On a C^{*}-Algebra Approach to Phase Transition in the Two-Dimensional Ising Model. II

D. E. Evans ${ }^{1}$ and J. T. Lewis ${ }^{2 \star}$
1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, England
2 School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

Abstract

We investigate the states ϕ_{β} on the C^{*}-algebra of Pauli spins on a onedimensional lattice (infinitely extended in both directions) which give rise to the thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising model (with nearest neighbour interaction) at inverse temperature β. We show that if β_{c} is the known inverse critical temperature, then there exists a family $\left\{v_{\beta}: \beta \neq \beta_{c}\right\}$ of automorphisms of the Pauli algebra such that

$$
\phi_{\beta}=\left\{\begin{array}{lr}
\phi_{0} \circ v_{\beta}, & 0 \leqq \beta<\beta_{c} \\
\phi_{\infty} \circ v_{\beta}, & \beta>\beta_{c} .
\end{array}\right.
$$

1. Introduction

We consider the Ising Hamiltonian on a two-dimensional lattice, infinitely extended in all directions, with nearest neighbour interactions and zero field. Thus the problem is classically set in the commutative C^{*}-algebra $C(\mathscr{P})=\underset{\mathbb{Z}^{2}}{\bigotimes} \mathbb{C}^{2}$ of all continuous functions on the configuration space $\mathscr{P}=\{ \pm 1\}^{\mathbb{Z}^{2}}$. The transfer matrix method allows us to transform the model to a non-commutative algebra $\mathscr{A}^{P}=$ $\bigotimes_{\mathbb{Z}} M_{2}$ in one dimension less. More precisely, for each inverse temperature β, suppose $\langle\cdot\rangle_{\beta}$ is the equilibrium state for the classical system obtained as the thermodynamic limit of the Gibbs ensembles on the configuration space \mathscr{P} using free boundary conditions. Then there is for each β, a map $F \rightarrow F_{\beta}$ from the local observables in $C(P)$ into the Pauli or quantum algebra \mathscr{A}^{P} such that $\langle F\rangle_{\beta}=\phi_{\beta}\left(F_{\beta}\right)$. Thus any classical correlation or expectation value can be computed using a knowledge of the Pauli algebra alone. The main result of [3] was the following:

[^0]Theorem 1. The cyclic representation of \mathscr{A}^{P} associated with ϕ_{β} is irreducible for $0 \leqq \beta \leqq \beta_{c}$, whilst it is reducible, with two-dimensional centre (for the weak closure) if $\beta>\beta_{c}$.

Here β_{c} is the same as the (inverse) critical temperature given by Onsager [14]. We now improve on this, at least for $\beta \neq \beta_{c}$, to show:
Theorem 2. There exist automorphisms $\left\{v_{\beta}: \beta \neq \beta_{c}\right\}$ of \mathscr{A}^{P} such that

$$
\begin{array}{ll}
\phi_{\beta}=\phi_{0} \circ v_{\beta}, & 0 \leqq \beta<\beta_{c} \\
\phi_{\beta}=\phi_{\infty}{ }^{\circ} v_{\beta}, & \beta>\beta_{c} \tag{1.2}
\end{array}
$$

In particular, since ϕ_{0} and ϕ_{∞} can be given explicitly, we give a simple proof of Theorem 1, independent of [3].

We make use of the crossed product C^{*}-algebra $\hat{\mathscr{A}}$ introduced by Araki [2] and described below. The algebra $\hat{\mathscr{A}}$ is generated by the Fermi algebra \mathscr{A}^{F} and a selfadjoint element $T: \hat{\mathscr{A}}=\mathscr{A}_{+}^{F}+T \mathscr{A}_{+}^{F}+\mathscr{A}_{-}^{F}+T \mathscr{A}_{-}^{F}$, where \mathscr{A}_{+}^{F} and \mathscr{A}_{-}^{F} are the even and odd parts of \mathscr{A}^{F}, respectively. The important facts are that the Pauli algebra \mathscr{A}^{P} sits in $\hat{\mathscr{A}}$ as $\mathscr{A}^{P}=\mathscr{A}_{+}^{F}+T \mathscr{A}_{-}^{F}$, the state ϕ_{β} on \mathscr{A}^{P} extends to a state $\hat{\phi}_{\beta}$ on $\hat{\mathscr{A}}$ whose restriction to $\mathscr{A}^{F}=\mathscr{A}_{+}^{F}+A_{-}^{F}$ is the Fock state ω_{β}. As pointed out in [11,21], the state ω_{β} is connected to the infinite temperature state ω_{0} by a Bogoliubov automorphism $\gamma_{\beta}: \omega_{\beta}=\omega^{\circ} \gamma_{\beta}$. In this paper we remark that the restriction of γ_{∞} to \mathscr{A}_{+}^{F} is the Kramers-Wannier automorphism, and γ_{∞} relates ω_{0} to the zero-temperature state $\omega_{\infty}: \omega_{0}=\omega_{\infty}{ }^{\circ} \gamma_{\infty}^{-1}$. Our principal result is that $\left\{\left.\gamma_{\beta}\right|_{\alpha_{+}}: 0 \leqq \beta<\beta_{c}\right\}$ and $\left\{\left.\gamma_{\infty}^{-1} \gamma_{\beta}\right|_{\mathscr{Q}_{+}}: \beta>\beta_{c}\right\}$ extend to automorphisms $\left\{v_{\beta}: \beta \neq \beta_{c}\right\}$ of \mathscr{A}^{P}, such that

$$
\phi_{\beta}=\left\{\begin{array}{lr}
\phi_{0} \circ v_{\beta}, & 0 \leqq \beta<\beta_{c} \\
\phi_{\infty}{ }^{\circ} v_{\beta}, & \beta>\beta_{c}
\end{array}\right.
$$

Theorem 1 (for $\beta \neq \beta_{c}$) then follows from an examination of the explicit expressions for ϕ_{0} and ϕ_{∞}.

2. The C^{*}-algebraic Formulation

We consider the two-dimensional Ising model with the Hamiltonian

$$
\begin{equation*}
H^{L M}(\xi)=-\left(\sum_{i=-L}^{L-1} \sum_{j=-M}^{M} J_{1} \xi_{i j} \xi_{i+1, j}+\sum_{i=-L}^{L} \sum_{j=-M}^{M-1} J_{2} \xi_{i j} \xi_{i, j+1}\right), \tag{2.1}
\end{equation*}
$$

where $\xi_{i j}= \pm 1$ is the classical spin at the lattice site $(i, j) \in \mathbb{Z}^{2}$, and J_{1} and J_{2} are positive constants. Then the Gibbs ensemble average is given by

$$
\begin{align*}
\langle F\rangle_{L M} & =Z_{L M}^{-1} \sum_{\xi} F(\xi) \exp \left(-\beta H^{L M}(\xi)\right) \tag{2.2}\\
Z_{L M} & =\sum_{\xi} \exp \left(-\beta H^{L M}(\xi)\right)
\end{align*}
$$

where the sum is over all configurations $\xi_{i j}= \pm 1, \beta \geqq 0$ and F, a local observable, is a function of $\xi_{i j}$, for $|i| \leqq l,|j| \leqq m$, and some $l \leqq L, m \leqq M$. The transfer matrix method [10] allows us to compute the expectation values $\langle\cdot\rangle_{L M}$ in terms of a state
$\varphi_{\beta}^{L M}$ on the Pauli spin algebra \mathscr{A}_{M}^{P} generated by the spin matrices $\sigma_{x}^{(i)}, \sigma_{y}^{(i)}, \sigma_{z}^{(i)}$ on sites i where $|i| \leqq M$. Then $\mathscr{A}_{M}^{P} \simeq \bigotimes_{-M}^{M} M_{2}$, and we adopt the convention that

$$
\sigma_{x}^{(i)}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{y}^{(i)}=\left(\begin{array}{rr}
0 & i \\
-i & 0
\end{array}\right), \quad \sigma_{z}^{(i)}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

We can identify a function of $\xi=\left(\xi_{j}\right), \xi_{j}= \pm 1, \xi^{\prime}=\left(\xi_{j}^{\prime}\right), \xi_{j}^{\prime}= \pm 1$ with a $2^{2 M+1} \times$ $2^{2 M+1}$ matrix, and hence with an element of \mathscr{A}_{M}^{P}. If we define

$$
\begin{equation*}
\left(T_{M}\right)_{\xi, \xi^{\prime}}=\exp \left\{\frac{K_{2}}{2} \sum_{j=-M}^{M}\left(\xi_{j} \xi_{j+1}+\xi_{j}^{\prime} \xi_{j+1}^{\prime}\right)+K_{1} \sum_{j=-M}^{M} \xi_{j} \xi_{j}^{\prime}\right\} \tag{2.3}
\end{equation*}
$$

then under the above identifications

$$
\begin{equation*}
T_{M}=\left(2 \sinh 2 K_{1}\right)^{M+1 / 2} V^{1 / 2} W V^{1 / 2} \tag{2.4}
\end{equation*}
$$

if

$$
\begin{gather*}
V=\exp \left\{K_{2} \sum_{j=-M}^{M-1} \sigma_{x}^{(j)} \sigma_{x}^{(j+1)}\right\}, \tag{2.5}\\
W=\exp \left\{K_{1}^{*} \sum_{j=-M}^{M} \sigma_{z}^{(j)}\right\} \tag{2.6}
\end{gather*}
$$

and

$$
\begin{equation*}
K_{j}=\beta J_{j}, \quad j=1,2, \quad K_{1}^{*}=\frac{1}{2} \log \left(\operatorname{coth} K_{1}\right) . \tag{2.7}
\end{equation*}
$$

If

$$
\Omega_{M}(\xi)=\exp \left\{\frac{K_{2}}{2} \sum_{j=-M}^{M-1} \xi_{j} \xi_{j+1}\right\}
$$

then $Z_{L M}=\left\|\left(T_{M}\right)^{L} \Omega_{M}\right\|^{2}$, and $\langle F\rangle_{L M}=\varphi_{\beta}^{L M}\left(F_{\beta M}\right)$ for some $F_{\beta M} \in \mathscr{A}_{M}^{P}$, if $\varphi^{L M}$ is the vector state $\left\langle T_{M}^{L} \Omega_{M}, T_{M}^{L} \Omega_{M}\right\rangle Z_{L M}^{-1}$ on \mathscr{A}_{M}^{P}. If $K_{1}^{*}<\infty$, then by the Perron Frobenius theorem, T_{M} has a unique unit vector $\Omega^{M}=\Omega^{M}(\xi), \Omega^{M}(\xi)>0$ belonging to the largest eigenvalue. Then as $L \rightarrow \infty$:

$$
\lim _{L \rightarrow \infty}\langle F\rangle_{L M}=\left\langle\Omega^{M}, F_{\beta M} \Omega^{M}\right\rangle
$$

Then if \mathscr{A}^{P} denotes the Pauli algebra generated by the spin matrices $\sigma_{x}^{(i)}, \sigma_{y}^{(i)}, \sigma_{z}^{(i)}$ for $i \in \mathbb{Z}$, so that $\mathscr{A}^{P}=\lim _{M \rightarrow \infty} \mathscr{A}_{M}^{P}$, we have

$$
\lim _{M \rightarrow \infty} \lim _{L \rightarrow \infty}\langle F\rangle_{L M}=\varphi_{\beta}\left(F_{\beta}\right),
$$

where $F_{\beta}=\lim _{M \rightarrow \infty} F_{\beta M}$ and $\varphi_{\beta}=\lim _{M \rightarrow \infty}\left\langle\Omega^{M}, \cdot \Omega^{M}\right\rangle$ is a state on \mathscr{A}^{P}.
Following $[17,21,11,12,2,3]$ the states φ_{β} on the Pauli algebra \mathscr{A}^{P} are best studied by introducing a Fermion algebra \mathscr{A}^{F} generated by annihilation and creation operators c_{i} and $c_{i}^{*}, i \in \mathbb{Z}$, satisfying the canonical anticommutation
relations:

$$
\begin{equation*}
\left[c_{i}, c_{j}\right]_{+}=\left[c_{i}^{*}, c_{j}^{*}\right]_{+}=0, \quad\left[c_{i}, c_{j}^{*}\right]_{+}=\delta_{i j} 1 \tag{2.8}
\end{equation*}
$$

We adopt the self dual formalism of [3], so that \mathscr{A}^{F} is generated by the range of a linear map B on $l_{2} \oplus l_{2}$ given by

$$
\begin{equation*}
B(h)=\sum_{-\infty}^{\infty}\left(c_{j}^{*} f_{j}+c_{j} g_{j}\right), \quad h=\binom{f}{g} \quad f=\left(f_{j}\right) \quad g=\left(g_{j}\right) . \tag{2.9}
\end{equation*}
$$

Here the convergence of (2.9) is in norm, and B satisfies

$$
\left[B\left(h_{1}\right)^{*}, B\left(h_{2}\right)\right]_{+}=\left\langle h_{1}, h_{2}\right\rangle 1, \quad B(h)^{*}=B(\Gamma h)
$$

where

$$
\Gamma\binom{f}{g^{*}}=\binom{g}{f^{*}}
$$

A unitary U on $l_{2} \oplus l_{2}$ commuting with Γ gives rise to an automorphism $\tau(U)$ of \mathscr{A}^{F} by

$$
\begin{equation*}
\tau(U) B(h)=B(U h) \tag{2.10}
\end{equation*}
$$

and is called a Bogoliubov automorphism. A basis projection is a projection E on $l_{2} \oplus l_{2}$ such that

$$
\Gamma E \Gamma=1-E .
$$

Any basis projection E gives rise to a unique state ω on \mathscr{A}^{F} such that $\omega\left(B(f) B(f)^{*}\right)=0, f \in E\left(l_{2} \oplus l_{2}\right)$. We write $\omega=\omega_{E}$. Then ω_{E} is called a Fock state, is irreducible, and satisfies

$$
\omega_{E}\left(B(f)^{*} B(g)\right)=\left\langle f, E_{g}\right\rangle, \quad f, g \in l_{2} \oplus l_{2}
$$

We define a unitary u_{-}on l_{2} by

$$
\left(u_{-} f\right)_{j}=\left\{\begin{array}{rl}
f_{j} & j \geqq 1 \tag{2.11}\\
-f_{j} & j \leqq 0
\end{array},\right.
$$

and $\theta_{-}=u_{-} \oplus u_{-}$on $l_{2} \oplus l_{2}$. The corresponding Bogoliubov automorphism $\tau\left(\theta_{-}\right)$is denoted by Θ_{-}so that

$$
\boldsymbol{\Theta}_{-} c_{j}=\left\{\begin{array}{rl}
c_{j} & j \geqq 1 \tag{2.12}\\
-c_{j} & j \leqq 0
\end{array} .\right.
$$

We construct the crossed product C^{*}-algebra

$$
\hat{\mathscr{A}}=\mathscr{A}^{\mathrm{F}} X_{\Theta-}-\mathbb{Z}_{2}
$$

which is generated by \mathscr{A}^{F} and a self adjoint unitary T in $\hat{\mathscr{A}}$ satisfying $T a T=\Theta_{-}(a)$, $a \in \mathscr{A}^{F}$. The Pauli spin algebra \mathscr{A}^{P} is identified with a C^{*}-subalgebra of $\hat{\mathscr{A}}$ generated by

$$
\begin{equation*}
\sigma_{z}^{(j)}=2 c_{j}^{*} c_{j}-1 \tag{2.13}
\end{equation*}
$$

$$
\begin{align*}
\sigma_{x}^{(j)}=T S_{j}\left(c_{j}+c_{j}^{*}\right), & \sigma_{y}^{(j)}=T S_{j} i\left(c_{j}-c_{j}^{*}\right), \tag{2.14}\\
S_{j} & = \begin{cases}\prod_{k=1}^{j-1} \sigma_{z}^{(k)} & \text { if } j>1, \\
1 & \text { if } j=1, \\
\prod_{k=0}^{j} \sigma_{z}^{(k)} & \text { if } j<1 .\end{cases} \tag{2.15}
\end{align*}
$$

We extend the automorphism Θ to $\hat{\mathscr{A}}$ by defining $\Theta(T)=T$, so that

$$
\begin{equation*}
\Theta\left(\sigma_{z}^{(j)}\right)=\sigma_{z}^{(j)}, \quad \Theta\left(\sigma_{x}^{(j)}\right)=-\sigma_{x}^{(j)}, \quad \Theta\left(\sigma_{y}^{(j)}\right)=-\sigma_{y}^{(j)} . \tag{2.16}
\end{equation*}
$$

Then Θ gives gradings to both \mathscr{A}^{F} and \mathscr{A}^{P}, so that if $\mathscr{A}_{ \pm}^{\mathrm{F}}=\left\{x \in \mathscr{A}^{\mathrm{F}}: \Theta(x)= \pm x\right\}$, then

$$
\left\{x \in \mathscr{A}^{P}: \Theta x=x\right\}=\mathscr{A}^{F}, \quad\left\{x \in \mathscr{A}^{P}: \boldsymbol{\Theta} x=-x\right\}=T \mathscr{A}_{-}^{F},
$$

and

$$
\mathscr{A}^{F}=\mathscr{A}_{+}^{F}+\mathscr{A}_{-}^{F}, \quad \mathscr{A}^{P}=\mathscr{A}_{+}^{F}+T \mathscr{A}_{-}^{F} .
$$

The state $\phi_{\boldsymbol{\beta}}=\phi_{\beta} \circ \boldsymbol{\Theta}$ on \mathscr{A}^{p} gives rise to an even state $\omega_{\beta}=\omega_{\beta} \circ \boldsymbol{\Theta}$ on \mathscr{A}^{F} by

$$
\begin{equation*}
\omega_{\beta}(a+b)=\phi_{\beta}(a), \quad a \in \mathscr{A}_{+}^{\mathrm{F}}, \quad b \in \mathscr{A}_{-}^{\mathrm{F}} . \tag{2.17}
\end{equation*}
$$

Then ω_{β} is a Fock state, whose basis projection E_{β} is described after taking Fourier series as follows on $L^{2}(\mathbb{T}) \oplus L^{2}(\mathbb{T})$. (No confusion should arise when we often identify, in the sequel, l^{2} with $L^{2}(\mathbb{T})$ in this way).

First $\gamma(\theta) \geqq 0$ is determined by

$$
\begin{equation*}
\cosh 2 K_{1}^{*} \cosh 2 K_{2}-\sinh 2 K_{1}^{*} \sinh 2 K_{2} \cos \theta=\cosh \gamma(\theta), \tag{2.18}
\end{equation*}
$$

and $\delta(\theta)=\boldsymbol{\Theta}(\theta)-\theta$ is determined by

$$
\begin{align*}
\cos \delta(\theta) & =(\sinh \gamma(\theta))^{-1}\left(\cosh 2 K_{1}^{*} \sinh 2 K_{2}-\sinh 2 K_{1}^{*} \cosh 2 K_{2} \cos \theta\right) \tag{2.19}\\
\sin \delta(\theta) & =(\sinh \gamma(\theta))^{-1} \sinh 2 K_{1}^{*} \sin \theta . \tag{2.20}
\end{align*}
$$

Then if V_{β} is the self adjoint unitary

$$
V_{\beta}(\theta)=\left(\begin{array}{ll}
\cos \Theta(\theta) & -i \sin \Theta(\theta) \tag{2.21}\\
i \sin \Theta(\theta) & -\cos \Theta(\theta)
\end{array}\right),
$$

E_{β} is the multiplication operator $\left(1-V_{\beta}\right) / 2$.
The states ϕ_{0} and ϕ_{∞} correspond to infinite and zero temperatures $(\beta=0, \beta=\infty$ respectively) as follows. The region $\beta>\beta_{c}$ corresponds to $K_{1}^{*}<K_{2}$, and $\beta<\beta_{c}$ to $K_{1}^{*}>K_{2}$. As in [3], we will regard K_{1}^{*} and K_{2} as independent parameters. Then $K_{2}=0, K_{1}^{*}>0$ corresponds to $\beta=0$, and $K_{1}^{*}=0, K_{2}>0$ to $\beta=\infty$.
Case $(A) . K_{2}=0, K_{1}^{*}>0,(\beta=0)$. Here $\gamma(\theta)=2 K_{1}^{*}, \delta(\theta)=\pi-\theta, \boldsymbol{\Theta}(\theta)=\pi$,

$$
V_{0}(\theta)=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right), \quad E_{0}=\left(1-V_{0}\right) / 2 .
$$

Then the even state ϕ_{0} on \mathscr{A}^{P} corresponding to the quasi-free state $\omega_{0}=\omega_{E_{0}}$ on \mathscr{A}^{F}
as in (2.17) is the product state,

$$
\phi_{0}=\bigotimes_{-\infty}^{\infty} \omega_{+},
$$

where $\omega_{+}=\left\langle z_{+}, \cdot z_{+}\right\rangle$is the vector state on M_{2} given by $z_{+}=2^{-1 / 2}\binom{1}{1}$. Note that $\sigma_{z}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ has eigenvectors z_{+}and $z_{-}=2^{-1 / 2}\binom{1}{-1}$ with eigenvalues 1 and -1 respectively. Thus the eigenspace of $W=\exp \left\{K_{1}^{*} \sum_{j=-M}^{M} \sigma_{z}^{(j)}\right\}$ corresponding to the largest eigenvalue is non-degenerate, and spanned by $\bigotimes_{-M}^{M} z_{+}$. The transfer matrix T_{M} in the case when $K_{2}=0$ is a scalar multiple of W (see (2.4)) and so the same applies to T_{M}.
Case $(B) . K_{1}^{*}=0, K_{2}>0,(\beta=\infty)$. Here $\gamma(\theta)=2 K_{2}, \delta(\theta)=0, \Theta(\theta)=\theta$,

$$
V_{\infty}(\theta)=\left(\begin{array}{cc}
\cos \theta & -i \sin \theta \\
i \sin \theta & -\cos \theta
\end{array}\right), \quad E_{\infty}=\left(1-V_{\infty}\right) / 2
$$

The even state ϕ_{∞} on \mathscr{A}^{P} corresponding to the quasi-free state $\omega_{\infty}=\omega_{E_{\infty}}$ on \mathscr{A}^{F} as in (2.17) is the state

$$
\phi_{\infty}=\frac{1}{2}\left(\bigotimes_{-\infty}^{\infty} \mu_{+}+\bigotimes_{-\infty}^{\infty} \mu_{-}\right)
$$

where $\mu_{ \pm}$are the vector states $\left\langle x_{ \pm}, \cdot x_{ \pm}\right\rangle$on M_{2}, if $x_{+}=\binom{1}{0}, x_{-}=\binom{0}{1}$. Note that $\sigma_{x}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ has eigenvectors x_{+}and x_{-}with eigenvalues 1 and -1 respectively. Thus the eigenspace of $V=\exp \left\{K_{2} \sum_{j=-M}^{M-1} \sigma_{x}^{(j)} \sigma_{x}^{(j+1)}\right\}$ corresponding to the largest
 to all spins up and all spins down respectively). The transfer matrix T_{M} in the case when $K_{1}^{*}=0$ is a scalar multiple of V, and so the same applies to this T_{M}.

Note that ϕ_{0} is clearly pure, whilst ϕ_{∞} is clearly not. Moreover the cyclic representation of the state ϕ_{∞} is a direct sum of two disjoint irreducible representations, and so has a two dimensional centre.

For more details on the C^{*}-formulation of the two-dimensional Ising model, we refer to $[17,21,11,12,5,3]$.

3. The Kramers-Wannier Automorphism Revisited

The even algebra \mathscr{A}_{+}is generated by

$$
\begin{equation*}
\sigma_{z}^{(j)}=2 c_{j}^{*} c_{j}-1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{x}^{(j)} \sigma_{x}^{(j+1)}=\left(c_{j}-c_{j}^{*}\right)\left(c_{j+1}+c_{j+1}^{*}\right) \tag{3.2}
\end{equation*}
$$

Define an automorphism κ of \mathscr{A}_{+}by

$$
\begin{align*}
\kappa\left(\sigma_{z}^{(j)}\right) & =\sigma_{x}^{(j)} \sigma_{x}^{(j+1)}, \tag{3.3}\\
\kappa\left(\sigma_{x}^{(j)} \sigma_{x}^{(j+1)}\right) & =\sigma_{z}^{(j+1)} . \tag{3.4}
\end{align*}
$$

This automorphism relates high and low temperatures (cf. (2.4-6)) and is essentially the mechanism by which Kramers and Wannier [10] located the critical point of the classical two-dimensional Ising model, assuming only one critical point existed. See also [14, p. 123].) Note that κ^{2} is the restriction of the shift on $\mathscr{A}^{P}=\bigotimes_{-\infty}^{\infty} M_{2}$ to \mathscr{A}_{+}, but we will see in Corollary 4.3 that κ does not extend to an automorphism of \mathscr{A}^{P}. However κ does extend to an automorphism of \mathscr{A}^{F} :

Let U be the shift on l_{2} :

$$
\begin{equation*}
(U f)_{k}=f_{k+1}, \quad f=\left(f_{k}\right) \in l_{2}, \tag{3.5}
\end{equation*}
$$

identified with multiplication by $e^{-i \theta}$ on $L^{2}(\mathbb{T})$. Let

$$
W=i / 2\left(\begin{array}{rr}
1-U^{*} & 1+U^{*} \tag{3.6}\\
-1-U^{*} & U^{*}-1
\end{array}\right)
$$

Note that

$$
W^{2}=\left(\begin{array}{cc}
U^{*} & 0 \\
0 & U^{*}
\end{array}\right)
$$

so that $\tau(W)^{2}=\tau\left(W^{2}\right)$ is the Bogoliubov automorphism on the CAR algebra induced by the shift, or $\tau^{2}\left(c_{j}\right)=c_{j+1}$.
Lemma 3.1. The restriction of the Bogoliubov automorphism $\tau(W)$ from \mathscr{A}^{F} to \mathscr{A}_{+}^{F} is κ.

Proof. We have if $\tau=\tau(W)$

$$
\begin{aligned}
\tau\left(c_{j}^{*}\right) & =\frac{i}{2}\left(c_{j}^{*}-c_{j+1}^{*}-c_{j}-c_{j+1}\right) \\
\tau\left(c_{j}\right) & =\frac{i}{2}\left(c_{j}^{*}+c_{j+1}^{*}-c_{j}+c_{j+1}\right)
\end{aligned}
$$

Then

Hence

$$
\begin{aligned}
& \tau\left(c_{j}-c_{j}^{*}\right)=i\left(c_{j+1}^{*}+c_{j+1}\right) \\
& \tau\left(c_{j}+c_{j}^{*}\right)=i\left(c_{j}^{*}-c_{j}\right) \\
& \tau\left(\left(c_{j}-c_{j}^{*}\right)\left(c_{j+1}+c_{j+1}^{*}\right)\right) \\
& \quad=-\left(c_{j+1}^{*}+c_{j+1}\right)\left(c_{j+1}^{*}-c_{j+1}\right) \\
& \quad=2 c_{j+1}^{*} c_{j+1}-1 .
\end{aligned}
$$

Since $\tau^{2}\left(c_{j}\right)=c_{j+1}$, we see

$$
\tau\left(2 c_{j}^{*} c_{j}-1\right)=\left(c_{j}-c_{j}^{*}\right)\left(c_{j+1}+c_{j+1}^{*}\right) .
$$

We now extend the Kramers-Wannier automorphism κ to \mathscr{A}^{F} by putting $\kappa=\tau(W)$. Also note that

$$
W^{*}\left(\begin{array}{rr}
1 & 0 \tag{3.7}\\
0 & -1
\end{array}\right) W=\frac{1}{2}\left(\begin{array}{cc}
-\left(U+U^{*}\right) & U^{*}-U \\
U-U^{*} & U+U^{*}
\end{array}\right)
$$

This means that κ takes the infinite temperature state ω_{0} to the zero temperature state ω_{∞} :

$$
\begin{equation*}
\omega_{0}{ }^{\circ} \kappa=\omega_{\infty} \tag{3.8}
\end{equation*}
$$

as one would expect from (3.1-2) and (2.4-6).
We now define

$$
\begin{equation*}
U_{\beta}=e^{-i \Theta} \tag{3.9}
\end{equation*}
$$

where Θ is as defined in (2.18-20), and

$$
W_{\beta}=\frac{i}{2}\left(\begin{array}{cc}
1-U_{\beta}^{*} & 1+U_{\beta}^{*} \tag{3.10}\\
-\left(1+U_{\beta}^{*}\right) & U_{\beta}^{*}-1
\end{array}\right)
$$

Then

$$
W_{\beta}^{*}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) W_{\beta}=\frac{1}{2}\left(\begin{array}{cc}
-\left(U_{\beta}+U_{\beta}^{*}\right) & U_{\beta}^{*}-U_{\beta} \\
U_{\beta}-U_{\beta}^{*} & U_{\beta}+U_{\beta}^{*}
\end{array}\right)=-V_{\beta} .
$$

This means that if $\gamma_{\beta}=\tau\left(W_{\beta}\right)$, the Bogoliubov automorphism induced by W_{β}, then

$$
\begin{equation*}
\omega_{0}{ }^{\circ} \gamma_{\beta}=\omega_{\beta}, \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{\infty} \circ \delta_{\beta}=\omega_{\beta}, \tag{3.12}
\end{equation*}
$$

if $\delta_{\beta}=\kappa^{-1} \gamma_{\beta}=\tau\left(W^{*} W_{\beta}\right)$. We will show that $\left\{\left.\gamma_{\beta}\right|_{\alpha_{+}}: 0 \leqq \beta<\beta_{c}\right\} \quad$ and $\left\{\left.\delta_{\beta}\right|_{\mathscr{A}_{+}}: \beta>\beta_{c}\right\}$ extend to automorphisms $\left\{v_{\beta}: \beta \neq \beta_{c}\right\}$ of \mathscr{A}^{P} such that

$$
\left.\begin{array}{rl}
\phi_{0} \circ v_{\beta}=\phi_{\beta}, & 0 \leqq \beta<\beta_{c} \tag{3.13}\\
\phi_{\infty} \circ v_{\beta}=\phi_{\beta}, & \beta>\beta_{c} .
\end{array}\right\}
$$

Remark 3.2. The Kramers-Wannier transformation on the even subalgebra of the Pauli algebra also has an analogue on a certain subalgebra of the UHF algebra $\mathscr{F}_{q}=\bigotimes_{\infty}^{\infty} M_{q}$ which is relevant for the high temperature-low temperature duality in the q-state Potts model, and has also recently appeared in work on the index of subfactors and entropy $[8,9,16]$.

To describe this, let $\left\{E_{i j}: i, j=1, \ldots, q\right\}$ be matrix units for M_{q}, and then let

$$
f=\sum_{i, j=1}^{q} E_{i j} / q, g=\sum_{i=1}^{q} E_{i i} \otimes E_{i i}
$$

be rank one and rank q-projections in M_{q} and $M_{q} \otimes M_{q}$ respectively. Then define a doubly infinite sequence $\left\{e_{i}\right\}_{-\infty}^{\infty}$ of projections in \mathscr{F}_{q} by

$$
\begin{aligned}
e_{2 i-1} & =\cdots 1 \otimes 1 \otimes f \otimes 1 \otimes 1 \ldots, \\
e_{2 i} & =\cdots 1 \otimes 1 \otimes g \otimes 1 \otimes 1 \ldots, \quad i-(i+1) \text { positions }
\end{aligned}
$$

and let \mathscr{A}_{q} be the C^{*}-algebra generated by $\left\{e_{i}\right\}_{-\infty}^{\infty}$. Thus if $q=2$,

$$
e_{2 i-1}=\left(\sigma_{z}^{(i)}+1\right) / 2, \quad e_{2 i}=\left(\sigma_{x}^{(i)} \sigma_{x}^{(i+1)}+1\right) / 2
$$

and so \mathscr{A}_{2} is the even part of the Pauli algebra. The projections $\left\{e_{i}\right\}$ satisfy the relations

$$
\begin{gather*}
e_{i} e_{j}=e_{j} e_{i}, \quad|i-j| \geqq 2 \tag{3.14}\\
e_{i} e_{i \pm 1} e_{i}=\frac{1}{q} e_{i} \tag{3.15}\\
\operatorname{tr} x e_{i}=\frac{1}{q} \operatorname{tr} x, \text { if } x \in C^{*}-\text { algebra generated by }\left\{e_{j}\right\}_{-\infty}^{i-1}, \tag{3.16}
\end{gather*}
$$

where tr is the trace on \mathscr{F}_{q}.
The local transfer matrix in the q-state Potts model can be written [4, 22], up to a scalar, as $X^{1 / 2} Y X^{1 / 2}$, where $X=\exp 2 K_{2} \Sigma e_{2 i}, Y=\exp 2 K_{1}^{*} \Sigma e_{2 i-1}$, and $K_{j}=$ $\beta J_{j}, j=1,2,\left(e^{2 K_{1}^{*}}-1\right)\left(e^{2 K_{1}}-1\right)=q$.

As in the Ising model, where $q=2$, the automorphism $\kappa_{q}: e_{i} \rightarrow e_{i+1}$ of \mathscr{F}_{q} can be used to locate the critical temperature (see e.g. [4]). Families of projections satisfying (3.14-16) and the automorphisms κ_{q} have recently occurred in the work of Jones [8,9] on index of subfactors and braid groups, and Pimsner and Popa [16] on index and entropy of subfactors.

4. Extendibility of Automorphisms

We consider the problem of deciding when an automorphism of the even algebra \mathscr{A}_{+}extends to an automorphism of the Pauli algebra \mathscr{A}^{P}.

Let \mathscr{C} be a graded unital C^{*}-algebra, i.e. \mathscr{C} is equipped with an automorphism Θ such that $\Theta^{2}=1$, and we define the even and odd parts of \mathscr{C} by

$$
\mathscr{C}_{ \pm}=\{x \in \mathscr{C}: \Theta(x)= \pm x\}
$$

respectively. We say that an automorphism v of \mathscr{C} is graded if $v \mathscr{C} \mathscr{C}_{ \pm} \subseteq \mathscr{C}_{ \pm}$. An inner automorphism of \mathscr{C} is said to be even (respectively odd) if it is implemented by an even (respectively odd) unitary.

Note that if \mathscr{C} is simple, then a graded inner automorphism v on \mathscr{C} is always either even or odd. For then, if $v=\operatorname{Ad}(u), u \in \mathscr{C}$, we have $v=\Theta v \Theta$, since v is graded, and so $\operatorname{Ad} \Theta(v)=\operatorname{Ad}(v)$ on \mathscr{C}. Since \mathscr{C} is simple, this implies $\Theta(v)=\lambda v$ for some $\lambda \in \mathbb{T}$. Letting $v=a+b$, where a, b are even and odd respectively, we see that $a-b=$ $\lambda(a+b)$, or $a(1-\lambda)=b(1+\lambda)=0$. Hence either $b=0, \lambda=1$ and v is even, or $a=0, \lambda=-1$, and v is odd.

We need something stronger than this:

Lemma 4.1. Let u be a self adjoint unitary in a graded C^{*}-algebra such that \mathscr{C}_{+}is simple and

$$
u \mathscr{C}_{+} u=\mathscr{C}_{+}
$$

Then u is either odd or even.
Proof. Let $u=a+b$, where a, b are even and odd respectively. We have to show that either a or b is zero. Now a, b are self adjoint and $(a+b) x(a+b) \in \mathscr{C}_{+}$, for all $x \in \mathscr{C}_{+}$. This means

$$
\begin{equation*}
a x b+b x a=0, \quad \text { for all } x \in \mathscr{C}_{+} . \tag{4.1}
\end{equation*}
$$

In particular $a b+b a=0$, and since u is unitary we have

$$
\begin{equation*}
a^{2}+b^{2}=1 \tag{4.2}
\end{equation*}
$$

From (4.1) with $x=a$ we get

$$
\begin{equation*}
a^{2} b+b a^{2}=0 \tag{4.3}
\end{equation*}
$$

Then using (4.2) we have $\left(1+b^{2}\right) b+b\left(1-b^{2}\right)=0$, or

$$
\begin{equation*}
b=b^{3} . \tag{4.4}
\end{equation*}
$$

Then ($a b)^{*} a b=b a^{2} b=b\left(1-b^{2}\right) b=0$, using (4.4), hence $a b=0=b a$. But then using (4.1), $b(a x b+b x a)=0$, for all $x \in \mathscr{C}$ + implies that $b^{2} x a=0$ for all $x \in \mathscr{C}_{+}$, or $\left(1-a^{2}\right) x a=0$ for all $x \in \mathscr{C}_{+}$. But \mathscr{C}_{+}is simple and so either $a^{2}=1$ or $a=0$, i.e. by (3.2) either $b=0$ or $a=0$.

We now consider the following general situation. Let \mathscr{A} be a unital C^{*}-algebra, with α, β two commuting automorphisms such that $\alpha^{2}=\beta^{2}=1$, and a unitary element U satisfying $\alpha(U)=-U, U^{2}=1, \beta(U)=U$.

Let $\hat{\mathscr{A}}$ be the crossed product of \mathscr{A} by the β-action of \mathbb{Z}_{2} which is generated by \mathscr{A} and a $T \in \hat{\mathscr{A}}$ satisfying $T^{2}=1, T^{*}=T, T a=\beta(a) T, a \in \hat{\mathscr{A}}$. We grade \mathscr{A} by α so that $\mathscr{A}_{ \pm}=\{x \in \mathscr{A}: \alpha(x)= \pm x\}$, and let $\mathscr{B}=\mathscr{A}_{+}+T \mathscr{A}_{-}$, which is a C^{*}-subalgebra of $\hat{\mathscr{A}}$. Extend α, β to $\hat{\mathscr{A}}$ by

$$
\begin{aligned}
& \hat{\alpha}(a+T b)=\alpha(a)+T \alpha(b), \\
& \hat{\beta}(a+T b)=\beta(a)+T \beta(b), \quad a, b \in \mathscr{A} .
\end{aligned}
$$

We grade $\hat{\mathscr{A}}, \mathscr{B}$ by $\hat{\alpha}$ and $\tilde{\alpha}=\left.\hat{\alpha}\right|_{\mathscr{B}}$ respectively, so that $\mathscr{B}_{+}=\mathscr{A}_{+}, \mathscr{B}_{-}=T \mathscr{A}_{-}$.
If v is a graded automorphism of \mathscr{A}, we now give a criterion when $v \mid \mathscr{A}+$ extends to an automorphism of \mathscr{B}. We will then apply these criteria to the case $\mathscr{A}=\mathscr{A}^{F}$, $\alpha=\Theta, \beta=\Theta_{-}, \mathscr{B}=\mathscr{A}^{P}, U=c_{i}+c_{i}^{*}$ for any $i \geqq 1$, and v a quasi-free automorphism of \mathscr{A}^{F}.

Theorem 4.2. Let v be a graded automorphism of \mathscr{A}, where \mathscr{A}_{+}is simple. If $\left.v\right|_{\mathscr{A}_{+}}$ extends to an automorphism \tilde{v} of \mathscr{B}, then \tilde{v} must be graded.

Proof. Let $\sigma=T U \in T \mathscr{A}_{-}$, so that σ is a self adjoint unitary in \mathscr{B}, and $\mathscr{B}=$ $\mathscr{A}_{+}+\sigma \mathscr{A}_{+}$. If $\left.v\right|_{\mathscr{A}_{+}}$extend to an automorphism \tilde{v} of \mathscr{B}, then $v, \operatorname{Ad}(\sigma)$ leave \mathscr{A}_{+} invariant and

$$
v \operatorname{Ad}(\sigma) v^{-1}=\operatorname{Ad}(\tilde{v}(\sigma)) \quad \text { on } \quad \mathscr{A}_{+} .
$$

Hence by Lemma 4.1, $\tilde{v}(\sigma)$ is either odd or even. If $\tilde{v}(\sigma)$ is odd, then \tilde{v} is graded, but if $\tilde{v}(\sigma)$ is even, then $\tilde{v}(\mathscr{B}) \subset \mathscr{B}_{+}$which is impossible as \tilde{v} is an automorphism.
Corollary 4.3. The Kramers-Wannier automorphism $\kappa: \mathscr{A}_{+} \rightarrow \mathscr{A}_{+}$does not extend to an automorphism of \mathscr{A}^{P}.
Proof. Suppose κ extends to a graded automorphism $\tilde{\kappa}$ of \mathscr{A}^{P}. Then $\phi_{0}{ }^{\circ} \kappa=\phi_{\infty}$ on \mathscr{A}_{+}means that $\phi_{0}{ }^{\circ} \tilde{\kappa}=\phi_{\infty}$ on \mathscr{A}^{P}, since ϕ_{0} and ϕ_{∞} are even states. But this is impossible as ϕ_{0} and ϕ_{∞} are pure, impure respectively by Sect. 2 or [3].

Note that since κ extends to an automorphism of \mathscr{A}^{F}, it follows from Corollary 4.3 that the Jordan-Wigner transformation which identifies \mathscr{A}_{+}^{P} with \mathscr{A}_{+}^{F} in (3.1) and (3.2) cannot be extended to an isomorphism between \mathscr{A}^{P} and \mathscr{A}^{F} (although \mathscr{A}^{P} and \mathscr{A}^{F} are isomorphic C^{*}-algebras).

If v is a graded automorphism of \mathscr{A}, which extends to an automorphism \hat{v} of $\hat{\mathscr{A}}$, then

$$
\beta v \beta v^{-1}(x)=T \hat{v}(T) x \hat{v}(T) T \quad \text { for all } \quad x \in \mathscr{A} .
$$

In particular, if \hat{v} is graded, then $T \hat{v}(T)$ is in $\hat{\mathscr{A}}_{+}$. Note that by the argument of Theorem 4.2, if $\hat{\mathscr{A}}_{+}$is simple, then \hat{v} must be graded. In the converse direction we have:
Theorem 4.4. Let v be a graded automorphism of \mathscr{A}, where \mathscr{A}_{+}is simple, and $\beta v \beta v^{-1}$ is an inner even automorphism of \mathscr{A}. Then v extends to a graded automorphism of $\hat{\mathscr{A}}$, leaving \mathscr{B} invariant, and given by

$$
\begin{equation*}
\hat{v}(a+T b)=v(a)+T v v(b), \quad a, b \in \mathscr{A} . \tag{4.5}
\end{equation*}
$$

where v is a unitary in \mathscr{A}_{+}such that

$$
v \beta(v)=1, \quad \beta v \beta v^{-1}=\operatorname{Ad}(v) \text { on } \mathscr{A}
$$

Proof. Suppose $\beta v \beta v^{-1}=\operatorname{Ad}(v)$, for some v unitary in \mathscr{A}_{+}. If $\gamma=\beta v \beta v^{-1}$, we have $\gamma \beta \gamma \beta=1$. Therefore for $x \in \mathscr{A}$:

$$
x=\gamma \beta \gamma \beta(x)=v \beta(v) x \beta(v)^{*} v^{*}
$$

But \mathscr{A}_{+}is simple and so we must have $v \beta(v) \in \mathbb{C}$. By rotating v we may assume $v \beta(v)=1$. Define $\hat{v}: \hat{\mathscr{A}} \rightarrow \hat{\mathscr{A}}$ by (4.5). We use $v \beta(x)=T v v(x) v^{*} T, x \in \mathscr{A}$, and $T v T=v^{*}$ to check that \hat{v} is an automorphism: For $a, b \in \mathscr{A}$,

$$
\begin{aligned}
\hat{v}\left[(a+T b)^{*}\right] & =\hat{v}\left[a^{*}+T \beta b^{*}\right]=v\left(a^{*}\right)+T v v \beta\left(b^{*}\right) \\
& =v(a)^{*}+v\left(b^{*}\right) v^{*} T=[\hat{v}(a+T b)]^{*} .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
\hat{v}\left(a_{1}+T b_{1}\right)\left(a_{2}+T b_{2}\right) & =\hat{v}\left(a_{1} a_{2}+\beta\left(b_{1}\right) b_{2}+T b_{1} a_{2}+T \beta\left(a_{1}\right) b_{2}\right) \\
& =v\left(a_{1} a_{2}\right)+v\left(\beta\left(b_{1}\right) b_{2}\right)+T v v\left(b_{1} a_{2}\right)+T v v\left(\beta\left(a_{1}\right) b_{2}\right) \\
& =v\left(a_{1}\right) v\left(a_{2}\right)+T v v\left(b_{1}\right) T v v\left(b_{2}\right)+T v v\left(b_{1}\right) v\left(a_{2}\right)+v\left(a_{1}\right) T v v\left(b_{2}\right) \\
& =\left[v\left(a_{1}\right)+T v v\left(b_{1}\right)\right]\left[v\left(a_{2}\right)+T v v\left(b_{2}\right)\right] \\
& =\hat{v}\left(a_{1}+T b_{1}\right) \hat{v}\left(a_{2}+T b_{2}\right) .
\end{aligned}
$$

Thus \hat{v} is an automorphism, and if v is in \mathscr{A}_{+}, it is clear that \hat{v} is graded and leaves \mathscr{B} invariant.

5. The Main Results

We now apply the criterion of the previous section for extending automorphisms from the even algebra \mathscr{A}_{+}^{P} to the Pauli algebra \mathscr{A}^{P} to deduce:

Theorem 5.1. The (Bogoliubov) automorphisms $\left\{\left.\tau\left(W^{*} W_{\beta}\right)\right|_{\mathscr{A}+}: \beta>\beta_{c}\right\}$ and $\left\{\left.\tau\left(W_{\beta}\right)\right|_{\mathscr{A}_{+}}: 0 \leqq \beta<\beta_{c}\right\}$ extend to graded automorphisms $\left\{v_{\beta}: \beta \neq \beta_{c}\right\}$ of the Pauli algebra \mathscr{A}^{P} such that

$$
\begin{array}{ll}
\phi_{0} \circ v_{\beta}=\phi_{\beta}, & 0 \leqq \beta<\beta_{c} \\
\phi_{\infty}{ }^{\circ} v_{\beta}=\phi_{\beta}, & \text { for } \beta>\beta_{c} . \tag{5.2}
\end{array}
$$

The (Bogoliubov) automorphisms

$$
\left\{\left.\tau\left(W^{*} W_{\beta}\right)\right|_{\mathscr{A}_{+}}: 0 \leqq \beta<\beta_{c}\right\} \quad \text { and } \quad\left\{\left.\tau\left(W_{\beta}\right)\right|_{\mathscr{A}_{+}}: \beta>\beta_{c}\right\}
$$

do not extend to automorphisms of the Pauli algebra.
First we need some lemmas.
Lemma 5.2. The operators

$$
\begin{equation*}
\delta-u_{-} \delta u_{-}, \text {for } \beta>\beta_{c} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta-u_{-} \Theta u_{-}, \quad \text { for } \quad 0 \leqq \beta<\beta_{c} \tag{5.4}
\end{equation*}
$$

are trace class.
Proof. If $z_{i}=\tanh K_{i}=e^{-2 K_{i}^{*}}$, and $z_{i}^{*}=\tanh K_{i}^{*}=e^{-2 K_{i}}$, then (2.18), (2.19) and (2.20) can be solved (see e.g. [13]) to get

$$
\begin{equation*}
e^{2 i \delta(\omega)}=\frac{\left(1-z_{2} z_{1}^{*} e^{i \omega}\right)\left(1-z_{1}^{*} e^{-i \omega} / z_{2}\right)}{\left(1-z_{2} z_{1}^{*} e^{-i \omega}\right)\left(1-z_{1}^{*} e^{i \omega} / z_{2}\right)} \tag{5.5}
\end{equation*}
$$

Then for $\beta>\beta_{c}$ (i.e. $z_{1}^{*}<z_{2}<1$), the Fourier coefficients $\left\{k_{n}\right\}$ of $i \delta$ are given by

$$
k_{n}=\frac{1}{2 n}\left[\left(z_{1}^{*} / z_{2}\right)^{n}-\left(z_{2} z_{1}^{*}\right)^{n}\right]=-k_{-n}, \quad n>0
$$

([13, Eq. (75)]). Let $p_{ \pm}=\left(1 \pm u_{-}\right) / 2$, then $\delta-u_{-} \delta u_{-}=2\left(p_{+} \delta p_{-}+p_{-} \delta p_{+}\right)$. Since δ is real, it is enough to show that $p_{+} \delta p_{-}$is trace class if $\beta>\beta_{c}$. Let $\left\{e^{-i k \omega}: k=0,1,2, \ldots\right\}$ and $\left\{e^{i k \omega}: k=1, \ldots\right\}$ be complete orthonormal bases for $p_{-} l_{2}$ and $p_{+} l_{2}$ respectively. Then the matrix of $i p_{+} \delta p_{-}$with respect to these bases is

$$
\left\{k_{r+s+1}: r, s=0,1,2, \ldots \ldots\right\} .
$$

Thus with this identification of $p_{-} l_{2}$ and $p_{+} l_{2}$ with $l_{2}(\mathbb{N})=l_{2}^{+}$, and if $\chi_{2}=$ $\left\{\lambda^{i}\right\}_{i=0}^{\infty} \in l_{2}^{+}$, for $0 \leqq \lambda<1$, we have

$$
\begin{equation*}
i p_{+} \delta p_{-}=\left\{k_{r+s+1}: r, s\right\}=\frac{1}{2} \int_{z_{2} 2_{1}^{*}}^{z_{1}^{*} / z_{2}}\left|\chi_{\lambda}\right\rangle\left\langle\chi_{\lambda}\right| d \lambda, \tag{5.6}
\end{equation*}
$$

which is trace class for $0 \leqq z_{1}^{*}<z_{2}$. We have from (5.5) that

$$
e^{2 i \Theta(\omega)}=\frac{\left(1-z_{2} z_{1}^{*} e^{i \omega}\right)\left(1-z_{2} e^{i \omega} / z_{1}^{*}\right)}{\left(1-z_{2} z_{1}^{*} e^{-i \omega}\right)\left(1-z_{2} e^{-i \omega} / z_{1}^{*}\right)},
$$

so that $i \Theta$ has Fourier coefficients $\left\{h_{n}\right\}$ given by

$$
h_{n}=\frac{-1}{2 n}\left[\left(z_{2} / z_{1}^{*}\right)^{n}+\left(z_{2} z_{1}^{*}\right)^{n}\right]=-h_{-n}, \quad n>0 .
$$

Thus

$$
\begin{equation*}
i p_{+} \Theta p_{-}=-\frac{1}{2}\left[\int_{0}^{z_{2} / /_{1}^{*}}\left|\chi_{\lambda}\right\rangle\left\langle\chi_{\lambda}\right| d \lambda+\int_{0}^{z_{2} \tau_{2}^{*}}\left|\chi_{\lambda}\right\rangle\left\langle\chi_{\lambda}\right| d \lambda\right], \tag{5.7}
\end{equation*}
$$

which is trace class for $0 \leqq z_{2}<z_{1}^{*}$ or $0 \leqq \beta<\beta_{c}$.
Lemma 5.4. The operators

$$
\begin{equation*}
W^{*} W_{\beta}-\theta_{-} W^{*} W_{\beta} \theta_{-} \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{\beta}-\theta_{-} W_{\beta} \theta_{-} \tag{5.9}
\end{equation*}
$$

are trace class for $\beta \neq \beta_{c}$.
Proof. We have

$$
W^{*} W_{\beta}=\frac{1}{2}\left(\begin{array}{ll}
1+U U_{\beta}^{*} & 1-U U_{\beta}^{*} \tag{5.10}\\
1-U U_{\beta}^{*} & 1+U U_{\beta}^{*}
\end{array}\right) .
$$

Thus $W^{*} W_{\beta}-\theta_{-} W^{*} W_{\beta} \theta_{-}$being trace class is equivalent to $U U_{\beta}^{*}-u_{-} U U_{\beta}^{*} u_{-}$ being trace class. But $U U_{\beta}^{*}=e^{i \delta}$ as $\Theta(\theta)-\theta=\delta(\theta)$, and

$$
\begin{equation*}
e^{i \delta}-u_{-} e^{i \delta} u_{-}=i \int_{0}^{1} u_{-} e^{i(1-s) \delta} u_{-}\left[\delta-u_{-} \delta u_{-}\right] e^{i s \delta} d s \tag{5.11}
\end{equation*}
$$

Thus by (5.3) in Lemma 5.2 we see that

$$
\begin{equation*}
W^{*} W_{\beta}-\theta_{-} W^{*} W_{\beta} \theta_{-}, \quad \beta_{c}<\beta \leqq \infty \tag{5.12}
\end{equation*}
$$

are trace class. Since $U_{\beta}^{*}=e^{\iota \Theta}$, we see in a similar manner using (5.4) of Lemma 5.2 that

$$
\begin{equation*}
W_{\beta}-\theta_{-} W_{\beta} \theta_{-}, \quad 0 \leqq \beta<\beta_{c} \tag{5.13}
\end{equation*}
$$

are trace class. Now $W_{\infty}=W$, and a direct computation shows that

$$
\begin{equation*}
W^{*}-\theta_{-} W^{*} \theta_{-} \tag{5.14}
\end{equation*}
$$

is trace class. The lemma now follows from the identity:

$$
\begin{equation*}
W^{*} W_{\beta}-\theta_{-} W^{*} W_{\beta} \theta_{-}=W^{*}\left(W_{\beta}-\theta_{-} W_{\beta} \theta_{-}\right)+\left(W^{*}-\theta_{-} W^{*} \theta_{-}\right) \theta_{-} W_{\beta} \theta_{-}, \tag{5.15}
\end{equation*}
$$

and the operators in (5.12), (5.13) and (5.14) being trace class.

Remark 5.5. It follows from [3, Sect. 6] that the operators in (5.9) (and hence in (5.8) using (5.15)) are Hilbert-Schmidt, but this is not enough for our approach here. Note that it also follows from [3, Sect. 6] that $W^{*} W_{\beta_{c}}-\theta_{-} W^{*} W_{\beta_{c}} \theta_{-}$and $W_{\beta_{c}}-\theta_{-} W_{\beta_{c}} \theta_{-}$are not Hilbert Schmidt.

By [1], a Bogoliubov automorphism $\tau(v)$ on \mathscr{A}^{F} is inner if and only if one of the following conditions hold:

$$
\begin{align*}
& 1-v \text { is trace class and } \operatorname{det} v=1 \tag{5.16}\\
& 1+v \text { is trace class and } \operatorname{det}(-v)=-1 \tag{5.17}
\end{align*}
$$

An inspection of the proofs in [1] shows that if (5.16) holds then $\tau(v)$ is even, and if (5.17) holds then $\tau(v)$ is odd.

Also note that if a unitary v commutes with Γ, and $1-v$ is trace class, then $\operatorname{det}(v)= \pm 1[1$, p. 414]. Moreover the map $w \rightarrow \operatorname{det}(1-w)$ is continuous on the trace class operators [20].

We apply these considerations to the unitaries

$$
\begin{gather*}
\theta_{-} W^{*} W_{\beta} \theta_{-} W_{\beta}^{*} W, \tag{5.18}\\
\theta_{-} W_{\beta} \theta_{-} W_{\beta}^{*} \tag{5.19}
\end{gather*}
$$

for $\beta \neq \beta_{c}$.
Lemma 5.6.

$$
\begin{align*}
\operatorname{det}\left(\theta_{-} W^{*} W_{\beta} \theta_{-} W_{\beta}^{*} W\right) & =\left\{\begin{array}{rl}
1 & \beta_{c}<\beta \leqq \infty \\
-1 & 0 \leqq \beta<\beta_{c}
\end{array}\right. \tag{5.20}\\
\operatorname{det}\left(\theta_{-} W_{\beta} \theta_{-} W_{\beta}^{*}\right) & =\left\{\begin{array}{rl}
1 & 0 \leqq \beta<\beta_{c} \\
-1 & \beta_{c}<\beta \leqq \infty
\end{array}\right. \tag{5.21}
\end{align*}
$$

Proof. By Lemma 5.4, we see that

$$
\begin{equation*}
1-\theta_{-} W^{*} W_{\beta} \theta_{-} W_{\beta}^{*} W=\left(W^{*} W_{\beta}-\theta_{-} W^{*} W_{\beta} \theta_{-}\right) W_{\beta}^{*} W \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\theta_{-} W_{\beta} \theta_{-} W_{\beta}^{*}=\left(W_{\beta}-\theta_{-} W_{\beta} \theta_{-}\right) W_{\beta}^{*} \tag{5.23}
\end{equation*}
$$

are trace class if $\beta \neq \beta_{c}$.
As in [3] we now treat K_{1}^{*} and K_{2} (or z_{1} and z_{2}^{*}) as independent parameters. From [3, p. 500] we see that W_{β} is norm continuous in the region $z_{1}^{*} \neq z_{2}$. Then we have from (5.10), (5.11) (5.6), (5.7), (5.22), (5.23) and (5.15) that $1-\theta_{-} W^{*} W_{\beta} \theta_{-} W_{\beta}^{*} W$ and $1-\theta_{-} W_{\beta} \theta_{-} W_{\beta}^{*}$ are continuous in z_{1}^{*} and z_{2} in the trace class norm when $z_{1}^{*} \neq z_{2}$. Hence using continuity of the determinant, it is enough to compute the determinants in the cases $z_{1}^{*}=0, z_{2}>0,(\beta=\infty)$ and $z_{2}=0, z_{1}^{*}>0,(\beta=0)$, which is an easy exercise.

Proof of Theorem 5.1. We now apply Theorem 4.4 to the automorphisms

$$
v_{\beta}=\left\{\begin{array}{lr}
\tau\left(W^{*} W_{\beta}\right), & \beta>\beta_{c} \\
\tau\left(W_{\beta}\right), & 0 \leqq \beta<\beta_{c}
\end{array},\right.
$$

using Lemmas 5.5 and 5.6 and (5.16) to see that $\left.v_{\beta}\right|_{\alpha_{+}}$extend to graded automorphisms of \mathscr{A}^{P} also denoted by v_{β}. Then (5.1) and (5.2) follow from (2.17), (3.11) and (3.12).

Finally, it is now clear using Corollary 4.3 that the automorphisms

$$
\left\{\left.\tau\left(W^{*} W_{\beta}\right)\right|_{\mathscr{A}_{+}}: 0 \leqq \beta<\beta_{c}\right\} \quad \text { and } \quad\left\{\left.\tau\left(W_{\beta}\right)\right|_{\mathscr{A}_{+}}: \beta>\beta_{c}\right\}
$$

do not extend to \mathscr{A}^{P}.

References

1. Araki, H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci 6, 385-442 (1970)
2. Araki, H.: On the $X Y$-model on two-sided infinite chain. Publ. Res. Inst. Math. Sci. 20, 277-296 (1984)
3. Araki, H., Evans, D. E.: On a C^{*}-algebra approach to phase transition in the two-dimensional Ising model. Commun. Math. Phys. 91, 489-503 (1983)
4. Baxter, R. J.: Exactly solved models in statistical mechanics. London: Academic Press 1982
5. Evans, D. E., Lewis, J. T.: The spectrum of the transfer matrix in the C^{*}-algebra of the Ising model at high temperatures. Commun. Math. Phys. 92, 309-327 (1984)
6. Kaufman, B.: Crystal statistics II. Phys. Rev. 76, 1232-1243 (1949)
7. Kaufman, B., Onsager, L.: Crystal statistics III. Phys. Rev. 76, 1244-1252 (1949)
8. Jones, V. F. R.: Index for subfactors. Invent. Math. 72, 1-25 (1983)
9. Jones, V. F. R.: Braid groups, Hecke algebras and type II ${ }_{1}$ factors. Proceedings Japan US Conference 1983. (to appear)
10. Kramers, H. A., Wannier, G. H.: Statistics of the two-dimensional ferromagnet. Part 1. Phys. Rev. 60, 252-262 (1941)
11. Lewis, J. T., Sisson, P. N. M.: A C^{*}-algebra of the two-dimensional Ising model. Commun. Math. Phys. 44, 279--292 (1975)
12. Lewis, J. T., Winnink, M.: The Ising model phase transition and the index of states on the Clifford algebra. Colloq. Math. Soc. János Bolyai 27, Random fields. Hungary Esztergom: 1979
13. Montroll, E., Potts, R. B., Ward, J. C.: Correlations and spontaneous magnetisation of the twodimensional Ising model. J. Math. Phys. 4, 308-322 (1963)
14. Onsager, L.: Crystal statistics. I. Phys. Rev. 65, 117-149 (1944)
15. Onsager, L.: Discussion remark. (Spontaneous magnetisation of the two-dimensional Ising model). Nuovo Cimento (Suppl) 6, 261-262 (1949)
16. Pimsner, M., Popa, S.: Entropy and index for subfactors. Preprint INCREST 1983
17. Pirogov, S.: States associated with the two-dimensional Ising model. Theor. Math. Phys. 11, (3), 614617 (1972)
18. Schultz, T. D., Mattis, D. C., Lieb, E.: Two-dimensional Ising model as a solvable problem of many Fermions. Rev. Mod. Phys. 36, 856-871 (1964)
19. Shale, D., Stinespring, W. F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315-322 (1965)
20. Simon, B.: Trace ideals and their applications. London Math. Soc. Lecture Note Series 35. Cambridge: Cambridge University Press 1979
21. Sisson, P. N. M.: A C^{*}-algebra of the Ising model. Ph.D. Thesis. Dublin University 1975
22. Temperley, H. N. V., Lieb, E. H.: Graph-theoretical problems and planar lattices. Proc. R. Soc. Lond. A322, 251-280 (1971)

Communicated by H. Araki
Received March 6, 1985

[^0]: * Partially supported by the Science and Engineering Research Council

