Commun. Math. Phys. 102, 521-535 (1986)

On a C*-Algebra Approach to Phase Transition in the Two-Dimensional Ising Model. II

Communications in Mathematical

© Springer-Verlag 1986

D. E. Evans¹ and J. T. Lewis²*

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, England

2 School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

Abstract. We investigate the states ϕ_{β} on the C*-algebra of Pauli spins on a onedimensional lattice (infinitely extended in both directions) which give rise to the thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising model (with nearest neighbour interaction) at inverse temperature β . We show that if β_c is the known inverse critical temperature, then there exists a family $\{v_{\beta}: \beta \neq \beta_c\}$ of automorphisms of the Pauli algebra such that

$$\phi_{\beta} = \begin{cases} \phi_{0} \circ v_{\beta}, & 0 \leq \beta < \beta_{c} \\ \phi_{\infty} \circ v_{\beta}, & \beta > \beta_{c}. \end{cases}$$

1. Introduction

We consider the Ising Hamiltonian on a two-dimensional lattice, infinitely extended in all directions, with nearest neighbour interactions and zero field. Thus the problem is classically set in the commutative C^* -algebra $C(\mathscr{P}) = \bigotimes_{\mathbb{Z}^2} \mathbb{C}^2$ of all continuous functions on the configuration space $\mathscr{P} = \{\pm 1\}^{\mathbb{Z}^2}$. The transfer matrix method allows us to transform the model to a non-commutative algebra $\mathscr{A}^P = \bigotimes_{\mathbb{Z}} M_2$ in one dimension less. More precisely, for each inverse temperature β , suppose $\langle \cdot \rangle_{\beta}$ is the equilibrium state for the classical system obtained as the thermodynamic limit of the Gibbs ensembles on the configuration space \mathscr{P} using free boundary conditions. Then there is for each β , a map $F \to F_{\beta}$ from the local observables in C(P) into the Pauli or quantum algebra \mathscr{A}^P such that $\langle F \rangle_{\beta} = \phi_{\beta}(F_{\beta})$. Thus any classical correlation or expectation value can be computed using a knowledge of the Pauli algebra alone. The main result of [3] was the following:

^{*} Partially supported by the Science and Engineering Research Council

Theorem 1. The cyclic representation of \mathscr{A}^{P} associated with ϕ_{β} is irreducible for $0 \leq \beta \leq \beta_{c}$, whilst it is reducible, with two-dimensional centre (for the weak closure) if $\beta > \beta_{c}$.

Here β_c is the same as the (inverse) critical temperature given by Onsager [14]. We now improve on this, at least for $\beta \neq \beta_c$, to show:

Theorem 2. There exist automorphisms $\{v_{\beta}: \beta \neq \beta_c\}$ of \mathscr{A}^P such that

(1.1)
$$\phi_{\beta} = \phi_0 \circ v_{\beta}, \quad 0 \leq \beta < \beta_c$$

(1.2)
$$\phi_{\beta} = \phi_{\infty} \circ v_{\beta}, \quad \beta > \beta_{c}$$

In particular, since ϕ_0 and ϕ_{∞} can be given explicitly, we give a simple proof of Theorem 1, independent of [3].

We make use of the crossed product C^* -algebra $\hat{\mathscr{A}}$ introduced by Araki [2] and described below. The algebra $\hat{\mathscr{A}}$ is generated by the Fermi algebra \mathscr{A}^F and a selfadjoint element $T:\hat{\mathscr{A}} = \mathscr{A}_+^F + T\mathscr{A}_+^F + \mathscr{A}_-^F + T\mathscr{A}_-^F$, where \mathscr{A}_+^F and \mathscr{A}_-^F are the even and odd parts of \mathscr{A}^F , respectively. The important facts are that the Pauli algebra \mathscr{A}^P sits in $\hat{\mathscr{A}}$ as $\mathscr{A}^P = \mathscr{A}_+^F + T\mathscr{A}_-^F$, the state ϕ_β on \mathscr{A}^P extends to a state $\hat{\phi}_\beta$ on $\hat{\mathscr{A}}$ whose restriction to $\mathscr{A}^F = \mathscr{A}_+^F + A_-^F$ is the Fock state ω_β . As pointed out in [11,21], the state ω_β is connected to the infinite temperature state ω_0 by a Bogoliubov automorphism $\gamma_\beta: \omega_\beta = \omega \circ \gamma_\beta$. In this paper we remark that the restriction of γ_∞ to \mathscr{A}_+^F is the Kramers–Wannier automorphism, and γ_∞ relates ω_0 to the zero-temperature state $\omega_\infty: \omega_0 = \omega_\infty \circ \gamma_\infty^{-1}$. Our principal result is that $\{\gamma_\beta|_{\mathscr{A}_+}: 0 \leq \beta < \beta_c\}$ and $\{\gamma_\infty^{-1}\gamma_\beta|_{\mathscr{A}_+}: \beta > \beta_c\}$ extend to automorphisms $\{v_\beta: \beta \neq \beta_c\}$ of \mathscr{A}^P , such that

$$\phi_{\beta} = \begin{cases} \phi_{0} \circ v_{\beta}, & 0 \leq \beta < \beta_{c} \\ \phi_{\infty} \circ v_{\beta}, & \beta > \beta_{c}. \end{cases}$$

Theorem 1 (for $\beta \neq \beta_c$) then follows from an examination of the explicit expressions for ϕ_0 and ϕ_{∞} .

2. The C*-algebraic Formulation

We consider the two-dimensional Ising model with the Hamiltonian

$$H^{LM}(\xi) = -\left(\sum_{i=-L}^{L-1} \sum_{j=-M}^{M} J_1 \xi_{ij} \xi_{i+1,j} + \sum_{i=-L}^{L} \sum_{j=-M}^{M-1} J_2 \xi_{ij} \xi_{i,j+1}\right),$$
(2.1)

where $\xi_{ij} = \pm 1$ is the classical spin at the lattice site $(i, j) \in \mathbb{Z}^2$, and J_1 and J_2 are positive constants. Then the Gibbs ensemble average is given by

$$\langle F \rangle_{LM} = Z_{LM}^{-1} \sum_{\xi} F(\xi) \exp\left(-\beta H^{LM}(\xi)\right), \qquad (2.2)$$
$$Z_{LM} = \sum_{\xi} \exp\left(-\beta H^{LM}(\xi)\right),$$

where the sum is over all configurations $\xi_{ij} = \pm 1, \beta \ge 0$ and F, a local observable, is a function of ξ_{ij} , for $|i| \le l, |j| \le m$, and some $l \le L, m \le M$. The transfer matrix method [10] allows us to compute the expectation values $\langle \cdot \rangle_{LM}$ in terms of a state

 φ_{β}^{LM} on the Pauli spin algebra \mathscr{A}_{M}^{P} generated by the spin matrices $\sigma_{x}^{(i)}, \sigma_{y}^{(i)}, \sigma_{z}^{(i)}$ on sites *i* where $|i| \leq M$. Then $\mathscr{A}_{M}^{P} \simeq \bigotimes_{-M}^{M} M_{2}$, and we adopt the convention that

$$\sigma_x^{(i)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_y^{(i)} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \sigma_z^{(i)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

We can identify a function of $\xi = (\xi_j)$, $\xi_j = \pm 1$, $\xi' = (\xi'_j)$, $\xi'_j = \pm 1$ with a $2^{2M+1} \times 2^{2M+1}$ matrix, and hence with an element of \mathscr{A}_M^P . If we define

$$(T_M)_{\xi,\xi'} = \exp\left\{\frac{K_2}{2} \sum_{j=-M}^{M} (\xi_j \xi_{j+1} + \xi'_j \xi'_{j+1}) + K_1 \sum_{j=-M}^{M} \xi_j \xi'_j\right\},$$
(2.3)

then under the above identifications

$$T_{M} = (2\sinh 2K_{1})^{M+1/2} V^{1/2} W V^{1/2}, \qquad (2.4)$$

if

$$V = \exp\left\{K_{2}\sum_{j=-M}^{M-1} \sigma_{x}^{(j)} \sigma_{x}^{(j+1)}\right\},$$
(2.5)

$$W = \exp\left\{K_1^* \sum_{j=-M}^M \sigma_z^{(j)}\right\},\tag{2.6}$$

and

$$K_j = \beta J_j, \quad j = 1, 2, \quad K_1^* = \frac{1}{2} \log (\coth K_1).$$
 (2.7)

If

$$\Omega_{M}(\xi) = \exp\left\{\frac{K_{2}}{2}\sum_{j=-M}^{M-1}\xi_{j}\xi_{j+1}\right\},\,$$

then $Z_{LM} = ||(T_M)^L \Omega_M ||^2$, and $\langle F \rangle_{LM} = \varphi_{\beta}^{LM} (F_{\beta M})$ for some $F_{\beta M} \in \mathscr{A}_M^P$, if φ^{LM} is the vector state $\langle T_M^L \Omega_M, T_M^L \Omega_M \rangle Z_{LM}^{-1}$ on \mathscr{A}_M^P . If $K_1^* < \infty$, then by the Perron Frobenius theorem, T_M has a unique unit vector $\Omega^M = \Omega^M(\xi)$, $\Omega^M(\xi) > 0$ belonging to the largest eigenvalue. Then as $L \to \infty$:

$$\lim_{L\to\infty} \langle F \rangle_{LM} = \langle \Omega^M, F_{\beta M} \Omega^M \rangle.$$

Then if \mathscr{A}^P denotes the Pauli algebra generated by the spin matrices $\sigma_x^{(i)}, \sigma_y^{(i)}, \sigma_z^{(i)}$ for $i \in \mathbb{Z}$, so that $\mathscr{A}^P = \lim_{M \to \infty} \mathscr{A}^P_M$, we have

$$\lim_{M\to\infty}\lim_{L\to\infty}\langle F\rangle_{LM}=\varphi_{\beta}(F_{\beta}),$$

where $F_{\beta} = \lim_{M \to \infty} F_{\beta M}$ and $\varphi_{\beta} = \lim_{M \to \infty} \langle \Omega^{M}, \Omega^{M} \rangle$ is a state on \mathscr{A}^{P} . Following [17, 21, 11, 12, 2, 3] the states φ_{β} on the Pauli algebra \mathscr{A}^{P} are best

Following [17, 21, 11, 12, 2, 3] the states φ_{β} on the Pauli algebra \mathscr{A}^{P} are best studied by introducing a Fermion algebra \mathscr{A}^{F} generated by annihilation and creation operators c_{i} and c_{i}^{*} , $i \in \mathbb{Z}$, satisfying the canonical anticommutation

relations:

$$[c_i, c_j]_+ = [c_i^*, c_j^*]_+ = 0, \quad [c_i, c_j^*]_+ = \delta_{ij} 1.$$
(2.8)

We adopt the self dual formalism of [3], so that \mathscr{A}^F is generated by the range of a linear map B on $l_2 \oplus l_2$ given by

$$B(h) = \sum_{-\infty}^{\infty} (c_j^* f_j + c_j g_j), \quad h = \begin{pmatrix} f \\ g \end{pmatrix} \quad f = (f_j) \quad g = (g_j).$$
(2.9)

Here the convergence of (2.9) is in norm, and B satisfies

$$[B(h_1)^*, B(h_2)]_+ = \langle h_1, h_2 \rangle 1, \quad B(h)^* = B(\Gamma h),$$

where

$$\Gamma\begin{pmatrix}f\\g^*\end{pmatrix} = \begin{pmatrix}g\\f^*\end{pmatrix}$$

A unitary U on $l_2 \oplus l_2$ commuting with Γ gives rise to an automorphism $\tau(U)$ of \mathscr{A}^F by

$$\tau(U)B(h) = B(Uh), \tag{2.10}$$

and is called a Bogoliubov automorphism. A basis projection is a projection E on $l_2 \oplus l_2$ such that

$$\Gamma E \Gamma = 1 - E.$$

Any basis projection E gives rise to a unique state ω on \mathscr{A}^F such that $\omega(B(f)B(f)^*) = 0, f \in E(l_2 \oplus l_2)$. We write $\omega = \omega_E$. Then ω_E is called a Fock state, is irreducible, and satisfies

$$\omega_E(B(f)^*B(g)) = \langle f, E_g \rangle, \quad f, g \in l_2 \oplus l_2.$$

We define a unitary u_{-} on l_{2} by

$$(u_{-}f)_{j} = \begin{cases} f_{j} & j \ge 1 \\ -f_{j} & j \le 0 \end{cases}$$
 (2.11)

and $\theta_- = u_- \oplus u_-$ on $l_2 \oplus l_2$. The corresponding Bogoliubov automorphism $\tau(\theta_-)$ is denoted by Θ_- so that

$$\boldsymbol{\Theta}_{-}c_{j} = \begin{cases} c_{j} & j \ge 1\\ -c_{j} & j \le 0 \end{cases}$$

$$(2.12)$$

We construct the crossed product C^* -algebra

$$\hat{\mathscr{A}} = \mathscr{A}^F X_{\Theta} - \mathbb{Z}_2,$$

which is generated by \mathscr{A}^F and a self adjoint unitary T in $\widehat{\mathscr{A}}$ satisfying $TaT = \Theta_{-}(a)$, $a \in \mathscr{A}^F$. The Pauli spin algebra \mathscr{A}^P is identified with a C^* -subalgebra of $\widehat{\mathscr{A}}$ generated by

$$\sigma_z^{(j)} = 2c_j^* c_j - 1 \tag{2.13}$$

524

$$\sigma_x^{(j)} = TS_j (c_j + c_j^*), \quad \sigma_y^{(j)} = TS_j i (c_j - c_j^*), \tag{2.14}$$

$$S_{j} = \begin{cases} \prod_{k=1}^{j-1} \sigma_{z}^{(k)} & \text{if } j > 1, \\ 1 & \text{if } j = 1, \\ \prod_{k=0}^{j} \sigma_{z}^{(k)} & \text{if } j < 1. \end{cases}$$
(2.15)

We extend the automorphism Θ to $\hat{\mathscr{A}}$ by defining $\Theta(T) = T$, so that

$$\Theta(\sigma_z^{(j)}) = \sigma_z^{(j)}, \quad \Theta(\sigma_x^{(j)}) = -\sigma_x^{(j)}, \quad \Theta(\sigma_y^{(j)}) = -\sigma_y^{(j)}. \tag{2.16}$$

Then Θ gives gradings to both \mathscr{A}^F and \mathscr{A}^P , so that if $\mathscr{A}^F_{\pm} = \{x \in \mathscr{A}^F : \Theta(x) = \pm x\}$, then

$$\{x \in \mathscr{A}^{P}: \Theta x = x\} = \mathscr{A}^{F}_{+}, \quad \{x \in \mathscr{A}^{P}: \Theta x = -x\} = T\mathscr{A}^{F}_{-},$$

and

$$\mathscr{A}^{F} = \mathscr{A}^{F}_{+} + \mathscr{A}^{F}_{-}, \quad \mathscr{A}^{P} = \mathscr{A}^{F}_{+} + T\mathscr{A}^{F}_{-}$$

The state $\phi_{\beta} = \phi_{\beta} \circ \Theta$ on \mathscr{A}^{P} gives rise to an even state $\omega_{\beta} = \omega_{\beta} \circ \Theta$ on \mathscr{A}^{F} by

$$\omega_{\beta}(a+b) = \phi_{\beta}(a), \quad a \in \mathscr{A}_{+}^{F}, \quad b \in \mathscr{A}_{-}^{F}.$$
(2.17)

Then ω_{β} is a Fock state, whose basis projection E_{β} is described after taking Fourier series as follows on $L^{2}(\mathbb{T}) \oplus L^{2}(\mathbb{T})$. (No confusion should arise when we often identify, in the sequel, l^{2} with $L^{2}(\mathbb{T})$ in this way).

First $\gamma(\theta) \ge 0$ is determined by

$$\cosh 2K_1^* \cosh 2K_2 - \sinh 2K_1^* \sinh 2K_2 \cos \theta = \cosh \gamma(\theta), \qquad (2.18)$$

and $\delta(\theta) = \Theta(\theta) - \theta$ is determined by

$$\cos \delta(\theta) = (\sinh \gamma(\theta))^{-1} (\cosh 2K_1^* \sinh 2K_2 - \sinh 2K_1^* \cosh 2K_2 \cos \theta) \qquad (2.19)$$

$$\sin \delta(\theta) = (\sinh \gamma(\theta))^{-1} \sinh 2K_1^* \sin \theta.$$
(2.20)

Then if V_{β} is the self adjoint unitary

$$V_{\beta}(\theta) = \begin{pmatrix} \cos \Theta(\theta) & -i\sin \Theta(\theta) \\ i\sin \Theta(\theta) & -\cos \Theta(\theta) \end{pmatrix}, \qquad (2.21)$$

 E_{β} is the multiplication operator $(1 - V_{\beta})/2$.

The states ϕ_0 and ϕ_{∞} correspond to infinite and zero temperatures ($\beta = 0, \beta = \infty$ respectively) as follows. The region $\beta > \beta_c$ corresponds to $K_1^* < K_2$, and $\beta < \beta_c$ to $K_1^* > K_2$. As in [3], we will regard K_1^* and K_2 as independent parameters. Then $K_2 = 0, K_1^* > 0$ corresponds to $\beta = 0$, and $K_1^* = 0, K_2 > 0$ to $\beta = \infty$.

Case (A).
$$K_2 = 0, K_1^* > 0, (\beta = 0)$$
. Here $\gamma(\theta) = 2K_1^*, \delta(\theta) = \pi - \theta, \Theta(\theta) = \pi$,

$$V_0(\theta) = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}, \quad E_0 = (1 - V_0)/2.$$

Then the even state ϕ_0 on \mathscr{A}^P corresponding to the quasi-free state $\omega_0 = \omega_{E_0}$ on \mathscr{A}^F

525

as in (2.17) is the product state,

$$\phi_0 = \bigotimes_{-\infty}^{\infty} \omega_+,$$

where $\omega_{+} = \langle z_{+}, z_{+} \rangle$ is the vector state on M_{2} given by $z_{+} = 2^{-1/2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Note that $\sigma_{z} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ has eigenvectors z_{+} and $z_{-} = 2^{-1/2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ with eigenvalues 1 and -1 respectively. Thus the eigenspace of $W = \exp\left\{K_{1}^{*}\sum_{j=-M}^{M}\sigma_{z}^{(j)}\right\}$ corresponding to the largest eigenvalue is non-degenerate, and spanned by $\bigotimes_{-M}^{M} z_{+}$. The transfer matrix T_{M} in the case when $K_{2} = 0$ is a scalar multiple of W (see (2.4)) and so the same applies to T_{M} .

Case (B).
$$K_1^* = 0, K_2 > 0, (\beta = \infty)$$
. Here $\gamma(\theta) = 2K_2, \delta(\theta) = 0, \Theta(\theta) = \theta,$
$$V_{\infty}(\theta) = \begin{pmatrix} \cos \theta & -i \sin \theta \\ i \sin \theta & -\cos \theta \end{pmatrix}, \quad E_{\infty} = (1 - V_{\infty})/2.$$

The even state ϕ_{∞} on \mathscr{A}^{P} corresponding to the quasi-free state $\omega_{\infty} = \omega_{E_{\infty}}$ on \mathscr{A}^{F} as in (2.17) is the state

$$\phi_{\infty} = \frac{1}{2} \left(\bigotimes_{-\infty}^{\infty} \mu_{+} + \bigotimes_{-\infty}^{\infty} \mu_{-} \right)$$

where μ_{\pm} are the vector states $\langle x_{\pm}, x_{\pm} \rangle$ on M_2 , if $x_{\pm} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $x_{\pm} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Note that $\sigma_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ has eigenvectors x_{\pm} and x_{\pm} with eigenvalues 1 and -1 respectively.

Thus the eigenspace of $V = \exp\left\{K_2\sum_{j=-M}^{M-1} \sigma_x^{(j)} \sigma_x^{(j+1)}\right\}$ corresponding to the largest eigenvalue is doubly degenerate and spanned by $\bigotimes_{-M}^{M} x_+$ and $\bigotimes_{-M}^{M} x_-$ (corresponding to all spins up and all spins down respectively). The transfer matrix T_M in the case when $K_1^* = 0$ is a scalar multiple of V, and so the same applies to this T_M .

Note that ϕ_0 is clearly pure, whilst ϕ_{∞} is clearly not. Moreover the cyclic representation of the state ϕ_{∞} is a direct sum of two disjoint irreducible representations, and so has a two dimensional centre.

For more details on the C^* -formulation of the two-dimensional Ising model, we refer to [17, 21, 11, 12, 5, 3].

3. The Kramers–Wannier Automorphism Revisited

The even algebra \mathscr{A}_+ is generated by

$$\sigma_z^{(j)} = 2c_j^* c_j - 1, \tag{3.1}$$

and

$$\sigma_x^{(j)}\sigma_x^{(j+1)} = (c_j - c_j^*)(c_{j+1} + c_{j+1}^*).$$
(3.2)

Define an automorphism κ of \mathscr{A}_+ by

$$\kappa(\sigma_z^{(j)}) = \sigma_x^{(j)} \sigma_x^{(j+1)},\tag{3.3}$$

$$\kappa(\sigma_x^{(j)}\sigma_x^{(j+1)}) = \sigma_z^{(j+1)}.$$
(3.4)

This automorphism relates high and low temperatures (cf. (2.4-6)) and is essentially the mechanism by which Kramers and Wannier [10] located the critical point of the classical two-dimensional Ising model, assuming only one critical point existed. See

also [14, p. 123].) Note that κ^2 is the restriction of the shift on $\mathscr{A}^P = \bigotimes_{-\infty}^{\infty} M_2$ to \mathscr{A}_+ , but we will see in Corollary 4.3 that κ does not extend to an automorphism of \mathscr{A}^P . However κ does extend to an automorphism of \mathscr{A}^F :

Let U be the shift on l_2 :

$$(Uf)_k = f_{k+1}, \quad f = (f_k) \in l_2,$$
 (3.5)

identified with multiplication by $e^{-i\theta}$ on $L^2(\mathbb{T})$. Let

$$W = i/2 \begin{pmatrix} 1 - U^* & 1 + U^* \\ -1 - U^* & U^* - 1 \end{pmatrix}.$$
 (3.6)

Note that

$$W^2 = \begin{pmatrix} U^* & 0 \\ 0 & U^* \end{pmatrix},$$

so that $\tau(W)^2 = \tau(W^2)$ is the Bogoliubov automorphism on the CAR algebra induced by the shift, or $\tau^2(c_j) = c_{j+1}$.

Lemma 3.1. The restriction of the Bogoliubov automorphism $\tau(W)$ from \mathscr{A}^F to \mathscr{A}^F_+ is κ .

Proof. We have if $\tau = \tau(W)$

$$\tau(c_j^*) = \frac{i}{2}(c_j^* - c_{j+1}^* - c_j - c_{j+1})$$

$$\tau(c_j) = \frac{i}{2}(c_j^* + c_{j+1}^* - c_j + c_{j+1}).$$

Then

$$\tau(c_j - c_j^*) = i(c_{j+1}^* + c_{j+1})$$

$$\tau(c_j + c_j^*) = i(c_j^* - c_j)$$

$$\tau((c_j - c_j^*)(c_{j+1} + c_{j+1}))$$

$$= -(c_{j+1}^* + c_{j+1})(c_{j+1}^* - c_{j+1})$$

$$= 2c_{j+1}^* c_{j+1} - 1.$$

Hence

D. E. Evans and J. T. Lewis

Since $\tau^2(c_j) = c_{j+1}$, we see

$$c(2c_j^*c_j-1) = (c_j - c_j^*)(c_{j+1} + c_{j+1}^*).$$

We now extend the Kramers–Wannier automorphism κ to \mathscr{A}^F by putting $\kappa = \tau(W)$. Also note that

$$W^* \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} W = \frac{1}{2} \begin{pmatrix} -(U+U^*) & U^* - U \\ U - U^* & U + U^* \end{pmatrix}.$$
 (3.7)

This means that κ takes the infinite temperature state ω_0 to the zero temperature state ω_{∞} :

$$\omega_0 \circ \kappa = \omega_\infty, \tag{3.8}$$

as one would expect from (3.1-2) and (2.4-6).

We now define

$$U_{\beta} = e^{-i\Theta} \tag{3.9}$$

where
$$\boldsymbol{\Theta}$$
 is as defined in (2.18–20), and

$$W_{\beta} = \frac{i}{2} \begin{pmatrix} 1 - U_{\beta}^{*} & 1 + U_{\beta}^{*} \\ -(1 + U_{\beta}^{*}) & U_{\beta}^{*} - 1 \end{pmatrix}$$
(3.10)

Then

$$W_{\beta}^{*} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} W_{\beta} = \frac{1}{2} \begin{pmatrix} -(U_{\beta} + U_{\beta}^{*}) & U_{\beta}^{*} - U_{\beta} \\ U_{\beta} - U_{\beta}^{*} & U_{\beta} + U_{\beta}^{*} \end{pmatrix} = -V_{\beta}.$$

This means that if $\gamma_{\beta} = \tau(W_{\beta})$, the Bogoliubov automorphism induced by W_{β} , then

$$\omega_0 \circ \gamma_\beta = \omega_\beta, \tag{3.11}$$

and

$$\omega_{\infty} \circ \delta_{\beta} = \omega_{\beta}, \tag{3.12}$$

if $\delta_{\beta} = \kappa^{-1} \gamma_{\beta} = \tau(W^* W_{\beta})$. We will show that $\{\gamma_{\beta}|_{\mathscr{A}_{+}}: 0 \leq \beta < \beta_{c}\}$ and $\{\delta_{\beta}|_{\mathscr{A}_{+}}: \beta > \beta_{c}\}$ extend to automorphisms $\{\nu_{\beta}: \beta \neq \beta_{c}\}$ of \mathscr{A}^{P} such that

$$\phi_0 \circ v_\beta = \phi_\beta, \quad 0 \le \beta < \beta_c, \\ \phi_\infty \circ v_\beta = \phi_\beta, \quad \beta > \beta_c.$$

$$(3.13)$$

Remark 3.2. The Kramers–Wannier transformation on the even subalgebra of the Pauli algebra also has an analogue on a certain subalgebra of the UHF algebra $\mathscr{F}_q = \bigotimes_{\infty}^{\infty} M_q$ which is relevant for the high temperature–low temperature duality in the q-state Potts model, and has also recently appeared in work on the index of subfactors and entropy [8, 9, 16].

To describe this, let $\{E_{ij}: i, j = 1, ..., q\}$ be matrix units for M_q , and then let

$$f = \sum_{i,j=1}^{q} E_{ij}/q, g = \sum_{i=1}^{q} E_{ii} \otimes E_{ii}$$

528

be rank one and rank q-projections in M_q and $M_q \otimes M_q$ respectively. Then define a doubly infinite sequence $\{e_i\}_{-\infty}^{\infty}$ of projections in \mathcal{F}_q by

$$e_{2i-1} = \dots \cdot 1 \otimes 1 \otimes f \otimes 1 \otimes 1 \dots, \quad i^{th} \text{ position}$$
$$e_{2i} = \dots \cdot 1 \otimes 1 \otimes g \otimes 1 \otimes 1 \dots, \quad i \cdot (i+1) \text{ positions}$$

and let \mathscr{A}_q be the C*-algebra generated by $\{e_i\}_{-\infty}^{\infty}$. Thus if q = 2,

$$e_{2i-1} = (\sigma_z^{(i)} + 1)/2, \quad e_{2i} = (\sigma_x^{(i)} \sigma_x^{(i+1)} + 1)/2.$$

and so \mathscr{A}_2 is the even part of the Pauli algebra. The projections $\{e_i\}$ satisfy the relations

$$e_i e_j = e_j e_i, \quad |i - j| \ge 2, \tag{3.14}$$

$$e_i e_{i\pm 1} e_i = \frac{1}{q} e_i, \tag{3.15}$$

tr
$$x e_i = \frac{1}{q}$$
 tr x , if $x \in C^*$ -algebra generated by $\{e_j\}_{-\infty}^{i-1}$, (3.16)

where tr is the trace on \mathcal{F}_q .

The local transfer matrix in the q-state Potts model can be written [4, 22], up to a scalar, as $X^{1/2}YX^{1/2}$, where $X = \exp 2K_2\Sigma e_{2i}$, $Y = \exp 2K_1^*\Sigma e_{2i-1}$, and $K_j = \beta J_j$, $j = 1, 2, (e^{2K_1^*} - 1)(e^{2K_1} - 1) = q$.

As in the Ising model, where q = 2, the automorphism $\kappa_q: e_i \rightarrow e_{i+1}$ of \mathcal{F}_q can be used to locate the critical temperature (see e.g. [4]). Families of projections satisfying (3.14–16) and the automorphisms κ_q have recently occurred in the work of Jones [8,9] on index of subfactors and braid groups, and Pimsner and Popa [16] on index and entropy of subfactors.

4. Extendibility of Automorphisms

We consider the problem of deciding when an automorphism of the even algebra \mathscr{A}_+ extends to an automorphism of the Pauli algebra \mathscr{A}^P .

Let \mathscr{C} be a graded unital C*-algebra, i.e. \mathscr{C} is equipped with an automorphism Θ such that $\Theta^2 = 1$, and we define the even and odd parts of \mathscr{C} by

$$\mathscr{C}_{\pm} = \{ x \in \mathscr{C} : \boldsymbol{\Theta}(x) = \pm x \},\$$

respectively. We say that an automorphism v of \mathscr{C} is graded if $v\mathscr{C}_{\pm} \subseteq \mathscr{C}_{\pm}$. An inner automorphism of \mathscr{C} is said to be even (respectively odd) if it is implemented by an even (respectively odd) unitary.

Note that if \mathscr{C} is simple, then a graded inner automorphism v on \mathscr{C} is always either even or odd. For then, if $v = \operatorname{Ad}(u)$, $u \in \mathscr{C}$, we have $v = \Theta v \Theta$, since v is graded, and so Ad $\Theta(v) = \operatorname{Ad}(v)$ on \mathscr{C} . Since \mathscr{C} is simple, this implies $\Theta(v) = \lambda v$ for some $\lambda \in \mathbb{T}$. Letting v = a + b, where a, b are even and odd respectively, we see that $a - b = \lambda(a + b)$, or $a(1 - \lambda) = b(1 + \lambda) = 0$. Hence either b = 0, $\lambda = 1$ and v is even, or a = 0, $\lambda = -1$, and v is odd.

We need something stronger than this:

Lemma 4.1. Let u be a self adjoint unitary in a graded C*-algebra such that \mathscr{C}_+ is simple and

$$\mathcal{U}\mathcal{C}_+\mathcal{U}=\mathcal{C}_+.$$

Then u is either odd or even.

Proof. Let u = a + b, where a, b are even and odd respectively. We have to show that either a or b is zero. Now a, b are self adjoint and $(a+b)x(a+b)\in \mathscr{C}_+$, for all $x\in \mathscr{C}_+$. This means

$$axb + bxa = 0$$
, for all $x \in \mathscr{C}_+$. (4.1)

In particular ab + ba = 0, and since u is unitary we have

$$a^2 + b^2 = 1. (4.2)$$

From (4.1) with x = a we get

$$a^2b + ba^2 = 0. (4.3)$$

Then using (4.2) we have $(1 + b^2)b + b(1 - b^2) = 0$, or

$$b = b^3. \tag{4.4}$$

Then $(ab)^*ab = ba^2b = b(1-b^2)b = 0$, using (4.4), hence ab = 0 = ba. But then using (4.1), b(axb + bxa) = 0, for all $x \in \mathscr{C}_+$ implies that $b^2xa = 0$ for all $x \in \mathscr{C}_+$, or $(1-a^2)xa = 0$ for all $x \in \mathscr{C}_+$. But \mathscr{C}_+ is simple and so either $a^2 = 1$ or a = 0, i.e. by (3.2) either b = 0 or a = 0.

We now consider the following general situation. Let \mathscr{A} be a unital C*-algebra, with α , β two commuting automorphisms such that $\alpha^2 = \beta^2 = 1$, and a unitary element U satisfying $\alpha(U) = -U$, $U^2 = 1$, $\beta(U) = U$.

Let $\hat{\mathscr{A}}$ be the crossed product of \mathscr{A} by the β -action of \mathbb{Z}_2 which is generated by \mathscr{A} and a $T \in \hat{\mathscr{A}}$ satisfying $T^2 = 1$, $T^* = T$, $Ta = \beta(a)T$, $a \in \hat{\mathscr{A}}$. We grade \mathscr{A} by α so that $\mathscr{A}_{\pm} = \{x \in \mathscr{A} : \alpha(x) = \pm x\}$, and let $\mathscr{B} = \mathscr{A}_{+} + T\mathscr{A}_{-}$, which is a C^* -subalgebra of $\hat{\mathscr{A}}$. Extend α , β to $\hat{\mathscr{A}}$ by

$$\hat{\alpha}(a+Tb) = \alpha(a) + T\alpha(b),$$
$$\hat{\beta}(a+Tb) = \beta(a) + T\beta(b), \quad a, b \in \mathscr{A}$$

We grade $\hat{\mathscr{A}}$, \mathscr{B} by $\hat{\alpha}$ and $\tilde{\alpha} = \hat{\alpha}|_{\mathscr{B}}$ respectively, so that $\mathscr{B}_{+} = \mathscr{A}_{+}, \ \mathscr{B}_{-} = T\mathscr{A}_{-}$.

If v is a graded automorphism of \mathscr{A} , we now give a criterion when $v | \mathscr{A}_+$ extends to an automorphism of \mathscr{B} . We will then apply these criteria to the case $\mathscr{A} = \mathscr{A}^F$, $\alpha = \Theta, \beta = \Theta_-, \mathscr{B} = \mathscr{A}^P, U = c_i + c_i^*$ for any $i \ge 1$, and v a quasi-free automorphism of \mathscr{A}^F .

Theorem 4.2. Let v be a graded automorphism of \mathscr{A} , where \mathscr{A}_+ is simple. If $v|_{\mathscr{A}_+}$ extends to an automorphism \tilde{v} of \mathscr{B} , then \tilde{v} must be graded.

Proof. Let $\sigma = TU \in T\mathscr{A}_{-}$, so that σ is a self adjoint unitary in \mathscr{B} , and $\mathscr{B} = \mathscr{A}_{+} + \sigma \mathscr{A}_{+}$. If $v|_{\mathscr{A}_{+}}$ extend to an automorphism \tilde{v} of \mathscr{B} , then v, $Ad(\sigma)$ leave \mathscr{A}_{+} invariant and

$$v \operatorname{Ad}(\sigma) v^{-1} = \operatorname{Ad}(\tilde{v}(\sigma))$$
 on \mathscr{A}_+ .

Hence by Lemma 4.1, $\tilde{v}(\sigma)$ is either odd or even. If $\tilde{v}(\sigma)$ is odd, then \tilde{v} is graded, but if $\tilde{v}(\sigma)$ is even, then $\tilde{v}(\mathscr{B}) \subset \mathscr{B}_+$ which is impossible as \tilde{v} is an automorphism.

Corollary 4.3. The Kramers–Wannier automorphism $\kappa: \mathcal{A}_+ \to \mathcal{A}_+$ does not extend to an automorphism of \mathcal{A}^P .

Proof. Suppose κ extends to a graded automorphism $\tilde{\kappa}$ of \mathscr{A}^P . Then $\phi_0 \circ \kappa = \phi_\infty$ on \mathscr{A}_+ means that $\phi_0 \circ \tilde{\kappa} = \phi_\infty$ on \mathscr{A}^P , since ϕ_0 and ϕ_∞ are even states. But this is impossible as ϕ_0 and ϕ_∞ are pure, impure respectively by Sect. 2 or [3].

Note that since κ extends to an automorphism of \mathscr{A}^F , it follows from Corollary 4.3 that the Jordan–Wigner transformation which identifies \mathscr{A}^P_+ with \mathscr{A}^F_+ in (3.1) and (3.2) cannot be extended to an isomorphism between \mathscr{A}^P and \mathscr{A}^F (although \mathscr{A}^P and \mathscr{A}^F are isomorphic C*-algebras).

If v is a graded automorphism of \mathscr{A} , which extends to an automorphism \hat{v} of $\hat{\mathscr{A}}$, then

$$\beta v \beta v^{-1}(x) = T \hat{v}(T) x \hat{v}(T) T$$
 for all $x \in \mathscr{A}$.

In particular, if \hat{v} is graded, then $T\hat{v}(T)$ is in $\hat{\mathscr{A}}_+$. Note that by the argument of Theorem 4.2, if $\hat{\mathscr{A}}_+$ is simple, then \hat{v} must be graded. In the converse direction we have:

Theorem 4.4. Let v be a graded automorphism of \mathscr{A} , where \mathscr{A}_+ is simple, and $\beta v \beta v^{-1}$ is an inner even automorphism of \mathscr{A} . Then v extends to a graded automorphism of $\widehat{\mathscr{A}}$, leaving \mathscr{B} invariant, and given by

$$\hat{v}(a+Tb) = v(a) + Tvv(b), \quad a, b \in \mathscr{A}.$$
(4.5)

where v is a unitary in \mathcal{A}_+ such that

$$v\beta(v) = 1$$
, $\beta v\beta v^{-1} = \operatorname{Ad}(v)$ on \mathscr{A}

Proof. Suppose $\beta \nu \beta \nu^{-1} = Ad(\nu)$, for some ν unitary in \mathscr{A}_+ . If $\gamma = \beta \nu \beta \nu^{-1}$, we have $\gamma \beta \gamma \beta = 1$. Therefore for $x \in \mathscr{A}$:

$$x = \gamma \beta \gamma \beta(x) = v \beta(v) x \beta(v)^* v^*.$$

But \mathscr{A}_+ is simple and so we must have $v\beta(v)\in\mathbb{C}$. By rotating v we may assume $v\beta(v) = 1$. Define $\hat{v}: \hat{\mathscr{A}} \to \hat{\mathscr{A}}$ by (4.5). We use $v\beta(x) = Tvv(x)v^*T$, $x \in \mathscr{A}$, and $TvT = v^*$ to check that \hat{v} is an automorphism: For $a, b \in \mathscr{A}$,

$$\hat{v}[(a+Tb)^*] = \hat{v}[a^*+T\beta b^*] = v(a^*) + Tvv\beta(b^*) = v(a)^* + v(b^*)v^*T = [\hat{v}(a+Tb)]^*.$$

Moreover

$$\begin{aligned} \hat{v}(a_1 + Tb_1)(a_2 + Tb_2) &= \hat{v}(a_1a_2 + \beta(b_1)b_2 + Tb_1a_2 + T\beta(a_1)b_2) \\ &= v(a_1a_2) + v(\beta(b_1)b_2) + Tvv(b_1a_2) + Tvv(\beta(a_1)b_2) \\ &= v(a_1)v(a_2) + Tvv(b_1)Tvv(b_2) + Tvv(b_1)v(a_2) + v(a_1)Tvv(b_2) \\ &= [v(a_1) + Tvv(b_1)][v(a_2) + Tvv(b_2)] \\ &= \hat{v}(a_1 + Tb_1)\hat{v}(a_2 + Tb_2). \end{aligned}$$

Thus \hat{v} is an automorphism, and if v is in \mathscr{A}_+ , it is clear that \hat{v} is graded and leaves \mathscr{B} invariant.

5. The Main Results

We now apply the criterion of the previous section for extending automorphisms from the even algebra \mathscr{A}_{+}^{P} to the Pauli algebra \mathscr{A}^{P} to deduce:

Theorem 5.1. The (Bogoliubov) automorphisms $\{\tau(W^*W_\beta)|_{\mathscr{A}_+}:\beta > \beta_c\}$ and $\{\tau(W_\beta)|_{\mathscr{A}_+}:0 \leq \beta < \beta_c\}$ extend to graded automorphisms $\{\nu_\beta:\beta \neq \beta_c\}$ of the Pauli algebra \mathscr{A}^P such that

$$\phi_0 \circ v_\beta = \phi_\beta, \quad 0 \le \beta < \beta_c, \tag{5.1}$$

$$\phi_{\infty} \circ v_{\beta} = \phi_{\beta}, \quad \text{for } \beta > \beta_{c}. \tag{5.2}$$

The (Bogoliubov) automorphisms

$$\{\tau(W^*W_{\beta})|_{\mathscr{A}_+}: 0 \leq \beta < \beta_c\} \quad and \quad \{\tau(W_{\beta})|_{\mathscr{A}_+}: \beta > \beta_c\}$$

do not extend to automorphisms of the Pauli algebra.

First we need some lemmas.

Lemma 5.2. The operators

$$\delta - u_{-}\delta u_{-}, \quad for \quad \beta > \beta_c, \tag{5.3}$$

and

$$\Theta - u_{-}\Theta u_{-}, \quad for \quad 0 \leq \beta < \beta_{c}, \tag{5.4}$$

are trace class.

Proof. If $z_i = \tanh K_i = e^{-2K_i^*}$, and $z_i^* = \tanh K_i^* = e^{-2K_i}$, then (2.18), (2.19) and (2.20) can be solved (see e.g. [13]) to get

$$e^{2i\delta(\omega)} = \frac{(1 - z_2 z_1^* e^{i\omega})(1 - z_1^* e^{-i\omega}/z_2)}{(1 - z_2 z_1^* e^{-i\omega})(1 - z_1^* e^{i\omega}/z_2)}.$$
(5.5)

Then for $\beta > \beta_c$ (i.e. $z_1^* < z_2 < 1$), the Fourier coefficients $\{k_n\}$ of $i\delta$ are given by

$$k_n = \frac{1}{2n} [(z_1^*/z_2)^n - (z_2 z_1^*)^n] = -k_{-n}, \quad n > 0$$

([13, Eq. (75)]). Let $p_{\pm} = (1 \pm u_{-})/2$, then $\delta - u_{-}\delta u_{-} = 2(p_{+}\delta p_{-} + p_{-}\delta p_{+})$. Since δ is real, it is enough to show that $p_{+}\delta p_{-}$ is trace class if $\beta > \beta_{c}$. Let $\{e^{-ik\omega}: k=0, 1, 2, ...\}$ and $\{e^{ik\omega}: k=1, ...\}$ be complete orthonormal bases for $p_{-}l_{2}$ and $p_{+}l_{2}$ respectively. Then the matrix of $ip_{+}\delta p_{-}$ with respect to these bases is

$$\{k_{r+s+1}: r, s=0, 1, 2, \dots\}.$$

Thus with this identification of $p_{-}l_{2}$ and $p_{+}l_{2}$ with $l_{2}(\mathbb{N}) = l_{2}^{+}$, and if $\chi_{\lambda} = \{\lambda^{i}\}_{i=0}^{\infty} \in l_{2}^{+}$, for $0 \leq \lambda < 1$, we have

$$ip_{+}\delta p_{-} = \{k_{r+s+1}: r, s\} = \frac{1}{2} \int_{z_{2}z_{1}^{*}}^{z_{1}^{*}/z_{2}} |\chi_{\lambda}\rangle \langle \chi_{\lambda}| d\lambda,$$
(5.6)

which is trace class for $0 \leq z_1^* < z_2$. We have from (5.5) that

$$e^{2i\Theta(\omega)} = \frac{(1 - z_2 z_1^* e^{-i\omega})(1 - z_2 e^{-i\omega}/z_1^*)}{(1 - z_2 z_1^* e^{-i\omega})(1 - z_2 e^{-i\omega}/z_1^*)},$$

so that $i\Theta$ has Fourier coefficients $\{h_n\}$ given by

$$h_n = \frac{-1}{2n} \left[(z_2/z_1^*)^n + (z_2 z_1^*)^n \right] = -h_{-n}, \quad n > 0.$$

Thus

$$ip_{+} \Theta p_{-} = -\frac{1}{2} \left[\int_{0}^{z_{2}/z_{1}^{*}} |\chi_{\lambda}\rangle \langle \chi_{\lambda}| d\lambda + \int_{0}^{z_{2}z_{1}^{*}} |\chi_{\lambda}\rangle \langle \chi_{\lambda}| d\lambda \right],$$
(5.7)

which is trace class for $0 \leq z_2 < z_1^*$ or $0 \leq \beta < \beta_c$.

Lemma 5.4. The operators

$$W^*W_{\beta} - \theta_{-}W^*W_{\beta}\theta_{-} \tag{5.8}$$

and

$$W_{\beta} - \theta_{-} W_{\beta} \theta_{-} \tag{5.9}$$

are trace class for $\beta \neq \beta_c$.

Proof. We have

$$W^*W_{\beta} = \frac{1}{2} \begin{pmatrix} 1 + UU^*_{\beta} & 1 - UU^*_{\beta} \\ 1 - UU^*_{\beta} & 1 + UU^*_{\beta} \end{pmatrix}.$$
 (5.10)

Thus $W^*W_{\beta} - \theta_- W^*W_{\beta}\theta_-$ being trace class is equivalent to $UU^*_{\beta} - u_-UU^*_{\beta}u_$ being trace class. But $UU^*_{\beta} = e^{i\delta}$ as $\Theta(\theta) - \theta = \delta(\theta)$, and

$$e^{i\delta} - u_{-}e^{i\delta}u_{-} = i\int_{0}^{1} u_{-}e^{i(1-s)\delta}u_{-}[\delta - u_{-}\delta u_{-}]e^{is\delta}ds.$$
(5.11)

Thus by (5.3) in Lemma 5.2 we see that

$$W^*W_{\beta} - \theta_{-}W^*W_{\beta}\theta_{-}, \quad \beta_c < \beta \leq \infty$$
(5.12)

are trace class. Since $U_{\beta}^* = e^{i\Theta}$, we see in a similar manner using (5.4) of Lemma 5.2 that

$$W_{\beta} - \theta_{-} W_{\beta} \theta_{-}, \quad 0 \le \beta < \beta_{c} \tag{5.13}$$

are trace class. Now $W_{\infty} = W$, and a direct computation shows that

$$W^* - \theta_- W^* \theta_- \tag{5.14}$$

is trace class. The lemma now follows from the identity:

$$W^*W_{\beta} - \theta_{-}W^*W_{\beta}\theta_{-} = W^*(W_{\beta} - \theta_{-}W_{\beta}\theta_{-}) + (W^* - \theta_{-}W^*\theta_{-})\theta_{-}W_{\beta}\theta_{-},$$
(5.15)

and the operators in (5.12), (5.13) and (5.14) being trace class.

Remark 5.5. It follows from [3, Sect. 6] that the operators in (5.9) (and hence in (5.8) using (5.15)) are Hilbert-Schmidt, but this is not enough for our approach here. Note that it also follows from [3, Sect. 6] that $W^*W_{\beta_c} - \theta_- W^*W_{\beta_c}\theta_-$ and $W_{\beta_c} - \theta_- W_{\beta_c}\theta_-$ are not Hilbert Schmidt.

By [1], a Bogoliubov automorphism $\tau(v)$ on \mathscr{A}^F is inner if and only if one of the following conditions hold:

$$1 - v$$
 is trace class and det $v = 1$, (5.16)

$$1 + v$$
 is trace class and det $(-v) = -1$. (5.17)

An inspection of the proofs in [1] shows that if (5.16) holds then $\tau(v)$ is even, and if (5.17) holds then $\tau(v)$ is odd.

Also note that if a unitary v commutes with Γ , and 1 - v is trace class, then det $(v) = \pm 1$ [1, p. 414]. Moreover the map $w \rightarrow det(1 - w)$ is continuous on the trace class operators [20].

We apply these considerations to the unitaries

$$\theta_{-}W^{*}W_{\beta}\theta_{-}W^{*}_{\beta}W, \qquad (5.18)$$

$$\theta_{-}W_{\beta}\theta_{-}W_{\beta}^{*} \tag{5.19}$$

for $\beta \neq \beta_c$.

Lemma 5.6.

$$\det\left(\theta_{-}W^{*}W_{\beta}\theta_{-}W_{\beta}^{*}W\right) = \begin{cases} 1 & \beta_{c} < \beta \leq \infty\\ -1 & 0 \leq \beta < \beta_{c} \end{cases},$$
(5.20)

$$\det\left(\theta_{-}W_{\beta}\theta_{-}W_{\beta}^{*}\right) = \begin{cases} 1 & 0 \leq \beta < \beta_{c} \\ -1 & \beta_{c} < \beta \leq \infty \end{cases}.$$
(5.21)

Proof. By Lemma 5.4, we see that

$$1 - \theta_{-} W^{*} W_{\beta} \theta_{-} W_{\beta}^{*} W = (W^{*} W_{\beta} - \theta_{-} W^{*} W_{\beta} \theta_{-}) W_{\beta}^{*} W$$
(5.22)

and

$$1 - \theta_- W_\beta \theta_- W^*_\beta = (W_\beta - \theta_- W_\beta \theta_-) W^*_\beta \tag{5.23}$$

are trace class if $\beta \neq \beta_c$.

As in [3] we now treat K_1^* and K_2 (or z_1 and z_2^*) as independent parameters. From [3, p. 500] we see that W_{β} is norm continuous in the region $z_1^* \neq z_2$. Then we have from (5.10), (5.11) (5.6), (5.7), (5.22), (5.23) and (5.15) that $1 - \theta_- W^* W_{\beta} \theta_- W_{\beta}^* W$ and $1 - \theta_- W_{\beta} \theta_- W_{\beta}^*$ are continuous in z_1^* and z_2 in the trace class norm when $z_1^* \neq z_2$. Hence using continuity of the determinant, it is enough to compute the determinants in the cases $z_1^* = 0$, $z_2 > 0$, ($\beta = \infty$) and $z_2 = 0$, $z_1^* > 0$, ($\beta = 0$), which is an easy exercise.

Proof of Theorem 5.1. We now apply Theorem 4.4 to the automorphisms

$$v_{\beta} = \begin{cases} \tau(W^*W_{\beta}), & \beta > \beta_c \\ \tau(W_{\beta}), & 0 \leq \beta < \beta_c \end{cases}$$

using Lemmas 5.5 and 5.6 and (5.16) to see that $v_{\beta}|_{\mathscr{A}_{+}}$ extend to graded automorphisms of \mathscr{A}^{P} also denoted by v_{β} . Then (5.1) and (5.2) follow from (2.17), (3.11) and (3.12).

Finally, it is now clear using Corollary 4.3 that the automorphisms

$$\{\tau(W^*W_{\beta})|_{\mathscr{A}_+}: 0 \leq \beta < \beta_c\} \text{ and } \{\tau(W_{\beta})|_{\mathscr{A}_+}: \beta > \beta_c\}$$

do not extend to \mathscr{A}^{P} .

References

- Araki, H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci 6, 385-442 (1970)
- 2. Araki, H.: On the XY-model on two-sided infinite chain. Publ. Res. Inst. Math. Sci. 20, 277–296 (1984)
- Araki, H., Evans, D. E.: On a C*-algebra approach to phase transition in the two-dimensional Ising model. Commun. Math. Phys. 91, 489–503 (1983)
- 4. Baxter, R. J.: Exactly solved models in statistical mechanics. London: Academic Press 1982
- 5. Evans, D. E., Lewis, J. T.: The spectrum of the transfer matrix in the C*-algebra of the Ising model at high temperatures. Commun. Math. Phys. 92, 309–327 (1984)
- 6. Kaufman, B.: Crystal statistics II. Phys. Rev. 76, 1232-1243 (1949)
- 7. Kaufman, B., Onsager, L.: Crystal statistics III. Phys. Rev. 76, 1244-1252 (1949)
- 8. Jones, V. F. R.: Index for subfactors. Invent. Math. 72, 1-25 (1983)
- 9. Jones, V. F. R.: Braid groups, Hecke algebras and type II₁ factors. Proceedings Japan US Conference 1983. (to appear)
- 10. Kramers, H. A., Wannier, G. H.: Statistics of the two-dimensional ferromagnet. Part 1. Phys. Rev. 60, 252–262 (1941)
- 11. Lewis, J. T., Sisson, P. N. M.: A C*-algebra of the two-dimensional Ising model. Commun. Math. Phys. 44, 279-292 (1975)
- 12. Lewis, J. T., Winnink, M.: The Ising model phase transition and the index of states on the Clifford algebra. Colloq. Math. Soc. János Bolyai **27**, Random fields. Hungary Esztergom: 1979
- 13. Montroll, E., Potts, R. B., Ward, J. C.: Correlations and spontaneous magnetisation of the twodimensional Ising model. J. Math. Phys. 4, 308-322 (1963)
- 14. Onsager, L.: Crystal statistics. I. Phys. Rev. 65, 117-149 (1944)
- Onsager, L.: Discussion remark. (Spontaneous magnetisation of the two-dimensional Ising model). Nuovo Cimento (Suppl) 6, 261–262 (1949)
- 16. Pimsner, M., Popa, S.: Entropy and index for subfactors. Preprint INCREST 1983
- 17. Pirogov, S.: States associated with the two-dimensional Ising model. Theor. Math. Phys. 11, (3), 614-617 (1972)
- Schultz, T. D., Mattis, D. C., Lieb, E.: Two-dimensional Ising model as a solvable problem of many Fermions. Rev. Mod. Phys. 36, 856–871 (1964)
- Shale, D., Stinespring, W. F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315–322 (1965)
- Simon, B.: Trace ideals and their applications. London Math. Soc. Lecture Note Series 35. Cambridge: Cambridge University Press 1979
- 21. Sisson, P. N. M.: A C*-algebra of the Ising model. Ph.D. Thesis. Dublin University 1975
- Temperley, H. N. V., Lieb, E. H.: Graph-theoretical problems and planar lattices. Proc. R. Soc. Lond. A322, 251–280 (1971)

Communicated by H. Araki

Received March 6, 1985