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The U(l) Higgs Model

I. The Continuum Limit

C. Kingf*

Department of Physics, Harvard University, Cambridge, MA02138, USA

Abstract. By using rigorous renormalization group methods we construct the
continuum limit of the finite-volume lattice U(l) Higgs model in two and three
dimensions. The method relies on a proof of the convergence of the effective
action.

1. Introduction

Recently, renormalization group methods have been used to study lattice
regularizations of Euclidean quantum field theories. In particular, Balaban has
proved ultra-violet stability for the finite volume lattice Higgs model in three
dimensions [Ba 1-4], obtaining bounds independent of the lattice spacing. In this
paper we construct the continuum limit of this model in two and three dimensions.
In a succeeding paper, the infinite volume limit will also be constructed, and some
of the Osterwalder-Schrader axioms verified. This model was constructed
previously in two dimensions by Brydges et al. [BFS 1-3].

The U(l) Higgs model is an interacting theory of a vector field Aμ(x) coupled in
a gauge co variant way to a TV-component scalar field φ(x). The classical
(Euclidean) action of the model in d dimensions is

S(A9φ)=lddxl/4 Σ \Fμv(x)\2 + l/2 Σ \Dμφ(x}\2+\/2m2\φ(x)
(. μ , v = l μ = l

(1.1)
The field strength tensor is Fμv(x) = dμAv(x) — dvAμ(x), and the co variant

derivative of the scalar field is

d^(x) - eAμ(x) (qφ)Jx) . (1.2)

The coupling constants of the theory are e, λ and q is an antisymmetric N x N
matrix. The action (1.1) is invariant under local gauge transformations: define

l = Aμ(x) - Sμι(x) , φ*(χ) = exp[ - eqχ(x^φ(x) , (1.3)
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where χ(x) is an arbitrary real function on Rd. Then

S(A,φ) = S(A*,φ*). (1.4)

We study the quantum field theory corresponding to the action (1.1) by using
the lattice approximation introduced by Wilson [W 1]. The model is considered
on a finite regular lattice T& with spacing ε, and (1.1) is replaced by a (gauge-
invariant) lattice action Sε(Tε, A, φ) used to define a functional integral

Zε(Tε) = I (dA) (dφ) exp[ - Sε(Γε, A,φ)l.

These cutoff functional integrals can be analyzed using a phase cell expansion, first
introduced by Glimm and Jaffe [GJ1]. On the lattice, the expansion is
implemented using a block spin transformation. The lattice is divided into disjoint
blocks, each containing ί? sites, for some small integer L. Every field configuration
{A,φ} is separated into an average part {A^φi}, which is constant over each
block, and a fluctuation part [A', φ'}, which varies within blocks. The integral over
{A', φ'} is estimated using a standard weak coupling expansion, producing a new
effective action S(1)'Le(7L>^i>^i) for the average fields. Contributions from
configurations where fields are large can be estimated, and a perturbative
expansion derived for S(l)tLε in the small field region ("large" and "small" fields will
be defined later). By repeating the block spin transformation k times, we produce
an effective action S(k)'Lkε on the lie-lattice. This program has been carried out by
Balaban for the Higgs model in dimensions d = 2,39 giving the ultraviolet stability
bound [Bal-4].

The renormalization transformation can be understood from a different
viewpoint if we re-scale every effective action S(k} to the unit lattice. When k = 0, this
is the original action; the re-scaling replaces the parameters m2, λ, e of the theory
by w2ε2, Aε4~d, eε2~d/2. So for d<4, the action is a small perturbation of the
massless gaussian action given by

Σ \dμAv(x)-d^μ(x)\2 + l/2Σ\dμφ(x)\2 (1.5)
μ , v = l μ = l )

(dμ is the difference derivative on the unit lattice). We can imagine a space of unit
lattice actions as in Fig. 1 the renormalization transformation takes every point
along a trajectory in this space. The massless gaussian (1.5) at G is driven to a fixed
point P in the subspace V.

In our case, the initial action 5(0) is at B, outside the gaussian subspace, and is
driven along a trajectory away from V (this is ultraviolet asymptotic freedom).
Consider a fixed lattice spacing ε0; when Lfcε = ε0, this trajectory is at B\ and the
effective action (rescaled to the e0-lattice) is S(/c)'ε°. It is clear that if the initial action
S(0) is defined on a smaller lattice, it is given by a point C closer to G. So taking the
limit ε->0 produces a sequence of starting points converging to G. Corresponding
to these, there is a sequence of effective actions {S(fc)'ε°}, fc = 0, ...,oo, on the ε0-
lattice.

To construct the continuum theory, we need to know that Zε(Tε) converges to a
finite limit as the initial points J5, C, . . . converge to G. By using the renormalization
transformation, this is equivalent to proving the convergence of {S(fc)'ε°} as fc->oo,
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mαssless gαuss iαn
subspαce V

Fig. 1. Renormalization transformation trajectories in the space of unit lattice actions

or that the points £', C'... converge to some point Q. In this paper we prove that
the perturbation expansions for [S(k)'ε°(A, φ)} converge provided the fields A, φ are
small. By taking ε0 arbitrarily small this allows us to derive convergence of Zε(Tε)
as ε-»0.

We use the non-compact form of the action for the vector field, and also
introduce an explicit vector field mass μ0. However, the methods used in this paper
apply to any other model analyzed using the renormalization transformation, for
example to the compact formulation of the Higgs model under consideration by
Balaban et al. [BBIJ1], [BIJ1].

The paper is organized as follows. Section 2 provides a summary of the
renormalization transformation notation, and a statement of the main result.
Section 3 contains the proof of convergence of the effective action, and hence of the
partition function, and in Sect. 4, we derive the technical estimates used in the
proof.

2. Notation and Results

2.1. Definition of the Model. Let Ω be a subset of εZd; the set of oriented bonds
connecting nearest neighbor sites in Ω is denoted Ω*. If b e Ω* has endpoints x and
y, we write b = (x, y> = <b _, fo+>. Then a vector field configuration on Ω is a map
A:Ω*-+Rι it can also be interpreted as a map A:Ω-+Rd. We identify these
meanings by A((x, x + εeμ» = Aμ(x)9 where eμ is the unit vector in Rd parallel to the
xμ-axis. We assume that A-b = — Ab. A scalar field configuration on Ω is a map φ
: Ω-*RN for some N^2. The scalar and vector fields interact in Ω via a unitary
operator on RN: U(A) = Qxp(εeqA), where e is the electric charge (coupling
constant) and q is an N x N anti-symmetric matrix with \\q\\ = 1. The covariant
derivative of the scalar field is
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= ε-l(U(Ab)φ(b+)-φ(b-)) (2.1)

(we denote by dε the usual derivative on εZd). We introduce an inner product on Ω
for n-component functions, any n:

<f,9>= Σ ΣtftxMx)- (2.2)
ί = l xeΩ

With this notation, the covariant Laplacian on Ω is

(2-3)
beΩ*

The regularized action which we consider is

+ Σ s^lβδm^xMx^ + λ^x^ + E. + E, , (2.4)
xeβ

and the corresponding partition function is

Zε(Ω) = J (dA) (dφ) exp[ - Sε(ί2, X, φ)~\ . (2.5)

Explicit expressions for the counterterms δm2 and E1 will be given later. E0 is
the normalization for the Gaussian measure:

exp[£0] = ί (dA) (dφ) exp[ - l/2<^,(-zlε'β-f-^μ>- !/2<^(-zJε'β + m2)^>].
(2.6)

Since we are interested in gauge invariant Schwinger functions, we shall
introduce sources coupled to gauge invariant operators. Denote by Ώ** the set of
plaquettes on Ω; a plaquette p is an elementary square of the lattice, written
p = <x, x + eεμ, x + εeμ + εev, x + εev> with μ < v. The field strength tensor on Ω is a
map F:Ω**-+R given by F(p)= Σ ε~1Ab. For a function g:Ω**-+R, we define

be dp

*X0)= Σ ^(PMP). (2.7)
peβ**

The gauge invariant operator for the scalar field is \φ\2\ of course this must be
normal-ordered in the generating functional. So for h : Ω->Λ, we have

:\φ\2:(h)= Σ β"ΛW Σ Wi(x)2-(-^ε'β+m2)-1(x,x)], (2.8)

and the generating functional with source g, h is

Zε(Ω, 0, fc) = J (dA) (dφ) exp[ - S£(Ω, A, φ) + F(g) +:\φ\2: (Λ)] . (2.9)

We shall assume that g, h are C°° functions on Rd with compact support. With
abuse of notation, we also denote their restrictions to Ω by g, h. Throughout this
paper, we shall use C to denote a positive constant which is either 0(1) or depends

2.2. Block Spin Transformations. Throughout this paper we will use the block spin
transformations defined in [Ba 1], and the reader is assumed to be familiar with the
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idea of this method. We present below a collection of relevant notation and
formulae connected with the method.

The block size is L, a small integer, and for any Ω C εZd we write Ω(fc) = ΩnύεZd.
To each point y e IίεZd there corresponds a block of Iίd sites on εZd, which we
define as Bk(y) = {xeεZd:yi^xi<yί + Iϊε, i=l,...,d}. The averaging operators
used to map configurations on Ω into configurations on Ω(fe) are

QkAμ(y) = L-k* Σ Aμ(x), (2.10)
xeBk(y)

(Qk(A)φ}(y) = L-kd Σ E7(Λ(/$M*), (2.11)
x<=B*(y)

where the contour Γ^x connects y to x in the following way; writing x7 as the site for
which xeBj(Xj), we have Γy

(k}

x = ΓyίXk_ivΓXk_lίXk_2u . . . Γ X ί t X and the contour Γz w

is a union of bonds on εZd given by

u.-.u^.^w^w). (2.12)

Furthermore, A(Γ)= Σ *Ab and [7(^(JΓ)) = exp[eg^(Γ)]. The block spin
beΓ

transformation proceeds by holding fixed these average fields and integrating over
fluctuations around them. The covariance of the scalar fluctuation field over
blocks of size ύά on Ω is

l , (2.13)

where ak = a(l— L~ 2)(l— L"2*)"1 and a is 0(1). The effective Laplacian of the
average scalar field on Ω(k) is

A^ Lk\Ω,A) = ak(Lk

eΓ
2I-a2

k(Lk

&Γ^Qk(A)Gl(Ω,A)Qk(Ar . (2.14)

We will also need the normalization factor for (2.13):

f/Vιd~2\ j V / 2 ( L k ε )~d | Ω ( k ) |

where (Lfeε)~d|Ω(fe)| is the number of lattice sites in Ω(k}. The covariance of the scalar
fluctuation field over blocks of size lί on Ω(/c) is

C(v>Lk\Ω,A) = (A(v>Lk\Ω,A) + a(ΰ+ίεΓ2Q(A)*Q (2.16)

where C(0)'ε(£2, ̂ 4) = G{(Ω, A). The operator (2.13) can be decomposed into a sum
of contributions from scales between Ω and Ω(/c):

- C(0)'ε(Ω,
j — i

) = *Σ Gfoίfl, A) , (2. 17)

with the obvious definition of Gε

(j}(Ω, A). All the corresponding expressions for the
vector field are obtained from (2.13H2.17) by setting m2 = μl, N = d and A = 0.

After k steps of the block spin transformation, the original vector field A on Ω is
replaced by a sum of k + 1 independent fields, coming from fluctuation fields A]
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defined on Ωu\ and the average field Ak on Ω(k}:

A= Σ A^8 + A(k^ = A'+A(^8

9 (2.18)

where A'(0)'ε = A'0, A™ B = a£IίeΓ2G'j(Ω)QfA'j for lgj^/c-1, and A(k}>ε

= ak(ΰε)~2Gε

k(Ω)Q$Ak. When A is given by (2.18), we adopt the following
convention:

(2. 19)
J = 0

In Sect. 3.3 we will describe in detail the perturbative expansion of the effective
action obtained for the fields φk and Ak on Ω(k} after applying k steps of the block
spin transformation to the original action on Ω. We call this effective action
S(k)'Lkε(Ω(k\ Ak9 φk9 g, h)9 or if Ω(k} is rescaled to have lattice spacing equal to one, it is
written S(k)>1.

Finally we note how operators transform under rescalings of the lattice. If we
rescale εZd to ηZd, the following relations hold between the operators on those
lattices:

= {(s/η)2~dGl (ε/η

•(ηx/s,ηy/έ). (2.20)

When η = L~k we will omit the lattice superscript.

2.3. Statement of Results. We shall consider the model on a torus T defined by

T={xeRd:-Lμ£xμ<Lμ,μ=l9...9d}9 (2.21)

i.e. we use periodic boundary conditions on T. We require that 2LμM~i e JV, each
μ= 1, ...,d, where M is a large integer (this is the same integer that is specified in
[Ba 4]). We then define lattice spacings [εκ = L~ x}, K = 0, . . . , oo so for each K ̂  0,
T can be fitted exactly by neighboring disjoint blocks of Md sites on the lattice εκZ

d

(henceforth called "large blocks"). We write Tε = TnεZd.
In [Ba 1-4] uniform upper and lower bounds were derived for ZEκ(T£κ) in

d = 2, 3. We prove the existence of the continuum limit as K-+OQ.

Theorem 2.1. For the torus T defined by (2.21) in dimensions d = 2, 3,

(i) 3 lim Z*«(Tεκ, g, K) = Z(T, g, K) , (2.22)
K-»oo

(ii) |lnZ(Γ,0,Λ)|gC|7Ί, (2.23)

d

where C depends on g, h and |T|= Π 2Lμ.
μ=l

3. Covergence in a Finite Volume

3.1. Summary of Previous Results. In this section we will recall some results from
the papers [Ba 1-4]. We use the following quantity to define "large" and "small"
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fields:

p(β) = 60(l+logfi"1)p, (3-1)

where p is a small integer and b0 is a constant 0(1). After rescaling to the unit lattice
Ti(k), the effective action is written S(k}Λ(T{_k\ Ak, φk, g, h) with Ak, φk unit lattice
fields. Let us denote by χk(Ak, φk) the function which is one when all the following
inequalities hold and zero otherwise:

,
)4-*]-1/4,

\DAkφk(b)\^p(ύ-lz),

for all y, b and μ, and where

dl 2qAk(b)\φk(b+) - &(&_) .

We can now formulate the basic results of the papers [Ba 1-2].

Theorem 3.1. Let T be defined by (2.28) in dimension d — 2,3. Then for some fixed
integer J, for all K^J, and all k^K — J, and for some σ > 0,

,h)*ί (dAk) (dφk)ιk(Ak, Φk) exp[ - #*>• W>, Ak, φk,

(3.3)

, Λ) £ J (dAk) (dφk)χk(Ak, φk) exp[ - S™> \T^\ Ak, φk, g, h) + C(Zίεκ)
σ | T|]

(3.4)

d

Once again, C depends on g, h and | T| = Π 2Lμ. The bounds on the fields (3.2)
μ=\

are different from those used in [Ba 1-2]. This change is justified in the Appendix,
and also the inclusion of sources g, h is presented. The reader is referred to [Ba 1-4]
for the proof of Theorem 3.1. We will also use extensively the decay and regularity
results obtained in [Ba4] for the operators (2.13), (2.14), and (2.16). When Ω= Tε,
the torus, all operators are defined with periodic boundary conditions, and for
covenience we will omit their volume dependence. When Ω is a proper subset of Tε

and β(k) is a union of large blocks on 7$>, we will define Gε

k(Ω, A), A(k}>Lkε(Ω, A) and
C(k)'Lkε(Ω,A) using Neumann boundary conditions on dΩ.

Definition 3.2. Let A be a vector field configuration on Ωφ where Ω(k)cT{k) is a
union of large blocks and η = L~k. Then A is regular on Ωη if

IS^xJI^C^fi)2"^"1 (3.5)

for all xeΩη, μ, v= 1, ..., d and some β>0 (e is the electric charge).
The following theorem summarises the decay properties of the operators (2.13),

(2.14), and (2.16).

Theorem 3.3. Let A be regular on Ωη, with η = L~k, and let Ω(k} be a rectangular
parallelepiped which is a union of large blocks on T^k}. Then for all k^K, some
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(50>0, 0<α<l, andforf:Ωη-+RN,

M<*>(β, A) (x, y)\ , |C(fc)(0, A) (x, y)| £ Cexp[- δ0\x~ y\] , (3.6)

)| ̂  Cexp[-(S0 dist(x, supp/)] ||/||, (3.7)

(3.8)

Finally, define (5C(fc)(ί2,^) = C(fc)(Ω,^)-C(fc)(^l) and <5Gfc(β,yl) = Gfc(β,4)
- Gk(A); then for x, y ε Ωη9 δC(k\Ω, A) and δGk(Ω, A) satisfy the bounds (3.6) and
(3.7H3.8) respectively, with the additional factors

and

exρ[ - δ0 dist({x, y}, δβ) - δ0 dist(supp /, 9β)]

respectively on the right-hand sides.
Theorem 3.3 is proved in [Ba 4]. It implies the same bounds for the vector field

operators (of course with A = ΰ).

3.2. Convergence of the Partition Function. We will use the convergence of the
effective action in the small field region to deduce convergence of the partition
function. Consider the model defined on the lattices TEκ and Tεκ+n for some integer
n. Then by applying the renormalization transformation k and k + n times
respectively we generate two models on the same unit lattice T{k\ with effective
actions S(k)tl and s(k+n)ίl. The following theorem is the core of this paper.

Theorem 3.4.

χk(Ak, «| S« W >, Ak, φk, g, h) - S<* +"> \1?>, Ak, φk, g, Λ)|

S C(L-*(ΰ£κΓ
β+(Lkεκγ) |Γ| , (3.9)

where 0<y<l,0<σ, β and C depends on g, h.

We can now prove Theorem 2.1. We apply the renormalization transformation
k times to Zεκ(Tcκ,g,h) and k + n times to Zeκ+"(Teκ+n,g,h). Theorem 3.1 gives
upper and lower bounds on these partition functions in terms of S(k)> 1 and s(k+n) 1.
Since ίίεκ = ίf+"εκ+π, the fields Ak, φk have the same bounds in each integral.
Hence

|Zε*(Tεκ, g, h)-Z^»(Tεκ+n, g, h)\ ̂  f (dAk) (dφk)χk(Ak, φk)

• |exp[ - S(k) 1 + C(Lk

£κ)
a I Γ|] - exp[ - S(k + n) » + C(ύeκγ | Γ|] I

(3.10)

Using Theorem 3.4 and the bound \ex-ey\^\x-y\(ex+ey),

(3 . i o) s C(L- yk(iϊ£κ) - β + (ΰεκ)
σ) I n (zεκ + zεκ + »)

• exp(C(ίίεκr I Γ|) + exp[ - p(Lkεκ)
2 + C\ Γ|]

^ C(L~ >\l*εκ) ~ » + (Lkεκγ) exp C\T\, (3.11)
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where we have used the ultra-violet stability bound and exp[— p(ε)2]^εσ for ε
small, since p ̂  1 . Of course we are free to choose k as we like. To show that (3.1 1)
vanishes as K-κ>o, we can take

(3.12)

in which case for any n
c^. (3.13)

Hence {Zεκ(Tεκ,g,h)} is a Cauchy sequence and converges to a unique limit as
K-+OO. The uniform bound in Theorem 2.1 is just the statement of ultra-violet
stability.

3.3. The Effective Action. The effective action at the feth step can be written in the
following way:

tfk> \T*\ Ak, φk9 g, h) = 1/2<Λ, ̂ (fc)Λ> - lnZ fe+ 1/2<^, Λ%4(k))Λ> - lnZk(X<«)

+ EQ + P«» i(T<k\Ak9φk9g9K)9 (3.14)

where A(k} and Zk(A) are the rescaled versions of A{k}'ε and Zk(A), and

(3.15)

Henceforth we will always denote η = LΓk, η' = L-nη = L-(k + n} and \T(k}\ = \T\
d

= Π 2Lμ. The interaction term P(/c)' 1 in (3. 14) is given by derivatives of a function
μ=l

Efc, given below. The scalar field φ is separated into an average and a fluctuation
part as follows:

'+φ^. (3.16)

Then we define Eί to be
c k-ι 1

E'k(e'9λ'9τ9θ9Ak9φk9g9h) = -In j Π d^ϋ,.̂ ^
I 7=0 J

where 7(0)fl/ depends on ^lx, φ' and 4fc, ^fe, as well as on the parameters e'9 λ\ τ, θ.
The interaction P(fc)' x is a sum of derivatives of (3.17) taken with respect to e\ λ'9 τ,
θ; it is sufficient to take derivatives up to order ή=13. These derivatives are
represented by connected graphs on Tη; the vertices are those present in F(OM, and
the propagators are the co variances of A'j and φ' in (3.17). V(0}>η contains the
following vertices (for convenience we write Ω in place of 7^):

-λ'λ(ύέ)*-d Σ n*\Φ'(χ)+Φ(k\χ)\4, (3.18)
xeΩ

- l/2(ύέ)2 Σ ηdδm2(x; e'e, λ'λ) \φ'(x) + φ(k\x)\2 , (3.19)
x<=Ω

τ(Lkε)dl2 Σ ndβ(p)(n~' Σ (A'b + A$*)\, (3.20)
peΩ** \ bedp J

2 Σ η"h(x) Σ [(#(*) + $*)(x))2 -(-^" Ω + m2(Lfcε)2)-1(x,x)] (3.21)
xeβ ί=l

ml beΩ*
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U(A^qm(φ/+φ(k))(b+y](e/Ayn with l^m^ή, (3.22)
nm~2

(e(Lfeβ)2^2rL Σ ηd{.(Φ/ + Φ(k))(b+)qm(Φ/+Φ(k})(b+)-](e^Abr
mi beΩ*

with m even,
2<m^ή. (3.23)

The remaining vertices occur when the renormalization transformation of the
scalar field is expanded about A' = Q:

(3-24)

(3.25)

qm(ψ' + φ(k})(x) with l^m^ή. (3.26)

These vertices are made by multiplying two of the expressions (3.24)-(3.26), one
of which must be (3.26) for some m, at the same y e Ω(k\ If the expressions are
different, the product is multiplied by — ak; if the same, by — (1/2)%. The resulting
vertices are summed over y e Ω(k\

Finally, the vacuum energy counterterm E^e'e, λ'λ) is also a part of V(0)'η. We
shall see that E^ is also represented by connected graphs on Tη built from the
vertices (3.18), (3.19), and (3.22), (3.23).

Except for the vertex (3.26), the vector fields Aj enter V(0}'n in the combination
A. Therefore, in a graph in P(k}' 1

9 we can sum over the propagators for these fields
using (2.17), and get the full propagator Gk for the "field" A. When vertex (3.26)
occurs in a graph, we can use (2.17) and (2.19) to write the propagator as

G&>(^:^*0 = Σ ηG^(b',b). (3.27)
b εΓXj + 1 > x

When the external field φ(k] occurs at a vertex v in a graph in P(fe)> 1, we can use
(3.16) to write it as

φ»\v)= Σ a^Gk(A^Qt(A»^(V>y)φt(y). (3.28)
y e T W

If there are s such fields in a graph G, the contribution to P(/c)' 1 from G can be
written N

E(k)(G) = Σ Σ Φl\y,\^4ls(y^Las(G, ^(fc); {yt}) . (3.29)

We will omit indices on E{k) from now on. To facilitate our analysis, we will use
graphical notation. As usual, we use a wavy line for a vector field propagator, and a
straight line for a scalar field propagator. A derivative acting on a propagator is
denoted by an arrow at the appropriate vertex. We also introduce the "full"
propagators for the fields,

and we define Cυ = Gk + FktV and Cs = Gk(0) + FktS . The propagator Cv (or Ffc ) will
be denoted by a wavy line with one dash (or two dashes) through it, and similarly
for Cs and F f e .
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In order to isolate divergences in graphs, we need the notion of degree of a
graph. A line in a graph is internal if it carries one of the propagators Gfc, Gk(A(k)},
Cv, Cs or their derivatives. A line is external if it carries anything else, for example
akGk(A(k]}Qk(A(k}Y . An internal vertex is the endpoint of at least one internal line.
Then the degree of an internal vertex v in a graph G is defined by

DG(v) = (l — d/2) (number of ends of internal lines at v without derivatives)
+ ( — d/2) (number of ends of internal lines at v with derivatives)
+ (number of factors η at υ)
+ (value of m when v contains (3.26)). (3.30)

There is always one factor ηd at v, coming from the integration over Tη; the vertices
(3.18)-(3.26) may produce other factors. The degree of a connected graph G is then

D(G) = ΣDG(v)-d, (3.31)
veG

and the degree of an arbitrary graph is the sum of the degrees of its connected
components. The divergent graphs are those with non-positive degree.

We write ( — δm2 + Γε) for the full one particle irreducible graph with two
(undifferentiated) external scalar field lines. The divergent graphs in the graphical
expansion of ( — δm2 + Γε) have order less than or equal to four in the couplings e
and λ, and so we define

δm\x) = Σ e«λβδm2(x; α, β) . (3.32)

This definition is inserted into Γε, and terms of the same order in e, λ are
collected together; this allows us to define <5m2(x; α, β) by the equation

-δm2(x;^β) + Σ εdrε(x,yι^β) = Q. (3.33)
yeβ

Equation (3.33) is solved recursively beginning with j8=l, and it implies a
graphical expansion for δm2(x) :

o
(3.34)

The vacuum energy counterterm E1 is defined by

)e^=o, (3.35)

where Sε(Ω, A, φ) is given by (2.4). Clearly El is represented by a sum of vacuum
energy diagrams on Γ; the vertices are (3.18), (3.19), (3.22), (3.23) with A(k) = Q,
φ(k) = Q, and propagators CJ, Cη

s.

3.4. Convergence of α Diagram. We now establish Theorem 3.4 for a diagram H
with s external scalar field legs, as in (3.29), and t internal vertices. Introduce the

d

functions {χj, z e T(k\ where χz(x) = Π l(x

μ ~ zμ) The positive real function χ is
μ=ί
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C°°, supported in [-2/3, 2/3], equal to unity on [-1/3, 1/3], and chosen so that

Σ *,(*) = !, each χeTη. (3.36)
2 6 T < f c >

By inserting (3.36) at each internal vertex of H, we can rewrite (3.29) as

yι, . . . ,y s eT< k > z 1,. . .,z teT< k>

(3.37)

The next theorem expresses the results of this section. We define distduj) to be
the length of the shortest tree graph connecting {t^}.

Theorem 3.5. With the notation of '(3.37), and for some n l 9 <5, y, σ > 0 depending only
on ή, d, and ρ ̂  s/4,

(i) \^(H,

ϊ C(L*ε) Wϊε))"' exp[ - δ distCfo}, {z,})] , (3.38)

w/iere θ is k or k + n;

(ii)

z,})]. (3.39)

Using Theorem 3.5, we can now establish Theorem 3.4 for the graph H. From
(3.37) we have

£<*+->(fl)-£»>(H)= Σ ΛW .
{*},{*«} eΓ(*>

-E^ίίf^W ί^^zJ)}. (3.40)

Define R = dist({3/i},{zg}); when R>p(ΰέ), we have

exp[-^]^C(Lfeε)d+σexp[-l/2(5R] (3.41)

for any σ, since p> 1. Therefore using Theorem 3.5 and the bounds (3.2), we have

\E(k+n\H}-E(k\H)\

)nι |χ(jR>p(Lkε))(Lkε)d+σexp[- l/2δR]

Σ exp[-
zβ}eTW

(3.42)

The proof of Theorem 3.5 is similar to the proofs of renormalizability in [Ba 3].
We shall first prove (3.39). There is a smallest cube D on Γ(fc) which is a union of
large blocks and which contains every vertex y{ and z . We denote by Dr, D" the
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smallest cubes on T(fe) containing the large blocks closer than 2p(ίf ε), p(ΰ&) to D .
Let B be the value of Ak at some point x0 in D ', and define Ά(k\x) = A(k\x) — Bμ for
x in D '. Using Eq. (A.4) from the Appendix we have

Bμ = (1 + μl(ΰέ)2ak-
 1)akGkQfBμ . (3.43)

Therefore writing y4k>μ(w) = ̂ k>μ(w)-(l) + μo(^Cfi)2%~1)^μ?

 we have

= Σ KGfcρ*)(x,w)4>). (3.44)

From the bounds (3.2) and using Theorem 3.3, we deduce that

x)\ ^ Cp(Lkε) \x - x0| . (3.45)

In the expression E(k}(H, A(k}; {yt}, {zj), we replace each propagator Gk(A(k))
by the sum Gfc(Dx, yl(fe)) — δGk(Ώ'9 A(k}). Multiplying out the result gives a sum of
graphs of the same form as H, but with appropriately changed propagators. A line
carrying δGk(Ώ\A(k)} (or its derivative) is treated as external. We now make a
gauge transformation of the external field A(k} in each propagator and vertex
function in the graph, except in the propagators δGk( D ', A(k)). A(k)(x) is replaced by
A(k\x) for each x e D x ; by gauge co variance this is equivalent to a unitary
transformation at each vertex connected to an external field or an external line.
Specifically, for each graph produced by the expansion, there is a subset of vertices
{vι} such that the only dependence of the graph on B is the following factor at each
vertex υf.

U(B(Γ^v)) = eχple(Lkε)2-^qB(Γ^v) ] . (3.46)

We next want to write each graph as a (non-local) polynomial in the field A(k\
We do this by expanding around ΘA(k} = Q; θ is a C°° function with 0(x)= 1 for
dist(D%x)^l/3p(Lkfi), and θ(x) = 0 for dist(ϋ",x)>2/3p(LV). For future re-
ference, we give the expansion for a general fluctuation field A about a
background field B. The co variant derivative becomes

, (3.47)

where

(3.48)

The remainder term can be written as Rn(x) = (xn/n!)Vn(x), and Vn(z) is an
i ^

analytic function of z given by Vn(z) = nl(\—t)n~ Vzdί. Therefore taking A = ΘA(k)

and using (3.45),

\Rn+l(e(Ί^&)2-dl2qA}\^ ° (e(ΰε)2~d/2p(ΰε)2γ + l . (3.49)

Similarly the averaging function becomes

(Qk(A'+B)φ) (y) = (Qk(B)φ) (y) + (F2<k(Af, B)φ) (y), (3.50)
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where

(F2.k(A',BW)(y)= Σ ηd+lFltk(A'(Γ^γ>U(B(φ)φ(X). (3.51)
xeB*(y)

Together these imply an expansion for Gk(D', A' + B):

Gk(Ώ',A+B) = Σ Gk(Π',B)ίVk(A',B)Gk(a',B)T + Gk(0',B)
m = 0

• [Vk(A'9 B)Gfc(D', B)7Vk(A'9 JB)Gk(D', A' + B) , (3.52)

where the vertex function is

^ fΛ(W^
+ ahF2tk(A'9 B)*βk(B) + akQk(B)*F2tk(A'9 B) + akF2,k(A', B)*F2,ftG4', B) . (3.53)

These equations are used to expand the propagators, vertex functions and
covariant derivatives, taking A' = θΆ(k) and B = 0. The result is a sum of new
graphs, all with vertices inside D ', and with vector fields A(k} at the new vertices.
Note that these graphs have the same structure as those already present in P(/c)' *.
Finally, we write every scalar field propagator as a sum

Gk(D', (1 - θ)A(k}) = Gk(Q) + δGk(Ώ\ 0) + <5Gfc(D', D", (1 -θ)A(k}) , (3.54)

where δGk( D ', D \ A) = Gk( Π',A)- Gk( D \ A). Using (3.44) we can hold the fields
Ak fixed at some points {wj in T(k}. So if we denote by {H} the graphs obtained
from H by all the previous expansions, we can write

E»\H, A^ {yj, {z4}) = Σ { Σ Ak(Wί)...Ak(wr)
{H} [w1,...,w reT('c)

E«\H;{yi},{Zq},{Wl})}. (3.55)

There is a similar expansion of E(k+n}(H, A(k+n}; {yί},{zq}') with the same
graphs H, so the proof reduces to the following proposition.

Proposition 3.6. With the notation of (3.55),

t},{zt},{Wl})\ZC(ί!εΓ1'2

zJ.iwJ)]. (3.56)

To see that (3.39) follows from (3.56) consider

|£*+">(ff,Λ*+"

^ Σ Σ

!!. (3.57)

Using the bounds (3.45) and recalling that x0eΠ\ so |x 0~yil? \xQ~z

q\
^ Cp(lίε) each i, <2, we can use the exponential tree decay in(3.56) to sum over {wz}
and get (3.39) with n^ = n2 + 2r (the number of graphs H depends only on ή and d).
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We now prove Proposition 3.6. Every internal line in H carries a propagator
Gfc, Gfc(0) or one of their derivatives, which may be decomposed by writing Gl

fc-l
= Σ GY> see (2.17). The resulting product of sums is multiplied out and rewritten

j=°
as a sum over orderings / = {/(I), . . ., l(m)} of the m internal lines. This is followed by
a sum over integers {jΊ(p}}, p=l,...,m, compatible with this ordering, meaning

)^ ^Λ(«) (3 58)

A term with two or more integers equal is arbitrarily assigned to one of the
orderings with which it is compatible. Denoting by H(j) the graph with specified
integers; = {jι(p}} on each internal line, and omitting the external vertices, we have

Σ E*\H(j)}. (3.59)
j compatible

withΓ

There is a similar representation for E(k+n\ff)\ for convenience we write the
k-l

decomposition of Gjf+n in the form GJ['+ϊl = Σ Gj^, where

G^n. (3.60)

We divide the internal lines into two sets S and Sc; in 5 all integers are zero or
positive, while in Sc all integers are negative. Hence we can write

(3.61)
sc

where E(£c

+n\H) contains a sum over orderings and integers compatible with S.
Before proceeding, we state the required bounds on propagators. For a propagator
G(x, y), we define a "Holder derivative" by

(dΛ(x, y)G) (z) = |x - yΓ α{G(x, z) - G(y, z)} . (3.62)

Proposition 3.7. For x, y, z<=Tn, 0<α<l, and all O^j^/c- 1,

\Gb(x, y)\ , I^G^x, y)\ ̂  C{(Eηγ-\ (EηY ~d}

^)-1^-);!], (3.63)

exp[ - δ,(Eη) ~ 1 dist (B\x\ fe)] , (3.64)

(3.65)

Furthermore, if we replace Gn

(j} by Gη

u) throughout, and replace Γ^^x by
Γχjΐn^ then the bounds are valid for - n ̂  j ̂  fc - 1 .

Proposition 3.7 follows immediately from Theorem 3.3 and the scaling
properties of the operators. We will first establish (3.56) for a graph with no
remainder terms from the expansion (3.48), no final terms from (3.52) and no
propagators δGk. These restrictions will be dropped later. For a fixed ordering ζ we
define a sequence of subgraphs ffl9 ...,//m as follows:

Hΐ = {the line /(I) and its two vertices} ,
(3.66)

Hi + ί =/^u{the line /(z'-f 1) and its two vertices} .
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Some of the subgraphs Hί may be divergent. In Sect. 3.5, we will show how
graphs may be added together to form renormalised graphs, in which every
subgraph has positive degree. We will assume below that this has been done
already, and that we are analysing a renormalised graph.

Consider first a term on the right-hand side of (3.61) with Sc non-empty. We get
an upper bound for this expression by replacing every propagator by the bounds
given in Proposition 3.7 and Theorem 3.3, and bounding vertex functions
appropriately (the sources, g, h are bounded by C). By extracting a small part of
each propagator, we get the exponential decay on the right-hand side of (3.56). Let
x, y be the endpoints of the graph H1 =/(!); there is a factor exp[ — δ0IΪ~jl(l)\x — y\]
present. All the other propagators attached to y carry similar exponential factors,
but withj ί(1) replaced by some jί(p)^j/(1). These propagators are "transferred" to x
by using the inequality

^iβ-^lx-zl], (3.67)

where δ1 is a fraction of δ0 chosen so that after all these transfers there is some
decay left on /(I). We then sum over y, giving

^1>]-d. (3.68)
y

Combining this factor with the power of El(l]~k already present from the
propagator on /(I) (and any extra factors η at x and y), we get altogether the
exponent D^J. If /(2)eSc, we can sum over;/(1)^;Z(2), since D(H1)>Q:

J'l(2)

Σ (iJ-γ(H^^C(El^~k)D(Hl). (3.69)
j= -n

Graphically, we have shrunk /(I) to a point in H; the remaining vertices are
summed with the constraint — n ̂ jl(2}^jl(3} ^ . . . ̂ jί(m) ̂  k — 1 . We continue doing
this until Sc is exhausted, so that /(z + 1) e S. This gives

Σ (U-k)D^^C(L-^(Hi}^CL-y\Bl^ + l)'k)D(Hl}'y. (3.70)
j=-n

For y small enough, D(Hi) — y>0 and we continue the process, eventually
shrinking H to one point x. The final sum over 7^ is then bounded by C, and the
sum over x by |D'| ̂  C(p(iίc))d. The vertices in H give the factor (Lfeε)ρ, and (3.70)
gives L~yk. Finally, there is a sum over orderings of the lines, again depending only
on n.

So we reduce to the case with Sc empty, i.e. we must bound |£(/c)(#) - E($ + n)(H)\.
This is done by replacing one by one every factor in E(φ+n\H) by the corresponding
factor in E(k\ff), and bounding the error at each step. First, we replace the
propagators on the external lines, using the following proposition proved in
Sect. 4. When x'e Tη , we denote by x that point in Tη for which x'eB^x).

Proposition 3.8. For x', /e Tη,9 0<α< 1, and y sufficiently small,

k+BGZ'+nβf+ll(x/, z) - akGlQΪ(x9 z)\ ,

k+»3Jf GZ'+nβ?+II(x/, z) - akdlGlQt(x, z)\ ,

\(da(x', rtak+nGΪ+nQΐ+n) (z) - (dΛ(x, y)akGlQΪ) (z)\ , (3.71)

n) (z)-(δα(x, y)akd"μGlQΪ) (z)\
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If we replace such a propagator in E(^n\H\ the error is the same graph with a
difference or propagators on one line. Using the method presented, this error is
bounded, and Proposition 3.8 gives the desired factor L~yk. All such propagators
are replaced in this way. The sources 0μv(x')? h(χΊ and the partition of unity
function χ(x') can be replaced by gμv(x), h(x) and χ(x) respectively, since their
derivatives are uniformly bounded. The operator (3.46) can be replaced using the
following bound:

(3.72)

Now we replace propagators on the internal lines, using the following
proposition (also proved in Sect. 4):

Proposition 3.9. For Q^j^k— l ,0<α<l , and y sufficiently small,

IG^x',/) - G<ω(x, y)\ , IδJί'G&Oc', /) - δJGfoC*, y)\

(3.73)

^ CLΓ γk(Eη)3 ~d~y exp[ - δ0(Eη) ~ 1 dίst(BJ(x)9 /?)] , (3.74)

(3.75)

First we fix the ordering Γ of the internal lines. If we replace a propagator
G|̂ (x', /) by GJ^(x, y), the error is the same graph with a difference of propagators
on one line. Redoing the analysis, we see that the degrees of some subgraphs have
been reduced by y; for y small enough, the exponents D(H^) — y are still positive,
and the bound proceeds as before. This replacement is made for every internal line,
and every ordering /. Having done this, we can replace the sums of internal vertices
x' over Tη> by sums over x e Tη, and this gives exactly E(k\H), proving
Proposition 3.6

The remainder terms we neglected give large positive powers of ίίε, so it is
sufficient to bound E(k\H) and E(k+n\H) separately. We note that Proposition 3.7
also holds for GJ^G7) and G|^(D', Ά(k}), since Theorem 3.3 gives bounds on these
operators also. The remainders from the expansions (3.48) and (3.52) give factors
((ύέ)2~*~d/2)n + 1, for any α>0. When a graph contains a vertex with extra powers
of η or η', we can extract ηy = L~ yk. The propagator δGk( D ', A(k}) (x, y) is bounded
by Cexρ[ — δ0\x — y\ — δ0p(Jίε)], since x, y e D . The propagators δGk(Ώ', D",
(l-fl)!(/c)) and (5Gfc(Dx/

?0) give a factor exp[-(50dist({x,y}, 3D")]. If x, ye D,
this gives exρ[ — <50p(Jffε)]. If x, y £ D, then <$Gk must come from the expansion
(3.52), so there is a string of propagators, one of which is δGk, which begins and
ends in D . By extracting a small exponential factor from each of these propagators,
we get exρ[ - δ dist( D , 3 D 0] .

So we have established Proposition 3.6. The factor (ΰε)6 comes from the
vertices (3.18)-(3.26). Examining these vertices, we see that in each of them we may
give a factor (ίίε)1^4 to every field φ(k\x). Therefore ρ^s/4. The bound (3.72)
gives (Lfeε)~1/2.
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In order to derive (3.38) we can bound each propagator G(x, y) which is larger

than 3|/5 (say) by exρ[ — δ0\x — y|], and treat it as an external line. The graph then

factorizes into a product of localised subgraphs, in each of which the methods
outlined yield the desired bound.

3.5. Cancellation of Divergences. Divergent subdiagrams vanish either because of
some symmetry requirement (gauge covariance or the approximate Euclidean
symmetry of the lattice), or because they are cancelled by similar divergent
diagrams in the counterterms δm2 and E^. We consider together all graphs of the
same order and type in P(k)ϊ *; for each ordering /, these graphs can be combined to
form renormalised graphs, which are convergent. This property, which is a
consequence of the renormalizability of the model, is proved in [Ba3].

We shall present below a more precise version of this statement. Recall that
graphs in δm2 and E^ are defined with the propagators CJJ and Q; these may be

K
decomposed as Cη = Σ <%, where G^ is given by (2. 1 7) for 0 <; j ̂  K - 1 , and Gη

(K}7 = 0
= Cη-Gη

κ. In Sect. 4 we will show that Gη

u) and G^ satisfy Propositions (3.7) and
(3.9) for k ̂ j^K. Therefore in any graph containing propagators Cη, we may
introduce this decomposition and again order the lines. For any ordering T, we
again get a sum of terms; each term has the property that for some mv ̂  m, we sum
over integers with the constraint

(3.76)

Then the renormalised graphs {#ren} produced after cancelling divergences for
this ordering / have the following properties;

(i) D(Ht.)>0 for I^i^ml9 (3.77)

(ii) for m L < m, and some {mt} with m1<m2<...<mn = m, D(Hmι + l)> D(Hm)
each /=!, ...,mi+l—mί—\, each z = l , ...,« — 1,

D(Hmί + l)^D(Hm) each i=l,. . . ,n-l . (3.78)

The integers {mj correspond to divergent subgraphs encountered between
integers k and K. We can now extend the bound (3.38) to a graph Hren. Using the
methods of Sect. 3.4, we shrink lines until Hmι is one vertex, leaving the sum

Σ (U~k)D(H^^C. (3.79)
7 = 0

Continuing the procedure, we shrink lines until Hm2 is one vertex, giving the
sum

7l(m2 + 1)

if D(Hm2)<D(Hmι)

if

We get a similar bound for each mί? i = 2,...,n. Therefore the graph #ren is
bounded as before, with the possible addition of some power of ln(Lkε)~ 1. Notice
that wheny^fc, we cannot "transfer" external propagators. However, this never
arises for graphs in £19 and graphs in δm2 are attached to external propagators at
one vertex only.
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Before proceeding, we must specify how the partition of unity (3.36) is to be
introduced in the counterterms. First we decompose Cη on each line to get a set of
graphs satisfying (3.76). When all the integers in a graph in δm2 are less than m l 5 we
introduce (3.36) at each vertex of the graph. If any integer on a line is bigger than
k— 1, we do not introduce (3.36) at any vertex in the graph. For £15 we again use
(3.36) everywhere if mί=m; if mv<m, we introduce (3.36) only at one vertex
connected to /(m). Of course the exponential tree decay in (3.38) and (3.39) involves
only the external vertices and those internal vertices with partitions of unity.

We will prove (3.77) and (3.78) for one linearly divergent self-energy diagram
for the scalar field. This will show the idea of the general proof; the reader is
referred to [Ba 3] for an exhaustive list of how divergences cancel. The graph in
δm2 corresponding to the diagram is the following:

(3.81)

When δm2 occurs in a graph, the last three diagrams on the right-hand side of
(3.81) contribute to terms with mί<m. After shrinking to a vertex all lines with
intergers less than k, the remaining subgraphs (composed of lines with two dashes)
have non-positive degree. So (3.78) holds in these cases. It is not hard to extend this
reasoning to show that (3.78) holds for every other graph in δm2 and El.

The first graph on the right-hand side of (3.81) combines with a divergent
diagram in pw 1 to give the following difference:

(3.82)

We can expand the external scalar field φ(y) as follows:

φ(y) = φ(x) + Σ
μ = l

(x) + η\bx ~ b\"(dx(b, bx)dnφ) , (3.83)

where 0<α< 1, and bx is the bond at x parallel to b. Substituting this into (3.82)
gives

(3.84)

We have indicated the presence of additional convergence factors for the
graphs, and additional derivatives on propagators. When the field φ(y) is
χ(y)Gη

(j)(y, z) for some j and z, we can use (3.65) to bound the last term in (3.84). The
localization function gives terms involving (3.63), so the bound is

.,*)]. (3.85)

The factor |x — yl1 +α means that the last graph in (3.84) has degree 4- α, and so it
is convergent. Of course this extra degree of convergence has been obtained at the
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price of a derivative of order (1 -h α) on an external line. However, this means that
we have postponed consideration of this divergence until it occurs in a bigger
subgraph. Because the model is superrenormalizable, sufficiently large subgraphs
always have positive degree; therefore the divergence will cause no problems at a
later stage.

If we consider the following graph

(3.86)

we see that it contains the factor

Σ SJ.^CKx.rtOv-x,,.)
μ = l

= δ"(x - y) Gv - xμO - m2(ίίε)2C?(x, y) (yμ, - xμ,) , (3.87)

where δη is the lattice ^-function. So whenever a graph contains the first term in
(3.84), we may introduce a similar graph with (3.86) at the vertex x, and the error is
the last term in (3.87). Clearly, the graph (3.86) cancels the first graph in (3.84), and
since (3.86) has degree zero, it satisfies (3.78). Furthermore the error term in (3.87)
has degree two, but the factor (ίίε)2 means that (3.78) still holds.

The inequalities (3.77) and (3.78) can be established for all renormalized graphs
in P(k)> 1. We would now like to see how this allows us to deduce Theorem 3.5 for
such a graph. The bound (3.38) relies solely on the cancellation of divergences. In
this connection, it should be noted that only through the expansion (3.52) can
vertices approach 3D'. But this expansion never produces divergent subgraphs, so
the vertices in a divergent subgraph never see a "sharp" boundary. In order to
establish (3.39) we must extract convergence factors as before. Since some
subgraphs have degree α, we can extract only L~yk with y < α. The only new factors
to be replaced in Ef+n} are the convergence factors |x — y|α, etc. These must be
replaced after all the other factors. To do so, we use the following bounds:

(3.88)
η'\b'--x'\*-η\b--x\*

fc'efc

Then by redoing the analysis of Sect. 3.4, we can establish Theorem 3.4 for any
renormalized graph in pw 1.

3.6. Convergence of S(k}. To complete the proof of Theorem 3.4, we now consider
the remaining terms in (3.14). The normalization factor E0 can be written

k) exp[ - l/2<Ak, A «A>] ί (dφk) exp[ -1/2<&, Λ(ic)(0)^>]

(0). (3.89)
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Hence (3.14) can be written

SW'l(T«\Ak,φk,g,h)

- In [Zk(AW)Zt(0) -!]+jx« ^TW Ato ^t, 0, Λ). (3.90)

Examining the representation (2.14) for the quadratic term (φ
we see that it has the form of a graph in P(fc)ϊ * with two external scalar fields, and so
the results of Sect. 3.4 apply.

The operator Δ(k} is diagonal in the Fourier representation on T(k\ and in
Sect. 4 we prove the following proposition concerning its Fourier transform

Proposition 3.10. |/d(k)(p)|^C uniformly in k,

\Δ(k\p)- Δ(k+n)(p)\^CL~2k\Δ(V(p)\ . (3.91)

From Proposition 3.10 we get immediately

|<A,(^(k)-^(k+"^ (3.92)

where we used the bounds (3.2). Furthermore,

g C Σln [1 + (/l(

P

k(IίεΓd\T\. (3.93)

The convergence of lnAΓk(0) follows similarly. Finally we consider the term
O)-1]. We introduce the fields (j/R)A(k\ j=l,...9R, where R=l

Then we have

= 1/2N Σ In det [_Gk(j/RAm)Gk(j - l/RA™) ~ J] . (3.94)
j=ι

We will expand Gk(j/RA(k)), using (3.52) with B = (J - \/K)A(k} and
A'=(l/R)A(k}. The field A' is bounded by Cp(ϋε), so we have

In det [_Gk(j/RAm)Gk(j-

= In det [/ + Gk'
2(j/RA(k>)Vk(A', B)Gk

/2(j/RA(k^ . (3.95)

For a symmetric operator D with ||D|| < 1, we have

ln(/ + D)S Σ (-l)p~1p~ίtιDl>, nodd
p = l

^ Σ (-l)'~1p"1trDp, neven. (3.96)
p = l

We use (3.96) to expand (3.95) up to order 2π. A general term in the expansion is

(_ ιy- ip- 1 ti[Vk(A\ B)Gk(j/RA^)Y . (3.97)
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Graphically, this is a scalar loop with external vector fields. We know from
Sects. 3.4 and 3.5 that all such graphs converge (in fact the Ward-Takahashi
identities guarantee that there are no divergences produced; see [Ba 3] for details).
Therefore we have

Σ p-\

(3.98)

This completes the proof of Theorem 3.4.

4. Technical Estimates

By using multiple reflection representations, the propagators Gl and Gη

k(Q) can be
written in terms of the operator defined by (2.13) with free boundary conditions
(and A = 0, of course), as long as Ω is a rectangular parallelepiped which is a union
of blocks of ΰd sites. Such representations are given explicitly in [Ba 4], so it is
sufficient to prove Propositions 3.8 and 3.9 for the operator with free boundary
conditions, which we write as Gk for simplicity. The basis for our proof is an explicit
Fourier representation for akGkQ$. We introduce a Fourier transform on ηZd by

?(p)=Σηde-ipxm, f ( x ) = (2πΓd ί ^/(p). (4.1)
x \P\^π/*1

By applying this to the equation defining Gfe, it follows in a straightforward way
(see [Ba4]) that

ί ^(k)(pOΣ^ + 0 ( ^ ^ , (4.2)

where xeηZd, yeZd, //e[-π,π), /e2πZd and -π(Zί-l)^/^π(Lfe- 1) for L
odd, while — πίf ̂  lμ ̂  πίί for L even. Also

»1(P)= Π [(^-^-IMe-^-l)-1], (4.3)
μ=l

Σ sin2(l/2Wμ)-f-m2(Lfcs)2, (4.4)
μ=l

1 - (4.5)

We will first prove a bound on the difference between Δ(k\p'} and the following
operator:

, (4.6)
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where the operator D satisfies

(i) \D-l(p)-(\p\2 + m\ΰB)2)-^CL-2k, (4.7)

(ii) O^C\p\2^D(p). (4.8)

Lemma 4.1.

(4.9)

Proof. We first check that Δη(p) satisfies (4.7) and (4.8). By using x2^sin2x^x2

— x4/3? we have

\Δ»(p)-(\P\
2 + m2(Lkεn^Cη2 Σ \pμ\^CL~2k\p\\ (4.10)

μ=l

from which (4.7) follows. The bound (4.8) is obvious. Since Aη and D are positive, we
have Δ(k)(p% Δ(k)(pf)^ak. Hence

where we used (4.7). Since ΣMί(p' + OI2 = ̂  the bound (4 9) follows.
/

To prove convergence of Δ(k}(p'), we notice that the composition law for
renormalization transformations allows us to write Δ(k+n)(p') in the form (4.6), with

1, (4.12)
r

where I' e 2π(Lk/2)Zd, and |ζ|gπ(Lfe+Π-Lk) for L odd, while \Γμ\^πLk+n for L
even. Also

<(P}= Π [^-1(β-1^- 1)^-^-1)]. (4.13)
μ=ί

Lemma 4.2. T/zβ operator (4.12) satisfies (4.7) αwd (4.8).

Proo/.

1, (4.14)
Γ Φ O

when ΓΦO, zly/'(p + //)^C|p + /f^CL2fc. Therefore

1 1 - K'(p)|2| ̂  CL- 2wd Σ sin2 l/2p(x - w)
x,weB"(y)

"' Σ ^pvμ , v = l

fe|p|2. (4.15)

Therefore using (4.7) for Δη(p) and (4.15),

Γ Φ O

(4.16)
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To prove (4.8) we see that

2. (4.17)

Combining Lemmas 4.1 and 4.2 gives

Lemma 4.3.

M(k)(pO- Δ(k+n\p')\ ^ CL~2kA(k}(p') . (4.18)

Using the representation (4.2), we shall now establish the last bound in (3.71).
The rest of Proposition 3.8 is simpler. We have the identity

(4.19)

where le2πZd is the same as in (4.2). Also me2πIΪZd and |mμ|^πίί(Ln- 1) for L
odd, while m e 2π(Lfc + l)Zd and \mμ\ ̂  π(ΰ + 1) (L" - 1) for L even. The correspond-
ing expression for Gη

k is obtained from (4.19) by replacing x', /, ηf by x, y, η and
(fe + n) by (/c), and taking m = 0. We have the following bounds:

\uϊ+n(p'+l+m)\<C U IpilKp^/H-m^Γ 1, (4.20)
μ = l

|/|(fc+">(p')^'''(p/+/+m)-1|^C|pf|p'+/+mr2. (4.21)

Also

and

so the sum over /, m is bounded by

Σ|p /+/+mΓ1ΓW+/+m) /Γ
1^C for α < l . (4.22)

l,m μ

We first bound the terms in (4.19) with mφO as follows:

1(4.19); mΦθ|

gC(2π)-"ίdp' Σ ΣI
m Φ O I

dp' Σ
mΦO I μ

for α + 7 < l . (4.23)

To analyze the m = 0 term in (4.19), we successively replace each factor by the
corresponding one in the expression for (3α(x, y)dη

μakGlQ$) (z) and bound the error.
We must always be careful to keep enough negative powers of momentum so that
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the sum over / is bounded. First we have

|exp[i(p'+Qx] -exp[i(p'+/)<||

£C|p'+/Πx-xT'£CίΓ5V+/P'. (4.24)

So keeping 7 + α < 1, the error produced by the above replacement is bounded
by CL~ yk. Next, we have

K»/0~1[expP»//(p'+OJ-l]-»/~1Cexp[»i(p/+OJ-l]|

+ \(η'Γ1smη/(p'+l)lί-η-ίsmη(p'+l)fί\

£C|p'+/|2irk£C|p'+/|1+'ir'*. (4.25)

For the Holder derivatives, suppose |x — y\<^L~k. Then

(4.26)

Furthermore, when \x — y\>L~k, we have

\\χ-y\-\χ'-y'\\ZL-k. (4.27)

Therefore it follows easily that

+/|β+1', (4.28)

where we have assumed α + γ < 1 and γ 5Ξ α. Next we need a lemma.

Lemma 4.4. (4.29)
Proof.

Γ ά d -i 1|Πι>ΓV"'(p' + 'V-l)- mηT^e-^'^-D^

By repeated use of the identity xy — zw = l/2(x — 3;) (z + w) + l/2(x + y) (z — w),
we can write the difference inside the last bracket of (4.30) as a sum of 2d ~ 1 terms.
Each term is a product of d factors, at least one of which is the left-hand side of
(4.25). So inserting the appropriate bounds, we get

+ 01 Π \(p'+ί)μΓ
1L-^ Σ I(p'+0vl1 + y Π l(

μ = l v= 1 μ ' Φ v

as required.
Therefore we can replace u$+n(p'+l) by u%(p' + l) and bound the error.

Lemma 4.3 allows us to replace A(k+n)(p') by Δ(k\p"). Finally, from (4.7)

V+ίΓ 2 + y. (4 31)
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Therefore every term in (4.19) for m = 0 can be replaced, and so combining our
bounds with Theorem 3.3 we deduce (3.71).

To prove Proposition 3.9 we use the representation (2.17) and Proposition 3.8.
We also need convergence properties of the operator C(k) defined in (2.16).
Introduce the operator

Cg)(s) = (s4(*) + (l-s)J(k+B) + αL"2β*ρ)-1, (4.32)

where O^s^l, ΩcZd is a rectangular parallelepiped composed of blocks of ί?
sites, and where Δ(k\ A(k+n} are defined with periodic boundary conditions on Ω.
Using the general results of Chap. 5 of [Ba 4], C$(s) has uniform exponential
decay if the following conditions hold:

(i) Cg^Γ^yo/, (4.33)

(ii) \C$(sΓ\x,y)\£Cexp\:-δ0\x-y\] . (4.34)

The condition (4.34) is immediate, since Q*Q is a short-range operator and Δ(k)

has uniform exponential decay (see Theorem 3.3). To prove (4.33), we use a Fourier
representation on Ω. Since Ω is a torus, the allowed momenta satisfy
pμ<=2π\Ωμ\~1Z, \pμ\^π, where Ωμ is the dimension of Ω in the μth coordinate
direction. So Δ(k} has the representation

(4.35)
p'

where |Ω|= ΠIΩJ li is easY to see that A(k\p^C\p'\2 . Furthermore,

π
1 Σ \$(P')\2. (4.36)

\p'\^n/L

Therefore we have

1 Σ |feOI2^c<^>, (4.37)
P' Ip ' l^π/L

as required. We now prove the required convergence properties of C(k\

Lemma 4.5.

\C(k\x, y) - C(k+n\x, y)\ ̂  CL-*e"*o|3C"y| . (4.38)

Proof. We prove (4.38) in a finite volume Ω with periodic boundary conditions; the
result for free boundary conditions then holds by continuity. First,

C(k)(x, y) - C(k+n\x, y) = } dsd/dsC(k\s) (x, y) = 1/2 } ds
0 0

kφ(x)φ(y) , Σ ^)[^(*+Λ)(^w)-2lW(z,w)]^w)>βj, (4.39)
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where the expectation < >s is taken with respect to the co variance C$(s). Explicit
computation gives

Σ (Cg>(s) (x, z) [Zl<fc+">(z, w) - J<*>(z, Hθ]Cg>(s) (w, y)} . (4.40)
z, weβ

Combining Lemma 4.3 and the uniform exponential decay of Δ(k} and C(ff(s)
gives

1(4.40)1^07* Σ exp[-($0|x-z|-<yz-w|-<yw-j;|]
2, we£?

^CL-*exp[-δ0|χ-y|]. (4.41)

We are finally ready to prove Proposition 3.9. We will prove the first bound in
(3.73); the other bounds follow in the same way. For ;' > 0, we have the expansion

Σ
z,weLJ

">'LJ»(z, w)QJ.+BGJf

+B(w, yO (4.42)

We now replace aj+nQj+nG
η

j+n(w, y*) by Oj Qj G^w, y) in (4.42); using Proposit-
ion 3.8 and the scaling of operators (2.20), the error from this replacement is
bounded by

C(UηΓ4Σ

j exp [ - δQ(Iίη) '^x'- /|]
1^-);!]. (4.43)

Clearly we can replace ^+MG)'+Mβjί

+n(x/z) by ajG]Q}(x9z)9 and C°'+n)'L^(z, w)
by C0)'L^(z,w), and bound the error in the same way. Hence we deduce the
required bound. When j = 0, we bound each term separately using Proposition 3.7,
and write the factor η2~d as L-ykL~k(2~d"y).

Finally, we must establish Propositions 3.7 and 3.9 for G }̂ = Cη — Gη

κ. It can be
written

C" - Gl = C\aκ(Lκη) ~ 2Q*KQK)G"K = (Lκη) ~ 2C"Q*KaKQKG"K . (4.44)

Furthermore we obtain the Fourier respresentation for Cε<2| from (4.2) by
setting k = K9 η = L~κ and α = 0:

ί dp^ei(p'^χ-^κ(p^ϊ)Δ£(p^ΐ)-\ (4.45)

where uε

κ(p)= Π {(exp[~Φμ]- IMexpE-iεpJ-l)"1} and le2πZd with \lμ\
μ=i

^π/ε. We can extend Δε(p) λ to an analytic function for |Impμ|^m/2, each
μ=l,...,d. The function uε

κ(p) also has such an extension, and therefore we may
extract a decay factor exp[ — <50I

X~ y\] from (4.45). The sum over / is bounded as
before. In the same way, we get exponential decay for (3α(x, y)dε

μC
εQ$) (z). We can
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easily extend Proposition 3.8 to include (4.45), since the integrand is even simpler
than in (4.2). Finally, Proposition 3.9 holds for Gη

(K} from the convergence of CηQκ
and aKQKGn

K, and the scalings of the operators.

Appendix

We wish to modify the proof of the lower bound presented in [Ba 1] by using the
following bounds on the fields at each step:

ε))-1 ,
4~d-] ~^\

where C1 is a fixed constant 0(1). Examining the paper [Ba 1], we see that the
expansion (3.59) must be taken to order ή= 13, and that (3.52) is replaced by

but the relations (3.54) are still sufficient. With these modifications the lower bound
holds as before.

Next we want to justify replacing the bound on D^)φ(k](b) in [Ba 2] by (3.2).
Recall that

A(k\x) = LΣ ' r\A(k\(x +jηeμ, x + (j + l)ηeμ» . (A.2)
7 = 0

Furthermore, denoting by 1 the constant function, we have

akGkQί l=akGk l

= Gk(-A^ + μ2(Lkε)2 + akQ^Qk)^-μ2(Lk8)2Gk^ , (A.3)

and therefore

akGkQΪ 1 =(1 +^(L*e) V ')&* 1 . (A.4)

So for x e B\y), it follows from (A.4) and the bounds (3.2) that

, (A.5)

where α>0. Therefore from (A.2) we see that A(k\x) = Ak >μ(y) + Cp(ύε) for
x e B\y), and so the expansion (3.47) and the bounds (3.2) imply

DIwφk(b) = DAkφk(b) + C(Lks)« , α > 0 . (A.6)

Finally we wish to show that the bounds (3.2) imply (A.I), allowing us to replace
(A.I) by (3.2) in the lower bound of Theorem 3.1. For instance, we get

. (A.7)

So from (3.2) and Theorem 3.3 we get

(A.8)

Therefore for C1 large enough, we get the desired result. The other bounds in
(A.I) follow similarly.
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The inclusion of sources g, h is straightforward. From (3.20), (3.21) we see that
they are small perturbations in the effective action, and so may be bounded when
making a perturbative expansion. Furthermore, in the small field region they are
proportional to (Lfcε)α, α > 0, and so they do not affect the leading order positivity of
the action, which is provided by (3.18).
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