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Abstract. Simple exact expressions are derived for all the Lyapunov exponents
of certain JV-dimensional stochastic linear dynamical systems. In the case of the
product of independent random matrices, each of which has independent
Gaussian entries with mean zero and variance 1/iV, the exponents have an
exponential distribution as N->oo. In the case of the time-ordered product
integral of exp[iV~1/2ίiPF], where the entries of the NxN matrix W(t) are
independent standard Wiener processes, the exponents are equally spaced for
fixed N and thus have a uniform distribution as N->oo.

Lyapunov exponents arise in the study of dynamical systems, including both
deterministic nonlinear and stochastic linear models. Positive exponents indicate
sensitive dependence on initial conditions due to instabilities or the occurrence of
strange attractors. In the nonlinear context, positive exponents have been
observed experimentally in the onset of fluid turbulence [1]; in the linear context,
they occur in the proof of localization for one-dimensional disordered systems [2].
The large-dimensional limiting behavior of the exponents is of interest in both
contexts: e.g., in the analysis of fully developed turbulence [3] and of localization
in more than one dimension (as approximated by one-dimensional strips) [4].
Motivated by Ruelle's proposal [3] that many physical systems should exhibit a
limiting density of exponents, we demonstrate explicitly that that is indeed the case
for certain highly symmetric linear systems. The work reported here is a direct
outgrowth of earlier work on the leading Lyapunov exponent [5].

The linear systems we treat are stochastically time dependent, which distin-
guishes our results from the classic work of Wigner [6] on the limiting density of
states for Hamiltonians which are random but fixed in time. This will lead to the
replacement, in one case below, of Wigner's semi-circle law by a triangle law. The
methods we use are not immediately applicable either to nonlinear systems or to
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linear systems with insufficient symmetry. Consequently, one might expect other
limiting densities to occur in fluid turbulence and in localization (and in the
transfer matrix approach to spin glasses and other disordered Ising models). On
the other hand, the universality associated with the high-dimensional limit [see,
e.g., the discussion following Eq.(lO) below] may make our results directly
relevant [7].

The JV-dimensional linear systems we consider evolve either in discrete time,
according to x(t) = A(t)x(t—l), or in continuous time, according to dx/dt
= (dW/dt)x, where A(t) and W(t) are matrix valued. In both cases x(t) = B(t)x(O)
with B(t) in the discrete case equal to A(t)...A(l) and in the continuous case equal
to the time ordered product integral of 1 + dW(t') or equivalently the time ordered

t ^

exponential of J dW(f) with W related to W in a standard way (see the detailed
o

definition below of Model d). For the stochastic processes A(i) and W(f) we will
consider, the Lyapunov exponents are determined by any of three equivalent limits
as ί-κx) [8]. First, they are the set of numbers obtained as lim(log||x(ί)||)/ί5 for
arbitrary nonzero x(0), where ||x|| denotes the length of x. Second, they are the JV
numbers (counting multiplicity), μ1 ^ μ 2 > ••• = /% obtained as

μfe = lim(2ί)~1log(/cth largest eigenvalue of B(t)τB(ή). (1)

Third, μ1 + . . .+μ k is the maximum over all choices of (linearly independent)

lim(log||x1(θΛ...Λxfe(ί)||)A, (2)

where ||xx Λ ... Λxk|| denotes the fc-dimensional volume of the parallelogram
spanned by x l5..., xk. Our calculations will be based on (2) which we rewrite in the
discrete time case as

ί-oo A V ll^i(/-i)A...Λx feo-i)ll /

in the continuous time case, (3) remains valid with A(j) = B(j) [β{j— I ) ] " 1 .
We make two important assumptions. The first is that the random AQYs a r e

statistically independent and identically distributed (with zero probability of being
singular). Denote by A a random matrix with the same distribution as any A(j).
The second assumption is that of sufficient symmetry so that for any (nonrandom)
orthogonal matrix Q, the random matrix QTATAQ has the same distribution as
ATA. Since \\Axί A ... ΛAxk\\/\\xί A ... Λxk|| is 1)dependent only on ATA rather
than on A itself and 2) is unchanged upon replacement of x l 5...5xk by an
orthonormal basis for the subspace spanned by x l 9..., xk, it follows easily from our
second assumption that the distribution of \\Ax1 A ... ΛAXJ/HX! Λ ... Λxk|| does
not depend on the choice of xu ..., xk. Combining this with the first assumption, we
conclude that the summands of (3) are statistically independent (and identically
distributed) so that by the standard law of large numbers, (3) may be evaluated to
yield

= <}og\\Ae1Λ...ΛAek\\y, (4)
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where < > denotes expectation with respect to the distribution of A and eu β2,...
denote the standard orthonormal basis vectors (i.e., Aβj is the/ h column of A).

In all of the systems we will consider, our second assumption will be a
consequence of a stronger symmetry property, namely the existence for any Q of
some Q' so that

QΆQ is equidistributed with A. (5)

In the first class of systems, which we call Model a, (5) is easily seen to be valid with

β ' = l
Model a. The N columns of A are independent random vectors, each with mean
zero and a common JV-dimensional Gaussian distribution.

Although (4) is valid for Model a, it does not seem possible to obtain a closed
form expression for the μks without further restrictions. We therefore consider a
special case of Model a which we call Model b.
Model b. The N2 entries of A are independent Gaussian variables with mean zero
and variance σ2.

To evaluate μk in Model 6, we note that

\\Ae1 Λ ... Λ Aek\\ = \\Aex Λ ... /\Aek_γ\\ \\PkAek\\,

where Pk is the (random) projection orthogonal to the subspace spanned by
Aeu ...,Aek-ί. Now in Model b9 Aek is a random vector which has the same
distribution as QAek for any orthogonal Q which is either nonrandom or random
but independent of Aek. It follows that if P is the projection onto a j-dimensional
subspace which is either nonrandom or random but independent of Aek (and with;
nonrandom), then ||Pv4eJ has the same distribution as ||P;v4ek||, where Pj is the
projection onto the span of eu ..., ey In Model 1, Aeu ..., Aek_ x are independent of
Aek and thus

( |^f \J (6)
The Gaussian integral implicit in the rightmost expression of (6) may be evaluated
to yield

μk = logσ + [Iog2 + Ψ((N -k+ l)/2)]/2, (7)

where Ψ is the digamma function, Ψ(u) = ΓXu)/Γ(u) and Γ is the standard gamma
function. The formulas (6) and (7) for the special case, k = 1, were known previously
[5].

To obtain the asymptotic distribution of the exponents in Model b, we let
σ = s/]/N, choose k = kN such that kN/N~>(l — v) in (0,1), and use either (7) and the
known asymptotics of Ψ or (6) and the law of large numbers to conclude that
μkN-+logs-\-(\ogv)/2. This means that asymptotically a fraction v of the μks have
values below logs + (logv)/2 with (1 — v) having larger values. It follows that the
asymptotic density g of Lyapunov exponents for Model b as N-^oo is an
exponential,

f2exp[2(κ-logs)], for u<logs
9{U)=\^ elsewhere. ( 8 )

It is instructive to consider the exponentials of the μks since these are analogous to
the eigenvalues of a single (symmetric) random matrix, (ATA)1/2, as studied by
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Wigner [9]. For the A of Model b with σ = s/]/rN, Wigner's formula for the
asymptotic density / of eigenvalues is actually a "quarter-circle" law [9,10]:

/γo\ IV^/'^/V1 y^i^j j , IOΓ U < A < ZS

[0, elsewhere.

The asymptotic density h for the exp[μfe]'s is immediately obtained from (8), by
letting λ = eu:

' " for

elsewhere.

Thus the quarter-circle in (λ/2s) is replaced by a triangle in (λ/s).
What is the status of universality for discrete time models? Wigner's limiting

density is universal, at least to the extent that the matrix A may be taken to have
independent entries with a common non-Gaussian distribution of mean zero,
scaled by s/j/iV. It is also known that it is not completely universal, since the
scaling of Atj may be chosen to depend on i and N in such a way as to obtain
limiting densities different than (9) [10]. The situation for the Lyapunov exponents
appears to be precisely analogous. In particular, we note that an /-dependent
scaling of the Atfs arises as a special case of Model a. It can be shown [11] that
there is a rather simple nonlinear mapping between the limiting density for
eigenvalues and that for exponents; the relation between (9) and (10) is a special
case of that mapping. The mapping is most easily defined in terms of the limiting
cumulative distribution function H(λ) for the exp [μj's (the density h, as in (10), is
the derivative of H):

0, for λ^[]Γ2f(t)dtγ112

1, for A^[fί 2/(ί)Λ] 1 / 2

 ( n )

the unique solution in (0,1) of the equation
\t2lλ2H + t2(\-H)y1f(t)dt=l, for all other λ.

For an explicit list of the (probably overly restrictive) hypotheses under which (11)
has been proven valid, see Theorem 2.11 of [11].

Preparatory to our discussion of continuous time models, we consider another
class of discrete time systems we call Model c. The definition of this model involves
an analytic function Φ and a parameter y. For ease of digestion, the reader may
wish to restrict attention to the special case, where y = 0 and Φ(C) = exp(εC) with
ε>0.
Model c. A = Φ(C) where Φ is an everywhere-convergent power series with
Φ(0) = 1 and C is a random matrix whose entries are jointly Gaussian with mean
zero and covariance, (Ctj CiΊ>} = σ2[δiVδjr-\-yδίj>δji^. The parameter y is neces-
sarily in the interval [ — 1,1]. We note that (5) is valid with Q=Q~i = Qτ, since

<exp [tr(RTC)~]) = exp [tr(σ2^τ^/2 + yσ2i^2/2)] ,

which is unchanged when Rτ is replaced by QRTQ ~1. When y = 0, C is just the A of
Model b; when y = ί, Ctj = C}i for all i and j and when γ = — 1, CV} = — Cjt for all ί
and j .

In order to obtain a system with explicitly calculable Lyapunov exponents, we
take a continuous time limit of Model c which is a matrix valued diffusion process
we call Model d. This model is related to the theory of stochastic flows [12].
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Model d. A is distributed as J5(l) from a continuous time model in which W(t) is a
matrix valued Wiener process with W{\) distributed as the C of Model c; i.e.,
W' = dW/dt is a matrix valued Gaussian white noise with mean zero and
covariance

W{t) is formally related to Wit) by dWit) = dWit) + [<*W(ί)]2/2 which in this case
yields Wit) = W(t) + σ2(l +Nγ)t/2. The relation between Models c and d is that

B(l)= lim exp[Cm(m)]...exp[Cm(l)], (12)
m-» oo

where Cm(j) = W(j/m)-W((j- l)/m) is distributed as C/j/m.
We now evaluate the μfe's for Model d [13]. These have been obtained

independently by LeJan [14], Baxendale and Harris [15], and Norris et al. [16],
using Ito calculus methods directly suited to continuous time processes. Using
Eq. (12) and the fact that Model c satisfies our two hypotheses, we may reexpress (4)
for Model d as

^ ^ Λ . . . A β c ^ / ί | | 2 ] > . ( 1 3 )

Using the fact that \\xί Λ ... Λ xk\\2 is the determinant of the k x k matrix whose
entries are the inner products, xt xp we have

ΪYl — T /— /— —

μx + ...+μk = lim — (logdet(P f ce
c / ι / me c / ι / mP k)> , (14)

m-> oo -̂ i

where Fk is again the projection onto the span of el9...,ek. Standard manipula-
tions then yield

= lim ^ <tr{PJ(Cτ + C)/]/m + (Cτ + C)2/2m

+ C)PkiC
τ

Σ (Ci; + Cί,)(C;,+ C J ,))=~^σ 2 Σ (N-k),

where we have used in the first equality that tr(CτC + CCτ) = 2tr(CτC). These
expressions for μx + ... +μfc imply that for each fe,

μfe = (l+y)(iV~2fc+l)σ2/2. (15)

All Lyapunov exponents vanish when y = — 1 because W(ί) is then skew-
symmetric and B(t) is a diffusion in SO(iV) so that ||x(ί)|| = \\x(0)\\ for all ί. For
y+ — 1, B(t) is a diffusion in the general linear group GL(iV). A diffusion in SL(iV)
can be obtained by replacing W(t) by Wiή-N'1 tr(W(ή); this leaves (15)
unchanged.

The asymptotic behavior of the μk's for Model d is apparent from (15) since the
μfe's are N evenly spaced points between — (l+y)(JV— l)σ2/2 and

(l+y)(iV-l)σ2/2. Choosing σ = s/]/ΪV for fixed 5, the asymptotic density of
Lyapunov exponents for Modeld as N-^oo is uniform between — (1 -f-y),s2/2 and
(l+y)s2/2.
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