Bγ. Also /*v is X-equivariantly closed on M.

Using Theorem 1.3, we know that

ί σ*v)μ= ί ~¥~n = ί U*v)ί -T—η- (1-59)
M MX \JX + R B* G

Also

ί(/*v)μ=jvjμ. (1.60)
M B C

Since /^ 7 = X, we have

(</ + i y ) J μ = J ( d + y μ = O. (1.61)
c c

v j μ is Y equivariantly closed. Using Theorem 1.3 again, we find that if RB is the
c

Levi-Civita curvature tensor of B,

H μ = J r Γ Λ Π T (1-62)

By a result of Witten [26] (also see Atiyah and Bott [4]), we know that v-*/*v
surjects from Y equivariantly closed forms on B on the closed forms in Bγ. Using
Poincare duality on Bγ, we get from (1.59)—(1.62),

ί rl*μ. m Ξ r %

C

+ j ? -. (1-63)
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Now by Theorem 1.8, Nx splits according to (1.51). Also we know that

1/Pf -Λ; L as a standard characteristic class over M x , defines a closed form
L 2π J

over Mx whose cohomology class is independent of any Euclidean connection on
Nx preserving Jx. Still using Theorem 1.8, we get

1 1
(1.64)

2π J [_ 2π J I 2 π

Using (1.63) and (1.64), we finally obtain (1.54).

Remark 3. The reader will have noticed that also in Proof No. 2, we could have
directly assumed that 7 = 0 , MY = M, so that (1.54) would have been proved
immediately by a proof which would be in fact equivalent to Proof No. 1.
However, our purpose is to produce a proof which can eventually be generalized in
infinite dimensions, for which Proofs No. 1 and 2 seem to be quite different. It turns
out that Proof No. 2 is exactly what is needed to understand our second proof in
[15] of the Index Theorem for families.

Note that as a consequence of Bismut [13, Theorem 3.9], the result of Witten
[26] mentioned in the proof extends on the loop space, at least for even forms,
essentially because

K(B)®ZR~H* even(jB, R). (1.65)

Not unexpectedly, although the result of Witten [26] is not needed in our second
proof of the Index Theorem for families in [15], (1.65) is needed explicitly!

Also note that RL appears explicitly in Proof No. 1. This is of utmost
importance in understanding our first proof [15] of the Index Theorem for
families. We refer in particular to Theorems 3.15 and 3.18, where (1.34) is proved in
an infinite dimensional situation.

II. The Probabilistic Proof of the Index Theorem

In this section, we will essentially show that the probabilistic proof of the Atiyah-
Singer Index Theorem for Dirac operators is by itself the rigorous infinite
dimensional version of Proof No. 2 of the localization formula in equivariant
cohomology given in Theorem 1.3. This shows that the remark of Atiyah and
Witten [2], who showed that, formally the Index of the Dirac operators on the spin
complex could be computed using formula (1.3) can be much extended, in the
sense that the heat equation method produces by itself the corresponding rigorous
proof, the finite dimensional and infinite dimensional proofs being strictly parallel.

In a), we give the main assumptions and notations. In b), we recall some
elementary facts on the geometry of the loop space of a Riemannian manifold. In c),
the Dirac operator is described. In d), we briefly recall the results in Atiyah [2] and
ourselves [13] on the relations of Index Theory to the cohomology of the loop
space. In e), we describe our probabilistic proof of the Index Theorem [12] and
compare it with Proof No. 2 of Theorem 1.3. In f), we describe our heat equation
proof [14] of the infinitesimal Lefschetz formulas, and compare it with the proof of
Theorem 1.4.
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a) Assumptions and Notations

M° now denotes a compact connected Riemannian manifold of even dimension
n = 2l N° is the SO(n) principal bundle of oriented orthonormal frames in TM°.
For x E M°, the fiber Nx is the set of oriented linear isometries from the canonical
oriented Euclidean space Rn into TXM°.

We assume that M° is a spin manifold, i.e. the SO (ft) principal bundle N° lifts to

a Spin(n) principal bundle N/0 so that the projection JV/0-> N° induces the

covering mapping Spin (ft)-> SO (ft) on each fiber.
σ

Let S be the 2ι dimensional Hermitian Space of spinors which splits into
S = S + 0 S _, where S + , S _ are the 2ι ~ι dimensional spaces of positive and negative
spinors. S+,S- are orthogonal in S.

Let F,F + ,F_ be the bundles of spinors over M°.

F = N'°xSpin(n)S, F±=N'°xSpiain)S±. (2.1)

On N°, we put the Levi-Civita connection, which lifts naturally to N'°. Let R be the
curvature tensor of TM. Also let ξ be a /c-dimensional Hermitian bundle over M,
endowed with a unitary connection, whose connection form is λ and curvature
form is A. A is the equivariant representation of the curvature tensor L. Let π be the
projection ξ->M°. V. denotes the covariant differentiation operator for any of the
considered connections.

Recall that TM acts on F by Clifford multiplication, and exchanges F+ and
F_. Also if e e TM, e act on F®ξ by the Clifford multiplication e on i7, i.e. by e®l.
In the sequel, we will write e instead of β(x)l.

If G is any fiber bundle over M°, Γ(G) is the set of C00 section of G, e 1 ? . . . , en is
an orthonormal base of T M .

Definition 2.1. D denotes the Dirac operator acting on F{F®ξ\

D=ΣeiVei. (2.2)
i

D interchanges Γ(F+®ξ) and Γ(F_®ξ). Let D + ,D_ be the restrictions of D to
Γ(F+®ξ\Γ(F_®ξ).

When acting on Γ(F +®ξ)@Γ(F -®ξ), we may write D in matrix form as

Vi
is formally self-adjoint.

b) The Loop Space and the Action of Sx

M denotes the set of C00 mappings from Sί = R/Z into M°. If x. e M, the tangent
space TXM is identified with the set of smooth periodic vector fields X. over x., such
that XseTXsM°. If Y,ZeTxM, we define the scalar product

<y,Z>=J<Ys,Z>fe. (2.4)
0

M is then a Riemannian infinite dimensional manifold.
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We now follow Atiyah [2]. Namely, we note that Sί acts on M by the mappings
ks defined by ksx. = xs + . ks (seS^ is a group of isometries, whose generating
Killing vector field X is given by

(£) (2-5)

Clearly, M° coincides with the set Mx of the zeros of X.
Also the Levi-Civita connection of M° extends in an obvious way as the Levi-

Civita connection on M. In fact, if X, 7 e TM, if for x e M , w e set

(2.6)

Equation (2.6) defines the Levi-Civita connection of M.
We now have

Theorem 2.2. Take xeM, Ye TM. If -— is the covariant differentiation operator
along s->xs, then s

vγχ=§-sγs> w*)+R(χ>>o=o. (2.7)

// X is identified with the l-form Y-+ J <X, Y}ds, then for Y,ZeTxM
o

l Inγ \

) = 2U — ,z)ds. (2.8)

dx*
Proof. We can always assume that t eR-^x* e M is C°° and also that —— = Ys. Then

[X, 7 ] = 0, and so since V does not have torsion

Also for Y,ZeTM,

VY(V.X)Z = VYVZX - VVγZX =Vγ~Z-~VγZ = R(Y, X)Z. (2.9)
Ds Ds

Equation (2.7) is proved, (2.8) is left to the reader. D

Remark L Since X is a Killing vector field, the second equation in (2.7) is also a
consequence of (1.27).

c) The Index of the Dirac Operator

Recall that the index of D + is defined by

I n d D + = d i m K e r D + - d i m K e r D _ .

Consider the splitting

(2.10)
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We may consider F®ξ as a Z 2 graded vector bundle, in which the even elements
are in F+®ξ, and the odd ones in F _®ξ. Let τ be the involution defining the
grading, i.e. if eeF±®ξ, τe = (-l)άegee.

Similarly,
(2.11)

We still note by τ the involution in (2.11) defining the Z 2 grading.
We also recall Lichnerowicz's formula [22] for D2. Namely, let Λπ be the

Bochner horizontal Laplacian on Γ(F®ξ). Then, if K is the scalar curvature of M,

D2= -ΛH+ j + ^βfi&Ue^. (2.12)

_
For t >0, e 2 is a self-adjoint operator on Γ(F± ®ξ). It is given by a kernel

P ί(x,x') which is C00 in fax*).
By Atiyah et al. [5, Theorem EIΠ], we know by a standard spectral theory

argument that
tP2 tP2

lndD+=Tr+e 2 -Ύv_e 2 , (2.13)
where Tr + ,Tr_ are the traces of operators acting on Γ(F + (g)ξ\ Γ(F_(g)ξ).

We define the supertrace Trs,4 of a trace class operator A acting on F(F®ξ) by

(2.14)

Then (2.13) writes
tP2

lndD+=Ίτse
 2 . (2.15)

For x e M , Pt(x,x)eΈnd(F®ξ)x and Pt(x,x) sends (F+®ξ)x into itself.
Equation (2.13) is equivalent to

M

d) Equivariant Cohomology on the Loop Space and the Index Theorem

We now recall the results of Atiyah [2] and our results [13]. Namely, we identify X
with a 1-form over M using the Riemannian metric. Let η° be the U(k) principal
bundle over M° of the unitary frames in ξ.

Let η be the bundle over M of the C°° sections s e S1-^vs e η°. There is a natural
projection ρ η^M.

For υeη, ΛVs is identified with the 2-form over η,

Λ(η) denotes the exterior algebra of T*η.
We now follow Bismut [13, Definition 3.6].

Definition 2.3. For υeη,H's denotes the element of EndCfe®yl^ven(/7) defined by the
differential equation

Γ ΓΛ,,Ί Ί
H'(P) = I. (2.17)
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We now recall the result in [13, Theorem 3.9].

Theorem 2.4. The even form over ηΎrH[ projects on M as an even form β. β is
X-equivariantly closed.

Remark 1. For an interpretation of (2.15) in terms of standard equivariant
characteristic classes (in the sense of Berline and Vergne [9]) and Kac-Moody
algebras, see [13, Remark 3.2].

We now recall the formal result which Atiyah [2] obtained for the Dirac
operator acting for the spin complex, and which we extend in [13] to twisted spin
complexes. Namely, it follows from Atiyah [2], and ourselves [13], that the
rigorous formula (2.16) can be written formally as

} , (2.18)

where C is the infinite normalizing constant.
+OO

ί
^ ( 2 1 9 )

Of course, the Wiener measure is carried by the set of continuous paths (or loops)
and gives 0 measure to M. For simplicity, we will forget about this, keeping in mind
that all the standard operations on C00 paths can be done in a measure theoretic
sense on continuous paths.

We now do a few remarks on (2.18):
• The transformation of (2.13) into (2.18) is obtained using
a) Lichnerowicz's formula.
b) A highly non-trivial connection between the Trace of the Spin(π) represen-

tation and the renormalized Pfaffϊan of V.X on TM. Namely, Atiyah and Witten [2]
noted that if x is a smooth loop, if τj is the parallel transport operator from F±tXo

into F±fXo along s-^xί-s, if Tr+τo is the corresponding trace, if Pf( — dX) is the
formal Pfaffϊan of —dX, then

L J =(Tr + -Tr_)(τJ). (2.20)

This transformation is crucial in connecting a concept of operator theory (which is
the Index) into a cohomological expression, which is the right-hand side of (2.18).

Also note the following facts:
• Equation (2.18) is strictly similar to the right-hand side of (1.25).
• It is impossible to make t = + oo in (2.16). Remark 2 in Sect. 1 entirely applies

here, since J β in general is not well defined.
M

e) The Heat Equation as a Natural Proof of Localization
in Infinite Dimensions

As we shall see, although the right-hand side of (2.18) is formal, if we interpret
correctly our heat equation proof of the Index Theorem, we find it reproduces step
by step Proof No. 2 of Theorem 1.3.
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To simplify the discussion, we assume that ξ is the trivial bundle. The general
case can be treated using similar arguments. Let jEξCoΛ.o be the probability law of the

Brownian bridge x. with x(0) = x(l) = xo, associated with the scaled Laplacian —

(see [10, Chap. 2]). Let τ j s ί be the parallel transport operator from fibers over x0

into themselves along s->x1^s.
By [12, Theorem 2.5], iίpt(x, y) is the heat equation kernel associated with the

t_Δ_

operator e2, we have

Tr,{Pί(x0.Xo)}=Pt(*o,*o)^o.χo[«p[-ί} ^ ^ T r , ^ - ' ] . (2.21)

To calculate (2.21), we use our results in [10, Sect. 4], which turn out to be strictly
equivalent to what is done after (1.25). Namely, if x0 e M° = MX, we identify the
tangent bundle TXoM° to the set of constant mappings 5 e Sί -+v2 e TXoM°, which
we call also H2. The normal bundle NXQ is the set H[ of L 2 mappings seSx

-^v'1 e TX0M such that J w's
1ds = 0.

o
For simplicity, we restrict ourselves to C00 functions w^1. Note that if H1 is the

set of C00 mappings seSί->wl such that wj = w\ = 0, H\ and Hί are in one-to-one
correspondence by

w;1 e H[ -> w1 e H x : w* = w;1 - Wo1.

Also the infinitesimal action Jx of X on H\ is given by

We now explain how in [10, Chap. 4], [12, Sect. 2], we obtain the infinite
dimensional analogue of the diffeomorphism fv described after (1.27).

Namely, take w'1 e H\. Let w1 be the corresponding element in H1. For v2 e ί ί 2 ,
consider the curve s->xs in M° such that

• x(0) = xo-
• The Cartan development of 5->xs in TXoM° coincides with w^+sv2.

This means that - 1 is the parallel transport of —r1- +v2 along xu (O^u^s).
as as

If w.1 is close enough to 0 (for an adequate norm), the implicit function Theorem
shows that there is a unique v2 e H2 such that x1=x0.

If MXo is the set of xeM such that x(0) = x(l) = xθ5 we have then found a
natural parametrization of a neighborhood of the constant loop x0 by a
neighborhood of (x0, 0) in H\: (xθ9 wn)-+x. =f(xθ9 w'1).

This is exactly what is done in [10,12], with the difficulty that w'1, w1, x are not
smooth, that everything has to be done in a measure theoretic sense etc The

change of variables y = ]/ty/ described before (1.28) corresponds exactly to scaling

w'1 by a factor j/ί. In [10, Theorem 4.16 and its corollary] and in [12, Theorem

2.15], we then find that if H1 is endowed with the flat Brownian bridge measure
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(which gives 0 measure to C00 paths...), as 11|0, for any keN

Trs[P,(x0, x0)] - i [ T ^ ? HiΫtdw^dP^w1) + o(tk), (2.23)

where as ί | | 0

i f ^ w 1 ) - ^ ! , boundedly. (2.24)

Also if to'* is considered as an element of SO(rc) acting on TXoM, it is trivial to verify
that 1

(2.25)

Note that we can as well replace w1 by wn in (2.21), since adding constants has no

effect on j R^dwlM)-
0

An argument from representation theory [12, Theorem 1.5] shows that

( 2 . 2 6 )

J
Recalling that if A is an antisymmetric (n, n) matrix

ΛΛl

(Pf^)dx1 Λ ... Λdxn= — , (2.27)

1

we find from (2.16), (2.23), (2.26) that if J RXo(dw\ w1) is identified with the 2-form

+= ' f ίUj-ί^^jl.W). (2.28)
(2π) M° L I o 2 JJ

We now use the well-known symmetries of the Levi-Civita curvature tensor R
to get

ί <y, R(dw\ w^Z} - } <R(y, ^w 1, dw1), (2.29)

which is a key step in the proof, which corresponds exactly to (1.34).
Using (2.28), we find that

+ = -—j J ίexp - ^ ^ ( w 1 ) . (2.30)
(2πy MO I 2 J

Using formula (2.22) for Jx and the fact that at least formally, if ̂ (w1) is the
"Lebesgue measure" on H1 ?

o

we find that (2.30) is identical to (1.35).
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More generally, if ξ is any unitary bundle instead of (2.30), we get

ί ( ]
J fexpj-5 UP^W1)/?. (2.31)

O [ 2 J
The reasoning of [12, Sect. 3] is still very close to what has been done before.

This shows that in its very details, if we start from (2.13), the proof of (2.30),
(2.31) is exactly identical to Proof No. 2 of Theorem 1.3.

In [12], the final evaluation of (2.30), (2.31) is done using a formula of P. Levy,
which as is well-known, it is equivalent to the computation of an infinite

determinant corresponding to Pf -^- . So we find the Index formula of

Atiyah-Singer

IndD+= J i f ^ W . (2.32)
M° \2π/

Remark 2. Consider any connection on TM° which preserves the metric of TM°
but whose torsion T is non 0. Let Όf be the Dirac operator calculated with this new
connection. D'+ has the same index as D + . Also, even if D' is in general not self-
adjoint, the formula (2.15) still holds with D+ replaced by D + . This fact [which is a
consequence of the formalism of Quillen [25] described in Sect. 3a)] is briefly
proved in [15, Theorem 5.3]. However, the heat equation method on D' does not
converge in general.

The interpretation for this is very simple. Namely, let {T/^θ} denote the
antisymmetrization of the (3,0) tensor, (X, Y, Z)-+<T(X, 7),Z>. <T^Θ> obvi-
ously extends as a (3,0) tensor on M by setting

, 7, Z)= } <T^ Θ)(XS, Ys,Zs)ds.
0

<T/^ θ> is clearly X invariant. Now by proceeding as in Atiyah [2] and Bismut
[13], it is not difficult to find that the rigorous trace formula for the index of D + can
be written formally as

{ ^ } { < ™ * 8 > } . (2.33,
Equation (2.33) shows in an obvious cohomological way that IndD + does not
depend on the connection. It has also the merit of exhibiting in the most obvious
way why, in general, localization will not take place as t H 0. A similar formula also
appears in (3.58) in connection with the Index Theorem for families. Equation
(2.33) can be extended to the case of more general perturbations of D.

f) The Infinitesimal Lefschetz Formulas

Let Y be a Killing vector field on M°. Y obviously extends as a Killing vector field
on M by setting for xs e M, [Γ(x.)]s = Y(xs). It is then obvious that [X, 7] = 0. To
simplify the discussion, we assume that ξ is the trivial line bundle.
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Y acts naturally by the Lie derivative operator Lγ on TM°. Lγ has a natural lift
to Γ(F+). eγ then acts on KerD + and KerD_. By definition, the Lefschetz number
of eγ is given by

L(eY) = TrKerDy~TrKerD_ eγ. (2.34)

By a well-known formula, which is obvious using spectral theory, we know that
for any £>0,

L ( e Y H T r / Y ~ ^ ~ . (2.35)

In [13, Sect. 3d)], we have shown how formally we can write

\ ψ \ (2.36,

where C is given by (2.19). The proof of the Lefschetz fixed points formulas of
Atiyah and Bott [3] and Atiyah and Singer [6] is obtained by making f j | 0 in
(2.35) (see [12, Sect. 4]). The proof of [12] is formally much connected with Proof
No. 2 of Theorem 1.3.

We now concentrate on the infinitesimal Lefschetz formulas. In [14, Theorem
1.6] we proved that for any zeC, £>0, if Y acts by Clifford multiplication on
Γ{F®ξ\ then

*<y'g'>Y * (237)Λ zLWίv
It J ^i\ It )

Let Sz

t(x,x') be the C°° kernel associated with the operator e 2\ 2tl
In [14, Theorem 1.9], we proved that

1 ^ ^ = JTrs[Sf(x,x)]dx. (2.38)
M

Using (2.37), and the notations of (2.21), we proved in [14, Theorem 2.2],

(expί-ίί ^ψ^ - yf } <y(xj,dxe>JTr.τJ ' l . (2.39)
| _ ( ^ o o It o J J

By proceeding as Atiyah [2], we obtain from (2.39) the formal representation

(2.40)

The right-hand side of (2.40) is strictly identical to the right-hand side of (1.42).
Also we proved in [14, Theorem 2.9] that as ίjjO, (2.39) has a limit. In

comparison with the proof of the Index Theorem ([12] and Sect. 2e)), the key fact is
that using the notations of Sect. 2e), if x\ is associated with j/ίw1,

w ( o ) ^ > , (2.41)
0 0 t 0
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ίίzeiR,

expj °- 2F~~| ( 1 4 2 )

is bounded.
So we prove rigorously in [14, Theorem 2.10] that if z e iR,

P^w1). (2.43)
^ ' (2π)Ά

Equation (2.43) is then computed using a formula of P. Levy.
Note that the proof of [14], which has been briefly sketched here, is very close

to the proof of Theorem 1.4.
We now briefly explain how we guessed (2.37). We wrote formally from (2.36)

(2.44)

Now as a 1-form, Y is X + zY invariant so that

- l (2.45)

is X + z Y exact. Our conjecture was that although M is non-compact, in (2.44), we

can replace exp < ~~-^-— \ by 1. This is how we were led to prove (2.37) and

(2.39).

III. Integration Along the Fiber in the Loop Space,
and the Index Theorem for Families

We now will show how our proofs in [15] of the Index Theorem for families are
related to the proofs of Theorem 1.9. In a), we briefly explain the construction by
Quillen [25] of the Chern character of a finite dimensional difference bundle using
superconnections. In b), we briefly describe a fiber manifold M° -> B°. In c), we

X

introduce connections on infinite dimensional bundles over the base B°. In d), we
construct the Dirac operator D along the fibers. In e), we use Quillen's formalism in
an infinite dimensional context, to describe the infinite dimensional formula for the
Chern character of KerD-CokerD given in [15]. In f), the Levi-Civita super-
connection is introduced. In g), the first proof of [15] of the Index Theorem for
families is briefly sketched. In h), the second proof [15] is described. Finally, in i),
we show how at least formally, the formalism of superbundles, superconnections
can be seen as an operator theoretic description of the integration along the fiber in
the loop space.



Localization Formulas, Superconnections, and Families Index 151

a) The Construction by Quillen of the Chern Character of a Difference Bundle

We here follow Quillen [25]. Let JV be a compact connected manifold.
E = E0®Eί is a Z 2 graded (or super) vector bundle, τ is the involution defining
the grading: τe = {— l)d e g ee.

Then EndE is a Z 2 graded algebra, the even (odd) elements commuting
(respectively anticommuting) with τ. [x,y]s denotes the supercommutator of
x,j;eEndE

C -y -i »~] -y- -17 ( 1 ^QegJC Clβg}) , . - , /O Λ \

Λ , y \ s — A- y I I I yΛr I J . J L I

Ύrsx denotes the supertrace of x, i.e.

Tr s x-Trτx. (3.2)
Trs vanishes on supercommutators and on odd elements in EndE. A(N) denotes
the exterior algebra of T*N. H = ΈndE(g)A(N) is the Z 2 graded tensor product of
EndE and A(N). Trs can be naturally extended on H as a linear mapping from H
into A(N). Also supercommutators can be defined in H, and Trs still vanishes on
supercommutators.

Let V. be a connection on E, which preserves the splitting £ = £ 0 © £ 1 . Its
curvature tensor R is an even element of H which we write in the form

*»° Λ J
 (13)

A representative in cohomology of the Chern character ch(E0 —Ex) is
obviously given by

(3.4)
L ΔlΊίΛ L ^ J

which we also write as

C \\ (T< J7 i — TV I PYIΛ I (^ ^\

L 2ϊπJ

In [25] Quillen shows how to produce other representatives in cohomology
than the obvious (3.5). First, note that V acts naturally on the sections of A(N)®E
by setting for ηeΛ(N), AeE

V(η*Ά) = (dη)A + ( - l)degη(η A dxa)Ve<χA. (3.6)

Take an odd element B in H. V + B is called a superconnection.

Definition 3.1. The curvature R' of V + B is the even element of H

R' = (V + B)2. (3.7)

We now have the result of Quillen [25].

Theorem 3.2 (Quillen [25]). A representative in cohomology of ch(E0 — Ex) is given
by

T r s e x p | - — |. (3.8)
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Proof. The proof of Quillen is the same as the proof of the invariance of the Chern
character of a bundle when changing the connection. In fact, the theorem holds
when B = 0. We then replace V + B by V + $B, and it is easy to show that the
cohomology class of (3.9) does not change with s, using the fact that Trs vanishes on
supercommutators. D

In particular, if B is an odd element in End£, we have Quillen's formula
2 (3.9)

b) Elementary Properties of a Fibered Manifold

Let X be an even dimensional compact connected Riemannian manifold of
dimension n = 2/, which we assume to be oriented and spin. B° denotes a connected
compact manifold of dimension m. M° is a compact connected manifold of
dimension π + m, / is a submersion of M° onto B°. For yeB°, set

Gy=f~\y). (3.10)

Gy defines a local trivial fibering of M° —> B°. We assume that the fibers Gy are

modelled on X. There is an open covering % of B° such that for Ue^,
f-\U)^UxX.

There exists a smooth subbundle of TM, which we note THM° such that

TM° = TG®THM°. (3.11)

To determine THM°, it suffices to take the orthogonal bundle of TG in TM° for
any Riemannian metric.

It is clear that for any x e M, /* is a linear isomorphism from T^M° into
Tf{x)B°. In other words in the sense of X-theory

THM°=f*TB°. (3.12)

We assume that B° is a Riemannian manifold. Let gBo be the scalar product
TB°. We lift the scalar product in THM° by /*. Also we assume that TG is
endowed with an Euclidean scalar product. By assuming that TG and THM° are
orthogonal in TM°, we find that TM° is now endowed with a scalar product.
PH, PG denotes the orthogonal projection operators of TM° into THM°, TG.

Let VB° be the Levi-Civita connection of B°, VM° the Levi-Civita connection of
M°. The connection VB° can be lifted as a connection on THM° by /*. We still note
VB° the lifted connection.

Let VG be the connection on TG defined by

XeTM, YeTG, V°Y=PGVfY. (3.13)

Let V be the connection on TM° = TG®THM° defined by

V = VG®VB°. (3.14)

Clearly, V. preserves the scalar product in TM°. Also, for one y e B°, the restriction
of V to TGy coincides with the Levi-Civita connection of the Riemannian
submanifold Gy.
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Let T, JR be the torsion and curvature tensor of V. Set

S=VM°-V. (3.15)

For X 6 TM°, S(X) is antisymmetric in End(TM°).
We first have the technical result.

Theorem 3.3. T takes its values in TG. If X, Ye TG, T(X, Y) = 0. If Y,Ue THM°,
V, We TG

R(V, W)Y=0, R(Y, V)U = 0. (3.16)

// Ye TM°, Ve TG, S(Y)Ve THM°. If Y,ZeTHM°, S(Y)ZeTG. Finally, VG, T
and the (3,0) tensor <S( ) , ) do not depend on gB0.

Proof. This simple result is proved in [15, Theorem 1.9]. D

c) A Connection on an Infinite Dimensional Bundle

We now assume that the Euclidean bundle TG over M° is oriented and Spin.
Let F+, F_ be the bundle of spinors associated with TG. They are Hermitian

Spin(n) bundles over M°. Set F — F +®F _. The connection V defines naturally a
unitary connection on F±. Let JRG be the curvature tensor of V of TG which lifts
naturally as the curvature tensor of F+. Let ξ be a dimensional Hermitian bundle
over M°, endowed with a unitary connection which we still note V. L denotes the
curvature tensor of ξ.

Definition 3.4. For s e R, y e B, Hs

y, H
s+ y denotes the vectors space of the sections of

F®ξ, F + ®ξ over Gy which are in the s Sobolev space of Gy.

H\ H\ are infinite dimensional bundles over BQ. Also HCO=HΌ?®H*. H0 0 is a
super vector bundle over B°, the even (odd) elements being H + (respectively H™).

For X e TB°, let XH be the lift in THM° of X.

Definition 3.5. V is the connection on H + such that if X e TB°, if h is a C00 section
oϊHZ

(Vxh)(x) = (VχHh)(x). (3.17)

Let R be the curvature of V.

Proposition 3.6. // Y,ZeTB°, Ry(Y, Z) is the first order differential operator
acting on ff±jy by

Ry(Y9 Z) = RG(YH,ZH)®\ + l®L{YH,ZH)- FnYHtZH). (3.18)

Proof. Clearly,

Ry(Y, Z)=VχHVzH-VzuVγH-V{Ύ^H.

Now fJiYE, ZH~] = [Y, Z], and so

Ry(Y, Z) = RG(YH, ZH)® 1 +1 ®L{YH, ZH) +

Now since VB is torsion free, it is easy to see that

T(YH,ZH)= -PGIYH

9Z
H2. •
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d) The Dirac Operator in the Fibers

We now define the Dirac operator D. eu ...9en is an orthogonal base of TG.
el9...,en generates the Clifford algebra c(TG) which acts naturally F®ξ.

Definition 3.7. D denotes the operator acting on H M ,

D=ietVei. (3.19)
1

D + , /) __ denote the restriction of D to H+, H™.D interchanges H+, H™, and so
is an odd element in End (if00). We will write

(3.20)lD+ 0 J
acts fiberwise on H™. We want to calculate the Chern character

e) Index Theory and Infinite Dimensional Chern Weil Theory

The Fredholm operator D on H00 introduces naturally a rigidity in the description
of H™. D should be viewed as creating a "connection" (in the naive sense!) between
ff + and H™. V + D is a superconnection in the sense of Quillen [25].

Let / be the curvature of V + D, i.e. set

I = (V + D)2. (3.21)

Let AH be the Bochner Laplacian acting fiberwise on H±.
We first compute L /i ,...,/„ denotes a base of TyB, dy1...dym is the

corresponding dual base. We identify fa, dya to the corresponding elements in
THM°, TH*M°.

Theorem 3.8. / is the even element in /l(jB0)(g)Endϋ'00,

I = D2 ~WdyβVT{f^fβ) - i A F Γ ( / β ι β ι )

L fβ)® i + 1 ® L(Λ, /,)]

βi)(g) 1 + 1 ®L(fa, ej] (3.22)

Proof. The computation of / is easy and given in [15, Theorem 2.5]. D

I acts on the Z 2 graded bundle H 0 0 ® ^ 0 ) by assuming that if heH™,
η e A(B°), I(hη) = (Ih)η. The principal symbol oϊly is \ξ\2. It follows using standard

Sly

elliptic theory that for s>0, e 2 is given by a smooth kernel Pζ(x, x') (with
x, x; e Gy\ Pζ(x, x') is a linear mapping from (F® ξ)x. into (F® ξ)x® Λy(B°) which is
even.

In particular, for x e Gy9 P
y

s(x, x) is an even element oϊEnd(F®ξ)x®Λy(B°), so
that TrsP£(;x, x) is even in Λy(B°). _

In the sequel, if £ is a fiber bundle, with a connection and curvature C, ch£

•[«p-f]denotes the cohomology class of Tr | exp—— | . chE is the normalized Chern

character of E.
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dx denotes the volume element in G r

We now have the key result of [15].

Theorem 3.9. The C°° form over B°

J TrsP{(x,x)dx (3.23)
Gy

is closed and is a representative in cohomology of ch(KerD+ — KerD_).

Proof. The proof of the theorem consists in showing that (3.13) is closed, invariant
(in cohomology) under deformations of V. Connections associated with pseudodif-
ferential operators have to be considered. The reader is referred to [15] for more
details. D

f) The Levi-Civita Super connection

The idea of our first proof in [15] is to scale the metric of the fibers adequately.
However, in the same way as for the ordinary Index Theorem, the Levi-Civita
connection is the only one which works, in our case, it will be the Levi-Civita
superconnection. In (3.58), we will give an interpretation of this very similar to
(2.33).

Namely, let E be the odd element of c(T6)®Λ(B°),

E = elKSiedejJ^ejdf+KS(ei)fx,fβ)dfdy^

+KS(L)ei,fβ}dy%d/. (3.24)

By Theorem 3.3, < S ( ^ , ek} = <S(/>,, ek} = <S(fa)fβ,fy> = 0.
The Levi-Civita superconnection VL on H™ is defined by VL = V + E. Of course,

the superconnection VL + D is given by

+ D = lβi K(i)j,fΰcyjf i((i)f0CJβ}f/]
(3.25)

Note that VL + D appears formally as the usual Dirac operator of M°
calculated with the Levi-Civita connection of TM° in which the horizontal
Clifford variables /α are replaced by the Grassmann variables dya. This justifies the
terminology which we choose. VL + D should be viewed as a generalized Dirac
operator acting on the whole space M. Note that we use here the full strength of
Quillen's formalism, since £ is a very general odd element of Endi ί 0 0 ®^^ 0 ) .

Let IL be the curvature of VL + D, i.e. IL = (VL + D)2. Let P$>y(x, xf) be the heat

equation semi-group associated with e 2 . Since VL + D is a mild perturbation of
V + D, we still show in [15] that

jTr s[PMx,x)]dx (3.26)

is a representative of ch(KerD + >y — KerD_ y).
Let K(x) be the scalar curvature of the fiber Gf(x) at x.
The key to the explicit computation of cϊΓ(Keri)+ — KerD_) is the following

extension of Lichnerowicz's formula (2.12), which includes (2.37) as a special case.
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Theorem 3.10. IL is given by

+ f + ieiej®L(eb eϊ+\dy«dyβ®L{faJβ) + efif® L{ebfa). (3.27)

Proof. The proof in [15, Theorem 3.5] is as follows. We consider the usual Dirac
operator DL on M associated with the Levi-Civita connection of M. We can then
write Lichnerowicz's formula (2.12) for DL. We now scale the metric on B° by the
factor 1/ε. This is equivalent to replacing the horizontal Clifford variables fa by
]/ε/α. Let D L ε be the new Dirac operator on M associated with this metric. We
again write Lichnerowicz's formula for DLε. We now observe the following
identities

In the first line of (3.28), j/ε appears with the power 2 corresponding to the length
of fafβ in the Clifford algebra. On the contrary in the second line, |/ε appears with
power 2, which is strictly larger than the length of — 1 (which is 0). In other words,
to calculate JL, i.e. to obtain what is the result of the calculation where the Clifford
variables fa are replaced by the Grassmann variables dya, it suffices to identify in
Lichnerowicz's formula those terms in the Clifford algebra of TB° where j/ε
appears with a power exactly equal to the length of these terms. So we obtain
(3.27). D

Remark 1. The idea of blowing up the metric on B° plays a key role in both proofs
in [15] of the Index Theorem for families.

g) The Index Theorem for Families: A First Proof

To simplify the exposition, we assume in this paragraph that ξ is the trivial bundle,

so that L=0. We first scale the metric in the fiber by a factor - . D is then changed

into \ΓtD. An easy computation in [15] shows that IL is changed into lut given by

(3.29)

Let Psft'y(x, x') be the kernel of e 2 . Still we have

,)= f Tre[P£'f'y(x,x)]dx. (3.30)

To study the asymptotics of (3.30) as t H 0, we need an analogue of (2.21).
We use the notation of Sect. 2 in a given fiber G r Parallel transport will be

calculated with respect to V (which coincides with the Levi-Civita connection of Gy

on TG) and is the identity on THM° identified with TyB°.
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£$co>JCo still denotes the expectation operator for the scaled Brownian bridge xs

in the fiber Gy with x(0) = x(l) = x0. pt (x, x') is the heat kernel in Gy for the Laplace-
Beltrami operator of Gy. We will write x*s, τ^* instead of xs, τs

0.

Definition 3.11. On (#([0,1]); Gy); f^OfJCo), l/£ denotes the solution of the
Stratonovitch differential equation,

> u ι \jtjt

U<0 = I . (3.31)

Ul takes its values in End FXo ®Λy(B°) and is obviously even.
As shown in [15, Theorem 4.2], the analogue of (2.21) is as follows.

Proposition 3.12. The following identity holds

(3.32)

It is very interesting to interpret (3.27), (3.31), and (3.32). In Tr^l^τJ '*], the
scalar term is the one which calculates the Z valued index of D + . In (3.31) the
expression before e^y* measures how much the fiber G is not totally geodesic in M.
The expression before dyadyβ measures the lack of integrability of the bundle THM
in M. .

The reader will have noted the singularity - in (3.32). This singularity is not

killed by dx{ which is of the order j/7.
The key to the proof of the Index Theorem is the possibility of integrating (3.31)

explicitly. Let si be the set of (w, n) antisymmetric matrices on TG identified with
the vector subspace of c(TG) spanned by {e^^^y Let J^ be the subspace of
c(TG)®Λ(B°) spanned by e{dya, dyadyβ. We now do the key observation that 3F is a
Heisenberg algebra, such that {dyadyβ} spans the center of J^, with the
commutation relations

/ (3.33)

Theorem 3.13. Ul

s is exactly given by

i f (S(dx'h)fx,fβ}dfd/+ 1 k

4o^'_<s\ yt yi I J

Proof. Ό\ is the solution of an equation of the form

where Fs a process valued in the Heisenberg algebra 3F. An elementary application
of the Campbell-Hausdorff s formula shows that

j (3.35)

We then use the commutation relations (3.33). •
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We now use the same notations as in Sect. 2. The analogue of (2.23) is here

This is not as obvious as (2.23), because of the singularity - in (3.34). However, as

shown in [15, Proposition 4.3], since (3.34) is in fact a finite power series, large
deviations as used in [10] shows that the singularity in (3.34) is not strong enough
to prevent localization.

Due to (2.25), we have

τh * = exp I - 1 } <RX0(dw'\ wn)eh βj} ]fte,]fte} + o(ί) | , (3.31)

where o(ΐ) is calculated in the Lie algebra si. Also a form of Stokes' formula shows
that as ί | i θ ,

to o

l i < . l j w . >
o t o

Using the fact that if aec(TG) has length <n, Trsα = 0 and also

Ίrsex...en = {-2ΐ)\ (3.39)

we finally obtain in [15, Theorem 4.12].
Theorem 3.14. As t J,jO, the differential form TT^P^^'XXQ, Xofjdx converges to a
differential form which is the term of degree n in the Grassmann variables dx1,. ..,dxn

in 5£(x0) given by

^(xo) = (-i)1 ί exp j - £ }
w I o

1
} <PGS(wsVα, PGS(dwl)fβydfd/}. (3.40)

In the sequel we identify a (n + m, n + m) antisymmetric element B of End TM°
with the 2-form X, Y->(X,BY}.

Recall that f JS?(x0) i s a representative of ch(KerD+ — KerD_). By changing
G

the normalization so as to obtain ch(KerD+ — Keri)_), we get

r(xo)= ί exp j ^

o
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Still (3.41) is not very nice. However, we have

Theorem 3.15. For Y,ZeTXoM°,

(3.42)
o

Proof. The proof in [15, Theorem 4.14] uses the Bianchi identities and integration
by parts repeatedly. In Theorem 3.18, we reproduce the proof of (3.42), but we
interpret (3.42) as being a form of the identity (1.34) (as used in Proof No. 2 of
Theorem 1.9) i.e. as a symmetry identity for the Levi-Civita curvature of an
infinite dimensional manifold. D

We have then found that

Se\xo)= I e x p ί - ^ } <ΛG( , > ί

1 ,d W , 1 >}dP 1 (w 1 ). (3.43)
w (.4π o J

By a well-known formula of P. Levy [12], we know that if A is the Hirzebruch
polynomial,

(£) (144)

Using (3.30), (3.40), (3.44), we have then given a first proof of the Index Theorem for
families.

Theorem 3.16. The following identity holds

ίRG\
ch(KerD+-Coker2)+)= \λ — ch£. (3.45)

G \2πJ

h) A Second Proof

We now briefly describe the second proof of the Index Theorem in [15]. Namely,
assume that B° is even dimensional and Spin (this is no restriction).

Let F'+9F'- be the bundles of spinors over B. By lifting F'+,F'- to M, we find
that M is Spin, and that if C+, C_ are the bundles of spinors over M, then

C + = ( F + ® F + ) Θ ( F _ ® F / _ ) , CL=(F+<g)FL)®(F._<8>F'+).

Let Dn be the Dirac operator acting on the sections of C+,

fK. (3.46)

We write D' instead of D'1. Let RB° be the curvature tensor of B°. We now directly
prove in [15, Theorem 5.3].

Theorem 3.17. The index of D+ is given by

ί Λ m / 2 ίίRB°\
Ind/>'+= y--) J / ( ^ - J Λ ί Trs[P?(x,x)]dx. (3.47)
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Proof. The idea of the proof is to start with the equality

IndD'+=Tr s |_e 2 J. (3.48)

This is not as obvious as it may seem since Dn is not self-adjoint. However, by
deforming continuously Dn into the Levi-Civita Dirac operator, it is not difficult to
prove that the right-hand side of (3.48) does not change, so that (3.48) holds (see
Remark 2 in Sect. 2).

By making t [[ 0 in (3.48), it is then possible to prove - using precise estimates
on the heat kernels obtained via the partial Malliavin calculus (see Bismut and
Michel [16]) - that (3.47) holds. D

Also we know that classically

(n + m)/2

ίIndϋ'+= - i
\ Tί

More generally, if ζ' is any Hermitian bundle over B° which is lifted to M°, we
can prove that if D/ξ is the Dirac operator on C(χ) ξ, then if RB° is the Levi-Civita
curvature tensor of B°,

Λ m / 2 /ίRB°
IndDί= - J A[

\
and also

A[—-)ϊττslPl(x9x)dx]chξ'9 (3.50)
\ 2 JG

(« + m)/2 /iR\

^Al—Jchξ'. (3.51)

Now recall that

K{B°)®ZR = H* e v e n(B°, R). (3.52)

Using Poincare duality and (3.50), (3.51), we find that in cohomology

~fiRB°\ ( ί\n/2 ~ίiR\

Since TM° = TB°@TG, we have

- ίiRB°\
Since 4̂1 — — I is stable, we get from (3.53), (3.54) that in cohomology

\2π J

( ί V/2 ίίRG\
ί Trs[P1(x,x)]ώc= - - ί i — . (3.55)

G y \ πj Gy \ 2 /
The theorem is proved again. D

Note that instead of Ό'\ we might have as well used the Dirac operator
calculated with the Levi-Civita connection.
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i) Superconnections, Quillen's Formalism, and Integration
Along the Fiber in the Loop Space

We now hope to convince the reader that the preceding proofs are the infinite
dimensional analogues of the two proofs of Theorem 1.9. M,X are defined as in
Sect. 2. B, Y are the analogues of M, X for the manifold B°. Clearly,

f*X=Y. (3.56)

Also

M° = MX, B° = BY. (3.57)

The assumptions of Sect. Id) are then formally verified. We will now use the
notations of Sect. Id). Mγ=f~1(Bγ) is here the set of smooth loops in M° whose
projection is constant in B°. For y e B, Cy is the set of loops in M which project on
y, and the two definitions of G in (1.49) and (3.10) coincide.

On the algebra of even forms on B, let * be the homomorphism defined by

*(dfd/)=-2dfd/.

We then claim that formally

f 00

Π k2 I >'-•*

[G J (2π)1 c I 2ί
ι (3.58)

Π k2 I ίιj*

^ " ί e x p { "
The best justification we have for (3.58) is as follows.

By formulas (2.18) and (2.33), we know that formally

,3.59)

We now scale the metric of B° by a factor —.

This is exactly what we did in the Proof of Theorem 3.17. Now combining Proof
No. 2 of Theorem 1.3 and Proof No. 2 of Theorem 1.9, this is also what is done in
Sect. 1. It is then possible to deduce formally (3.58) from (3.59) by introducing an
auxiliary bundle ξ' on B° and by proceeding as in Proof No. 2 of Theorem 1.9.

In particular, formulas (3.31), (3.34) have an easy interpretation. U^Q is indeed
an infinitesimal version of parallel transportation along x, for the Levi-Civita
connection of M°. Using the remark of Atiyah contained in formula (2.20), we see
that Tr^t/^o] exactly constructs the right factor to be integrated along the fibers
o f M y



162 J.-M. Bismut

Equation (3.58) is not only a nice remark, since it permitted us to define the
Levi-Civita superconnection, and predict the computations with great precision.
As an example of this, we will now relate Theorem 3.15 with the appearance of the
curvature tensor RL in Proof No. 2 of Theorem 1.9.

Recall that VM° is the Levi-Civita connection on M°. Let RM° denote the
corresponding curvature tensor. Similarly, VM (respectively VL) is the Levi-Civita
connection on M (respectively Mγ\ RM (respectively RL) its curvature tensor. The
connection V and its curvature R can be extended to M in the obvious way. Here
again, we identify TX

HM° with Tf(x)B°. If X'eTMγ, PHX' is a constant vector.
We now have

Theorem 3.18. For T,Ue TMY

or equivalently

ΪPHS(TJUJs9 (3.60)
0

= V^U-S(T)U+PHS(T)U-jPHS(Ts)Usds. (3.61)

Also if T, U, V, We TXM
Y,

o

\; U)V, W}ds = <RL(T, U)V, W)+\[(PHS(Ts)Vs,PHS(Us)Wsy
0

] PHS(Ts)Vsds, J PHS(Us)Wsdsj

- (f PHS(Us)Vsds, JP^iTMds) . (3.62)
\o o / /

In particular, if x0 e M°, if xs is the constant path xs = x0, if 5-> w^1 is α C00 mapping
1

/rom [0,1] mίo Tx Ĝ , swc/i ίftαί WQ1 =W /

1

1 , ί w'h
1dh = O, if Y',Z'e TXoM°, then

0

ί

' ds
(3.63)

Proof. If P is the orthogonal projection of TXM on TXM
Y, we know that

V%U = PVψU9 and so

VψU =VTU + (I-P)VψU. (3.64)
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Also

V¥U=VTU + S(T)U. (3.65)

Moreover, it is easy to see that if Z e TXM,

and so

$PHZds, (3.66)
o

- P)Z = PHZ-] PHZds. (3.67)
o

Now if T, U e TMY, PHVTU is constant, and so by (3.65), (3.67),

-P)VJfU = PBS(T)U-SPHS(T)Uds, (3.68)
0

(3.60) is proved. Since VM=V + S, (3.61) is obvious. Equation (3.62) is a standard
consequence of (3.60).

In particular, from (3.62), we find that

R\T, z'Ws1,—-) = ί {RM\τ, zvΛ ̂ x

- 2 J <PBS(y)wί1, Pfl^ZOdW,1). (3.69)
0

By Theorem 3.3, SCΓOw^^CZOrfw^ e THM, and so

ί <RM\γ\z^\dw^y
o

-2J<S(Y/)w/1,S(ZOdw/1>. (3.70)
o

Also classically

RM° = R + DS + [S,S]. (3.71)

Since DS sends ΓG in THM°, we find from (3.71) that (3.70) is also equal to

ϊΓKSscyoAv71)
0 0 0

- 2 J <S(y>'S S(Z')dWls) = J <Λ(r, ZOW1, dw'1). (3.72)
0 0

Similarly, by (3.62), we have

\ 1

Y',Z'\ = j (RM°(wn,dwn)T,Z')

+ } (P^idw'^T, PHS(wΛ)Z'yds. (3.73)
0
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Moreover, by Theorem 3.3, T\ w's\^-J =0. Using (3.71), we have
V ds )

\ (RM\W\ dwn)Y\ Z'> = } <R(w'\ dwn)Y\ Z'> + 2 } <V^S(dwΛ)Y\ Z'}
0 0 0

S(w/1)Y\S(dw/1)Z'). (3.74)
o

Using (3.73), (3.74), we find

( i ίV 1 , dwΛ)γ\ z'> =} <Λ(w/1, Λ O r , zr>+2} < F^s^vOy, z'>
0 0

- 2 J {PGS(dwΛ)Y\PGS{dwΛ)Z'y. (3.75)
0

Finally, since JRL is a Levi-Civita curvature tensor

The theorem is proved. D

The analogy of Proof No. 1 of Theorem 1.9 with Proof No. 1 of Theorem 3.16
should now be clear: in particular, equality (3.42) is still a form of (1.34).

Finally, we still want to give a differential geometric interpretation of formula
D D°

(3.34). Let x. be a loop in Mγ. Let — , —- be the covariant differentiation operators
Ds Ds

for the connections F, FM° along x. Then by Theorem 2.2, if Y, Z e TMY

Z ) 4 . } ( £ . Z ) A + ί < S ( Λ )y, Z> . ,3.7,,
/ o\Ds / o

To integrate formally against the fiber C the differential form exp -^—,

we must select the terms of maximal (even and still infinite) degree in the vertical
I

Grassmann variables. Now JI ̂ -, Z) ds only contains such terms. This is not the

case for the second term in (3.77). Indeed, if PGYo = PGY1 = PGZo = PGZ1=0, we
write the right-hand side of (3.77) as follows:

l I nγ \ l

j(--,z)ds+Us(dχ)Y,zy
o\Ds j o

rs° J τh

0S(dxh)PHY , PGZS + PGτs° } τ"0S(dxh,)PHz) ds
o J o /

} (S(dx)PHY, PHZy - J
0 O^Λ^Λ

(3.78)
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When integrating along the fiber C, in the first term in the right-hand side of (3.78),

terms like PGτ® J τoS(dxs)PHY are obviously killed. On the contrary in the right-
o

hand side of (3.78), the last term, which only contains the horizontal PHZ,PHZf

remains alive.
Formula (3.34), which comes from operator theory, should now have a clearer

interpretation, in the light of (3.58) and (3.78).
The introduction of superconnections, superalgebras in operator theory has

now a natural interpretation on the loop space: it is by this way that operator
theory "understands" the rather innocuous operation of integrating along the fiber
(in the loop space) terms which mix horizontal and vertical Grassmann variables.
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References

1. Alvarez-Gaume, L.: Supersymmetry and the Atiyah-Singer Index Theorem. Commun. Math.
Phys. 90, 161-173 (1983)

2. Atiyah, M.F.: Circular symmetry and stationary phase approximation. In: Proceedings of the
conference in honor of L. Schwartz. Paris: Asterisque 1985 (to appear)

3. Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math. 86,
374-407 (1967); 11.88, 451-491 (1968)

4. Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23, 1-28
(1984)

5. Atiyah, M.F., Bott, R., Patodi, V.K.: On the heat equation and the Index Theorem. Invent.
Math. 19, 279-330 (1973)

6. Atiyah, M.F., Singer, I.M.: The index of elliptic operators. I. Ann. Math. 87,484-530 (1968);
III. 87, 546-604 (1968)

7. Atiyah, M.F., Singer, I.M.: The index of elliptic operators. IV. Ann. Math. 93,119-138 (1971)
8. Berline, N., Vergne, M.: A computation of the equivariant index of the Dirac operator (to

appear)
9. Berline, N., Vergne, M.: Zeros d'un champ de vecteurs et classes caracteristiques

equivariantes. Duke Math. J. 50, 539-549 (1983)
10. Bismut, J.-M.: Large deviations and the Malliavin calculus. Progress in Math. No. 45. Basel:

Birkhauser 1984
11. Bismut, J.-M.: Transformations difϊerentiables du mouvement Brownien. In: Proceedings of

the conference in honor of L. Schwartz. Paris: Asterisque 1985 (to appear)
12. Bismut, J.-M.: The Atiyah-Singer theorems: a probabilistic approach. I. J. Funct. Anal. 57,

56-99 (1984); 11.57, 329-348 (1984)
13. Bismut, J.-M.: Index theorem and equivariant cohomology on the loop space. Commun.

Math. Phys. 98, 213-237 (1985)
14. Bismut, J.-M.: The infinitesimal Lefschetz formulas: a heat equation proof. J. Funct. Anal. 62,

435-457 (1985)
15. Bismut, J.-M.: The index theorem for families of Dirac operators: two heat equation proofs.

Invent. Math, (to appear)
16. Bismut, J.-M., Michel, D.: Diffusions conditionnelles. I. J. Funct. Anal. 44, 174-211 (1981);

II. Generateur conditionnel. Application au filtrage. 45, 272-292 (1982)
17. Bott, R., Tu, L.H.: Differential forms in algebraic topology. Graduate texts in Math., Vol. 82.

Berlin, Heidelberg, New York: Springer 1982



166 J.-M. Bismut

18. Duistermaat, J.J., Heckman, G.: On the variation of the cohomology of the reduced phase
space. Invent. Math. 69, 259-268 (1982); Addendum 72, 153-158 (1983)

19. Friedan, D., Windey, H.: Supersymmetric derivation of the Atiyah-Singer index and the
Chiral anomaly. Nucl. Phys. B 235, 395-416 (1984)

20. Getzler, E.: Pseudodififerential operators on supermanifolds and the Atiyah-Singer Index
Theorem. Commun. Math. Phys. 92, 163-178 (1983)

21. Getzler, E.: A short proof of the Atiyah-Singer Index Theorem. Topology (to appear)
22. Lichnerowicz, A: Spineurs harmoniques. C.R. Acad. Sci. Paris Ser. I 257, 7-9 (1963)
23. Mathai, V., Quillen, D.: Superconnections, Thorn classes and equivariant differential forms

(to appear)
24. McKean, H., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1,

43-69 (1967)
25. Quillen, D.: Superconnections and the Chern character. Topology 24, 89-95 (1985)
26. Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661-692 (1982)
27. Berline, N., Vergne, M.: The equivariant Index and Kirillov's character formula. Trans. Am.

Math. Soc. (to appear)

Communicated by A. Jaffe

Received April 12, 1985; in revised form July 19, 1985




