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The U(1) Higgs Model

I. The Continuum Limit

C. King'*
Department of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract. By using rigorous renormalization group methods we construct the
continuum limit of the finite-volume lattice U(1) Higgs model in two and three
dimensions. The method relies on a proof of the convergence of the effective
action.

1. Introduction

Recently, renormalization group methods have been used to study lattice
regularizations of Euclidean quantum field theories. In particular, Balaban has
proved ultra-violet stability for the finite volume lattice Higgs model in three
dimensions [Ba 1-4], obtaining bounds independent of the lattice spacing. In this
paper we construct the continuum limit of this model in two and three dimensions.
In a succeeding paper, the infinite volume limit will also be constructed, and some
of the Osterwalder-Schrader axioms verified. This model was constructed
previously in two dimensions by Brydges et al. [BFS 1-3].

The U(1) Higgs model is an interacting theory of a vector field 4,,(x) coupled in
a gauge covariant way to a N-component scalar field ¢(x). The classical
(Euclidean) action of the model in d dimensions is

S(4,9)= [ d'x {”‘H 5 IFL P12 3 1D,400R + 1/2m2|¢<x)|2+z|¢<x)|4}.

(1.1)
The field strength tensor is F,(x)=0d,4,(x)—0,4,(x), and the covariant
derivative of the scalar field is

(Du#)i(x) = 0,4:(x) — A, (x) (a9)i(x) - (1.2)

The coupling constants of the theory are e, 4 and ¢ is an antisymmetric N x N
matrix. The action (1.1) is invariant under local gauge transformations: define

Afi=A4,6)—0,x(x),  ¢(x)=exp[—eqy(x)]¢(x), (1.3)
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where y(x) is an arbitrary real function on R?. Then
S(4, §)=5(4%, ¢%). (1.4)

We study the quantum field theory corresponding to the action (1.1) by using
the lattice approximation introduced by Wilson [W 1]. The model is considered
on a finite regular lattice T,, with spacing ¢, and (1.1) is replaced by a (gauge-
invariant) lattice action S%(T,, 4, ¢) used to define a functional integral

ZY(T;) = [ (dA4) (dg) exp[ — SX(T,, A, $)].

These cutoff functional integrals can be analyzed using a phase cell expansion, first
introduced by Glimm and Jaffe [GJ1]. On the lattice, the expansion is
implemented using a block spin transformation. The lattice is divided into disjoint
blocks, each containing I sites, for some small integer L. Every field configuration
{A, ¢} is separated into an average part {4,,#,}, which is constant over each
block, and a fluctuation part {4’, ¢}, which varies within blocks. The integral over
{A’, ¢’} is estimated using a standard weak coupling expansion, producing a new
effective action ST, A,,¢,) for the average fields. Contributions from
configurations where fields are large can be estimated, and a perturbative
expansion derived for S*%* in the small field region (“large” and “small” fields will
be defined later). By repeating the block spin transformation k times, we produce
an effective action S®-X** on the I*¢-lattice. This program has been carried out by
Balaban for the Higgs model in dimensions d =2, 3, giving the ultraviolet stability
bound [Ba 1-4].

The renormalization transformation can be understood from a different
viewpoint if we re-scale every effective action S® to the unit lattice. When k=0, this
is the original action; the re-scaling replaces the parameters m?, 4, e of the theory
by m*e2, Ae* ™9, ee? 42, So for d<4, the action is a small perturbation of the
massless gaussian action given by

d
So(4,9)=2 {1/4u 2 10,4,(x)— 0,4, (x)* +1/2 ’él I9u¢(X)I2} (1.5)

(0, is the difference derivative on the unit lattice). We can imagine a space of unit
lattice actions as in Fig. 1; the renormalization transformation takes every point
along a trajectory in this space. The massless gaussian (1.5) at G is driven to a fixed
point P in the subspace V.

In our case, the initial action $¥ is at B, outside the gaussian subspace, and is
driven along a trajectory away from V (this is ultraviolet asymptotic freedom).
Consider a fixed lattice spacing ¢,; when I¥¢=z¢,, this trajectory is at B’, and the
effective action (rescaled to the gy-lattice) is S®-%, Tt is clear that if the initial action
5 is defined on a smaller lattice, it is given by a point C closer to G. So taking the
limit e—0 produces a sequence of starting points converging to G. Corresponding
to these, there is a sequence of effective actions {S®}, k=0, ..., 00, on the &,-
lattice.

To construct the continuum theory, we need to know that Z°(T,) converges to a
finite limit as the initial points B, C, ... converge to G. By using the renormalization
transformation, this is equivalent to proving the convergence of {S®-%} as k— o0,
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massless gaussian
subspace V

Fig. 1. Renormalization transformation trajectories in the space of unit lattice actions

or that the points B, C'... converge to some point Q. In this paper we prove that
the perturbation expansions for {S®-%(4, ¢)} converge provided the fields 4, ¢ are
small. By taking ¢, arbitrarily small this allows us to derive convergence of Z*(T,)
as ¢é—0.

We use the non-compact form of the action for the vector field, and also
introduce an explicit vector field mass pu,. However, the methods used in this paper
apply to any other model analyzed using the renormalization transformation, for
example to the compact formulation of the Higgs model under consideration by
Balaban et al. [BBIJ 1], [BIJ 1].

The paper is organized as follows. Section 2 provides a summary of the
renormalization transformation notation, and a statement of the main result.
Section 3 contains the proof of convergence of the effective action, and hence of the
partition function, and in Sect. 4, we derive the technical estimates used in the
proof.

2. Notation and Results

2.1. Definition of the Model. Let Q be a subset of ¢Z¢; the set of oriented bonds
connecting nearest neighbor sites in Q is denoted Q*. If b € Q* has endpoints x and
y, we write b=<x, y>=<b_, b, >. Then a vector field configuration on £ is a map
A:Q*-R; it can also be interpreted as a map 4:Q-—R% We identify these
meanings by A({x, x+¢e,») = A,(x), where e, is the unit vector in R‘parallel to the
x,-axis. We assume that 4_, = — A4,. A scalar field configuration on Q is a map ¢
:Q—R" for some N =2. The scalar and vector fields interact in Q via a unitary
operator on RY:U(A4)=exp(ceqA), where e is the electric charge (coupling
constant) and g is an N x N anti-symmetric matrix with |g||=1. The covariant
derivative of the scalar field is
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(D%49) (b)=¢" " (U(A,)h(b ) —$(b-)) 2.1

(we denote by &° the usual derivative on £¢Z¢). We introduce an inner product on Q
for n-component functions, any n:

ho)= 3 % 9. 22)
With this notation, the covariant Laplacian on Q is
1/2¢¢, (= 45%)¢) = 1/2b§2*8"|(Di¢) by 23)
The regularized action which we consider is

S(Q, A, §)=1/2{A, (= 452+ p3) A +1/2{, (— 457 + m*)¢)
+2 e/(1/26m*(x)|(x)I* + Ap()|*) + Eo +Ey , (24)

and the corresponding partition function is

Z(Q)= | (dA) (dg) exp[ —5(2, 4,4)]. 2.5)

Explicit expressions for the counterterms ém?* and E, will be given later. E,, is
the normalization for the Gaussian measure:

exp[Eo] = | (d4) (d4) exp[ —1/2¢A, (= 4%+ pd) A — 1/2(4, (—A8‘9+m2)¢>](2- 6

Since we are interested in gauge invariant Schwinger functions, we shall
introduce sources coupled to gauge invariant operators. Denote by Q** the set of
plaquettes on Q; a plaquette p is an elementary square of the lattice, written
p=<x,x+eg,, x+ee,+ee,, x +ee,y with u<v. The field strength tensor on Qis a
map F:Q**—>R given by F(p)= Y. ¢ '4,. For a function g: Q**— R, we define

bedp

Flo= 3 F@(@). Q.7

The gauge invariant operator for the scalar field is |¢|?; of course this must be
normal-ordered in the generating functional. So for h: Q—R, we have

N
1 (h) = xgﬂ e’h(x) i; [9:(x)* — (= 4% +m*) " (x, x)], (2.3)
and the generating functional with source g, h is
Z*(Q, g, h)= [ (dA) (dg) exp[ —S(Q, 4, ¢)+ F(g)+:1g*: ()] 2.9

We shall assume that g, h are C* functions on RY with compact support. With
abuse of notation, we also denote their restrictions to Q by g, h. Throughout this
paper, we shall use C to denote a positive constant which is either O(1) or depends
only on |ig], Ilh].

2.2. Block Spin Transformations. Throughout this paper we will use the block spin
transformations defined in [ Ba 1], and the reader is assumed to be familiar with the
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idea of this method. We present below a collection of relevant notation and
formulae connected with the method.

The block size is L, a small integer, and for any Q CeZ* we write Q% = QnI*¢Z*.
To each point ye I¥¢Z* there corresponds a block of I¥ sites on ¢Z¢, which we
define as B*(y)={xeeZ?:y,<x;<y;+ L%, i=1,...,d}. The averaging operators
used to map configurations on © into configurations on Q® are

QUAM=LH 5 4,09, (210
QAP =L 5 UATE). @1

where the contour I[*) connects y to x in the following way; writing x; as the site for

which x € B(x;), we have [¥)=1I, . Ul . u..I . and the contour I,
is a union of bonds on ¢Z¢ given by
I;,wz <Zs (Zla LT} Zd—l’ Wd)>u<(zla --~9Zd— 1> Wd)’ (Zla [RRE} Zd—Za Wd-la Wd)>
U U2, ey W), W (2.12)
Furthermore, A(I')= Y e¢A, and U(A(I"))=expleqA(I')]. The block spin
bel
transformation proceeds by holding fixed these average fields and integrating over

fluctuations around them. The covariance of the scalar fluctuation field over
blocks of size I* on Q is

GUQ, A)=(— 45" +m* + ayL'e) *Qu(A)*Qu(A) ™", (2.13)

where a,=a(1—L %) (1—L?*)7! and a is O(1). The effective Laplacian of the
average scalar field on Q® is

AWIHQ, A) = a(Lie) "1 — ap(Le) ~*QuA)GUQ, AQUA* . (2.14)

We will also need the normalization factor for (2.13):

a( E‘s)" - 2>N/2(Lke) - djQuo)|

Z&, A)=< o J(dg)exp[—1/2¢4,GYQ, A '¢>], (2.15)

where (I¥¢) ~¢|Q®| is the number of lattice sites in Q®). The covariance of the scalar
fluctuation field over blocks of size I on Q® is

COLHQ, A)= (41, A)+a(lF'e) > Q(A)*Q(A) ™, (2.16)
where C©%(Q, A)= G%(2, A). The operator (2.13) can be decomposed into a sum
of contributions from scales between Q and Q®:

(2, A)=CO¥Q, )+ kil a3 (Le)"*Gi(Q, )Q,(A)*
i=1

L COLHQ, 4)Q(A)GHRQ, A) = ’:g: Gy, 4), (217

with the obvious definition of G{;(£2, A). All the corresponding expressions for the
vector field are obtained from (2.13)~(2.17) by setting m*=pu3, N=d and A=0.

After k steps of the block spin transformation, the original vector field A on Qs
replaced by a sum of k+ 1 independent fields, coming from fluctuation fields A4
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defined on QY, and the average field 4, on Q®:
k—1
A=y AUeq ABZ grg g, 2.18)
j=o
where A"O*=4;, AV =a(le) ?GYQ)Q}A; for 1=<j<k—1, and A®=*
=a(Le)"2GL(Q)Q¥A,. When A is given by (2.18), we adopt the following
convention:
k—1
AU = 3, ALY D)+ AWA(Y), 2.19)
In Sect. 3.3 we will describe in detail the perturbative expansion of the effective
action obtained for the fields ¢, and A4, on Q® after applying k steps of the block
spin transformation to the original action on Q. We call this effective action
S©-LQ® | A, bi, g, h), or if Q¥ is rescaled to have lattice spacing equal to one, it is
written S®-1,
Finally we note how operators transform under rescalings of the lattice. If we
rescale eZ¢ to nZ¢, the following relations hold between the operators on those
lattices:

{G}, A1, CO 15 (x, )
={(e/m> G}, (e/n) =+ DB, (g/y)>~4C®- Loy
-(nx/e,nyle) . (2.20)
When #=L* we will omit the lattice superscript.
2.3. Statement of Results. We shall consider the model on a torus T defined by
T={xeR*: —L,<x,<L,pu=1,...,d}, (2.21)

i.e. we use periodic boundary conditions on T. We require that 2L,M ~' € N, each
u=1,...,d, where M is a large integer (this is the same integer that is specified in
[Ba 4]). We then define lattice spacings {ex = L ¥}, K =0, ..., 00; so for each K =0,
T can be fitted exactly by neighboring disjoint blocks of M sites on the lattice gx Z*
(henceforth called “large blocks”). We write T,= TneZ".

In [Ba 1-4] uniform upper and lower bounds were derived for Z*%(T;,) in
d=2,3. We prove the existence of the continuum limit as K—o0.

Theorem 2.1. For the torus T defined by (2.21) in dimensions d=2,3,
(@) 3 lim Z*X(T,,,9.W)=Z(T; g, h), (2.22)

K-

(i1) InZ(T, g, I = CIT], (2.23)

d
where C depends on g, h and |T|= T] 2L,.
u=1

3. Covergence in a Finite Volume

3.1. Summary of Previous Results. In this section we will recall some results from
the papers [Ba 1-4]. We use the following quantity to define “large” and “small”
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fields:

p(e)=bo(1 +loge™ )", G.1
where pis a small integer and b, is a constant O(1). After rescaling to the unit lattice
T®, the effective action is written S® (T, 4,, ¢, g, h) with 4,, ¢, unit lattice

fields. Let us denote by y,(4;, ¢;) the function which is one when all the following
inequalities hold and zero otherwise:

i ISP o) (ol 1e) ™1,
04, (DI =p(L~ "),
g S p(E™ 1) [AL Te)* ] 4,
D4, DI p(E ),
for all y, b and p, and where
D 4 $i(b)=exple(Le)*~?qA(b)1i(b+) — di(b-) .
We can now formulate the basic results of the papers [Ba 1-2].

Theorem 3.1. Let T be defined by (2.28) in dimension d=2, 3. Then for some fixed
integer J, for all K=J, and all kS K —J, and for some >0,

Z™(T,, 9. ) Z [ (dA) (A9 1(Ar, i) expl — S© YTV, Ay, ¢y, 9, h) + C(Le) | T11,

(3.2)

(33)
ZX(T 9, 1) < § (dA4) ()1l Ar $i) exp[ — SO (T, Ay i g, )+ C(Le )7 | T
+exp[ — p(L¥ex)> + C|TI]. (3.4)

Once again, C depends on g, hand |T|= H 2L,. The bounds on the fields (3.2)

are different from those used in [Ba 1-2]. Th1s change is justified in the Appendix,
and also the inclusion of sources g, h is presented. The reader is referred to [Ba 1-4]
for the proof of Theorem 3.1. We will also use extensively the decay and regularity
results obtained in [Ba 4] for the operators (2.13), (2.14), and (2.16). When Q=T,,
the torus, all operators are defined with periodic boundary conditions, and for
covenience we will omit their volume dependence. When Q is a proper subset of T,
and Q® is a union of large blocks on T%, we will define G¥(Q, 4), A®-*¥(Q, A) and
C®- Q. A) using Neumann boundary conditions on 9.

Definition 3.2. Let A be a Vector field configuration on Q,, where QW cT® is a
union of large blocks and n=L"* Then 4 is regular on Q if

|03 A,(x)| = Cle(Le)* 2! (3.5)

for all xeQ,, u, v=1,...,d and some >0 (e is the electric charge).
The following theorem summarises the decay properties of the operators (2.13),
(2.14), and (2.16).

Theorem 3.3. Let A be regular on Q,, with n=L"*, and let Q® be a rectangular
parallelepiped which is a union of large blocks on T{®. Then for all k<K, some
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30>0,0<a<1, and for f:Q,—»R",

149(Q, ) (x, »)I,  1CH(Q, 4) (x, I Cexp[ —dolx— ], (3.6)
IGU(Q, A f)I, D}, .G, A) f(x)| = Cexp[ — o dist(x, supp )] | £, 3.7)
1

R lU(A, ))D} ,G(Q, A) f (x) = D7 G (Q, A) f (y)]

Ix—yI*
= Cexp[ -6, dist({x, y}, supp )] || /] - (3.8)

Finally, define 5C*®(Q, A)=C®(Q, A)—C*(4) and §G(Q, A)=G(Q, A)
—G(A4); then for x, ye Q,, 6C*(Q, A) and 5G (€, A) satisfy the bounds (3.6) and
(3.7)3.8) respectively, with the additional factors

exp[ — 4, dist({x, y}, 0Q)]
and
exp[ — d, dist({x, y}, 0Q) —J, dist(supp f, 02)]

respectively on the right-hand sides.

Theorem 3.3 is proved in [Ba 4]. It implies the same bounds for the vector field
operators (of course with 4=0).

3.2. Convergence of the Partition Function. We will use the convergence of the
effective action in the small field region to deduce convergence of the partition
function. Consider the model defined on the lattices T,,_and T, ,  for some integer

EK+n

n. Then by applying the renormalization transformation k and k+n times
respectively we generate two models on the same unit lattice T{¥), with effective
actions S®! and S**"-1. The following theorem is the core of this paper.

Theorem 3.4.
1(Ai pIIS© (T, Ay, py, g, B) = SE* YT, Ay, by g, )]
SC(L"M(Leg) P+ (Leg)) I T) (3.9
where 0<y<1, 0<a,  and C depends on g, h.

We can now prove Theorem 2.1. We apply the renormalization transformation
k times to Z*~(T;_, g,h) and k+n times to Z°*<*~(T,_. ,g,h). Theorem 3.1 gives
upper and lower bounds on these partition functions in terms of §®»! and S&*+™-1,
Since Leg=I¥""¢,,, the fields A4,, ¢, have the same bounds in each integral.

Hence
|1Z°( T, 9, h) = Z°% (T, 9, I = T (dAL) (A1) 10 As 1)
~lexp[ — 8™+ C(Leg)?| T1]—exp[ — S+ 1 + C(Lier)”| T1]|
+ exp[ — p(Leg)*+ C| T[] . (3.10)
Using Theorem 3.4 and the bound |e*—e”| S |x—y| (e*+¢”),
(3.10) S C(L™™(Lreg) ~P + (Leg)*) | T|(Z°% + Z°%+7)
-exp(C(Leg)” | T|) +exp[ — p(Leg)* + C|T(]
SC(L™ ™ (Ireg) P+ (Lreg)?) exp C| T, (3.11)
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where we have used the ultra-violet stability bound and exp[ —p(g)*]<e° for &
small, since p > 1. Of course we are free to choose k as we like. To show that (3.11)
vanishes as K— o0, we can take

k=[2pK2p+») "1, (3.12)
in which case for any n
(B.11) S C(LPrRI2B+7 4 [ ovKI2B+7) pCITI (3.13)

Hence {Z*%(T,,,g,h)} is a Cauchy sequence and converges to a unique limit as
K —00. The uniform bound in Theorem 2.1 is just the statement of ultra-violet
stability.

3.3. The Effective Action. The effective action at the k'® step can be written in the
following way:

SOYT® A, i, g, h)=1/2{ Ay, AV A —In Z, +1/2{ ¢y, AP(AD) g, > —In Z,(AD)
+Ey+ PO YT® A, ¢, g, h), (3.14)

where A® and Z,(A) are the rescaled versions of A%-¢ and Z:(4), and

Eo=In{{(dA)(dg)exp[ —1/2¢A4, (= A" T+ pu3(Le)*) 4)
—1/24p, (— A" T+ m*(Ire)®)g ] . (3.15)
Henceforth we will always denote n=L"%, =L "p=L"%*" and |T®|=|T)|
= ﬁl 2L,. The interaction term P*" ! in (3.14) is given by derivatives of a function
Pyt

E;, given below. The scalar field ¢ is separated into an average and a fluctuation
part as follows:

=9+ aG(A)QuAY) ¢ = ¢ + 4. (3.16)
Then we define E; to be

k-1
Ellc(e/’ /1/1 T, 03 Ak’ ¢k7 g, h) =—In {." 'I_IO d.uC(J'),Lfﬂ(A;')d:qu(A(k))(¢/)eV(O)‘ 'l} 5 (317)
j=

where V" depends on 4’, ¢’ and 4,, ¢, as well as on the parameters ¢’, A, 7, 6.
The interaction P**! is a sum of derivatives of (3.17) taken with respect to ¢’, 1, ,
0; it is sufficient to take derivatives up to order 7i=13. These derivatives are
represented by connected graphs on T,; the vertices are those present in V7, and
the propagators are the covariances of 4} and ¢’ in (3.17). V" contains the
following vertices (for convenience we write Q in place of T,):

SO ORI (3.18)
—1/2(I%)? ZQ niom?(x; e'e, A'2) |¢'(x) + P (x)2, (3.19)
(B B Ao (1t T At AP, (3.20)

0(I¥e)? ng nh(x) ENZI [($1(x) + ¢F(x))? — (=A™ +m*(Le)*) " (x,x)] (3.21)

m—1
(el Py 5 D+ 4) B)
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UAF)g" (¢ +4%) (b )] (e'4p)™  with 1<m<7, (3.22)
m—2
(Lo 2y 5 i@ +4%) (b.)a"(+ ) (b)) (A7)

with m even,
2<mZin. (3.23)

The remaining vertices occur when the renormalization transformation of the
scalar field is expanded about 4’=0:

9y, (3.24)
— (A9 (¢ +4P) (), (3.25)
—(e(Ee>~"Hmm) ™" 3 p'UANLE) (A (LI
xeBk(y)
q"(¢' + ™) (x) with 1<m=q. (3.26)

These vertices are made by multiplying two of the expressions (3.24)+3.26), one
of which must be (3.26) for some m, at the same y e Q®. If the expressions are
different, the product is multiplied by — a,; if the same, by —(1/2)a,. The resulting
vertices are summed over ye Q®.

Finally, the vacuum energy counterterm E,(e’e, A'A) is also a part of V@1, We
shall see that E, is also represented by connected graphs on T, built from the
vertices (3.18), (3.19), and (3.22), (3.23).

Except for the vertex (3.26), the vector fields 4 enter V" in the combination
A’. Therefore, in a graph in P®-!_ we can sum over the propagators for these fields
using (2.17), and get the full propagator G, for the “field” A’. When vertex (3.26)
occurs in a graph, we can use (2.17) and (2.19) to write the propagator as

GHIYb)= 2 nGlb.b). (3.27)
, ETijT\

When the external field ¢® occurs at a vertex v in a graph in P*>*, we can use

(3.16) to write it as

$P) = ye;(k) ay(G(AD)Q(AY)®) (v, )$u(y) - (3.28)

If there are s such fields in a graph G, the contribution to P®"! from G can be
written N
EPG)= % 2 o (). PO IER (G, AV {y}).  (329)

ag,...,as=1yi,..., ys€T

We will omit indices on E® from now on. To facilitate our analysis, we will use
graphical notation. As usual, we use a wavy line for a vector field propagator,and a
straight line for a scalar field propagator. A derivative acting on a propagator is
denoted by an arrow at the appropriate vertex. We also introduce the “full”
propagators for the fields,

Co=(—A"2+ G (Le)) ™!, Co=(—A"+m*(Le)®) 1,
and we define C,=G,+F, , and C;=G,(0)+F, ;. The propagator C, (or F, ,) will

be denoted by a wavy line with one dash (or two dashes) through it, and similarly
for C;and F, .
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In order to isolate divergences in graphs, we need the notion of degree of a
graph. A line in a graph is internal if it carries one of the propagators G,, G,(4%®),
C,, C, or their derivatives. A line is external if it carries anything else, for example
a,G(A)Q,(A®)*. An internal vertex is the endpoint of at least one internal line.
Then the degree of an internal vertex v in a graph G is defined by

Ds(v)=(1—d/2) (number of ends of internal lines at v without derivatives)
+(—4d/2) (number of ends of internal lines at v with derivatives)
+ (number of factors # at v)
+(value of m when v contains (3.26)). (3.30)

There is always one factor #* at v, coming from the integration over T,; the vertices
(3.18)3.26) may produce other factors. The degree of a connected graph G is then
D(G)= ¥ Dg(v)—d, (3.31)
veG
and the degree of an arbitrary graph is the sum of the degrees of its connected
components. The divergent graphs are those with non-positive degree.

We write (—dém?+1T®) for the full one particle irreducible graph with two
(undifferentiated) external scalar field lines. The divergent graphs in the graphical
expansion of (—dm?* +I'?) have order less than or equal to four in the couplings e
and A, and so we define

mi(x)= Y e Pom?(x;a, p). (3.32)
25a+28<4

This definition is inserted into I'*, and terms of the same order in e, A are
collected together; this allows us to define 6m?(x; a, ) by the equation

—om?(x; o, f)+ Zﬂsdl"s(x,y; o, f)=0. (3.33)

Equation (3.33) is solved recursively beginning with f=1, and it implies a
graphical expansion for ém?(x):

Q+§i+g+{_f::::..._

The vacuum energy counterterm E, is defined by

(3.34)

e AP §th
1<atp<i a!B! 0e*0I*
-(In | (dA) (dg) exp[ — SR, A, )+ E D=0, (3.35)

where S*(Q, 4, ¢) is given by (2.4). Clearly E, is represented by a sum of vacuum
energy diagrams on T; the vertices are (3.18), (3.19), (3.22), (3.23) with A% =0,
#® =0, and propagators C7, C".

E(e, )=

3.4. Convergence of a Diagram. We now establish Theorem 3.4 for a diagram H
with s external scalar field legs, as in (3.29), and ¢ internal vertices. Introduce the
d

functions {x,}, ze T®, where y,(x)= TT x(x,—z,). The positive real function y is
n=1
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C?, supported in [ —2/3, 2/3], equal to unity on [ —1/3, 1/3], and chosen so that
2 1Ax)=1, each xeT,. (3.36)

ze T

By inserting (3.36) at each internal vertex of H, we can rewrite (3.29) as

E(k)(H) B y ..-%‘IET(k) z ‘Z;e ) ¢k(y1)"'¢k(yS)E(k)(H’ A©; {yi}s {Zq}) :
o o (3.37)

The next theorem expresses the results of this section. We define dist({v;}) to be
the length of the shortest tree graph connecting {v;}.

Theorem 3.5. With the notation of (3.37), and for some ny, 3,7, 6 >0 depending only
on i, d, and ¢ = s/4,

(@) 1EO(H, A9; {y}, {z,})]
< C(Le)*(p(Le))™ exp[ — d dist({ys}, {z,})], (3.38)
where 0 is k or k+n;
(i) when dist({y;}, {z,}) <p(Le),
|E®TD(H, A% {y}, {2,) — E®(H, AP {y}, {z,))]
< OB P(p(B) [+ (L) o121
-exp[ —d dist({y;}, {z,})]- (3.39)

Using Theorem 3.5, we can now establish Theorem 3.4 for the graph H. From
(3.37) we have

ECH)—EYH) = T 400 b0 E*H A (3 {z,)

i) 2} e T
—E®(H, AY; {yi}, {z,)} - (3.40)
Define R=dist({y;}, {z,}); when R> p(I¥¢), we have
exp[ —O0R] < C(I*e)** 7 exp[ — 1/26R] (3.41)

for any o, since p> 1. Therefore using Theorem 3.5 and the bounds (3.2), we have
|E® T (H)— EO(H)|
SC ¥ (Do H(p(Le)y" {x(R>p(Le)) (Le)' " exp[ — 1/20R]

i}, {zg}e T
+ x(R = p(Le)) (Le) ™ 12[L7 7+ (Le)* * 7" /> exp[ — 0R]}
SC(Le)™ P (p(Le)y [L ™+ (Ley* " 17]- ¥ exp[—1/20R]
(i}, {zg}e T
< C(Ite) ™ P(p(Lia)y" [L 7+ (Lia)y* 7+ 2] (L) 4| T)
< CLL ™(I*e) P+ (I')" ] |T]. (3.42)

The proof of Theorem 3.5 is similar to the proofs of renormalizability in [Ba 3].
We shall first prove (3.39). There is a smallest cube [J on T(k) which is a union of
large blocks and which contains every vertex y; and z,. We denote by [1’, [1” the
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smallest cubes on T™ containing the large blocks closer than 2p(Ie), p(Le) to [J.
Let B be the value of 4, at some point x, in (I, and define AP(x) = A¥(x)— B, for
x in . Using Eq. (A.4) from the Appendix we have

B,=(1+p(Le)*a, NaGOFB, . (3.43)
Therefore writing A, ,(w) = Ay, . (w)—())+ p3(L¥)*a, )B,, we have
AW(x) = 3 @G0 (x, w) Ay (). (3.44)

From the bounds (3.2) and using Theorem 3.3, we deduce that
|“Ik, u(w)l é Cp(E‘S) I:IW - X0| + ﬁ8] 5
AP, 101AP(x)| < Cp(Le) [x —Xo| - (3.45)

In the expression E¥(H, A®; {y;}, {z,}), we replace each propagator G,(4%)
by the sum G,([0’, AP)—5G,(’, A%)). Multiplying out the result gives a sum of
graphs of the same form as H, but with appropriately changed propagators. A line
carrying 6G,([0’, A®) (or its derivative) is treated as external. We now make a
gauge transformation of the external field A% in each propagator and vertex
function in the graph, except in the propagators §G,([1’, A%). AP(x) is replaced by
A®(x) for each xe ’; by gauge covariance this is equivalent to a unitary
transformation at each vertex connected to an external field or an external line.
Specifically, for each graph produced by the expansion, there is a subset of vertices
{v;} such that the only dependence of the graph on B is the following factor at each
vertex v;:

U(B(I3).,)) =exple(Le)**qB(I35), )] - (3.46)

XQ,Vj

We next want to write each graph as a (non-local) polynomial in the field A%.
We do this by expanding around 4% =0; 0 is a C* function with (x)=1 for
dist(00”, x) £1/3p(I%), and 6(x)=0 for dist(C”, x)>2/3p(I*%). For future re-
ference, we give the expansion for a general fluctuation field 4’ about a
background field B. The covariant derivative becomes

D, pp(b)=D}p(b)+ F ((AVU(B)$(b ), (3.47)
where
Fum0=éf%iMHW*%MV+&H@mw*“wm. (3.48)

The remainder term can be written as R,(x)=(x"/n!)V,(x), and V,(z) is an
1

analytic function of z given by V,(z) =n | (1 —t)"~ 'e'*dt. Therefore taking A’ =9 A4®
and using (3.45), 0

C
B kN2 —d/2 47\ <
Ry s(ellie) ™)< s

Similarly the averaging function becomes

QA"+ B)g) (v) = (Qu(B)¢) () + (F (4", B)§) (¥) , (3.50)

(e(I¥e)® ~2p(Ike)?)*+ 1. (3.49)



662 C. King

where
(F1,1(4", B)g) (y) = m;m ' "UF (A GR)UBI))(x) - (3.51)
Together these imply an expansion for G,([0’, A’ + B):
G(O,4+B)= méo G (O, B)[V(4, B)G (0", B)]"+ G,(T", B)
V4, BYG(LV, B)T"V(4, B)G(L0", A’+B),  (3.52)

where the vertex function is
—Vi(A, B)=D}*F, (A)U(B)+U*(B)F y(A)*D}+|F 1(A)
+akF2,k(A/’ B)*Qu(B) + aka(B)*FZ,k(A/a B)+ asz,k(A/, B)*Fz,k(A', B). (3.53)

These equations are used to expand the propagators, vertex functions and
covariant derivatives, taking 4'=04% and B=0. The result is a sum of new
graphs, all with vertices inside [1’, and with vector fields A® at the new vertices.
Note that these graphs have the same structure as those already present in P® 1,
Finally, we write every scalar field propagator as a sum

G, (1=0)A%) = G(0)+5G(D”,0)+6G,(11, 1", (1 =) AY),  (3.54)

where 6G(L', 07, 4)=G(1)', 4) — G(0", A). Using (3.44) we can hold the fields
A, fixed at some points {w;} in T®. So if we denote by {H} the graphs obtained
from H by all the previous expansions, we can write

E(k)(H, A®, {y:}, {Zq})z Z {w 2 “ gk(wl)"'gk(wr)

() [Wiseswre
-EQH; (y}, (z,), {Wl})} ~ (3.55)
There is a similar expansion of E**"(H,A**™; {y}, {z,}) with the same
graphs H, so the proof reduces to the following proposition.
Proposition 3.6. With the notation of (3.55),
\E€TOH; (v}, (2}, (w) —EQH; (v}, {25}, (whI S C(Le)e ™12
“(p(Le))[L™ "+ (Le)* " " 2] exp[ — d dist({y;}, {z,}, {w})].  (3.56)
To see that (3.39) follows from (3.56) consider
[E€*(H, A% {y}, {2,0) — E®(H, AY; {3}, {z,})]
=) { S AW AW [E€TH S (i), (2,3, (wi))

(| ((weT®
—ENH; {yi} {z,}, {Wz})l} - (3.57)

Using the bounds (3.45) and recalling that x,e€ [, so [xo—yil, [Xo—2,
< Cp(I*¥¢) each i, g, we can use the exponential tree decay in(3.56) to sum over {w;}
and get (3.39) with n, =n, + 2r (the number of graphs H depends only on 7 and d).
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We now prove Proposition 3.6. Every internal line in H carries a propagator
Gk, Gk(O) or one of their derivatives, which may be decomposed by writing G}

= Z G{;), see (2.17). The resulting product of sums is multiplied out and rewritten

as a sum over orderings [= {I(1), ..., [(m)} of the m internal lines. This is followed by
a sum over integers {jy,}, p=1,...,m, compatible with this ordering, meaning

TSI =S - Shm- (3.58)

A term with two or more integers equal is arbitrarily assigned to one of the
orderings with which it is compatible. Denoting by H(j) the graph with specified
integers j = {j,,} on each internal line, and omitting the external vertices, we have

EYH)=Y ¥ EYH(). (3.59)

T jcompatjble
with

There is a similar representation for E“‘*")(H ); for convenience we write the
-1

decomposition of GI,, in the form Gk+,,— Z GU), where

G(—- )—C(O)’"'a G?J,):ajz+n(ﬂn) 4 J+nQJ+n U'HI) LJ”Q1+nG;’+n (360)

We divide the internal lines into two sets S and S¢; in S all integers are zero or
positive, while in S¢ all integers are negative. Hence we can write

E*(H)= T E&V(H), (3.61)
SC

where E&"(H) contains a sum over orderings and integers compatible with S.
Before proceeding, we state the required bounds on propagators. For a propagator
G(x, y), we define a “Holder derivative” by

(0%, ¥)G) (2) =Ix—y| " *{G(x,2)— G(y,2)} - (3.62)
Proposition 3.7. For x, y,zeT,, 0<a<l,and all 0Sj<k—1,

G, L 185G Y= C{E)* ™, ()~}
~exp[—do(Ln) ™ Ix— 11, (3.63)
GG T 2 )| = C(En)> ™ expl —do(Ey) ' dist(B/(x),b)],  (3.64)

Xj+1,X2

10,3, V)G, 10ux, Y)EG(2)]
SC{En)* ™7, ()~ exp[ —do(Lin) " dist({x, y}.2].  (3.69)

Furthermore, if we replace Gf; by Gfj throughout, and replace IV} by
ryrr+l), then the bounds are valid for —n<j<k—1.

Proposition 3.7 follows immediately from Theorem 3.3 and the scaling
properties of the operators. We will first establish (3.56) for a graph with no
remainder terms from the expansion (3.48), no final terms from (3.52) and no
propagators 6G,. These restrictions will be dropped later. For a fixed ordering I, we

define a sequence of subgraphs H., ..., H,, as follows:

H, ={the line I(1) and its two vertices},

. . . (3.66)
H;,,=H;u{the line I(i+1) and its two vertices} .
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Some of the subgraphs H; may be divergent. In Sect. 3.5, we will show how
graphs may be added together to form renormalised graphs, in which every
subgraph has positive degree. We will assume below that this has been done
already, and that we are analysing a renormalised graph.

Consider first a term on the right-hand side of (3.61) with S° non-empty. We get
an upper bound for this expression by replacing every propagator by the bounds
given in Proposition 3.7 and Theorem 3.3, and bounding vertex functions
appropriately (the sources, g, h are bounded by C). By extracting a small part of
each propagator, we get the exponential decay on the right-hand side of (3.56). Let
x, y be the endpoints of the graph H, =I(1); there is a factor exp[ — 5o I¥ ~/®|x — y|]
present. All the other propagators attached to y carry similar exponential factors,
but with j, ;, replaced by some jy,, 2 jy;)- These propagators are “transferred” to x
by using the inequality

exp[—Go L /W]y —z| =8, LT x—y[]Sexp[ -6, L wlx—z[],  (3.67)

where 0, is a fraction of J, chosen so that after all these transfers there is some
decay left on /(1). We then sum over y, giving

') exp[ — 0, LTI Ox —y[]= C[L /] 74, (3.68)
y

Combining this factor with the power of V=% already present from the
propagator on I(1) (and any extra factors n at x and y), we get altogether the
exponent D(H ). If I(2) € S, we can sum over jy ;)< jy), since D(H;)>0:

.jg) (U_k)D(H‘)é C(Hz(z)_k)D(Hl). (3.69)

j=-—n

Graphically, we have shrunk I(1) to a point in H; the remaining vertices are
summed with the constraint —n=<j;,, < jy3) = ... £ jim = k—1. We continue doing
this until S¢ is exhausted, so that [(i+1) € S. This gives

% (Lj—k)D H) < C(L_k)D<Hi) <CL” Vk(Ul(z+ 1)—k)D(Hz)~v . (3.70)
j=—n

For y small enough, D(H;)—7y>0 and we continue the process, eventually
shrinking H to one point x. The final sum over j,, is then bounded by C, and the
sum over x by |[0'] £ C(p(I¥¢))*. The vertices in H give the factor (I¥)¢, and (3.70)
gives L™ 7. Finally, there is a sum over orderings of the lines, again depending only
on 7.

So we reduce to the case with S°empty, i.e. we must bound |[E®(H)— E$(H)).
This is done by replacing one by one every factor in E§*™(H) by the corresponding
factor in E®(H), and bounding the error at each step. First, we replace the
propagators on the external lines, using the following proposition proved in
Sect. 4. When x"e T,,, we denote by x that point in 7, for which x"e B"(x).

Proposition 3.8. For x', y'e T,,, 0<a <1, and y sufficiently small,
|t 4w G Q4 (X', 2) — 4, GROE (X, 2)]
'ak+naZlGZI+anf+n<xls z) — a0, GiOx (x, 2)| ,
0., )i+ n G4 n Qi1 ) (2) — (0, Y GIOF) (2], (3.71)
(6%, Y4005, G 4w Qi 4.0) (2) — (0, ), 04 GLOF) ()]
S CL ™ exp[—df{|x —zl, dist({x, y},2)}].
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If we replace such a propagator in Eg‘*")(ﬁ), the error is the same graph with a
difference or propagators on one line. Using the method presented, this error is
bounded, and Proposition 3.8 gives the desired factor L~ ?*. All such propagators
are replaced in this way. The sources g,,(x’), i(x) and the partition of unity
function yx(x") can be replaced by g,,(x), h(x) and y(x) respectively, since their
derivatives are uniformly bounded. The operator (3.46) can be replaced using the
following bound:

k
UGB )~ UGB )| S Ce(@ep 2L+ EED.
0 0s ﬂOL e

Now we replace propagators on the internal lines, using the following

proposition (also proved in Sect. 4):

(3.72)

Proposition 3.9. For 0<j<k—1, 0<a<], and y sufficiently small,

IGH(x, )= GhH(x, Ml 181G, ) — LG (x, y)
< CL™{(En)* =77, (In)' ~* 7"} exp[ —do(En)~Hx— 1, (3.73)
IGU(LY I 0, b)) — G D bl
< CL ™(In)® =7 exp[ — 8o(Ln) ~ ! dist(B'(x), b)], (3.74)
0., )G (2)— (0%, ¥)Gy) ()1,
0., )L GE)) (2)) — (0., ) 0L GYy) (2)]
SCL™{(En)* 4777, (En)' 4 Y exp[ —do dist({x, y},2)].  (3.75)

First we fix the ordering [ of the internal lines. If we replace a propagator
Gli(x', ¥") by Gij(x, y), the error is the same graph with a difference of propagators
on one line. Redoing the analysis, we see that the degrees of some subgraphs have
been reduced by y; for y small enough, the exponents D(H;)—y are still positive,
and the bound proceeds as before. This replacement is made for every internal line,
and every ordering I. Having done this, we can replace the sums of internal vertices
x" over T,, by sums over xeT,, and this gives exactly E®(H), proving
Proposition 3.6

The remainder terms we neglected give large positive powers of I*, so it is
sufficient to bound E®(H) and E**"(H) separately. We note that Proposition 3.7
also holds for GY;(1]") and GJ;,(0)’, A%), since Theorem 3.3 gives bounds on these
operators also. The remainders from the expansions (3.48) and (3.52) give factors
((I¥e)*>~*~ 42"+ 1 for any o> 0. When a graph contains a vertex with extra powers
of 5 or n’, we can extract 47 = L™ . The propagator 6G,((0’, A%) (x, y) is bounded
by Cexp[—&y|x—y|—3d,p(I¥)], since x, ye [J. The propagators 5G,(C), ",
(1—6)A®) and 6G,(0”,0) give a factor exp[ —d, dist({x, y}, 60")]. If x, ye [,
this gives exp[ —dop(I¥e)]. If x, y¢ [, then 8G, must come from the expansion
(3.52), so there is a string of propagators, one of which is §G,, which begins and
endsin OJ. By extracting a small exponential factor from each of these propagators,
we get exp[ —ddist(C1,00")].

So we have established Proposition 3.6. The factor (I*¢)? comes from the
vertices (3.18)—3.26). Examining these vertices, we see that in each of them we may
give a factor (I¥e)* ~* to every field ¢*(x). Therefore ¢ =s/4. The bound (3.72)
gives (I¥e) /2.
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In order to derive (3.38) we can bound each propagator G(x, y) which is larger
than 3]/3 (say) by exp[ — do|x — y|], and treat it as an external line. The graph then

factorizes into a product of localised subgraphs, in each of which the methods
outlined yield the desired bound.

3.5. Cancellation of Divergences. Divergent subdiagrams vanish either because of
some symmetry requirement (gauge covariance or the approximate Euclidean
symmetry of the lattice), or because they are cancelled by similar divergent
diagrams in the counterterms 6m? and E,. We consider together all graphs of the
same order and type in P®"!; for each ordering [, these graphs can be combined to
form renormalised graphs, which are convergent. This property, which is a
consequence of the renormalizability of the model, is proved in [Ba 3].

We shall present below a more precise version of this statement. Recall that
graphs in ém? and E 1 are defined with the propagators C} and C!; these may be

decomposed as C"= Z G{;, where G; is given by (2.17) for 0< jS K —1, and Gy,

=C"— G}. In Sect. 4 we w1ll show that G{; and G, satisfy Propositions (3.7) and
(3.9) for k<j<K. Therefore in any graph containing propagators C", we may
introduce this decomposition and again order the lines. For any ordering [, we
again get a sum of terms; each term has the property that for some m, <m, we sum
over integers with the constraint

0=jinS - Shimp Sk—1<jym,+ S - Siim =K. (3.76)

Then the renormalised graphs {H,.,} produced after cancelling divergences for
this ordering [ have the following properties;

(@) DH)>0 for 1=ZiZ<m,, (3.77)

(ii) for m; <m, and some {m;} with m, <m,<...<m,=m, D(H,, ,,;)>D(H,,)
each I=1,...,m;, ,—m;—1,eachi=1,...,n—1,

DH,, )=D(H,) each i=1,...,n—1. (3.78)

The integers {m;} correspond to divergent subgraphs encountered between
integers k and K. We can now extend the bound (3.38) to a graph H,,,. Using the
methods of Sect. 3.4, we shrink lines until H,, is one vertex, leaving the sum

k—1
Y (LRPUm < C (3.79)

j=o

Continuing the procedure, we shrink lines until H,,, is one vertex, giving the
sum

Jl(y%+1)(Li_k)D(HM2)—D(Hm1)
=k
¢ if D(H,.)<D(H,)
< , ,
{Cln(ﬁ‘s)‘l if D(H,,)=D(H,,). (3.80)

We get a similar bound for each m;, i=2, ..., n. Therefore the graph H,., is
bounded as before, with the possible addition of some power of In(I¥¢) ~!. Notice
that when j =k, we cannot “transfer” external propagators. However, this never
arises for graphs in E,, and graphs in ém? are attached to external propagators at
one vertex only.
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Before proceeding, we must specify how the partition of unity (3.36) is to be
introduced in the counterterms. First we decompose C” on each line to get a set of
graphs satisfying (3.76). When all the integers in a graph in ém? are less than m,, we
introduce (3.36) at each vertex of the graph. If any integer on a line is bigger than
k—1, we do not introduce (3.36) at any vertex in the graph. For E,, we again use
(3.36) everywhere if m; =m; if m; <m, we introduce (3.36) only at one vertex
connected to I(m). Of course the exponential tree decay in (3.38) and (3.39) involves
only the external vertices and those internal vertices with partitions of unity.

We will prove (3.77) and (3.78) for one linearly divergent self-energy diagram
for the scalar field. This will show the idea of the general proof; the reader is
referred to [Ba 3] for an exhaustive list of how divergences cancel. The graph in
dm? corresponding to the diagram is the following:

Cﬂ:§+§+@+§(m

When dm? occurs in a graph, the last three diagrams on the right-hand side of
(3.81) contribute to terms with m; <m. After shrinking to a vertex all lines with
intergers less than k, the remaining subgraphs (composed of lines with two dashes)
have non-positive degree. So (3.78) holds in these cases. It is not hard to extend this
reasoning to show that (3.78) holds for every other graph in dm? and E,.

The first graph on the right-hand side of (3.81) combines with a divergent
diagram in P%-! to give the following difference:

y

We can expand the external scalar field ¢(y) as follows:
d
() =¢(x)+ 21 (V=) (059) () + . ; nlb,—bl*(0,(b, b,)0"¢), (3.83)
u= €lx,y

where 0 <a <1, and b, is the bond at x parallel to b. Substituting this into (3.82)

gives
y -(1+a)
” + ~ . (3.84)

We have indicated the presence of additional convergence factors for the
graphs, and additional derivatives on propagators. When the field ¢(y) is
x(»)Gl;)(», z) for some j and z, we can use (3.65) to bound the last term in (3.84). The
localization function gives terms involving (3.63), so the bound is

Clhe—y" **{(En)! 7+ (En)' ~*+(En)* 4
-exp[ —8o(Lin) ™ dist(I}, ,, 2)] . (3.85)

The factor |x — y|! ** means that the last graph in (3.84) has degree +«, and so it
is convergent. Of course this extra degree of convergence has been obtained at the
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price of a derivative of order (1 +«) on an external line. However, this means that
we have postponed consideration of this divergence until it occurs in a bigger
subgraph. Because the model is superrenormalizable, sufficiently large subgraphs
always have positive degree; therefore the divergence will cause no problems at a
later stage.

If we consider the following graph

y
X
(3.86)
we see that it contains the factor
d
#;1 az,xaz,ng(x’ y) (yu’ - xu')
=0"(x—y) 0,y — x,) —m*(Le)*CIx, ») Wy —X,) , (3.87)

where ¢ is the lattice 6-function. So whenever a graph contains the first term in
(3.84), we may introduce a similar graph with (3.86) at the vertex x, and the error is
the last term in (3.87). Clearly, the graph (3.86) cancels the first graph in (3.84), and
since (3.86) has degree zero, it satisfies (3.78). Furthermore the error term in (3.87)
has degree two, but the factor (I¥¢)> means that (3.78) still holds.

The inequalities (3.77) and (3.78) can be established for all renormalized graphs
in P®1, We would now like to see how this allows us to deduce Theorem 3.5 for
such a graph. The bound (3.38) relies solely on the cancellation of divergences. In
this connection, it should be noted that only through the expansion (3.52) can
vertices approach 0 (1. But this expansion never produces divergent subgraphs, so
the vertices in a divergent subgraph never see a “sharp” boundary. In order to
establish (3.39) we must extract convergence factors as before. Since some
subgraphs have degree o, we can extract only L™ with y <. The only new factors
to be replaced in E§*™ are the convergence factors |x—y|* etc. These must be
replaced after all the other factors. To do so, we use the following bounds:

X' =y P =Ix =yl S CL™{|x' =y 1 "+ [x —yI* 77},
¢, = y) — G, = YIS CL™{x =y ' 7+ [x—y|' 77}, (3.88)
be nlb- —x—nlb_ —x[{ SCL™™ 3 {nlb” —x"""+nlb_—x[*"7}.
‘e b'eb
Then by redoing the analysis of Sect. 3.4, we can establish Theorem 3.4 for any
renormalized graph in P®-1,

3.6. Convergence of S®. To complete the proof of Theorem 3.4, we now consider
the remaining terms in (3.14). The normalization factor E, can be written

exp(Eo) = Z]Z}(0) | (dA,) exp[ — 1/2{ 4y, AP 4,5 [ (d¢y) exp[ — 1/2{ ¢, A%(0);) ]
= ZIZIO0)NN(0). (3.89)
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Hence (3.14) can be written
SEYTD, Ay, ¢y 9, 1)
=1/2{ 4}, AP 4> +In N, +1/2{§;, AP(AP)¢.) +1n N (0)
—In[Z(A®)Z(0) ]+ P® Y (TW, A, ¢y, g, h) . (3.90)

Examining the representation (2.14) for the quadratic term {¢,, A%(4®)¢,>,
we see that it has the form of a graph in P®! with two external scalar fields, and so
the results of Sect. 3.4 apply.

The operator 4% is diagonal in the Fourier representation on T®, and in
Sect. 4 we prove the following proposition concerning its Fourier transform

A(")(p).
Proposition 3.10. |4%(p)| < C uniformly in k,
149 (p) — 4% (p)| < CL™244%(p)]. (3.91)
From Proposition 3.10 we get immediately
(A (40— A% A4,5| < CL™ M (p(Le))* (o Lie) ~*(Le) ~4| T, (3.92)
where we used the bounds (3.2). Furthermore,
InN,—~In Ny, =1/2d X In[4%(p)4®(p)~1]
p
SCEIn[14+A*"(p)— 4% (p))4®(p)~ ]
p
SCY L ?*<CL 2I*)~4|T). (3.93)
p
The convergence of In N, (0) follows similarly. Finally we consider the term

In[Z,(A®)Z,(0)~*]. We introduce the fields (j/R)A%, j=1,...,R, where R=1
+[(uoL¥e)~']. Then we have

IN[Z(A®)Z,(0)~ 11=1/2N In det [G(A®)G(0) ']
Z12N' 3 Indet[G,(/RAM)G,(i— L/RA®)~1]. (3.94)
j=1

We will expand G,(j/RA%), using (3.52) with B=(j—1/R)A® and
A’=(1/R)A®. The field A’ is bounded by Cp(I*s), so we have

In det[G,(j/RA®)G,(j—1/RA®) 1]
=Indet[I+ GL?(j/RA®)V, (4", B)G}*(j/RA®)]. (3.95)

For a symmetric operator D with || D|| <1, we have
InI+D)< Y (=1 'p~'trD?, nodd
p=1
> > (=17 'p~'rDP, neven. (3.96)
p=1

We use (3.96) to expand (3.95) up to order 27i. A general term in the expansion is
(=1 'p tr[V(A4', BIG(//RAM)T. (3.97)



670 C. King

Graphically, this is a scalar loop with external vector fields. We know from
Sects. 3.4 and 3.5 that all such graphs converge (in fact the Ward-Takahashi
identities guarantee that there are no divergences produced; see [Ba 3] for details).
Therefore we have

In[Z(A*)Z,(0)" ' 1—In[Z,, (A% ") Z1,(0) ]|

<cy { S o e IVGuG/RA®YT 1V s Gy snG/RA® )]
j 1

j=1 p=

+ @2+ 1) tr[V,G,(j/RAW)]*"* ’}

<cy {z p‘1(L’?"(L"e)‘"+(L"e)“+*>|T|+(2ﬁ+1)"(L"s)”“|T|}

j=1 (p=1

SC(L™(Ike) =1+ (I))| T . (3.98)
This completes the proof of Theorem 3.4.

4. Technical Estimates

By using multiple reflection representations, the propagators GI and G}(Q) can be
written in terms of the operator defined by (2.13) with free boundary conditions
(and A=0, of course), as long as Q is a rectangular parallelepiped which is a union
of blocks of I* sites. Such representations are given explicitly in [Ba 4], so it is
sufficient to prove Propositions 3.8 and 3.9 for the operator with free boundary
conditions, which we write as G, for simplicity. The basis for our proofis an explicit
Fourier representation for a,G,Q;. We introduce a Fourier transform on #Z¢ by
)= g nle” ™ f(x), f(x)=Qm)~* o i o e f(p). 4.1)
By applying this to the equation defining G,, it follows in a straightforward way
(see [Ba4]) that

@GN N=En) | dpavpyzew e BT @)

Ap' +1)°

where xenZ®, yeZ%, p'e[—n,n), le2nZ® and —n(LX—1)<I,<n(lk—1) for L
odd, while — nI¥<1, <zl for L even. Also

=n

d
uf(p)= T L™~ Dn(e™ ™11, 43)
A1) =412 3 sin(1/2np,)+m*(Le)? @4
u=1
A99)= (a4 S +OF A+ . 4.5)

We will first prove a bound on the difference between 4%(p”) and the following
operator:

A9(p)= (ak_ '+ 2 '+ DIPD " (0 + l))_‘ ; (4.6)
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where the operator D satisfies

() ID™(p)—(p* +m*(L'e)*) | CL™ %, 4.7)

(i1) 0=Clp><D(p). (4.8)
Lemma 4.1.

149 ()~ 4% () = CL" 4% p). (4.9)

Proof. We first check that A4"(p) satisfies (4.7) and (4.8). By using x?>sin%x > x?
—x*/3, we have

d
|4"(p) —(Ip|* + m* (L)) = Cn* T Ip[*<CL *p|*, (4.10)
p=1
from which (4.7) follows. The bound (4.8) is obvious. Since 4" and D are positive, we
have 4®(p’), A%(p") < a,. Hence
49— F9(p)] £ CAVP)AW(p) = 39(p) |
S CAR ) T lui(p’ +DIPL %, (4.11)
!
where we used (4.7). Since Y [ul(p’+1)|*=1, the bound (4.9) follows.
1

To prove convergence of A®(p’), we notice that the composition law for
renormalization transformations allows us to write A%**"(p) in the form (4.6), with

D7 '(p)=a, 'L *+ Yl (p+1)*4"(p+1)"1, (4.12)
<

where I'e 2n(L¥/2)Z%, and |I,| Sn(L**"—L¥) for L odd, while |I,|<nLl**" for L
even. Also

d
uf(p)= T1 [n™"(e™ "~ Dy(e P~ 1)]. @13
n=1
Lemma 4.2. The operator (4.12) satisfies (4.7) and (4.8).

Proof.
D™ (p)—(pP? +m*(Le)*) ™' =a, 'L >+l (p)*4" ()"
—(pP+m*CoD) 7 + T W+ G+D T, (414

when I'#0, 4" (p+1) = C|p +1'|*= CI?*. Therefore
=l (PISCL ™ Y sin®1/2p(x—w)

x, weB™(y)

d
scL™ MZZ Pubs {x)wé‘:m) (x—w),(x— W)v}
SCL2pPpepd- b 2ken3n
<CL #p*. 4.15)
Therefore using (4.7) for A"(p) and (4.15),
ID™ () +(p? +m?(Le)*) M= CL™ {1 + l,};() sl (p+ IW}

<CL %, (4.16)
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To prove (4.8) we see that
D lp)=a, 1L_2"+Clpl_2;lu1’{(p+l’)lz
=Ipl72[C+a, HpPL < Clpl 2. (4.17)
Combining Lemmas 4.1 and 4.2 gives
Lemma 4.3.
149(p") — A% M) < CL™*4%(p) . (4.13)

Using the representation (4.2), we shall now establish the last bound in (3.71).
The rest of Proposition 3.8 is simpler. We have the identity

(aa(x/a y,)azlak+nGl'c’:+ nQi:k+ n) (Z)
=Qm) 1 [dp' X e THME D [ — 71 —expli(p'+1+m) (v —x)]}
Il m

()~ Hexplin' (0 +1+m), 1= 13 {4% @)l s (p" + [+ m)A" (0" +1+m) ™1,
(4.19)

where [ € 2nZ? is the same as in (4.2). Also me2nLZ% and |m,| <L —1) for L
odd, while m € 2n(L¥ + 1)Z? and |m,| S n(L + 1) (L' — 1) for Leven. The correspond-
ing expression for GJ is obtained from (4.19) by replacing x’, y’, #” by x, y,  and
(k+n) by (k), and taking m=0. We have the following bounds:

oy 1 mI<C LTI+ 1,1 .20
(A% (PN AT (p'+1+m) " S CIp' P '+ 14m| 2. (4.21)
Also
(1) explin (' + 14+m), ]~ 1 S Clp+ 1 +m)
and

Ix'— 7|1 —expli(p+ I+ m) (y' = x)| S Clp’+1+m[*,
so the sum over [, m is bounded by
12|p’+l+m|“‘1l_[l(p’+l+m)u|‘1gC for a<l1. (4.22)
sm 2
We first bound the terms in (4.19) with m=0 as follows:
[(4.19); m==0|
<C@2m)~*f dp’mgo ; p"+1+ml*Hp? l;[ Pl +1+m), |~

<CL ™Q2m)~*|dp’ ZO;|P'+l+ml°‘_1+yip'lzl_llp,',| I(p'+14+m),| !
m=* n
<CL ™ for a+y<l. (4.23)

To analyze the m=0 term in (4.19), we successively replace each factor by the
corresponding one in the expression for (0,(x, y)07a, G}Q) (z) and bound the error.
We must always be careful to keep enough negative powers of momentum so that
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the sum over [ is bounded. First we have

lexpLi(p’+ Dx] —expli(p"+ Dx7]|
<CPp +1 x—xT' < CL ™ p'+ 1| . (4.24)

So keeping y+ a < 1, the error produced by the above replacement is bounded
by CL™ . Next, we have

(n") ™" [explin'(p’+1),1—11—n""[exp[in(p'+1),1—1]|
<) sin?1/20'(p'+ D+ sin®1/20(p' + 1),
+r) " sing(p'+ D, —n " sing(p’ +1),
SCIpP+IPL < Clp’ + 1) Lk, (4.25)
For the Holder derivatives, suppose |x—y|< L™*. Then
b=yl ™1 —exp[i(p’+ D (y =) S Clp"+ 1" |x — y|’ S CL™ ¥ p'+[|**7.
(4.26)
Furthermore, when |x —y|>L ¥, we have
fIx —yl—Ix' =yl < L7F. (4.27)
Therefore it follows easily that
llx—yI™*{1 —expli(p’+ ) (y—x)1} —|x'— y'|~*{1 —exp[i(p'+ 1) (v —x) ]}
SCL™Mp'+11**7, (4.28)
where we have assumed «+7y<1 and y<a. Next we need a lemma.

Lemma 4.4. ,
uf(p"+ 1) — 4 ,(p"+ DI CL™™|p"+ 1" lui(p’ + D). (4.29)
Proof.

ul @+ D~ +1)
d
=ui(p’+1) TT [n'(e ¥ n—1)"1]
u=1

d d
-[n n7 e ) — ] (n’)*(e‘fﬂ'@’“)»—l)]. (430)
p=1 n=1

By repeated use of the identity xy —zw=1/2(x—y) z+w)+ 1/2(x+ y) (z—w),
we can write the difference inside the last bracket of (4.30) as a sum of 297! terms.
Each term is a product of d factors, at least one of which is the left-hand side of
(4.25). So inserting the appropriate bounds, we get

d d
1(4.30)| < Clui(@’+ DI TT 1’ +D,l 'L 2 o'+ Dt ul;lv 1"+ Dl

p=1
SCL ™ ' +1 i’ + DI,

as required.
Therefore we can replace ul,,(p’+1) by ul(p’+]) and bound the error.
Lemma 4.3 allows us to replace 4%*"(p") by A®(p"). Finally, from (4.7)

A"(p'+ D) = A"p + )" SCL S CL Mp + 17217 (4.31)
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Therefore every term in (4.19) for m=0 can be replaced, and so combining our
bounds with Theorem 3.3 we deduce (3.71).

To prove Proposition 3.9 we use the representation (2.17) and Proposition 3.8.
We also need convergence properties of the operator C® defined in (2.16).
Introduce the operator

C¥(s) = (s4% + (1 —5) 4%+ 4 a1 2Q*Q) 1, (4.32)

where 0<s<1, QCZ%is a rectangular parallelepiped composed of blocks of I/
sites, and where A%, A**" are defined with periodic boundary conditions on Q.
Using the general results of Chap. 5 of [Ba4], C¥(s) has uniform exponential
decay if the following conditions hold:

() CH(s)™ " Z ol (4.33)
(i1) ICP(s) ™ (x, ) = Cexpl —dolx—y[]. (4.34)

The condition (4.34) is immediate, since Q*Q is a short-range operator and 4%
has uniform exponential decay (see Theorem 3.3). To prove (4.33), we use a Fourier
representation on . Since Q is a torus, the allowed momenta satisfy
p,€2nQ,|"'Z, |p;|<n, where Q, is the dimension of Q in the u™ coordinate
direction. So 4™ has the representation

($,4%>=1QI"' T B 4®(p), (4.35)
p
where Q= [T|2,]. It is easy to see that A®(p’) > C|p’|*. Furthermore,
u

" P P 4L *sin*(1/2Lp,)

2CI17 X 1g)P. (4.36)
|p'l=n/L

|=m

Therefore we have

(4, (4P +(1=5)4%"" +aL 20*Q)¢)
2Cle|™! ; ¢ Ip1?+Cle 2 " )= CLh, 8>, (437)

plEm
as required. We now prove the required convergence properties of C%,
Lemma 4.5.
IC®(x, y)— C**™(x, y)| £ CL e~ %1, (4.38)

Proof. We prove (4.38) in a finite volume Q with periodic boundary conditions; the
result for free boundary conditions then holds by continuity. First,

1 1
CH®(x, y)— C**"(x, y) = [ dsd/dsCE(s) (x,y)=1/2 [ ds
0 0

: {<¢(X)¢(y); 2 96 [4%7"(z, w)— 49z, W)]¢(W)>s} ; (4.39)
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where the expectation {-), is taken with respect to the covariance C%(s). Explicit
computation gives

> {Cs) (x,2) [4%T " (z, w) — AWz, w)ICE(s) (w, )} - (4.40)

z,we

Combining Lemma 4.3 and the uniform exponential decay of A% and C%(s)
gives

(4.40)|<CL™* 3 exp[ —dolx —z|—dolz—w|—dolw — 1]

z,wef2

<CL ¥ exp[—d,x—yl]. (4.41)

We are finally ready to prove Proposition 3.9. We will prove the first bound in
(3.73); the other bounds follow in the same way. For j >0, we have the expansion

(J)(x y,) aj+n(Br[) ¢ Z (B )ZdG +nQ1+n(x/9Z)

z,weLinZd
CCOTEN 7, W) WGl (W, ) - (4.42)

We now replace a;.,Q;+,G7 (W, y) by a;Q,G(w, y) in (4.42); using Proposit-
ion 3.8 and the scaling of operators (2.20), the error from this replacement is
bounded by

C(Ln)~* pY (Lin)*(Ln)? ™ exp [ — do(Ln) ™t x"—2[1 (Ln)*~*

rexp[—do(Lin) ™" lz—w[]- L™"(En)*~* exp[ —do(Lim) " w—y'[]
< C(Ln)* 'L “'ZZW (> expl —8o(En) ™ {Ix'—zl+ ]z —wl+w—y}]

S C(Ln)* L exp[—do(En) "' X'~y
SCL™(n)* " exp[—do(En) ™ Hx—yl] . (4.43)

Clearly we can replace a;,,G7.,0 ,+,,(x 'z) by a;,G"Q¥(x, z), and CU*"-L(z, )
by CYY"(z, w), and bound the error in the same way. Hence we deduce the
required bound. When j =0, we bound each term separately using Proposition 3.7,
and write the factor y? =% as L [ ¥2 7477,

Finally, we must establish Propositions 3.7 and 3.9 for G, = C"— G}. It can be
written

— Gk =C"(ax(E'n) " * Q% Q) Gk = (Ln) " *C"Q%axQx G - (4.44)
Furthermore we obtain the Fourier respresentation for C*Q% from (4.2) by
setting k=K, n=L"¥ and a=0:

CSQ;'E(~>c,y)=(27t)“‘l lf dp’;e"“””“"”ui((p’Jrl)Ae(p’+l)“, (4.45)
p'|=n

d
where uk(p)= [T {(exp[—ip,]—e(exp[ —iep,]—1)"'} and [e2nZ? with ||
u=1

<m/e. We can extend 4%(p)”' to an analytic function for [Imp,|<m/2, each
u=1,...,d. The function u(p) also has such an extension, and therefore we may
extract a decay factor exp[ —d,|x — y[] from (4.45). The sum over [ is bounded as
before. In the same way, we get exponential decay for (0,(x, y)0;,C*Q%) (z). We can
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easily extend Proposition 3.8 to include (4.45), since the integrand is even simpler
than in (4.2). Finally, Proposition 3.9 holds for Gy, from the convergence of C"Q%
and a,QxG%, and the scalings of the operators.

Appendix

We wish to modify the proof of the lower bound presented in [Ba 1] by using the
following bounds on the fields at each step:

AP, 14" APEOI= Cop(Le) (uo(Le) ™1
PPN, 1A% P ()| = Cop(Le) [MLe)* ]~ 14,

where C, is a fixed constant O(1). Examining the paper [Ba 1], we see that the
expansion (3.59) must be taken to order =13, and that (3.52) is replaced by

lp(n)I = Cp(Le) [MLe)* 7714,

but the relations (3.54) are still sufficient. With these modifications the lower bound
holds as before.

Next we want to justify replacing the bound on D zwd,(b) in [Ba 2] by (3.2).
Recall that

(A.1)

AP (x)= LZ_:OI AP x+ jne,, x+(j+ Dne,D) . (A2)

Furthermore, denoting by 1 the constant function, we have
4,6 0F - 1=0a,G,- 1
=G(— 4"+ p5(Le)* + a0} Qi) - 1 — u§(Le) Gy - 1, (A3)
and therefore
@G QOF - 1=(1+pg(Le)’a; )QF - 1. (A4)
So for x € BX(y), it follows from (A.4) and the bounds (3.2) that
AP =0,Gu0F - Ay u0) + GG (A ()~ Ay, )
=4, ,(»)+C(Le)*+ Cp(Le), (A.5)

where a>0. Therefore from (A.2) we see that AP(x)=A4, ,(y)+Cp(Le) for
x € B¥(y), and so the expansion (3.47) and the bounds (3.2) imply

Diwdi(b) =D, (b)+ C(Iie)*, a>0. (A.6)

Finally we wish to show that the bounds (3.2) imply (A.1), allowing us to replace
(A.1) by (3.2) in the lower bound of Theorem 3.1. For instance, we get

(= A%0)¢"® = 0, QE(AY) g — m*(Le)* ¢ — a, QF(AV)Q, (AN . (A7)
So from (3.2) and Theorem 3.3 we get
|4%a0d®| < Cp(Le) [AM(Le)* ]~ 4+ C(Le)*. (A.8)

Therefore for C, large enough, we get the desired result. The other bounds in
(A.1) follow similarly.
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The inclusion of sources g, h is straightforward. From (3.20), (3.21) we see that
they are small perturbations in the effective action, and so may be bounded when
making a perturbative expansion. Furthermore, in the small field region they are
proportional to (I¥¢)*, « >0, and so they do not affect the leading order positivity of
the action, which is provided by (3.18).
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