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Signs of the Ising Model Ursell Functions
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Abstract. It is proven that the Ursell functions U2k of the Ising model have the
conjectured signs: (— l)fc+1 U2k^Q The proof is based on Aizenman's random
current representation and combinatorics.

1. Introduction

The Ursell function Uk(σl9..., σfc) of a family of k random variables σl9..., σk is
defined by means of a generating function:

8k 1 / £In (exp Σ (1)
h=0

Here < > stands for expectation. Another way to define them is by the formula

y p e P

where the summation is over all partitions 9 of the set / = {!,...,fc},

0> = {Pi9...9Pr}9\0>\ = r9 U Pi = /,PίnP</ = ̂ ,iΦj. The formula (2) follows from (1)

by a straightforward calculation.
In this paper we study the Ursell functions of the general Ising ferromagnet

with pair interaction. We have a collection of random variables σί9..., σN> σt = ± 1,
whose joint distribution is given by the probabilities

(3)
, ι = l , s φ t

where the partition function

and Jsί^0 for all s,t= 1, . . . ,ΛΓ.

Σ Λ ^ σ , (4)
_ s , ί = l , s φ ί
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It has been conjectured by many people including Jaffe, Newman [1], Feldman
[2], that the Ursell functions U2k of a finite Ising ferromagnet with two-body
interactions obey the inequality:

(-I)t+1l72k(<τ,1,...>σίj^0. (5)

For k— 1 this is a special case of the second Griffiths inequality [3]. For k = 2 it
follows from the GHS inequality [4]; the corresponding inequality is called
Lebowitz inequality, [5]. Cartier [6], Percus [7], and Sylvester [8] have proved (5)
independently for k = 3.

The Lebowitz inequality I74 <; 0 turned out to be very popular recently, when
the questions of triviality of certain scaling limits and quantum field theories were
considered [9,10]. For this, the representation through random currents was used
in [9] in particular, a very nice representation for the C74 function was obtained
[see Eq. (11) below], which is manifestly nonpositive.

This representation was the starting point for the present work. We shall show
that similar representations hold for higher order Ursell functions. In particular, it
enables us to prove the following:

Theorem 1. For the Isίng ferromagnet with two-body interaction the inequality (5)
holds.

2. Random Currents Representation

The starting point of Aizenman's representation is the following variant of the
high-temperature expansion. Denoting by b = {s, t} a bond, joining a pair of
interacting sites, with Jb = Jsί, one has for the partition function

Z = ΣΓΊexp{Jr

&σsσ t}.
σ b

Expanding each exponent, and performing the summation over σ, one arrives at
the following representation:

Z= Σ w(n). (6)
n: δn = 0

Here n varies over the set of functions which assign an integer nb to each bond
b = {s, t} of the lattice, s, t = 1,..., N, s φ t, the weight

'(»*)! (7)
b

and the set dn is defined as

dn = {5: Σ nb — °dd 1
b:seb

(so that dn is mod2-boundary). In the same way, for the correlation function

(8)

one has

<σβ...σ f> = Σ w(n)/ Σ w(n). (9)
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For a given current m = {mb}, let us decompose the set of sites into clusters,
which are connected by bonds with non vanishing mb. Let #m(s) be the connected
cluster, containing the site s.

Let now A^ ...,4 fcc{l, ..., N} be even subsets. Consider the ensemble
{n1, ..., nk/Aί9 ...,Ak} of the currents, such that dnl = Ai9 and the statistical weight
of a given sequence n1, ..., nk is equal to w(nl), ..., w(«fc), so that

In other words, this is the ensemble of non-interacting currents.
The following identity was obtained in [9] :

2 3

• Pr {s2, s3, s4 E #nι +Λ2(s1)/{s1, s2, s3, s4}, 0} ,

where the probability of the following event is considered: the connected cluster
^nι+n2(sι) of the current n1 + n2, which contains the site s1? contain also three other
sites s2, s3, s4. Here (n1 + n2)b is n\ + n%. Note that, in general, the cluster ^πι + n2(51)
contains one of the three sites s2, 53, 54, but does not necessarily contain the rest of
them.

Going on to general values of fe, we can obtain a similar representation, using
the formulas (2), (6), (8).

Namely, one has

Z*I72fc(σ1,...,(72k)= Σ Σ Σ (-I) r + 1(r-l)!w(n1)...w(n0,
r = l 9\\&\-r w 1,...,« f c:

where the first summation goes over all partitions & of the set {1, ...,2k} into
r = |̂ | even subsets, 3P — (Pl5...,Pr}, whereas the inner summation runs over all
collections of k currents n1,..., nfc, such that δn* = {s7 1 ?..., s7 J, where
ί/Ί 5 Jί) — ΛJ provided z ̂  r, dn* = 0 otherwise. Changing the variables according
to the formula (n1,^2, ...,nfc)->(w = w 1 + ... +n f e,n 2,..., wk), one arrives at the
following identity:

ZfcL/2,(σ1?...,σ2,)= Σ w(m)Σ Σ (-IΓHr-l)!
m: r = l ^:l^|=r

. m\ fm-nk\ fm-nk

™n*: U

Ξ Σ w
m: &

dm = {l,...,2k}

= Σ w(m)R(m). (12)
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Here I ) is a shorthand for Π ( b i where mb^nb^0, while the two last lines are
\nj b \nbj

the definitions of jR(m,^), R(m). It follows easily from the above definitions, that

l, ..., σ2k) (13)
J=0

What we are going to show is that

^0 for all m^O. (14)

Clearly, it implies (5), because of (12).
In fact, the inequality (14) was conjectured already in [8], where it was checked

for k = 1, 2, 3. The technique of [8] does not permit one, however, to prove (14) for
other values of k. What enables us to prove (14) is the precise combinatorial
meaning of the quantities R(m), which is given by (12) and which we are going to
exploit in the next section. We close this section by the observation that it is
enough to prove (5) only for the case when all the sites s l 5 ...,s2/c are mutually
distinct, since otherwise one can exploit the reduction formula, expressing the
given Ursell function with some coincident arguments through lower order Ursell
functions, see e.g. [8].

3. The Combinatoric Theorem

In this section the main result of this paper - the bound (14) - is proven. Since this
result is purely combinatoric, we shall state it once more in combinatoric terms
and in closed form.

Let G be any graph, i.e. a finite set V(G) of sites and a finite set B(G) of bonds are
given, together with a map π: £(G)->F(G) x F(G)/Z2, where the action of the
nontrivial element g e Z2 on V(G) x V(G) is given by g(υl9 v2) = (v29 1 )̂. In other
words, for any bond b e B(G), π(b) is the (unordered) pair of its endpoints. The
particular cases when π(&) = (v, v) for some v e F(G), or when φ (π~ 1(ϋ1, v2)) > 1
are not excluded. The map π is called the incidence map.

For vεV(G) let S(v) = {beB(G):veπ(b)}. The boundary δGcF(G) is
formed by all sites v e F(G), such that the number # (S(v)) is odd. It is immediate-
ly seen that Φ <9G is even.

A subgraph Γ C G is a subset B(Γ) C B(G), and V(Γ) is by definition the same as
F(G).

By a partition y of the graph G with Φ(δG) = 2k we mean any sequence
Γl9 ...,Γk of k subgraphs of G, such that

1) the sequence B(/i), ..., J5(Γfe) forms a (disjoint) partition of £(G),
2) foralΠ=l,. . . ,/c<9^C<9G,
3) the sequence dΓl9 ...,dΓk forms a (disjoint) partition of F(G), i.e. each site

v 6 dG belongs to the boundary of exactly one subgraph.
Let n(&~) be the number of the subgraphs in the partition 2Γ with nonempty

boundaries. Clearly, ί^n(^)^k. We shall suppose that the numbering of
subgraphs Γ{ is so adjusted that 9/ΪΦ0 whenever i^n(3~).

Two partitions « '̂ =(/!'» ---^O and «^"Λ' = (/Γ, •• ?^
//) are called distinct, if

A) two partitions (δΓ/, ...,3Γn"(^0) and (dΓ^...,dΓ^Ί) are distinct as un-
ordered partitions [i.e. for some i^n(?Γ\ dΓ ^dΓ f for all;]; otherwise if
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B) for some i,j, 1 ̂  ij g n(&") - n(^/x), 3/7 - 3/7 Φ 0, but Γ{ φ /7 otherwise if
C) for some; > n(&~') = n(^""), Γ Φ /7 (which means that the numbering of the

subgraphs with empty boundary is essential).
Let us define now the quantity R(G) :

Λ(G) = Σ(-1)("(JΓ)"1)W^)-1)!, (15)
&

where the sum goes over all distinct partitions of the graph G. It is straightforward
to see that our R(G) is the same as R(m) of the preceding section.

Theorem 2. For all finite graphs G with

Moreover, if G is a disjoint union of two graphs G1? G2, with dGv Φ0Φ3G2, then
JR(G)Ξ=0.

Proof. The proof goes on by induction on the number of bonds, Φ(β(G)).
Suppose first that there is a loop in the graph G, i.e. a bond b e B(G), such that

π(b) = (v,v) with veV(G). In that case we can pass to the graph G' = G\b, and
because to each partition of G' there corresponds exactly k partitions of G -
namely, the loop b can be attached to any of k subgraphs Γl9...9Γk- one has: R(G)
= kR(G/). (Note that in the above argument, the condition C, dealing with the
distinctness of two partitions, is of importance.)

Consider now the case when G contains a site v, which is incident to exactly two
bonds bί9 b2 e B(G). Then, for any partition <y of G, these bonds necessarily belong
to the same subgraph Γ of the partition - because if bl e /"i and b2 e Γ2 φ Γ1? then
vedΓl9ve dΓ2 while v φ δG, and so the definition of y to be a partition is violated.
So, in this case, if π^) = (v, t^), π(b2) = (X ^2)? Λen one can pass to the graph G"
with

- F(G)\ι> , B(GO - [B(G)\(fe1ufe2)]u&12 ,

and with π(fe12) = (t;1,t;2), and π unchanged for other bonds.
From the above discussion,

. (16)

But ΦB(G)> #B(GO, *5(G/X), so that the induction step is made.
It remains to consider the case when for all sites v the number of incident bonds,

φS(t ), is different from 2. Suppose S(t;)^3 for some υ, and bi9 b2εS(v), π(bv)
= ( υ l 9 υ ) , π(b2) = (v2,v). Let us split the quantity R(G):

R(G) = R(G;[fe1,fc2]) + Λ(G;{61,fe2}), (17)

where the first summand corresponds to all partitions with bonds bi9b2 belonging
to the same subgraph, and the second to the remaining ones. The first term can be
treated as above: one can pass to a new graph G'" with V(G"') = F(G)u#, J3(G"')
= B(G), and with

π unchanged for other bonds. It is evident that #(G; [&15 b2]) = K(GW); at the same
time φ S(v) = 2, and so the number of bonds of the graph G can be reduced as
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Fig. 1. The decomposition of the graph G for the case when two bonds bl9 b2 share the same
element of a partition

above (G'"-+(G'")"\ and so the first summand in (17) has the necessary sign by
induction (see Fig. 1).

As for the second term, nothing can be said about its sign at this step. So, as is
usual in induction proof, one has to prove a stronger result: namely, we are bound
to show the following:

Theorem 3. Let G be any finite graph, = 2k, and an arbitrary sequence

of pairs of bonds is given. Then

(-l)k+1Λ(G;{ft ί l,6Jl})...,{fe(ι ι>^ ι,})^0) (18)

where the last quantity is defined by the formula (15) with the summation range
restricted to those partitions, where for any p= 1, ...,n,the bonds bt , bjp belong to
different subgraphs.

The proof of Theorem 3 will be at the same time the continuation of that of
Theorem 2. Again we proceed by induction on fc, and we use the analog of (17): if
for some veV(G) and bl,b2eB(G), π(bi) = (v9vi)9 and (b1,b2) + (bip,bjp) for all
p = l, ...,n, then

fc1,fe2},{6ll,6Jl},...,{feln,feJn}). (19)

Here the first term corresponds to the partitions, which in addition to above
restrictions have bonds bί9b2 settled in the same subgraph, while the second one
corresponds to the remaining ones. Note that the first term can be treated by the
same surgery as that of (17), see Fig. 1. The only additional point is that after
accomplishing this transformation one has to revise the list of pairs of bonds
{bil9 bjj, . . ., {bίn, bjn}9 because it may happen that for some index, say, il9 bti = bί or
b29 and so one has to change b f l to b12. Note also, that while each pair of bonds
(b{ , bj ) from our list shares a common site when it enters the list at some step, it
can be separated later in the result of further surgeries. This, however, is irrelevant
and is mentioned here only in order to clarify the picture.

The proof now goes by successive application of the formula (19). While the
first term of the right-hand-side of (19) can then be claimed to have the necessary
sign by the applying surgery of Fig. 1 and then the induction hypothesis, the
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1 1 . . . 1
Fig.2. Gk: the simplest graph G with #(8G) = 2k

second one cannot be gotten rid of with the help of induction. However, the list of
separated pairs of bonds grows longer after each application of (19). The process
terminates when each pair of adjacent bonds of G will enter it. Let us denote this
final term by the ^-superscript.

There are now two possibilities. First is that for some v e V(G), # S(v) > 1. But
in that case we claim that

indeed, there are no allowed partitions in that case ! This is because after the last
step each bond b e S(v) has to be in different subgraph, say, Γ(b)9 and so v e dΓ(b)
for all such b — s, which is not allowed by our definition.

So we are left with the remaining case when φS(v) = l for all ve V(G). That
means that the G itself consist of k disjoint bonds, fel5 . . ., bk9 see Fig. 2. So we are left
to check (18) only for this graph, which is also the initial step of the induction. We
shall denote this graph by Gk.

Lemma 1. Let G be a disjoint union of Gί and G2, with δGjφO, 5G2Φ0. Then

Proof of the lemma. The above statement can be deduced straightforwardly from
the combinatorial definition. However, in the present paper we can enjoy the
connection (13) between our R(G) and the Ursell functions. Namely, if one has to
evaluate R(m) for some graph (or current) m = {mb} by formula (13), one is allowed
to put all interaction constants Jb for the bonds b with mb = 0, to be zero prior to
differentiating. But in the case of a disjoint graph G the Ursell function itself is
equal to zero, as it can easily be seen from (1), and the lemma follows.

To see that (18) holds for G = Gk, we again use induction, this time in k. For
k= 1, R(Gl) = 1 by definition, and in this case the list of divorced pairs of bonds is
necessarily empty. Suppose (18) holds for k— 1 and for all lists of separated pairs. It
is easy to see that

where the last equality follows from the lemma and the fact that Gk is disconnected
for fe^2.

So it is enough to show that



686 S. B. Shlosman

for all p and all lists of pairs of bonds. But the last expression corresponds to the
partitions where b'q and b% are forced to be in the same subgraph, hence

where the bars correspond to the revision of our list due to factorisation of the
graph Gk, which identifies the bonds b'p, b"p. The last expression has the desired sign
due to induction hypothesis, and the theorems follow.

Conclusion

The method of this paper can be used to derive other correlation inequalities. For
example, by a slight modification of it, the analogous representation can be
obtained for the three-site Ursell function C/3(σ1,σ2,σ3) in the presence of the
external magnetic field (otherwise [73 = 0), which is manifestly negative for positive
fields, thus recovering the GHS inequality.
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