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Abstract. In this paper, we give a new proof of the localization formulas of
Berline and Vergne [9] and Duistermaat and Heckman [187]. When interpre-
ted in the framework of Atiyah [2], the probabilistic heat equation proof of the
Index Theorem given in our paper [12] appears as the rigorous infinite
dimensional version of this new proof of the localization formulas in finite
dimensions. The results of Quillen [25] on superconnections are briefly
presented. The heat equation proofs [15] of the Index Theorem for families are
described. It is shown that in this framework, the superconnections formalism
is the operator theoretic description of integration along the fiber in the loop
space.
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Introduction

In this paper, we want to develop some relations of Index Theory to the
equivariant cohomology of the loop space.

Let usrecall that in [2], Atiyah, describing an idea of Witten, had shown that at
least formally, the Index of the Dirac operator acting on the spin complex of a spin
manifold M° could be written as the integral over the loop space M of a differential
form which is equivariantly closed (in the sense of Berline and Vergne [9] and
Witten [26]), with respect to the action of S; on M by rotations. By applying
formally a localization formula of Berline and Vergne [9], Duistermaat and
Heckman [18], Atiyah showed that the local Index formula could be obtained in
this situation.

In [13], we extended Atiyah’s formalism to the case of a twisted spin complex.
We proved that the same formal result was still true when replacing the spin
complex by a twisted spin complex. In particular, the natural lift to M of the Chern
character of a bundle & over M° appears naturally as the characteristic class
associated with an infinite dimensional bundle whose structure group is a Kac-
Moody group.

Reviewing the main aspects of localization formulas in equivariant coho-
mology and K-theory, Atiyah and Bott [4] suggested that a direct proof of
localization in infinite dimensions should be given. The differential geometric
proofs of Berline and Vergne [9], Duistermaat and Heckman [18], seem to be
difficult to adapt in infinite dimensions, because they make use of Stokes formula
to equal an integral over the whole space with an integral over a small sphere. As is
well known, spheres have pathologies in infinite dimensions.

Our first purpose is to show that the well known heat equation method in
Index Theory, which was introduced by McKean and Singer [24] and Atiyah et al.
[5], when correctly interpreted in the loop space via Brownian motion, is by itself a
rigorous proof in infinite dimensions of a localization formula in equivariant
cohomology on the loop space. Essentially, we give another proof in finite
dimensions of the localization formulas of [9, 18]. The heat equation method,
when interpreted probabilistically, appears naturally as the obvious analogue in
infinite dimensions of this new proof. The merit of this proofis that it reproduces in
a finite dimensional situation the main steps of the probabilistic proof of the Index
Theorem of Atiyah-Singer which we gave in [12], inclusively in its intermediary
computations.

In [14], now inspired by the finite dimensional new proof, we gave a direct heat
equation proof of the infinitesimal Lefschetz formulas of Atiyah and Singer [6].
We also refer to Berline and Vergne [27] for the application of such formulas to the
orbital formulas of Kirillov.



Localization Formulas, Superconnections, and Families Index 129

We were then interested in finding a heat equation proof of the Index Theorem
for families of Dirac operators (see Atiyah and Singer [7]) not in the K-theoretic
sense, but only in the sense of rational cohomology. Our idea was that Atiyah’s
formalism could also be extended in this case, replacing an integral on the loop
space by integration along the fiber in a fibered loop space.

Now there is an obvious “integration along the fiber” version of localization in
equivariant cohomology. In the manner of Atiyah [2], we first checked that
formally, we obtained the Index Theorem for families of Dirac operators. We then
had to make a rigorous proof of this formalism. Recall that in infinite dimensions,
there is still no natural cohomological formalism, and no Poincaré¢ duality. So we
first wrote a differential geometric proof of localization with “integration along the
fiber” inspired from our initial simple proof of localization.

On the other hand, by using superconnections, Quillen [25] had given a
construction of the Chern character of a finite dimensional difference bundle
E,— E, when the Z, graded bundle E=E,®E, is endowed with an “odd” linear
mapping D exchanging E, and E,. Quillen was explicitly thinking of extending his
formalism to an infinite dimensional situation.

In [15], we succeeded in extending Quillen’s formalism to infinite dimensions.
More precisely, we showed, using pseudodifferential techniques, that the “heat
equation” analogue of Quillen’s formulas for the Chern character of a finite
dimensional difference bundle was in fact the Chern character of Ker D — CokerD.
Translating this formalism on the loop space, we found that our heat equation
formula was the integration along the fiber version we were looking for. Inspired
by the finite dimensional proof of localization, we could then choose the right
superconnection to obtain the Index Theorem for families. We also obtained a
second proof based on a slightly different principle.

In this paper, we describe in detail the new differential geometric proofs of
localization in equivariant cohomology. We analyse our probabilistic proofs of the
Index Theorem, of the infinitesimal Lefschetz formulas, and of the Index Theorem
for families, and we show how in this context, the Z, gradation formalism is the
natural way by which operator theory calculates integration along the fiber in the
loop space.

We do not review in more detail the papers of Alvarez-Gaumé [ 1], Berline and
Vergne [8], Friedan and Windey [ 197, and Getzler [20, 21] which contain different
proofs of the Index Theorem for Dirac operators. Let us just point out that in this
framework, because of the intimate relationship of the loop space to operator
theory, any statement in the loop space has a natural translation in operator
theory, so that all the direct proofs of the classical Index Theorem are intimately
connected with probability. In particular, the computations in Getzler [21] have a
direct probabilistic interpretation, in terms of certain stochastic area formulas of
P. Lévy, as should clearly appear in [12]. Also the evaluation of the A4 polynomial
as related to the determinant of the exponential mapping in SO(n) — which is
crucial in Berline and Vergne [8] — has a natural probabilistic interpretation since
classically (see [10, Sect. 4]) such determinants can be expressed in terms of path
integrals. On the other hand, it seems that the supersymmetric arguments in
Alvarez-Gaumé [1] and Friedan and Windey [19] could be translated in the
language of the equivariant cohomology of the loop space.
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Our paper is organized as follows. In Sect. 1, we prove localization formulas in
equivariant cohomology in finite dimensions. The proofs are given in more detail,
or are even longer than necessary, because we need to use objects which can be
extended in infinite dimensions in an obvious way.

In Sect. 2, we analyse the probabilistic proofs of the Index Theorem [12], and
of the infinitesimal Lefschetz formulas [14] in the light of Sect. 1.

Section 3 describes our proofs of the Index Theorem for families and also
discusses their relations with Sect. 1.

I. Localization Formulas in Equivariant Cohomology

In this section, we give an expanded treatment of the localization formulas of
Berline and Vergne [9] and Duistermaat and Heckman [18]. As pointed out in the
Introduction, our purpose is not to give another proof of these results, but to build
a proof which has two qualities:

o It is very simple in finite dimensions.

@ It has the property that our heat equation proofs of

— the Index Theorem of Atiyah and Singer [12],
— the infinitesimal Lefschetz formulas [14],
— the Index Theorem of Atiyah and Singer for families [15]

reproduce in detail the various technical steps of this proof in finite dimensions.

It is mostly based on the fact that if X is a Killing vector field on a Riemannian
manifold, if X is identified with a 1 form by the metric, as ¢ || 0 the Gaussian
dX +|X|?

2t
(X =0). Let us point out that Quillen [25] and Mathai and Quillen [23] have also
introduced Gaussian shaped differential forms to study problems related with
localization.

In a), we introduce the main assumptions and notations.

In b), we give two proofs of the localization formula of Berline and Vergne [9]
and Duistermaat and Heckman [18]. The first proof is closely related in spirit to
Berline and Vergne [9], Duistermaat and Heckman [18], although it uses the
previously mentioned Gaussian shaped form. As we shall see in Sect. 2, b) is useful
to understand the main steps of the proof [12] of the Index Theorem.

Inc), we prove a localization formula with two commuting Killing vector fields.
We will verify in Sect. 2 that c) is the exact model for our proof of the infinitesimal
Lefschetz formulas [14].

In d), we give two proofs of an integration along the fiber version of the
localization formulas. As we shall see in Sect. 3, these two proofs are the models for
our two proofs of the Index Theorem for families in [15].

Since we need to produce proofs which have infinite dimensional analogues,
some proofs are more developed than needed in finite dimensions.

shaped differential form exp { — } produces the desired localization on
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a) Assumptions and Notations

M is a C* connected compact oriented Riemannian manifold of dimension n. X is
a Killing vector field on M. A(M) is the algebra of C* differential forms over M,
which splits into

A(M) = ("@AP(M»

where A?(M) is the set of p-forms.

The exterior differentiation operator d and the interior product operator iy
send A(M) into itself.

Following Berline and Vergne [9], Witten [26], we set the following definition.

Definition 1.1. pe A(M) is said to be X equivariantly closed if:
(d+iyn=0. (L.1)

Let us recall that if B is an oriented submanifold of dimension p, if
w=p’+ ... +u", with ' of degree i, then by definition

fu=lpr.
B B
Definition 1.2. M* is the submanifold
M¥*={xeM; X(x)=0}.

N is the normal bundle of M* in M, and = is the projection N—M?X.
For x e M*, we have
T.M=T.M*®N,. (1.2)

b) A Gaussian Proof of a Formula of Berline and Vergne
and Duistermaat and Heckman

Let Jy be the infinitesimal action of X in N. Jy is an antisymmetric element of
EndN which defines a non-degenerate 2-form on N Y, Y'e N-<(Y, JyY'). N is
then naturally oriented. Since M is oriented, it follows that M* has a natural
orientation. Also, if Ae€End(N) is antisymmetric, the Pfaffian Pf(A4) is well-
defined.

M is totally geodesic in M. It then follows from (1.2) that if V is the Levi-Civita
connection of TM, V. induces an Euclidean connection on N.

If R is the curvature tensor of M, for xe M*, Y, Ze T.M*, N, is stable under
R.(Y, Z), and R (Y, Z) commutes with J.

In what follows the Pfaffian Pf I:JX +R] of Jx+R

is taken as the Pfaffian of
2n 27

antisymmetric matrices acting on N.
We now prove the result of Berline and Vergne [9], Duistermaat and
Heckman [18].

Theorem 1.3. If ue A(M) is X equivariantly closed, then
u

&MZJX#_[JX+R]'
Pf
2n

(1.3)
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Proof. We give two proofs.

Proof No. 1. This proof uses a linearization technique which also appears in [9,
18]. However, the localization is obtained using a different method.
For any ye N, using the connection V. restricted to N, we can split TN into

TN=TUN®T"N. (1.4

T" N is made of vectors living in the fiber N, and T¥N corresponds to the parallel
displacement of y € N in the “horizontal” directions. For Ye TN, Y¥, Y denotes
the components of Y according to the splitting (1.4).

Also using the exponential mapping, we can identify a tubular neighborhood of
M?¥ in M with a neighborhood V of M* (considered as the zero section of N)in N.
Using this identification, for y € V, we have

X =Jxy. (1.5)
Let « be the one form on N
YeTN-o(Y)={Jyy, Y">. (1.6)
It is easy to verify that if Y, Ze TN,
do(Y, Z)=2{Jy YV, Z") + (R, (m, Y, 0, Z)y, Iy} . (1.7)
Then for yeV,
wuX)=|X?. (1.8)

Also we identify X to a 1-form using the metric of M. By using a partition of
unity argument, we can find a C® one form f on TM having the following
properties.

® It coincides with « on a neighborhood V'CV of M* in M.

® Also

BX)=|X|*.

Let T be a maximal torus in the group of isometries of M such that X is
contained in its Lie algebra t. By averaging  over T, we find that we can also
assume that § is T invariant so that

Lyf=0.
Since Ly=(d+iy)? it follows that
(d+ix)[(d+ixp)]=0. (1.9)
We claim that for any s>0,
L”z I&eXP{—S(de)ﬁ}u- (1.10)

To prove (1.10), we note that

LCXP{—S(de)ﬁ}u: - Jl(d+ix)ﬁexp{—s(d+ix)ﬁ}u. (1.11)

Xl
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Also the assumption on u and (1.9) show that
(d+ixu=0,
(d+iy)[exp{—s(d+ix)p]=0,
and so (1.11) is equal to
_Afl(d+ix)[ﬁeXp{—S(d+ix)ﬁ}ﬂ]:0- (1.13)

(1.12)

The right-hand side of (1.10) is constant in 5. For s =0, equality holdsin (1.10) so
that (1.10) has been proved.
For t>0, we have found that

ap X
= — = . 14
]{4;1 I&GXP{ 5 = 3 (K (1.14)
As t ] 0, since X #0 out of M*,
g |Xxp g 1xP?
l{lexp{ E el € é/exp 5 o (M (1.15)
We identify Jy with the 2-form on TN
Y, Z—{Y", JyZVy, (1.16)
and R with the 2-form
Y,Z-R, (r,Y, 7. 7). (1.17)
Using (1.7), (1.8) we find that the right-hand side of (1.15) is equal to
JX <R1ty('a')y7JXy> IJXyIZ
‘i/ exp{ . 5, exp (e (1.18)

We now do the computations on one given connected component of M*. Let n’
be the dimension of N (which is even).

By making the change of variables y = [ﬂy’, we find that (1.18) is asymptotically

equal to
. J R.(-, )y J Jyyl?
o /Zfexp{%~w}exp{—l)(7yl}ﬂyw. (1.19)
N

J .
By expanding exp%, we find that the only term which is not killed by "% is

5)

where dy is the volume form of N which defines the orientation of N. On the other
hand, the vertical components of u are killed as ¢ || 0. So we find that the limit of

=(PfJy)dy, (1.20)
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(1.19) is

. 2
ij[ 15 exp{_ (R ,2)y,JXy> 3 |Jx2y| }(Pf]x)dy] 1. (1.21)

Let R"e End N be antisymmetric and assume it commutes with Jy. Then JyR’
is symmetric. It follows that if R” has a norm which is small enough,

J exp{— Ry, Jxyy |JX)’|2} Qn)*?
Nx

2 2 (V=@ 122

Since n’ is even, we have
det(—J%—JxR")=(detJy)det(Jy+ R).
Also recall that det R’=(PfR")%.
Since (1.22) is analytic in R’ for |R’| small enough, we find

PfJy 1
det(—J2—J4R)Y? ~ Pf[J,+R]’ (1.23)
<R(a )y7JXy>
2
we can use (1.22), (1.23) with R(-,-) instead of R’. Equation (1.3) is proved.

Recall that exp { — } is a finite power series in the variable R, so

Proof No. 2. We identify X with a 1-form by the Riemannian metric. Since X is a
Killing vector field, as a one form, X is Ly invariant so that

d+iy[(d+ix)X]1=0. (1.24)
As in (1.14), we find for t >0,
M:Ajlexp{—&zi;‘)f}y. (1.25)

As in (1.15), we can prove that as t]]0, the right-hand side of (1.25) is

asymptotically equal to
d+iyX
Ij; exp { 2t #

Also it is trivial that if Y, Ze TM,
dX(Y, 2)=2(VyX,Z>. (1.26)

Note that on M*, J, and V.X coincide on N. Also since V. is X invariant, it can be
easily proved (see Berline and Vergne [9]), that

[Vy(V.X)]+R(X, Y)=0. (1.27)

We now evaluate (1.25). Take xe M*, U an open ball in M* such that
Ny~U x R". We also assume that for ¢>0 small enough, {(x, y) € Ny; |y|<¢} has
been identified with a neighborhood of U in M by a diffeomorphism f; which
sends (x, 0) € Ny into x € U, whose differential dfy, is the identity mapping at (x, 0):
anatural candidate is the exponential mapping but other choices are also possible.
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As t [} 0, by making the change of variables y:]/fy’,

| exp— {—dX—i—]XP} ~tn2; | exp— {—M )

V'a(xel) 2 U x Rn’' 2t
IXI (x, l/y)} u(x l/y) (1.28)

Also since
(V,X)(x,0)=Jxy, (1.29)
we find easily that

XPC /1) WUl
-

S (1.30)

If Y, Z are taken among the vector fields — 6 s 6 -, if D denotes the covariant

derivative operator for the Levi-Civita connection along the path (x, [/Ey), we find
using (1.27)

@X)(x,)/t)(Y, Z)

2t
t 2 1/{
+1[I4D?Y, Z>+2{J DY, DZ>+{J Y, D*Z>]+0(t). (1.31)

Because of the factor £”/2 in (1.28), it should be clear that in the limit, only those
monomials in the vertical form dy* ... dy” should be kept whose weight is exactly

1 . .
ieR It follows that in the expression

(KIxDY, Z>+<J4Y, DZ))L

Vi

o . .. .0
a non-zero contribution could appear only if one of the Y, Z is in the family oL
X

(1.32)

A A

and the other in the family aoa. However, J x% =0. Similarly, in the term

@%Y)Y_@ + = [<JxD?Y, Z) +2{J,DY, DZ)+{J Y, D*Z)]

0
both Y and Z have to be in the family p

. This kills <JyD?*Y, Z)+<{JyY, D*Z),
0
since ¥
For Ye T, o,M*, set
Y=Y"+Y";, Y"eT,o M*, Y'eN.,.
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. ax
As t]]0, in (1.28), we should then replace ~Et—(x, sz) by the 2-form

<R(JX.V> y)YHs ZH>
2 .

I(YV+DY™), ZV +DZHy — (1.33)
Since Jy is non-degenerate on N, integrating in the vertical variables y means that
we can ignore DYH, DZ¥ in (1.33). Also the well-known symmetries of the Levi-
Civita tensor R imply that

YR, R(Ixy, )Z™y = (R(YH, ZM)y, Ty y) . (1.34)
We finally find that the limit of (1.33) is exactly
. . 2
]" [fcxp{JX—<R( Vs Ixy _IJXY| }J/’L’ (1.35)
MX| N 2 2

which coincides with (1.21). [J

Remark 1. The proof No. 1 is simpler than the proof No. 2. However, as we shall
see, the proof No. 2 has two qualities.

® The aspects of the proofs of Berline and Vergne [9] and Duistermaat and
Heckman [18] which were impossible to extend in infinite dimensions — namely
the explicit use of Stokes formula — have disappeared.

® When correctly interpreted, the heat equation proof of the Index Theorem
of Atiyah-Singer coincides with the proof No. 2.

Remark 2. If M is non-compact, and u has compact support, (1.3) still holds. If u
does not have compact support, (1.3) does not hold any more. However, under
adequate growth conditions on |X],

fexp{—w}u (1.36)
M 2t

is still well-defined. A proof similar to (1.36) then shows that under adequate
conditions, (1.36) does not depend on ¢ > 0. If an adequate control at infinity of the
integral (1.36) is possible, Proof No. 2 will also show that for any >0

(d+ix)X 1
e T B 1.37
A&"Xp{ x ("= Jy+R (1.37)
Pf| —=——
2n
¢) The Case of Two Commuting Vector Fields
Let Y be another Killing vector field such that
[X,Y]=0. (1.38)
Equation (1.38) writes
VeY—VyX=0. (1.39)

Using (1.27), we find that if xe M*X, Ze T.M,
Vy Y=V, v X =0. (1.40)
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The antisymmetric tensor V.Y commutes wuth Jy on M*. N is then stable
under VY.
We now extend Theorem 1.3.

Theorem 1.4. If pe AMM)®C is X +iY equivariantly closed, then

u
= . 1.4
be= L [JXHV. Y+R} (1.41)
Pf| =
2n
Proof. As in the Proof No. 2 of Theorem 1.3, we can write that for any >0
d+iy )X
jﬂzjexp{_m(_)}u' (1.42)
M M 2t
Observe that
KX, Y)
Iexp— o =1,

so that as t || 0, the integral (1.42) localizes as in Theorem 1.3. Also, using the
notations of the Proof No. 2 of Theorem 1.3, we have

0
o (XY 00 /1) =(VX, YD+ <X, 7,V ))(x, |/1y). (1.43)
Using (1.39), we have for t=0
IX, YD ==X, yp=—(VxY, y)>=0. (1.44)
At t=0, (1.43) is 0. Also at t=0, using (1.27) and (1.39) again, we have:

#ﬁ)xx, YO (x, /1) =2V, X, V, Y +<{Vp X, Y
=20, VYO =W X, Vyy) =2{Jxy, V,Y ). (145)

The integral (1.35) is then modified into
{Jx”‘ (R, ) +iVY )y Ixyy Inylz}u

[ Jexp (1.46)

MX N

2 2
Proceeding as in (1.22), (1.23), the proof is finished. [

d) Integration Along the Fiber and Localization

B is another compact connected oriented Riemannian manifold. Y is a Killing
vector field over B. Let BY be the submanifold of B

B'={yeB; Y(y)=0}. (1.47)
f denotes a submersion of M onto B, which is such that f, X =Y. For ye Y, set
Cy=f 100} (1.48)

Forevery y € B, C, is a submanifold of constant dimension. y— C, defines a locally
trivial fibration of M.



138 J.-M. Bismut

Note that since M and B are oriented, TC is an oriented bundle over M. Also
the fibration C is X invariant, i.e. ¢ sends a fiber C, in the fiber C,s,.

TC is a subbundle of TM. Let THM be the orthogonal bundle of TC in TM.
Then for every xe M, f, is an isomorphism from TM onto Tj,B.

Note that it we lift in 7§’ M the scalar product of Tj,,B (while leaving the scalar
product of TC and the orthogonality of T M and TC unchanged), it is easy to
verify that X is still a Killing vector field for this new metric, essentially because C is
X invariant, so that THM is also X invariant.

So from now on, we assume that T¥M inherits the metric of TB.

Definition 1.5. MY denotes the submanifold f ~'(BY) of M.
For ye Y, we define
G,=C,AMX. (1.49)

Note that for x e M, f, X(x)=0,so that X € TC. X is then a Killing vector field
over M”, and also if ye BY, X is a Killing vector field over C,. It follows that if
yeBY, G, is a submanifold of C,.

We now briefly describe M* in directions transverse to C.

Theorem 1.6. Take x € M*. Then TEMNT.MYC T.M*. For each ye BY, M*¥ is
transversal to C, and intersects C, orthogonally. In particular, yeBY—>Gy is a
( finite union of ) locally trivial fibrations of M.

Proof. Take xe M*. Let J be the infinitesimal action of X in T.M". J4 is an
antisymmetric element of End (T, M"). Since the fiber C, is X invariant, T,C is
invariant under J. Its orthogonal in T.MY THMAT_M? is then also invariant
under J.

Now for s € R, e*’* (which acts on T,M”) coincides with (e*¥),. If J% was non-
zero on TPMAT.M?, we could find Ze TEMnNT.M*, Z+0, and s such that
e*Z=—7, ie. (¢*),Z= —Z, which implies f, ("), Z=—f,Z, ie.

Ny fouZ=—1,Z. (1.50)

Since Z € T'M, f,Z+0. Morcover, f,Z € Ty,B". Since on B, ¢* is the identity,
(¢'"), is also the identity on T}, B". This contradicts (1.50). Jx is then equal to 0 on
TEMAT.M".

Now T.M* is equal to KerJk. It follows that TAMNTMY C T,M*. Then
T.C+ T.M* = T.M”, so that M* is transversal to C. Also if Z € T, M* is orthogonal
to T.M*NT,C, Z e KerJ5 and is orthogonal to Ker J5n T.C. Then necessarily, Z is
orthogonal to T,C. This shows that M¥ intersects C orthogonally. []

Definition 1.7. N* (respectively N¥) denotes the normal bundle of M* (respectively
BY)in M (respectively B). J y (respectively J%, Jy) denotes the infinitesimal action of
X (respectively X, Y) in N¥ (respectively NXnTC, NY).

We can lift N through f as a subbundle of T# M. We still note N” the lifted
bundle. We also lift Jy in a similar way.

We now have the key result.

Theorem 1.8. N*nTC coincides with the normal bundle of G in C, and with the
normal bundle of M* in MY. Moreover, N* splits into

NX=(N*ATC)®N". (1.51)
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On M*, Jy coincides with Jy on N*nTC, and with Jy on N?.

Proof. Since M intersects C orthogonally, N*nT'C coincides with the normal
bundle of G in C. For the same reason, N*n T'C coincides with the normal bundle
of M¥ in M”.

Also on MY, we have TM =TMY®N”, and TM* and NY are orthogonal in
TM. Moreover, TM* C TM”. It follows that Z € N¥ if and only if its projection on
TMY is orthogonal to TM¥*. Equation (1.51) is now obvious.

Clearly, J  coincides with J§ on N¥A T'C. Since NY is orthogonal to NXnTC in
N*, NY is stable by Jy. Moreover, since f, X =Y, on M*, we find that

f*JX:JYf*' (1.52)
Since N7 is stable under Jy, we find from (1.52) that on NY, Jy=J,. [

Let V* be the Levi-Civita connection on the manifold MY. Let R% be the
curvature tensor of VX, MY being totally geodesic in MY, the Levi-Civita
connection V* induces an orthogonal connection on the normal bundle of M* in
MY, ie. on N*nTC.

Also NX¥ATC is naturally oriented by the two form Z,Z'e N*nTC
—<{Z,J%Z">. Since TC is oriented, it follows that the fibration G is naturally
oriented over BY. If Z, Z’e TM?", Jy+R%(Z,Z’) is an antisymmetric element of
End(N*NTC), whose Pfaffian Pf[J +R%(Z,Z")] is well defined.

Also by Bott and Tu [17, Chap. I], the integral along the fiber C (or G) of any
C* differential form is well-defined and produces a C* differential form on the
base. We note | or | the integral along the fiber operators.

C G

Also, if v,v" e A(BY), we write
v=0 (1.53)
if v —v’is exact. Finally, let i be the embedding M* — M, j the embedding BY — B.
We now have the key result. l '

Theorem 1.9. Take pe A(M) which is X equivariantly closed. Then

Y (1.54)
¢ G [J;( + RL}
21

Proof. We give two proofs.

Proof No. 1. This proofis very similar to the Proof No. 2 of Theorem 1.3. To prove
(1.54), we may as well assume that B= B, i.e. that Y=0, so that M = M".

X € TM can be identified with a 1-form over MY, which we still note X. We
claim that for any se R

(j:uz iexp{—s(d-l—iX)X}lu. (1.55)

In fact, as in (1.11), we have

% (f:exp{—s(d—i—iX)X}u: - (fj(d+ix)[exp{——s(d+ix)X}u]. (1.56)
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Now by Bott and Tu [12, Chap. 1], | and d commute. Also since X € TC,
C

[iy...=0. So we find from (1.56) that

C

82 Jexp{—s(d+i)X}u= —d[f exp{—s(d+iX)X},u], (1.57)
s ¢ c

and so (1.55) has been proved.
For any >0, we get

iuziexp{—wz—i;{)x}u. (1.58)

The proof now proceeds exactly as the Proof No. 2 of Theorem 1.3. In
particular, we use (1.31), (1.34) and the fact that by Theorem 1.8, the infinitesimal
action Jy of X on TM coincides with J% on N*ATC and is 0 on the orthogonal of
N¥ATC and also that Jj is non-degenerate on N*nTC. The theorem is
proved. [

Proof No. 2. Take v e A(BY), which is Y-equivariantly closed. j*v is then closed on
BY. Also f*v is X-equivariantly closed on M.
Using Theorem 1.3, we know that

T (o *u
f\‘:[(f V= A,}“x PfI:Jx+R:|_B§Y(] V)ipr:Jx+R:|' (1.59)
2n 2n
Also
| (f*vu=lv]p. (1.60)
M B C
Since f,,Y=X, we have
(d+iy)£,u= i(d—l—ix)u:O. (1.61)

v{ pis Y equivariantly closed. Using Theorem 1.3 again, we find that if Ry is the
C

Levi-Civita curvature tensor of B,

v i U

vju= ) —4———.

zj; !:“ ij [JY+RB]
Pf| ——=
2n

By a result of Witten [26] (also see Atiyah and Bott [4]), we know that v—j*v
surjects from Y equivariantly closed forms on B on the closed forms in B. Using
Poincaré duality on BY, we get from (1.59)~(1.62),

(1.62)

#lu
C

Pf[JpLRB]'
2n

| P{Jﬁﬂ (1.63)
2n

il
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Now by Theorem 1.8, N* splits according to (1.51). Also we know that
) /Pf[JX+R

over M* whose cohomology class is independent of any Euclidean connection on
N¥ preserving Jy. Still using Theorem 1.8, we get

1 1

’ L1
Pf Jx+R P JY_""RE Pr Jx+R
2n 2n 2n

Using (1.63) and (1.64), we finally obtain (1.54).

}, as a standard characteristic class over M*, defines a closed form

(1.64)

Remark 3. The reader will have noticed that also in Proof No. 2, we could have
directly assumed that Y=0, MY=M, so that (1.54) would have been proved
immediately by a proof which would be in fact equivalent to Proof No. 1.
However, our purpose is to produce a proof which can eventually be generalized in
infinite dimensions, for which Proofs No. 1 and 2 seem to be quite different. It turns
out that Proof No. 2 is exactly what is needed to understand our second proof in
[157 of the Index Theorem for families.

Note that as a consequence of Bismut [13, Theorem 3.9], the result of Witten
[26] mentioned in the proof extends on the loop space, at least for even forms,
essentially because

K(B)® ;R ~ H*<**"(B, R). (1.65)

Not unexpectedly, although the result of Witten [26] is not needed in our second
proof of the Index Theorem for families in [15], (1.65) is needed explicitly!

Also note that RY appears explicitly in Proof No. 1. This is of utmost
importance in understanding our first proof [15] of the Index Theorem for
families. We refer in particular to Theorems 3.15 and 3.18, where (1.34) is proved in
an infinite dimensional situation.

II. The Probabilistic Proof of the Index Theorem

In this section, we will essentially show that the probabilistic proof of the Atiyah-
Singer Index Theorem for Dirac operators is by itself the rigorous infinite
dimensional version of Proof No. 2 of the localization formula in equivariant
cohomology given in Theorem 1.3. This shows that the remark of Atiyah and
Witten [2], who showed that, formally the Index of the Dirac operators on the spin
complex could be computed using formula (1.3) can be much extended, in the
sense that the heat equation method produces by itself the corresponding rigorous
proof, the finite dimensional and infinite dimensional proofs being strictly parallel.

In a), we give the main assumptions and notations. In b), we recall some
elementary facts on the geometry of the loop space of a Riemannian manifold. In ¢),
the Dirac operator is described. In d), we briefly recall the results in Atiyah [2] and
ourselves [13] on the relations of Index Theory to the cohomology of the loop
space. In e), we describe our probabilistic proof of the Index Theorem [12] and
compare it with Proof No. 2 of Theorem 1.3. In f), we describe our heat equation
proof [14] of the infinitesimal Lefschetz formulas, and compare it with the proof of
Theorem 1.4.



142 J.-M. Bismut

a) Assumptions and Notations

M° now denotes a compact connected Riemannian manifold of even dimension
n=2l N° is the SO(n) principal bundle of oriented orthonormal frames in TM°.
For x e M°, the fiber N is the set of oriented linear isometries from the canonical
oriented Euclidean space R" into T,M°.

We assume that M° is a spin manifold, i.e. the SO (n) principal bundle N° lifts to
a Spin(n) principal bundle N° so that the projection N°— N° induces the
covering mapping Spin(n) - SO(n) on each fiber. ’

Let S be the 2 dimensional Hermitian Space of spinors which splits into
S=5,®S_,whereS,,S_ arethe2' ! dimensional spaces of positive and negative
spinors. S,,S_ are orthogonal in S.

Let F,F,,F_ be the bundles of spinors over M°.

F=N/O X Spin(n)Sa Fi =N/0 X Spin(n)Si . (21)

On N°, we put the Levi-Civita connection, which lifts naturally to N'°. Let R be the
curvature tensor of TM. Also let £ be a k-dimensional Hermitian bundle over M,
endowed with a unitary connection, whose connection form is A and curvature
formis A. Ais the equivariant representation of the curvature tensor L. Let 7 be the
projection ¢ —M?°. V. denotes the covariant differentiation operator for any of the
considered connections.

Recall that TM acts on F by Clifford multiplication, and exchanges F', and
F_.Alsoifee TM, e act on F®¢ by the Clifford multiplication e on F,i.e. by e®1.
In the sequel, we will write e instead of e® 1.

If G is any fiber bundle over M°, I'(G) is the set of C” section of G, ey, ..., e, is
an orthonormal base of T.

Definition 2.1. D denotes the Dirac operator acting on I'(F®¢),
D=3el,. (2.2)
1

D interchanges I'(F , ®¢) and I'(F _ ®¢). Let D, D _ be the restrictions of D to
I'(F,®%), I'(F_®J9).
When acting on I'(F . ® &)@ T (F _ ®¢&), we may write D in matrix form as

0 D
1>=[D+ ; ] (2.3)

D is formally self-adjoint.

b) The Loop Space and the Action of S,
M denotes the set of C*® mappings from S, = R/Z into M°. If x. € M, the tangent
space T, M is identified with the set of smooth periodic vector fields X. over x., such
that X,e T, M°. If Y, Z € T,M, we define the scalar product
1
Y, Zy=[ <Y, Zyds. (2.4)
0

M 1is then a Riemannian infinite dimensional manifold.
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We now follow Atiyah [2]. Namely, we note that S; acts on M by the mappings
k, defined by kx.=x,, . k, (s€S,) is a group of isometries, whose generating
Killing vector field X is given by

X(x),= <~‘§Sf) : (2.5)

Clearly, M° coincides with the set M* of the zeros of X.
Also the Levi-Civita connection of M° extends in an obvious way as the Levi-
Civita connection on M. In fact, if X, Ye TM, if for xe M, we set

[V Y)]s=Vy X, (2.6)

Equation (2.6) defines the Levi-Civita connection of M.
We now have

D
Theorem 2.2. Take xe M, Ye TM. If Ds is the covariant differentiation operator
along s—xg, then 5

D
‘7sz~

5B PPX) 4R, Y)=0, 2.7)

1
If X is identified with the 1-form Y— [ (X, Y)ds, then for Y, Ze T.M
0

L /DY
dX(Y, Z2)=2] <A, Z> ds. (2.8)
0 Ds
t
Proof. We can always assume that t € R—x'e M is C* and also that 563;5 =Y, Then
[X, Y]=0, and so since ¥ does not have torsion

D
ViX);=(VyY)=—7Y,.
(Y)S(X)s DSY;

Also for Y, Ze TM,

D_ D
VoV.X)Z= VsV X~V X =Vy Z— 5 VyZ=R(Y, X)Z. (2.9)

Equation (2.7) is proved, (2.8) is left to the reader. [J

Remark 1. Since X is a Killing vector field, the second equation in (2.7) is also a
consequence of (1.27).

¢) The Index of the Dirac Operator
Recall that the index of D, is defined by

IndD, =dimKerD, —dimKerD _.
Consider the splitting

FRE=(F,®)DF -®I). (2.10)
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We may consider F®¢ as a Z, graded vector bundle, in which the even elements
are in F, ®¢, and the odd ones in F_®¢£. Let 7 be the involution defining the
grading, i.e. if ee FL ®¢&, te=(—1)%=¢,
Similarly,
IFROH=I'(F,QSI'(F_®J). (2.11)

We still note by 1 the involution in (2.11) defining the Z, grading.
We also recall Lichnerowicz’s formula [22] for D2 Namely, let 4" be the
Bochner horizontal Laplacian on I'(F® ¢&). Then, if K is the scalar curvature of M,

K 1
D2=—AH+Z+§e,€J®L(€,,e}). (2.12)
_t?
Fort>0,e¢ 2 isa self-adjoint operator on I'(F . ®¢). It is given by a kernel
P/(x,x’) which is C* in (x, x").
By Atiyah et al. [5, Theorem EIII], we know by a standard spectral theory

argument that
_tD? _tD?

IndD,=Tr,e 2 —Tr_e 2, (2.13)

where Tr,, Tr_ are the traces of operators acting on I'(F ., ®¢&), I'(F _®£).
We define the supertrace Tr A of a trace class operator A acting on I'(F®¢) by

Tr,A=TrtA. (2.14)
Then (2.13) writes

_tD?

IndD, =Tree 2. (2.15)

For xe M, P/(x,x)e End(F®¢), and P/(x,x) sends (F,.®¢), into itself.
Equation (2.13) is equivalent to

IndD, = | Tr,[P(x,x)]dx. (2.16)
M

d) Equivariant Cohomology on the Loop Space and the Index Theorem

We now recall the results of Atiyah [2] and our results [ 13]. Namely, we identify X
with a 1-form over M using the Riemannian metric. Let #° be the U(k) principal
bundle over M° of the unitary frames in ¢&.

Let # be the bundle over M of the C*® sections s € S, —»v, € #°. There is a natural
projection ¢ n—M.

For ven, A, is identified with the 2-form over #,

Z,2'eTin—A4,(Z,Zy).

A(n) denotes the exterior algebra of T*y.
We now follow Bismut [13, Definition 3.6].

Definition 2.3. For ven, H, denotes the element of End C*® 42"°"() defined by the
differential equation

dH;:H;[x [j‘g +A,,s], H(0)=1I. (2.17)
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We now recall the result in [13, Theorem 3.9].

Theorem 2.4. The even form over y Tr H| projects on M as an even form f. f is
X-equivariantly closed.

Remark 1. For an interpretation of (2.15) in terms of standard equivariant
characteristic classes (in the sense of Berline and Vergne [9]) and Kac-Moody
algebras, see [13, Remark 3.2].

We now recall the formal result which Atiyah [2] obtained for the Dirac
operator acting for the spin complex, and which we extend in [13] to twisted spin
complexes. Namely, it follows from Atiyah [2], and ourselves [13], that the
rigorous formula (2.16) can be written formally as

IndD, =C | exp{—w}ﬁ, 2.18)
M 2t

where C is the infinite normalizing constant.

(+joo m2>l

Of course, the Wiener measure is carried by the set of continuous paths (or loops)
and gives 0 measure to M. For simplicity, we will forget about this, keeping in mind
that all the standard operations on C* paths can be done in a measure theoretic
sense on continuous paths.

We now do a few remarks on (2.18):

@ The transformation of (2.13) into (2.18) is obtained using

a) Lichnerowicz’s formula.

b) A highly non-trivial connection between the Trace of the Spin(#n) represen-
tation and the renormalized Pfaffian of V.X on TM. Namely, Atiyah and Witten [2]
noted that if x is a smooth loop, if 7§ is the parallel transport operator from F ;.
into F. , along s—x,_,, if Tr. 7 is the corresponding trace, if Pf(—dX) is the
formal Pfaffian of —dX, then

dX
.l _
szl: 5 }

<f2[ 4n2m2>l B

This transformation is crucial in connecting a concept of operator theory (which is
the Index) into a cohomological expression, which is the right-hand side of (2.18).
Also note the following facts:
@ Equation (2.18) is strictly similar to the right-hand side of (1.25).
o Itisimpossible to maket= + o0 in(2.16). Remark 2 in Sect. 1 entirely applies
here, since | f in general is not well defined.
M

(Tr, —Tr_)(c). (2.20)

e) The Heat Equation as a Natural Proof of Localization
in Infinite Dimensions

As we shall see, although the right-hand side of (2.18) is formal, if we interpret
correctly our heat equation proof of the Index Theorem, we find it reproduces step
by step Proof No. 2 of Theorem 1.3.
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To simplify the discussion, we assume that & is the trivial bundle. The general
case can be treated using similar arguments. Let EX,_ . be the probability law of the

X0, X0

. . . . . . ta
Brownian bridge x. with x(0) = x(1) = x,, associated with the scaled Laplacian >

(see [10, Chap. 2]). Let 73" be the parallel transport operator from fibers over x,
into themselves along s—x; _,.
By [12, Theorem 2.5], if p,(x, y) is the heat equation kernel associated with the

t4
operator e?, we have

1
T, 50 50 = 5B 30| —1] KOs | it 220

To calculate (2.21), we use our results in [ 10, Sect. 4], which turn out to be strictly
equivalent to what is done after (1.25). Namely, if x, € M° = M¥*, we identify the
tangent bundle T, M° to the set of constant mappings s€ S, —v* € T, M°, which
we call also H). The normal bundle N, is the set H} of L, mappings s€ S,

1
—>w't e T, M such that | w;'ds=0.
0

For simplicity, we restrict ourselves to C* functions w/!. Note that if H, is the
set of C* mappings s € S, »w! such that wy=w} =0, H} and H, are in one-to-one
correspondence by

wileHi»w'eH :wl=wl—wy.
Also the infinitesimal action Jy of X on Hj is given by

aw(t
ds -~

1
JXWs -

(2.22)

We now explain how in [10, Chap. 4], [12, Sect. 2], we obtain the infinite
dimensional analogue of the diffecomorphism f;; described after (1.27).

Namely, take w'' € H;. Let w! be the corresponding element in H,. Forv, € H,,
consider the curve s—x, in M° such that

o x(0)=x,.

® The Cartan development of s—x in T, M° coincides with w; + sv>.

1
‘ZS is the parallel transport of % +v? along x, (0L u<ys).

If w! is close enough to 0 (for an adequate norm), the implicit function Theorem
shows that there is a unique v? € H, such that x; = x,,.

If M*° is the set of xe M such that x(0)=x(1)=x,, we have then found a
natural parametrization of a neighborhood of the constant loop x, by a
neighborhood of (x,, 0) in HY : (xo, W)= x. = f(x,, w?).

This is exactly what is done in [ 10, 12], with the difficulty that w*, w!, x are not
smooth, that everything has to be done in a measure theoretic sense etc. ... . The
change of variables y =]/Zy’ described before (1.28) corresponds exactly to scaling

w’! by a factor [ﬂ In [10, Theorem 4.16 and its corollary] and in [12, Theorem
2.15], we then find that if H, is endowed with the flat Brownian bridge measure

This means that
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(which gives 0 measure to C* paths...),as ¢t || 0, for any ke N

Tr, [P0, X0)] = | [(Trj‘l”? H()/tdw")dP, (w") + o(t"), (2.23)

%

where as ¢t |} 0
H()/tdw")~1, boundedly. (2.24)

Alsoif 73°*is considered as an element of SO (n) acting on T, M, it is trivial to verify

that L

tj Rxo

=T — 02 (dwl, wh)+o(t). (2.25)

Note that we can as well replace w! by w'! in (2.21), since adding constants has no
1
effect on | R, (dw},w)).
0
An argument from representation theory [12, Theorem 1.5] shows that
. T 1,t 1 1 1
lim —2% = (i)' Pf [ _J Raaldis ) | (2.26)
tiio t 0 2

Recalling that if 4 is an antisymmetric (n, n) matrix

Al
n’
1
we find from (2.16), (2.23), (2.26) that if | R, (dw',w") is identified with the 2-form
0

(PfAYdx* A ... Adx"=

(2.27)

1
(Y, Z)— <Y, | R, (dw", w‘)Z> , then
0

-l 1 1 1
IndD+=® Aof[exp{— ] MH dP,(wY). (2.28)

We now use the well-known symmetries of the Levi-Civita curvature tensor R

to get
1 1
£<Y, R(dw',wH)Z) = [(R(Y, Z)w',dw"), (2.29)

which is a key step in the proof, which corresponds exactly to (1.34).
Using (2.28), we find that .
il £<R('> ')Wl,dwl>
— _ 1
IndD, = any Aof exp{ 5 } dP,(w"). (2.30)
Using formula (2.22) for Jy and the fact that at least formally, if 2(w') is the
“Lebesgue measure” on H,,

Ldw?
1\ _ _
dP(w )—Cexp{ g v

2
ds} 2(wh),

we find that (2.30) is identical to (1.35).
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More generally, if £ is any unitary bundle instead of (2.30), we get

1
(l)l .(()<R(’ ')WI,dW1>
N _ 1
20 Jofexp 5 dP(wh)p. (2.31)
The reasoning of [12, Sect. 3] is still very close to what has been done before.
This shows that in its very details, if we start from (2.13), the proof of (2.30),
(2.31) is exactly identical to Proof No. 2 of Theorem 1.3.
In [12], the final evaluation of (2.30), (2.31) is done using a formula of P. Lévy,
which as is well-known, it is equivalent to the computation of an infinite

IndD, =

determinant corresponding to Pf [JX;R:’. So we find the Index formula of
Atiyah-Singer
~( R
IndD, = | A(—) ché. (2.32)
o \27@

Remark 2. Consider any connection on TM° which preserves the metric of TM°
but whose torsion T'is non 0. Let D" be the Dirac operator calculated with this new
connection. D’, has the same index as D . Also, even if D’ is in general not self-
adjoint, the formula (2.15) still holds with D , replaced by D’,. This fact [whichis a
consequence of the formalism of Quillen [25] described in Sect. 3a)] is briefly
proved in [15, Theorem 5.3]. However, the heat equation method on D" does not
converge in general.

The interpretation for this is very simple. Namely, let {T 4 ) denote the
antisymmetrization of the (3,0) tensor, (X, Y, Z)><(T(X,Y),Z). {T » 8> obvi-
ously extends as a (3,0) tensor on M by setting

(TAOY(X, Y, Z)= | (T 4 05(X,, Y, Z)ds.
0

(T 4 0) is clearly X invariant. Now by proceeding as in Atiyah [2] and Bismut
[13],itis not difficult to find that the rigorous trace formula for the index of D’, can
be written formally as

2 2t 2.33)

i d+iy)<T 4
IndD',=C | exp{_ M}exp{_w}ﬁ‘
M
Equation (2.33) shows in an obvious cohomological way that IndD’, does not
depend on the connection. It has also the merit of exhibiting in the most obvious
way why, in general, localization will not take place ast | | 0. A similar formula also
appears in (3.58) in connection with the Index Theorem for families. Equation

(2.33) can be extended to the case of more general perturbations of D.

f) The Infinitesimal Lefschetz Formulas

Let Y be a Killing vector field on M°. Y obviously extends as a Killing vector field
on M by setting for x,e M, [ Y(x.)],= Y(x,). It is then obvious that [ X, Y]=0. To
simplify the discussion, we assume that ¢ is the trivial line bundle.
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Y acts naturally by the Lie derivative operator Ly on TM®. Ly has a natural lift
to I'(F ). e then acts on Ker D, and KerD _. By definition, the Lefschetz number
of ¢¥ is given by

L(€")=Trgep, € —Trgerp_€" - (2.34)

By a well-known formula, which is obvious using spectral theory, we know that
for any t>0,
_tD?

L")=Tre " 2. (2.35)
In [13, Sect. 3d)], we have shown how formally we can write
L(e")=C { exp { G +;1(X T Y)} , (2.36)
M

where C is given by (2.19). The proof of the Lefschetz fixed points formulas of
Atiyah and Bott [3] and Atiyah and Singer [6] is obtained by making ¢ ] 0 in
(2.35)(see [12, Sect. 4]). The proof of [12] is formally much connected with Proof
No. 2 of Theorem 1.3.

We now concentrate on the infinitesimal Lefschetz formulas. In [14, Theorem
1.6] we proved that for any ze C, t>0, if Y acts by Clifford multiplication on

I'(F®Y), then
t zY'\? ot z{Y,e>\* (K
*z(D’Lz—t) R L I S

. . L D i)2 —zL
Let S%(x,x’) be the C® kernel associated with the operator e 2 ( D

In [14, Theorem 1.9], we proved that
L(e*Y)= | Tr,[S*(x,x)]dx. (2.38)
M

Using (2.37), and the notations of (2.21), we proved in [14, Theorem 2.2],
Trs [Stz(x0> xO)] = pt(XO’ xO)Eico,xo

.[exp { ¢ K(’;st - EZ[— i (Y(x,), dxs>} Trst},"] . (239)

0

By proceeding as Atiyah [2], we obtain from (2.39) the formal representation

. (d + iX+zY)X
2t |

The right-hand side of (2.40) is strictly identical to the right-hand side of (1.42).
Also we proved in [14, Theorem 2.9] that as t}]0, (2.39) has a limit. In
comparison with the proof of the Index Theorem ([ 12] and Sect. 2e)), the key fact is

that using the notations of Sect. 2¢), if x! is associated with le,

1 t t
t1100 t

L(e*)=C [ exp { (2.40)
M

= i (Vi Y (o), dwly . (2.41)
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If zeiR,

2] (Y, dxty
exp 4 — 4’——27— (2.42)

is bounded.
So we prove rigorously in [14, Theorem 2.10] that if z € iR,

L(ezY) —

it LYR(-, )+ 2P Y)wl, dw'D
ftew -]

o 5 }dPl(wl). (2.43)

Equation (2.43) is then computed using a formula of P. Lévy.

Note that the proof of [ 14], which has been briefly sketched here, is very close
to the proof of Theorem 1.4.

We now briefly explain how we guessed (2.37). We wrote formally from (2.36)

L(e™¥)=C [ exp{ — (@ ixeenX expy — @ixn)¥ ) (2.44)
M 2t 2t
Now as a 1-form, Y is X +zY invariant so that
exp { - W} —1 (2.45)

is X +zY exact. Our conjecture was that although M is non-compact, in (2.44), we

_ M} by 1. This is how we were led to prove (2.37) and

can replace exp { o

(2.39).

III. Integration Along the Fiber in the Loop Space,
and the Index Theorem for Families

We now will show how our proofs in [15] of the Index Theorem for families are
related to the proofs of Theorem 1.9. In a), we briefly explain the construction by
Quillen [25] of the Chern character of a finite dimensional difference bundle using
superconnections. In b), we briefly describe a fiber manifold M° 5 B°. In ¢), we

introduce connections on infinite dimensional bundles over the base B°. In d), we
construct the Dirac operator D along the fibers. In ), we use Quillen’s formalism in
an infinite dimensional context, to describe the infinite dimensional formula for the
Chern character of KerD—CokerD given in [15]. In f), the Levi-Civita super-
connection is introduced. In g), the first proof of [15] of the Index Theorem for
families is briefly sketched. In h), the second proof [15] is described. Finally, in i),
we show how at least formally, the formalism of superbundles, superconnections
can be seen as an operator theoretic description of the integration along the fiber in
the loop space.
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a) The Construction by Quillen of the Chern Character of a Difference Bundle

We here follow Quillen [25]. Let N be a compact connected manifold.
E=E,®E, is a Z, graded (or super) vector bundle, 7 is the involution defining
the grading: te =(—1)%%%.

Then EndE is a Z, graded algebra, the even (odd) elements commuting
(respectively anticommuting) with t. [x,y], denotes the supercommutator of
x,yeEndE

[x, y]y=xy— (= 1)ecexdeeryyx, (3.1
Tr,x denotes the supertrace of x, i.e.
Tryx=Trrx. (3.2)

Tr, vanishes on supercommutators and on odd elements in End E. A(N) denotes
the exterior algebra of T*N. H=End EQ A(N) is the Z, graded tensor product of
EndE and A(N). Tr, can be naturally extended on H as a linear mapping from H
into A(N). Also supercommutators can be defined in H, and Tr, still vanishes on
supercommutators.

Let V. be a connection on E, which preserves the splitting E=E,®E,. Its
curvature tensor R is an even element of H which we write in the form

[Ry 0
R—[O RJ. (3.3)

A representative in cohomology of the Chern character ch(E,—E,) is
obviously given by

_ R, R,y
ch(Ey—E,)=Tr [exp 2in] —Tr [exp~ 2in] , (3.4)
which we also write as
h(E,—E,)=Tr,| e i (3.5)
C 0 1)— s Xp 21,77: . .

In [25] Quillen shows how to produce other representatives in cohomology
than the obvious (3.5). First, note that V acts naturally on the sections of A(N)QE
by setting for ne A(N), A€E

V(n2)=(dnA+(—1)*"(n A dx*)V, A. (3.6)

Take an odd element B in H. V + B is called a superconnection.

Definition 3.1. The curvature R’ of VV + B is the even element of H
R'=(V+B)>. (3.7
We now have the result of Quillen [25].
Theorem 3.2 (Quillen [257). A4 representative in cohomology of ch(E,— E,) is given

by
R/
Tryexp [ — 2in:| . (3.8)
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Proof. The proof of Quillen is the same as the proof of the invariance of the Chern
character of a bundle when changing the connection. In fact, the theorem holds
when B=0. We then replace ¥ + B by ¥ +sB, and it is easy to show that the
cohomology class of (3.9) does not change with s, using the fact that Tr, vanishes on
supercommutators. [

In particular, if B is an odd element in EndE, we have Quillen’s formula

R'=R+V.B+B*. (3.9)

b) Elementary Properties of a Fibered Manifold

Let X be an even dimensional compact connected Riemannian manifold of
dimension n=2[, which we assume to be oriented and spin. B® denotes a connected
compact manifold of dimension m. M° is a compact connected manifold of
dimension n+m, f is a submersion of M° onto B°. For ye B, set

G,=f"1(y). (3.10)
G, defines a local trivial fibering of M° 2 B°. We assume that the fibers G, are

modelled on X. There is an open covering # of B° such that for Ue%,
Y U)~UxX.
There exists a smooth subbundle of TM, which we note T#¥M?° such that

TM°=TG®TIM". (3.11)

To determine T#M?, it suffices to take the orthogonal bundle of TG in TM? for
any Riemannian metric.

It is clear that for any xe M, f, is a linear isomorphism from T#M?° into
T;B°. In other words in the sense of K-theory

THMO = f*TB°. (3.12)

We assume that B® is a Riemannian manifold. Let gz be the scalar product
TB°. We lift the scalar product in T#M® by f*. Also we assume that TG is
endowed with an Euclidean scalar product. By assuming that TG and T?M° are
orthogonal in TM°, we find that TM° is now endowed with a scalar product.
Py, P denotes the orthogonal projection operators of TM° into T*M°, TG.

Let V' be the Levi-Civita connection of B, V™° the Levi-Civita connection of
M°. The connection V*° can be lifted as a connection on TEM® by f*. We still note
72 the lifted connection.

Let ¢ be the connection on TG defined by

XeTM, YeTG, ViY=P,/¥°Y. (3.13)
Let V be the connection on TM®=TG® THM® defined by
V=ve@r?. (3.14)

Clearly, V. preserves the scalar productin TM?°. Also, for one y € B, the restriction

of V to TG, coincides with the Levi-Civita connection of the Riemannian

submanifold G,.
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Let T, R be the torsion and curvature tensor of V. Set
S=yM"'_p. (3.15)
For X e TM°, S(X) is antisymmetric in End(TM?°).
We first have the technical result.

Theorem 3.3. T takes its valuesin TG. If X, Ye TG, T(X,Y)=0.If Y, Ue TEM®,
V, WeTG

R(V,W)Y=0, R(Y,V)U=0. (3.16)
If YeTM®, Ve TG, S(Y)Ve TEM®. If Y, Ze T¥MC, S(Y)Z € TG. Findlly, VS, T
and the (3,0) tensor {S(-)-, - do not depend on ggo.

Proof. This simple result is proved in [15, Theorem 1.9]. [

¢) A Connection on an Infinite Dimensional Bundle

We now assume that the Euclidean bundle TG over M° is oriented and Spin.

Let F ., F_ be the bundle of spinors associated with TG. They are Hermitian
Spin(n) bundles over M°. Set F=F @ F _. The connection V defines naturally a
unitary connection on F .. Let R be the curvature tensor of ¥V of TG which lifts
naturally as the curvature tensor of F ... Let £ be a dimensional Hermitian bundle
over M°, endowed with a unitary connection which we still note V. L denotes the
curvature tensor of &.

Definition 3.4. Forse R, y e B, H;, H’, ,denotes the vectors space of the sections of
F®¢E, F,®¢ over G, which are in the s Sobolev space of G,.
H?*, H%, are infinite dimensional bundles over B®. Also H*=HY@®H*. H* is a
super vector bundle over B, the even (odd) elements being H? (respectively H®).
For X e TB®, let X¥ be the lift in TEM° of X.

Definition 3.5. V is the connection on HY such that if X € TBC, if his a C* section
of HZ, i
(Vxh) (x)=(Vyuh)(x). (3.17)

Let R be the curvature of V.

Proposition 3.6. If Y, Ze TB°, ﬁy(Y, Z) is the first order differential operator
acting on H% , by

R(Y, Z)=RS(Y™, ZH@1+ 1QL(Y", ZH) — Vi yu, 7, (3.18)
Proof. Clearly,
ﬁy(K Z)=VyuVyu—VyuVym— V[Y,Z]H .
Now f,[YH,ZH]=[Y, Z], and so
R(Y, Z)=RO(Y", Z)®1 + 1Q LY, ZH) 4+ Vp 1yr yur).
Now since V2 is torsion free, it is easy to see that
T(YH, ZHy= —P,[Y",Z"]. O
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d) The Dirac Operator in the Fibers
We now define the Dirac operator D. ey, ...,e, is an orthogonal base of TG.
ey, ..., e, generates the Clifford algebra ¢(TG) which acts naturally FQ¢E.

Definition 3.7. D denotes the operator acting on H,
D=3eV,. (3.19)
1

D, ,D _ denote the restriction of D to HY, H®. D interchanges H%, H®, and so
is an odd element in End (H*). We will write

0 D_
D=[D+ ; } (3.20)

D, acts fiberwise on H°. We want to calculate the Chern character

ch(KerD, ,—KerD_ ).

e) Index Theory and Infinite Dimensional Chern Weil Theory

The Fredholm operator D on H* introduces naturally a rigidity in the description
of H*. D should be viewed as creating a “connection” (in the naive sense!) between
H?% and H®. V+D is a superconnection in the sense of Quillen [25].

Let I be the curvature of ¥ + D, i.e. set

I=(V+D)>. (3.21)

Let A be the Bochner Laplacian acting fiberwise on H?.

We first compute I. fi,...,f, denotes a base of T,B, dy'...dy™ is the
corresponding dual base. We identify f,, dy* to the corresponding elements in
TEMO, T M.

Theorem 3.8. I is the even element in A(B®)QEnd H®,
I=D*—3dy"dy’Vry,, 1y~ VeV ry, e,
+3dy*dy’ [RO(f,, [) @1+ 1Q L(f, fy)]
+dye[R(f,, e)@1 +1®L(f,, e)]. (3.22)
Proof. The computation of I is easy and given in [15, Theorem 2.5]. [

I acts on the Z, graded bundle H®®A(B°) by assuming that if he H®,

n € A(B®), I(hn)= (Ih)n. The principal symbol of I, is |£|*. It follows using standard
sly

elliptic theory that for s>0, e 2 is given by a smooth kernel P(x,x’) (with
x,x' € G,), P(x, x’)is a linear mapping from (F®¢),. into (F®¢),® A,(B°) which is
even.

In particular, for x € G,, P(x, x) is an even element of End (F® é)x@)Ay(BO), SO
that Tr,P)(x, x) is even in A,(B°). L

In the sequel, if E is a fiber bundle, with a connection and curvature C, chE

denotes the cohomology class of Tr [exp— %] chE is the normalized Chern
character of E.
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dx denotes the volume element in G,.
We now have the key result of [15].

Theorem 3.9. The C* form over B°
g Tr, P’ (x, x)dx (3.23)

is closed and is a representative in cohomology of ch(KerD, —KerD _).

Proof. The proof of the theorem consists in showing that (3.13) is closed, invariant
(in cohomology) under deformations of 7. Connections associated with pseudodif-
ferential operators have to be considered. The reader is referred to [15] for more
details.

f) The Levi-Civita Superconnection

The idea of our first proof in [15] is to scale the metric of the fibers adequately.
However, in the same way as for the ordinary Index Theorem, the Levi-Civita
connection is the only one which works, in our case, it will be the Levi-Civita
superconnection. In (3.58), we will give an interpretation of this very similar to
(2.33). R

Namely, let E be the odd element of ¢(TG)& A(B°),

E=e[3<{S(e)e;, f,ye;dy* +5{S(e) f,» f5>dydy”]
+3<S(f)es fyrdy*edy’ . (3.24)

By Theorem 3.3, {S(e)e;, ;) = <S(f<;)f£5 e =S fpfp=0.
The Levi-Civita superconnection V'* on H* is defined by V'* =V + E. Of course,
the superconnection V'*+ D is given by

VE+D=e[V,,+5(S(e)e) fredy* +5<S(e) s fyrdy dy’]
+dy* [V, +3<S(f)es frredy']. (3.25)

Note that V“+D appears formally as the usual Dirac operator of M°
calculated with the Levi-Civita connection of TM° in which the horizontal
Clifford variables f, are replaced by the Grassmann variables dy* This justifies the
terminology which we choose. -+ D should be viewed as a generalized Dirac
operator acting on the whole space M. Note that we use here the full strength of
Quillen’s formalism, since E is a very general odd element of End H® ® A(B°).

Let I” be the curvature of ¥* + D, i.e. I =(V'* + D)% Let P-¥(x, x’) be the heat

sI-
equation semi-group associated withe 2 . Since 7+ D is a mild perturbation of
V + D, we still show in [15] that

[ Tr,[PE(x, x)]dx (3.26)

is a representative of ch(KerD, ,—KerD_ ).

Let K(x) be the scalar curvature of the fiber G, at x.

The key to the explicit computation of ch(KerD, —KerD_) is the following
extension of Lichnerowicz’s formula (2.12), which includes (2.37) as a special case.
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Theorem 3.10. I“ is given by
"= —(V, +5{S(e)ej, fuvedy™ +5{S(e) f,n f>dy dy")?

+ ? + Jee,®Lle, e) +3dy*dy’ Q L( £, f5) + e:dy*® L(e,, f) - (3.27)
Proof. The proof in [15, Theorem 3.5] is as follows. We consider the usual Dirac
operator D* on M associated with the Levi-Civita connection of M. We can then
write Lichnerowicz’s formula (2.12) for D We now scale the metric on B° by the
factor 1/e. This is equivalent to replacing the horizontal Clifford variables f, by
nga. Let D¢ be the new Dirac operator on M associated with this metric. We
again write Lichnerowicz’s formula for D¢ We now observe the following

identities
Vel efs=(/eVfufps  a%B.
Veh/of= .

In the first line of (3.28),[/5 appears with the power 2 corresponding to the length

of f,fsin the Clifford algebra. On the contrary in the second line, ‘/E appears with
power 2, which is strictly larger than the length of — 1 (which is 0). In other words,
to calculate I%, i.e. to obtain what is the result of the calculation where the Clifford
variables f, are replaced by the Grassmann variables dy*, it suffices to identify in

Lichnerowicz’s formula those terms in the Clifford algebra of TB°® where ]/E

appears with a power exactly equal to the length of these terms. So we obtain
327. O

(3.28)

Remark 1. The idea of blowing up the metric on B° plays a key role in both proofs
in [15] of the Index Theorem for families.

g) The Index Theorem for Families: A First Proof
To simplify the exposition, we assume in this paragraph that £ is the trivial bundle,

so that L=0. We first scale the metric in the fiber by a factor % D is then changed

into ]/ED. An easy computation in [15] shows that I is changed into I** given by

) ) 2 (K
i _t(Vei + 5 (Sedes. o) 1edy + 4 (S(e)fu fy >dyadyﬁ) N
(3.29)

sILt

Let P-“¥(x, x’) be the kernel of e 2 . Still we have

ch(KerD, y—KerD_ )= § Tr,[PYt¥(x, x)]dx. (3.30)
Gy

To study the asymptotics of (3.30) as ¢ || 0, we need an analogue of (2.21).

We use the notation of Sect. 2 in a given fiber G,. Parallel transport will be
calculated with respect to ¥ (which coincides with the Levi-Civita connection of G,
on TG) and is the identity on T#M?° identified with T,B°.
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E. ., still denotes the expectation operator for the scaled Brownian bridge x,
in the fiber G, with x(0) = x(1) = x,. p, (x, x) is the heat kernel in G, for the Laplace-

Beltrami operator of G,. We will write x{, 75’ instead of x,, 5.

Definition 3.11. On (%4([0,1]); G,); E, .,), U: denotes the solution of the
Stratonovitch differential equation,

1 1
dUi=U; [z (ey'S(dxe £y tedy*+ o <S(dx;)J;,f,;>dy“dy”’],

=1, (3.31)

Ut takes its values in EndF, ®,(B°) and is obviously even.
As shown in [15, Theorem 4.2], the analogue of (2.21) is as follows.

Proposition 3.12. The following identity holds

Trs [Plll’y,t(xo’ xO)]

1 t
=p,<xo,xo)E;0,xo[exp{—t5K—;"i)ds}Trs[Uar&‘]]. (332
(4]

It is very interesting to interpret (3.27), (3.31), and (3.32). In Tr,[U%t}'‘], the
scalar term is the one which calculates the Z valued index of D . In (3.31) the
expression before e;dy* measures how much the fiber G is not totally geodesicin M.
The expression before dy*dy” measures the lack of integrability of the bundle T# M
in M.

The reader will have noted the singularity % in (3.32). This singularity is not
killed by dx! which is of the order |/.

The key to the proof of the Index Theorem is the possibility of integrating (3.31)
explicitly. Let .o be the set of (n, n) antisymmetric matrices on TG identified with
the vector subspace of ¢(T'G) spanned by (ee));<; Let F be the subspace of
c(TG)® A(B°) spanned by e;dy* dy*dy?. We now do the key observation that & isa
Heisenberg algebra, such that {dy*dy®} spans the center of &, with the
commutation relations

Ledy”, e;dyP]1=26,dy"dy" . (3.33)

Theorem 3.13. U is exactly given by
1s 1 s
Us=exp {E g (Sdxi) foo fpody*dy” + 5 (f) (@' S(dxt)e,, £,) )/ tedy*

h,t t h,t t
j <PG‘C0 S(dxh)f; ’ PGTO S(dXh’)fB> dyadyﬁ} ) (334)
wa z

Proof. UL is the solution of an equation of the form

dU'=U'JF,, U,=I,

where Fa process valued in the Heisenberg algebra & . An elementary application
of the Campbell-Hausdorff’s formula shows that

Ut =exp {Fs+ % {[F, th]} . (3.35)
0

We then use the commutation relations (3.33). O
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We now use the same notations as in Sect. 2. The analogue of (2.23) is here
Tr, [US b “TH()/ tdw")dP, (w")

|/ 2my’

.. . . .1
This is not as obvious as (2.23), because of the singularity Sin (3.34). However, as

Tt P1> (X0, Xo) = | +o(t). (3.36)

shown in [15, Proposition 4.3], since (3.34) is in fact a finite power series, large
deviations as used in [ 10] shows that the singularity in (3.34) is not strong enough
to prevent localization.

Due to (2.25), we have

1
T8t =exp { - -213— i (R (dw™ wh)e, e;> ]/Eeﬂ/fe,-%—o(t)} , (3.31)

where o(t) is calculated in the Lie algebra «7. Also a form of Stokes’ formula shows
thatas ¢} 0,

11 1
; £<S(dx§)faafﬂ>_) g <Vw§Sxo(dWsl)fa9fﬁ> ]
LS, L] (3.38)
g —'—_VL £<Vw1Sxo(dwl)ei=fa> .
Using the fact that if x e c(TG) has length <n, Trya=0 and also
Tree, ... e,=(—2i), (3.39)

we finally obtain in [15, Theorem 4.12].

Theorem 3.14. As t || 0, the differential form Tr,[ P! (x,, x,)]dx converges to a
differential form which is the term of degree ninthe Grassmann variables dx*, ..., dx"
in %(x,) given by

L(xo)=(—1f J exp { - % i (R(Aw*, whe;, e;ydx’dx’

1
(5) wS( AW o, o dy*dy?

4;|-

f i < i S(dwl)el,fa> dx'dy*
+7 (I) (PsSW3)fo PaS(dwy) fpydy*dy” } (3.40)

In the sequel we identify a (n +m, n 4+ m) antisymmetric element B of End TM°
with the 2-form X, Y-{(X, BY). o
Recall that | #(x,)is a representative of ch(Ker D, —KerD _). By changing
G

the normalization so as to obtain ch(KerD , —KerD_), we get

P'(xo)= fexp{ <§ (R(w}, dw})+2V,,.S(dw])

- f (PaS(W3)fs PS(dw;) fy>dy*dy’ >} dP,(w"). (3.41)
0
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Still (3.41) is not very nice. However, we have

Theorem 3.15. For Y, Ze T, M°,

} Y, (R(ws, dwg) +27,,,S(dws ) Z) — 2} (PGS(wy)Y, PeS(dw)Z)
0 0

=— jl“ (R(Y, Z)w!,dw}). (3.42)
0

Proof. The proofin [15, Theorem 4.14] uses the Bianchi identities and integration
by parts repeatedly. In Theorem 3.18, we reproduce the proof of (3.42), but we
interpret (3.42) as being a form of the identity (1.34) (as used in Proof No. 2 of
Theorem 1.9) ie. as a symmetry identity for the Levi-Civita curvature of an
infinite dimensional manifold. [

We have then found that
7 1
L'(xp)= ] exp {J— J<R(-, -)Wi,dws1>} dP;(w'). (3.43)
w 47 o

By a well-known formula of P. Lévy [12], we know that if A is the Hirzebruch
polynomial,

(RS
,f’(xo):A(E). (3.44)

Using (3.30), (3.40), (3.44), we have then given a first proof of the Index Theorem for
families.

Theorem 3.16. The following identity holds

G
ch(KerD, —CokerD )= | A(I;—n) ché. (3.45)
G

h) A Second Proof

We now briefly describe the second proof of the Index Theorem in [15]. Namely,
assume that B° is even dimensional and Spin (this is no restriction).

Let F’,, F”_ be the bundles of spinors over B. By lifting F’,, F_ to M, we find
that M is Spin, and that if C,, C_ are the bundles of spinors over M, then

C,=F.QF )OF_®F.), C.=F.QF )@F_-QF,).
Let D” be the Dirac operator acting on the sections of C,
Di=eV, +)/tf,V}.. (3.46)

We write D’ instead of D’*. Let R’ be the curvature tensor of B®. We now directly
prove in [15, Theorem 5.3].

Theorem 3.17. The index of D', is given by

i .

mj2 iRBO
Ind D', = (- E) [ 4 <—2n_> A § T [P, 0))dsx. (3.47)
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Proof. The idea of the proof is to start with the equality

Ind D, =Tr, [e'wzt)z]. (3.48)

This is not as obvious as it may seem since D" is not self-adjoint. However, by
deforming continuously D" into the Levi-Civita Dirac operator, it is not difficult to
prove that the right-hand side of (3.48) does not change, so that (3.48) holds (see
Remark 2 in Sect. 2).

By making ¢ | ] 01in (3.48), it is then possible to prove — using precise estimates
on the heat kernels obtained via the partial Malliavin calculus (see Bismut and
Michel [16]) — that (3.47) holds. [J

Also we know that classically

2\ (nt+m)/2 :
Ind D', = (- %) (W (%) . (3.49)
MO

More generally, if ¢ is any Hermitian bundle over B° which is lifted to M°, we
can prove that if D’ is the Dirac operator on C®¢, then if R’ is the Levi-Civita
curvature tensor of B°,

£\ m/2 BO
Ind D% = <_ %) | A( iR >§Tr [P¥(x, x)dx]ché, (3.50)
and also
<\ (n+m)/2
IndD’é = (- i) [ 4 (’R> che. (3.51)
7t BO
Now recall that
K(BO)®ZR =H* even(BO, R) . (352)
Using Poincaré duality and (3.50), (3.51), we find that in cohomology
.R ] n/2 - .R
A( > { Tr,[P2(x, x)]dx = <—%> A(%). (3.53)

Since TM®=TB°@® TG, we have

S(iR\ 4 (iR®"\ . (iR¢

-pBO°
Since A <l 5 ) is stable, we get from (3.53), (3.54) that in cohomology
i n/2 R lRG
[ Tr,[P, (x, x)]dx = < - *> (4 <—-) (3.55)
Gy T v 2

The theorem is proved again. [J

Note that instead of D”, we might have as well used the Dirac operator
calculated with the Levi-Civita connection.
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i) Superconnections, Quillen’s Formalism, and Integration
Along the Fiber in the Loop Space

We now hope to convince the reader that the preceding proofs are the infinite
dimensional analogues of the two proofs of Theorem 1.9. M, X are defined as in
Sect. 2. B, Y are the analogues of M, X for the manifold B°. Clearly,

f.X=Y. (3.56)
Also
M°=M%, B°=B'. (3.57)

The assumptions of Sect. 1d) are then formally verified. We will now use the
notations of Sect. 1d). M¥ =f ~(BY) is here the set of smooth loops in M° whose
projection is constant in B®. For y € B, C, is the set of loops in M which project on
y, and the two definitions of G in (1.49) and (3.10) coincide.
On the algebra of even forms on B, let * be the homomorphism defined by
*(dy*dy?)= —2dy*dy’.

We then claim that formally

(Hk>ij*sexp{_(d+ix)x}

* L,y,t 1
l:g; [TrsPI (x! x)]dx] - (27_[)[ 2t
(m 3 (3.58)
ni k2> il .
* y AN (d+iy)X T H0)
‘:C_‘; [Trspl(x, x)]dx:| = W—‘ iexp{—- T _(d"‘lx) 2 }

The best justification we have for (3.58) is as follows.
By formulas (2.18) and (2.33), we know that formally

IndD’,=C | exp— (szlX)ﬁ
—cj exp{— (d+2ix)X _ (d+ix)(2<T4\ 9>}_ (3.59)
M

1
We now scale the metric of B° by a factor o

This is exactly what we did in the Proof of Theorem 3.17. Now combining Proof
No. 2 of Theorem 1.3 and Proof No. 2 of Theorem 1.9, this is also what is done in
Sect. 1. It is then possible to deduce formally (3.58) from (3.59) by introducing an
auxiliary bundle & on B° and by proceeding as in Proof No. 2 of Theorem 1.9.

In particular, formulas (3.31), (3.34) have an easy interpretation. U7} is indeed
an infinitesimal version of parallel transportation along x, for the Levi-Civita
connection of M°. Using the remark of Atiyah contained in formula (2.20), we see
that Tr,[U,t}] exactly constructs the right factor to be integrated along the fibers
of M”.
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Equation (3.58) is not only a nice remark, since it permitted us to define the
Levi-Civita superconnection, and predict the computations with great precision.
As an example of this, we will now relate Theorem 3.15 with the appearance of the
curvature tensor R” in Proof No. 2 of Theorem 1.9.

Recall that 7™° is the Levi-Civita connection on M°. Let R™° denote the
corresponding curvature tensor. Similarly, V™ (respectively V%) is the Levi-Civita
connection on M (respectively MY), RM (respectively RY) its curvature tensor. The
connection V and its curvature R can be extended to M in the obvious way. Here
again, we identify T¥M° with T},B°. If X"e TM", PyX" is a constant vector.

We now have

Theorem 3.18. For T, Ue TMY
VMU =VEU+Pu[S(T)U]— iPHS(TS)Usds, (3.60)
or equivalently
VU=VEU—S(T)U+ PyS(T)U — iPHS(TS)USds. (3.61)
Also if T, U,V, We T.M?,
i(RMO(T, U)WV, Wds=(RXT, U)V, W) + i[<PHS(I;)Vs’ PyS(UIW)
—(PuSUYV,, PuS(TYW,> 1ds

- <<I PuS(T)V,ds, | PHS<US)Wsds>
0 0

- <i PHS<US)Vsds,fPHS<7;>VVsds>). (3.6
0 0

In particular, if x,e M°, if x,is the constant path x,= x, if s—>w.' is a C* mapping
1

from [0,1] into T, G, such that wy =w?, [ wi'dh=0, if Y',Z'€ T, M°, then
0

X0y

dw’!

/ A /1
o > ROV, Zwitdwiy

1
<R§O(Y’, Zw', (J)
1
|
0

= <(R(w;1 R dw;l) + 2Vw;1S(dW;1)) Y,z
—2;1 (PelSu (W)Y, PelSou(W)Z']>

71
- <R§0 (wfl,dgs )Y’, Z’>. (3.63)

Proof. If P is the orthogonal projection of T.,M on T,M¥, we know that
VEU =PVXU, and so

VMU =V,U+(I—PWNU. (3.64)
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Also
VMU=V, U+S(T)U. (3.65)
Moreover, it is easy to see that if Ze T.M,
1
PZ=PiZ+ | PyZds, (3.66)
0
and so
1
(I-P)Z=PyZ— | P,Zds. (3.67)
0

Now if T, Ue TMY, P,V,U is constant, and so by (3.65), (3.67),
1
(I—P)VMU = PoS(T)U — | P,S(T)Uds, (3.68)
0

(3.60) is proved. Since V™ =¥ + S, (3.61) is obvious. Equation (3.62) is a standard
consequence of (3.60).
In particular, from (3.62), we find that
aw!
ds

1
<RL(Y’, Zw, > = [(RM™(Y', Z')W},dwty
(4]
1
—2[(PES(Y'W, PS(Z))dw(!y . (3.69)
0

By Theorem 3.3, S(Y")w'*, S(Z")dw™* € THM, and so

dw’! 1 0
RHY Z'Ww", s > = [ (R™(Y, Z'W",dw™)
0
1
—2{S(Y W, S(Z)dw™> . (3.70)
0
Also classically
RM°=R+DS+[S, S]. (3.71)

Since DS sends TG in THM®, we find from (3.71) that (3.70) is also equal to
i (R(Y, ZHwW, dw™ty + i S(Y W, S(Z)dwy — i S(ZHYw, S(Y)dw™>
—2i (S(Y' W, S(Z)dw'ty = i (R(Y, ZYw' dw'™ ). (3.72)
Similarly, by (3.62), we have

dW/1 1 0
RE (w’l,——> Y, Z/> = [ (R™° (W, dw")Y", Z">
ds 0
1
— [(PSWYY’, PuS(dw')Z Yds
0

+ i (PyS@Aw™)Y', PyS(w")Z Yds . (3.73)
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/1
Moreover, by Theorem 3.3, T<w;1,%> =0. Using (3.71), we have

i (RM (W, dwh Y, Z'y = i (R, dwh Y, Z"> + 2i Vs S(AWNY', Z")
+2 (jl) (SWHY', S(dw)Z"y. (3.74)
Using (3.73), (3.74), we find
(REwWL,dwhY', 2> = i (RWdwhY, Z"> + 2; ViS@WHY', Z">

2 [ (PSAWY)Y, PoS(AW)Z'S. (3.75)
0

Finally, since RY is a Levi-Civita curvature tensor

71 /1
<RL(Y’, Z’)w",%> = <RL<W/I,d—:;—> Y, Z’> : (3.76)

The theorem is proved. [

The analogy of Proof No. 1 of Theorem 1.9 with Proof No. 1 of Theorem 3.16
should now be clear: in particular, equality (3.42) is still a form of (1.34).
Finally, we still want to give a differential geometric interpretation of formula
0
(3.34). Let x. be a loop in M. Let % ' Ds be the covariant differentiation operators
for the connections ¥, V™° along x. Then by Theorem 2.2, if Y, Ze TMY

dX(Y, Z) B 1 <DOY 3 1 /DYy 1
= {) 5o Z)ds= !) Do Z) dst {)<S(dx)Y, Zy. (377
To integrate formally against the fiber C the differential form exp — @ i)X +21X)X )

we must select the terms of maximal (even and still infinite) degree in the vertical
1
Grassmann variables. Now | <% , Z> ds only contains such terms. This is not the
0
case for the second term in (3.77). Indeed, if P3Yy=PgY; =P3Z,=PzZ, =0, we
write the right-hand side of (3.77) as follows:
1 D 1
| <—Z z> ds+ [ {S(dx)Y, Z)
o\ Ds 0
t D 0 ¢ h 0 ¢ h’
= i s PsY,+ Pyt §, ™S(dx,)PyY |, PeZ,+ Pyl (5) ™ S(dx, )PyZ ) ds
1
+ [ <(S(dx)P"Y, PHZ) — (PgthS(dx,)PyZ, Pgtlh S(dx, )PyY).
0 0 1

(3.78)

f
<hsh

1A
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When integrating along the fiber C, in the first term in the right-hand side of (3.78),
terms like P40 [ t8S(dx,)PyY are obviously killed. On the contrary in the right-
0

hand side of (3.78), the last term, which only contains the horizontal PyZ, PyZ’
remains alive.

Formula (3.34), which comes from operator theory, should now have a clearer
interpretation, in the light of (3.58) and (3.78).

The introduction of superconnections, superalgebras in operator theory has
now a natural interpretation on the loop space: it is by this way that operator
theory “understands” the rather innocuous operation of integrating along the fiber
(in the loop space) terms which mix horizontal and vertical Grassmann variables.

Acknowledgements. The author is grateful to a referee for very helpful comments and suggestions.
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