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Abstract. The occurrence of non-abelian anomalies in gauge theories and
gravitation, first discovered via perturbative techniques, is now completely
explained from the mathematical point of view by means of the family index
theorem of Atiyah and Singer. Here we make contact between this approach
and BRS cohomology, by showing that they yield the same non-abelian
anomalies, provided a certain restriction to "local" functionals is not intro-
duced from the very beginning. In particular, this solves the "unicity" problem
for this kind of anomalies. Local BRS cohomology is still relevant for the
abelian case.

1. Introduction

As it is well known, the conservation of certain fermionic currents in gauge theories
does not survive quantization, giving rise to the so-called anomalies. These were
first discovered via Feynman diagram techniques [1], but have been successively
studied by a variety of tools.

First, a cohomological interpretation was found [2] thanks to the nilpotency of
the BRS operator δ. A functional a = a(A, ω) (locally depending on the gauge
potential A and linear in the ghost ω) is called an anomaly if it satisfies the Wess-
Zumino consistency condition δa — 0, but there is no local functional Λloc(A) such
that — δAl0C(A) = a. In physical terms this implies that there is no redefinition
Γ-+Γ + Aloc of the "effective action" Γ which cancels the anomaly itself. Clearly, the
problem is of cohomological nature, and a proper mathematical set up involves the
cohomology of the Lie algebra of infinitesimal gauge transformations with local
functionals of the gauge potentials as coefficients [3]. We call this cohomology the
"local" BRS-cohomology.

Soon after the cohomological nature of anomalies was understood, their
relations with the secondary characteristic classes of Chern and Simons was
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discovered [4]. This was mainly an "algebraic" development, showing that the
"Russian formula" yields exactly the same anomalies as found by physicists via
perturbative techniques. Still one does not know if such a construction exhausts
the relevant BRS-cohomology group, that is if there are more solutions of the
equations δa = 0, aφδAloc than the anomalies found perturbatively. In other
words, we have a "unicity" problem.

As characteristic classes are intimately related with the topology of fibre
bundles [5], it was natural to inquire as to what topological structure was actually
controlling a piece of quantum field theory. For abelian anomalies the answer was
quite readily given [6] in terms of the Atiyah-Singer index theorem: it was the
chiral asymmetry of the zero modes of the Dirac operator that breaks conservation
of the abelian chiral current. Non-abelian anomalies had to wait longer, until
recently a subtle application of the index theorem for families of operators showed
[7, 8] their topological meaning. This time it is the twisting of the infinite
dimensional bundle of gauge orbits (that is the presence of Gribov ambiguity) that
produces non-abelian anomalies. More precisely these are due to the non-triviality
of the determinant line bundle of the index bundle for the family of Dirac operators
parametrized by gauge potentials [7].

The relation between this topological set up for non-abelian anomalies and the
physicist's way of constructing them have been studied in some papers [8-10,23],
and it is by now fairly well understood. One sees that when the index bundle has a
non-trivial first Chern class, treating zero modes in the computation of the
determinant of the Dirac operator becomes a nasty global question. In particular,
the phase of the determinant is not single valued, preventing the existence of a well
defined effective action Γ = Γ(A), either local or not, such that a = δΓ. That is why
the occurrence of this kind of anomalies is so harmful in quantum field theory. The
family index theorem also tells us that these obstructions to a well defined
quantum theory have little to do with perturbation theory, their basic spring being
topology. So one can safely forget the rules of these techniques, among which
"locality" of functional.

In this paper we study the relations between the cohomological description
and the topological nature of non-abelian anomalies. This is technically done by
considering a suitable group cohomology, whose "infinitesimal" version coincides
with (non-local) BRS cohomology. The main point is that we do not restrict
ourselves to local functional, but we work with the whole space of complex valued
smooth functionals as coefficients, complexification being essential for explaining
non-abelian anomalies. This enlargement of coefficients "dilutes" cohomology in
such a way that the relevant BRS cohomology group turns out to be isomorphic
with the first Chech cohomology group H ^ ^ Z ) of the group of gauge
transformations. This is in full agreement with the index theorem approach.

2. Cohomological Description of Anomalies

The main object of our study is the regularized vacuum functional W(A) of some
matter field in an external SU(n) gauge field A, on the compactified euclidean space
time S4. The space si of these external gauge fields is an affine space; so it has no
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homotopy nor homology. Hereafter we feel it is easier to work in some suitable
Sobolev functional space [11], such that si is a Hubert manifold. Then the vacuum
functional is a map

W:^^<£, (1)

which in physical applications can be assumed to be smooth, the main physical
example being the vacuum functional for chiral fermions [9, 10].

In physics, one is interested in the effective action Γ(A) = log W(A), although, as
we shall see, taking this logarithm may be an ill-defined operation. In any case,
assuming that the effective action exists as a smooth functional on si, one needs to
study its transformation properties under gauge transformations. Recall that the
Hilbert-Lie group ^ of (pointed) gauge transformations in some suitable Sobolev
class acts freely and smoothly on si on the right by A-^Ag, where Ag is the gauge
potential obtained from A under the gauge transformation ge@. Recall also that
the space & = si/Φ of classes of gauge-equivalent potentials can be given the
structure of a smooth Hubert manifold. Then the map π'.si^Θ turns out to be a
principal fibre bundle with structure group (S. We refer for instance to [12] for a
review of this geometrical set up.

As ^ acts smoothly on si, one can study the infinitesimal variation of Γ(A) by
considering a one parameter subgroup gft = exp(ίτ), generated by an element τ of
the Lie algebra g of (S, and setting

δτΓ(A) = lim (Γ(Agt) - Γ(A))/t =: α(τ A). (2)

Now, α(τ A) can be considered as a linear map of g into the space C(si) of complex
valued smooth functionals on si. It is called an (integrated) anomaly whenever
there is no local redefinition Γ' = Γ + Aloc of the effective action, such that δτΓ' = 0.
Clearly, this requires the solution of the equation δτAl0C = — a, which, as it is well
known [2], may be impossible because of cohomological obstructions.

Instead of working infinitesimally, one can consider a finite version of Eq. (2),
by directly studying the transformation properties of W. That is one sets [13];

W(Ag) = exp(2πiF(#, A))W(A), (3)

where now F: <&-*<E,(si) is assumed to be a smooth map. Again, the definition of F
requires taking a logarithm, which may be not well defined. In physical
applications F(g,A) turns out to depend locally on A. Now 2πίlimF

• (gt, A)/t yields directly the same anomaly as Eq. (2). The functional F(g, A) is
usually called the Wess-Zumino term.

As already remarked, both these descriptions of the anomalies heavily rely on
the possibility of defining logarithms. It may, however, happen that the non-trivial
topology of ^ prevents the existence of the single valued logarithms one wants to
compute. As we shall see, this is the basic topological nature of non-abelian
anomalies. In order to avoid logarithms, we prefer to work with a "multiplicative"
group cohomology, rather than with the "additive" one implicitly required by
Eq. (2).

To be definite, we denote by <E*(si) the abelian group of never vanishing
complex valued smooth functionals on si, the group operation being pointwise
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multiplication (N1N2)(A) = N1(A)N2(Λ). Since 9 acts on si, it also naturally acts
on (C*(J/) by pull-back, i.e. we have (g*N)(A) = N(Ag). A fc-cochain on ^ with
values in C * ( J ^ ) is a smooth map

(4)

depending on fc arguments. A coboundary operator A is then defined by

A)=fk(g2, ...,gh; Agx)fk(gu ...,gk; A ) ( ~ 1 ) k + ί

k

A k-cochain /fc is called a fc-cocycle if zl/fe = 1. Notice that we have 1 instead of 0,
according to the multiplicative nature of C * ( J / ) . It is a coboundary if fk = Afk_u

for some fk_ί nowhere vanishing. As A2 = 1, any coboundary is a cocycle, but the
converse may not be true. As usual, one introduces the group Hk(&, (C*(j3/)) of
fc-cocycles modulo fc-coboundaries, which is called the kth cohomology group of ^
with coefficients in C * ( J / ) . In particular, a 0-cochain is simply a functional
Ne(E*(si); its coboundary reads

(ΔN){g;A) = N(Ag)/N(A). (6)

So a 0-cocycle is a ^-invariant functional in (C*(J/). A 1-cochain f=f(g; A) is a
cocycle if

{Δf)(gug2\ A)=f(g2; Agjffa; A)/f(gig2; A)=l. (7)

Let us go back to the generating functional W. In physical problems W
vanishes along ^-orbits in «a/, if any, i.e. W(Ag) = 0 if and only if W(A) = 0. We
assume that the functional

f(g;A) = :W(Ag)/W(A) (8)

is well defined and never vanishing on ^ x s$. There is a number of evidencies that
this is indeed the case in physics [9,10]. So / defines a 1-cochain on ^ with values
in (C*(J/). The following proposition is easily proved

Proposition 2.1. For any ge^, let f(g;A) = W(Ag)/W(A) be a never vanishing
functional on si. Then

i) / is a l-cocycle of A, and defines a cohomology class [/] eiϊ1(0,(C*(«s/)),
ii) / is a coboundary if and only if W is never vanishing on sd.

Proof. As for i), we compute from Eq. (8),

f(9i92l Λ) = W(Agιg2)/W(A)=W(Ag1g2)/W(Ag1)

'W(Ag1)/W(A)=f(g2;Ag1)f(g1;A)9

then Eq. (7) tells us that Δf= 1. As for ii), notice that if Wis never vanishing, it is a
0-cochain on ̂  with values in (C*(J/) and f—AW. Conversely, if [/] = 1, then there
exists a representative / ' e [/] (i.e. an / ' =fAN) such that f' = ΔW for some never
vanishing W'= W'(A). Then

W'(Ag)/W'(A)=f'(g; A)=f(g; A)(AN)(g; A) = W(Ag)N(Ag)/(W(A)N(A))



BRS Cohomology and Topological Anomalies 507

implies that W and W have the same zeroes and, since W is never vanishing, so
is W.

Remark. Notice that, if / is a coboundary, the logarithm Γ = log W is a smooth
functional on si. In fact, the space of gauge potentials is contractible and the
logarithm of a never vanishing complex valued function on a simply connected
space is well defined.

From Proposition 2.1 it is clear that there should be some relation between the
cohomology class [/] and the zeroes of W. We can be more precise on this point,
by showing that any representative / of [ / ] G J Ϊ 1 ( ^ , ( C * ( J / ) ) can be written as
/ = W(Ag)/W(A) for some suitable functional W: si-+<C (see Proposition 3.2). This
requires the introduction of a line bundle over the orbit space Θ, as will be
described in Sect. 3.

Next we want to make contact with the Lie algebra cohomology mentioned
above, without introducing the functional log W. First of all recall [3] that a
fc-cochain on the Lie algebra g of 9 with coefficients in the space (C(J/) of complex
valued functionals on si is simply a /c-linear skew map

For any τ e g, define the operator 5£τ by

1 ...τfc; 4) = :lim[αk(τ1 ...τfc; Agt)-ak(τ1 ...
ί > 0ί->0

where gt — exp(ίτ) as above. In other terms, J5fτ is the Lie derivative of ak considered
as a functional on si with respect to the fundamental vector field on si generated
by τ. Then one constructs a coboundary operator δ as follows:

k + l

(δak)(τi...τk+1;A) = :

j

In particular, one has

)=Seτao(Λ)9

]M)

Now δ2 = 0 and, as usual, one defines the groups if^(g,C(j/)) by taking /c-cocycles
(i.e. αk's such that δak = 0) modulo fc-coboundaries (i.e. aks such that ak = δak-1? for
some flfe- J. We call this cohomology of the Lie algebra g of the infinitesimal gauge
transformation the BRS-cohomology, since the operator δ can be identified with
the BRS operator, when one replaces anticommutativity of ghosts with skew
symmetrization of infinitesimal gauge transformations [14].

We now prove that working with the group or the algebra cohomologies
introduced above is quite the same, at least at the level of the first cohomology
groups which describe anomalies.

Proposition 2.2. There exists an isomorphism between i / 1 ^ , £*(,$/)) and
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Proof. Let f(g; A) be a representative of [/] e i ί ^ ^ C V ) ) - Define

a(τ;A) = :\imU(gt;A)-iyt = dτf, (11)

where ^ = exp(ίτ), for τeg. Notice that dj is the partial differential of / with
respect to ̂  evaluated at the identity and computed along τ. So it is linear in τ and
depends smoothly on A, because / is smooth on ̂  x si. Then α(τ; A) is a 1-cochain
on g with values in C(j2/). We now show that Af=ί implies δa = Q. Campbell-
Hausdorff formulas tell us that

. (12)

Then

f(g\g2

t; A) = l + t(a(τi) + a(τ2) +|α([τ 1 ? τ2]) + 0{t2),

f(g2

t; Ag\) = 1 + ί(α(τ2) + JS?τiα(τ2) + O(t2),

So, at first order in ί, Af= 1 implies

(13)

Subtracting from this equation the same one with τ1 and τ2 exchanged, we get
δa = 0. This correspondence clearly induces a correspondence [/]^>[α] in
cohomology, which is injective and a group homomorphism, because dτ(f1f2)
= dτf1+dτf2. We finally prove surjectivity, by showing that any a(τ: A) can be
written as dτf for some 1-cocycle /. For any A e si, let iA:&->sibe the injection of
^ onto the orbit through A and consider the one form on ̂  given by i*Aa. Now, di\a
= i^δa = 0, so \\a is closed on ̂ , and it is locally exact. We define a function

Fy(g;A)=ίila, (14)
y

where γ is a curve on 0 from H to gr. Clearly, Fy depends on y. Since the integrand is
closed, Fy,(g;A) = Fy(g A) if and only if the loop y'—y is homotopic to zero on ^. If
not, Fy(; A) = Fγ(g; A) + n, where π can be normalized to be some integer
depending only on the homotopy class of / — y. Then εxip(2πiF(g; A))=f(g; A) is
independent of the chosen path and never vanishing on^ x si. Now, one can easily
prove that Fy(g1g2; A) = Fγi(gί; A) + Fy2(g2; Agx\ by simply splitting the integral
into two pieces. Then Δf=l, and the correspondence d H^&^si))
-ΪH1^,^^)) is a surjective monomorphism and hence an isomorphism. Notice
that the function F(g; A) is actually the so-called Wess-Zumino term [13].

3. Topological Origin of Non-Abelian Anomalies

Having introduced one more cohomology group HX(^,(C^(J^)) to describe
anomalies, our next task is to compute it. This seems to be impossible to achieve
directly, nor is the Lie algebra cohomology more treatable. A standard way of
computing cohomology groups is to show that they are isomorphic to some easier
ones. This is the way we follow here by showing that H1^, (C*(J/)) is isomorphic to
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the Chech cohomology group H2(Θ, Z) of the orbit space &. We refer to Bott and
Tu [16] for an introduction to Chech cohomology. As we shall see, this
identification will give us a further isomorphism ofH1^, C * ( J / ) ) with πx(^). Now,
on S 4 one knows that n^S) = n5(G) [17], and the problem of classifying anomalies
reduces to the study of the fifth homotopy group of a finite dimensional Lie group.
This is explicitly known for the groups G which enter in physical applications of
gauge theories.

Our first step is to translate a one cocycle / into some geometrical structure.

Proposition 3.1. A one cocycle f representing a class [/] G Hx(^, (C*(^/)) defines a
unique line bundle L over the orbit space. If f is another representative of [/], the
corresponding line bundle L is isomorphic to L.

Proof. First, we construct L. Pick up a family of local sections sa: Ua -> J / ,
trivializing the principal orbit bundle π\$l-*Θ. Here {Ua} is a covering for Θ. Any
A G π~ 1(t/α) can be then represented by = sa(A)g(A), where A synthetically denotes
the orbit π(A). On UanUβ9 we have sβ(A) = sa(A)gaβ(A)9 where gaβ : ί / α n ί / ^ ^ are
transition functions for the orbit bundle. Given a representative / of
[/] sH\9&*{sf)\ the map faβ: UanUβ^C* given by

faβU) = :f(gaβ(A);sa(A)) (15)

defines a cohomology class in i f 1 (0,#*) 5 where ^ * denotes the sheaf of germs of
never vanishing complex valued functions on Θ. To see that this is the case, it
suffices to show that faβ is a one Chech cocycle on &, i.e. f^^f^1 and
/«/?//»yΛ«=l Indeed,

f*β=f(9*βl sj=f(gaβ; spg^-1)

=/(!> sβ)/f(gaβ ~u,s^ = l/f(gβa9 sβ) =fβa~
1.

f*βfβγfγ*=f(9*β> Sa)f(9βy'-> Sβ)f(9γa'> Sy)

ya'i S*Qay)

β; Sj]ίf(9ay9γal S<

where we used the fact that the transition functions {gaβ} satisfy the following
properties: gaβ = gβ(χ

1 and gaβgβygya—^ Then the cocycle / can be used as a set of
transition functions to construct a line bundle L over the orbit space & [18]. Next
we show that the correspondence /->L does not depend on the trivialization {sa}.
If s'a = saga is a new trivializing family of sections, then g'aβ = ga1gaβgβ and hence:

f*β=f(9*β'> Sd=f(9ά19aβ9βl SaQa)

So, fάβ is cohomologous to faβ in Hλ{Θ, <$*) and the line bundle U is isomorphic to
L. A similar computation shows that any other representative f of [/] yields a line
bundle L isomorphic to L. Conversely, given a line bundle L on G associated to the
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principal orbit bundle π:si-^Θ, the pull back bundle π*L is trivial on si and L is
given by the quotient L=si x r(C. Here r: ^-><C* is some homomorphism which
depends only on the isomorphism class of L. Now r can be seen as a map of ^ into
never vanishing constant functionals on si and, since r(#i#2)= r(9i)r(θ2% it defines

As a first consequence of Proposition 3.1, one can show the following:

Proposition 3.2. For any [/] e Hx(^9 <C*O0) there exist functionals W: si-+<£ such
thatf(g;A) = W(Ag)/W(A).

Proof. Let w: & ->L be a global section of the line bundle L corresponding to / via
Proposition 3.1, and denote by wα: Ua-+L its local representation over a covering
{Ua} of 0. For any trivializing family sα: Ua-^si define on π~x(ί7α) the complex
valued function Wn by

(4), (16)

where A = sa{A)g(A) as above. This proves locally the proposition, in fact, one has:

=/fo'; sa(A)g(A))f(g(A); sa(A))wa(A)

because / is a one-cocycle in f/*(^,C*(j/)). Since wβ(A)=f(gaβ(A); sa(A))wa(A),
the family Wa glues to yield a globally defined functional W on J</. Clearly, W is
never vanishing, and [/] is trivial, if and only if the wα's can be chosen to be never
vanishing on Θ. This cannot be the case, unless L is trivial.

Remark. This proposition completes Proposition 2.1, yielding the result that the
construction of one cocycles / on ^ by means of suitable functionals W on si
exhaust the first cohomology group Jϊ1(^,C*(j/)).

Having constructed a line bundle LEHX{Θ^) corresponding to any [/] in
H1^, (C*(ja/)), we can extract out of L some information which is directly relevant
for anomalies. Recall from the proof of Proposition 3.1 that L is given as the
quotient L=si x rC, where r: ^-»(C* is an unique homomorphism. Clearly, for
any g e &, r{g) can be considered as a constant functional in (C*(J/) and for any
τeg5 the derived homomorphism r^ : g->C defines a constant functional r^(τ) in
<E(si). Then we have

Proposition 3.3. Let r:$-^(£* be the homomorphism corresponding to [/] in
H\%^*{si)). Then

i) / and r are cohomologous in H1^, (C*(<£/)), i.e. there exists a never vanishing
functional N on si such that f(g; A) = r(g)N(Ag)/N(A)9

ii) the anomaly α(τ; A) = dτf is cohomologous to r^ in H1(g,(C(«s/)).

Proof. We represent / by f(g; A) = W(Ag)/W(A) as in Proposition 3.2. Recall that
this is done by extending in some suitable way a section w: Θ-+L of a line bundle
L=si xr<L. Then pulling back w on si, we have that π*w(Ag) = r(g)π*w(A). Recall
that the functional W(A) gotten by extending w as in Proposition 3.2 is given by

= N(A)π*w(A), where N(A) is never vanishing. Accordingly,

f(g; A) = N(Ag)π*w(Ag)/(N(A)π*w(A)) = r(g)(AN)(g; A), (17)
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and
a(τ; A) = dJ=r^τ) + (δlogN)(τ), (18)

where logiV exists because JV is never vanishing on stf.
The one-to-one correspondence between non-abelian anomalies and line

bundles over the orbit space given by the propositions above is the basic result
which allows an explicit computation of the group H ^ ^ C * ^ ) ) or, which is the
same, ίf1(g,(C(«s/)). Indeed, as we have seen, both of them are isomorphic to the
group Hx(Θ9<g*) of line bundles over Q.

To compute this last group, we recall [18] that it is isomorphic to the Chech
cohomology group H2(Θ, Z). In fact, from the exponential sequence of sheaves

(where Z, #, ̂ * denote the sheaves of integer, complex and never vanishing
complex valued functions on Θ\ one has that

0 = H\Θ9

 C€)-^E\Θ, %*)-^H2(Θ, Z)->H2($, <g) = 0, (19)

where Hk(Θ^) = 0 for k^ 1, because ^ is a fine sheaf.
Now, H2(Θ, Z) is in turn isomorphic to H1^, Z). To see why this is the case, we

notice that from the long homotopy sequence of the orbit bundle y^stf-±Θ one
has that π2(β) = π1(&) and π1(β?) = π0(^). Now, if <S is connected, it is also path
connected and by Hurewicz theorem (see e.g. [16, p. 125]) H1^, Z) = π1 (&). Also,
the orbit space & is connected and simply connected. Hence, again from Hurewicz
theorem, H 1(^,Z) = 0, H2(Θ,Z) = π2(&) = π1(^) = H1(^,Z).

Summing up, we collect the results above in the following:

Theorem 3.4. There exist isomorphisms

H1^, <C*O0) = H\Θ, <€*) = H2(Θ, Z) = H\%, Z).

So far we have been jumping from one cohomology group to another. Now we
show that there is some merit in such a procedure, because Hι{^,Z) can be in
principle computed. In particular, the following result holds:

Proposition 3.5. Let <g be a Hubert Lie group of pointed G-υalued gauge
transformations on S4, where G is a compact Lie group such that π4(G) = 0. Then

1

Proof. From Hurewicz theorem we know that H1^, Z) = abelianization of πx

Now on S4, 0 has the homotopy type of Map^S 4 , G) [19]; accordingly, π
= πi+4.(G). Then πx(^) is abelian and the proposition is proved.

Remark. For instance, if G = SU(n) or U(n) for n ̂  3, then H\^, Z) - Z, because
π5(SU(w)) = π5(U(n)) = Z. In this case we see that the "topological" part of the
anomaly is unique up to a multiplicative constant. Indeed, if r is the homomorph-
ism of ^ in U(l) corresponding to the generator of Rγ{^S,Z), then any other
homomorphism r' is given by r/=rm, for some meZ. Then r'^ — rnr^ and the
anomalies are proportional, i.e. a'{τ\ A) = ma(τ; A).

Finally, we can make contact with secondary invariants by the usual
transgression process [5], which is implicit in Theorem 3.4. We have seen that the
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"topologicaΓ part of the anomaly corresponds to a line bundle L over the orbit
space Θ. This line bundle can be described either as an element in H1(ΘV <$*) or as a
class in H2{Θ,Z). The latter is called the first Chern class of L [18]. On "good"
manifolds, as all the manifolds considered here, Chech cohomology and De Rham
cohomology are isomorphic. Then the first Chern class of Lean be represented by a
closed differential 2-form c1onΘ. Pulling back c1 from & to si, one gets an exact
form, i.e. π*cί =dTcu where d now denotes the differential on si. The 1-form Tc1

on si is called the transgression of cv It is also known that when restricted to an
orbit of ^ in si, Tc1 defines a cohomology class in Jfί^jZ); so we get the
isomorphism H1^, Z) = H2(Θ, Z) in terms of differential forms. This tells us that

Proposition 3.6. The "topological" part of the anomaly is given by vertically
restricting to an orbit of & in si the transgression of the first Chern class c1 of L.

Accordingly one can identify the anomaly with some differential form. The
subtle problem is the actual construction of this form. This can be done by a closer
inspection of the vacuum functional W [9, 10]; for instance, for chiral fermions,
one gets that L is the determinant line bundle of the index bundle for the Dirac
operator. Then a direct computation of the first Chern class cγ of L and of its
transgression Tcί can be achieved via the topological part of the family index
theorem of Atiyah and Singer [7]. As it is known, this yields exactly the same form
for non-abelian anomalies as given by perturbative techniques [7].

4. Conclusions

To summarize, we recall all the equivalent ways of looking at non-abelian
anomalies considered in this paper:

i) A non-trivial cohomology class a = a(τ; A) in H 1(g, (£{si)) given by α(τ; A)
= (J£τW)/W, which expresses that the generating functional Wis not ^-invariant
and vanishes along some orbit.

ii) A non-trivial cohomology class f(g; A) = W(gA)/W(A) in H\^9<C*(si))9

again reflecting that W vanishes somewhere.
iii) A line bundle L on the orbit space Θ, such that W(A) = N(A)π*w(A), where

w: Θ-+L is some section of L.
iv) A non-trivial cohomology class in Hι{^,Z\ corresponding to L via

transgression.
While the first two descriptions are related to abstract Lie algebra or group

cohomologies, the last two involve only topology.
The main result of this paper was to show how non-abelian anomalies can be

directly related to the topology of the group of gauge transformations. This has
been known for some time, see e.g. [20], but a direct link between the homotopy
group %i(^) and unicity of non-abelian anomalies was missing. By avoiding
restrictions to local functionals, we computed the relevant cohomology group,
which turns out to be isomorphic to πx{Ή). If it is Z, as in gauge theories over S4

with gauge group SU(n), ft ^ 3 , all these non-abelian anomalies are integer
multiples of a basic one. Clearly, this integer coefficient cannot be fixed by abstract
arguments, but explicit computations are needed. In any case, whenever ^ is



BRS Cohomology and Topological Anomalies 513

connected and π1(^) = Z, the non-abelian anomaly is "essentially" unique. This
fully matches with the index theorem approach [7].

Also we computed a part of the first BRS cohomology group, namely the part
due to the topology of the group of gauge transformations. Notice that the
exponential version of this cohomology considered here easily extends to the case
of gravitational anomalies-, when Lie algebra cohomology is a hard job, because
the group of diffeomorphisms is only a Frechet-Lie group.

As these "topological" anomalies cannot be eliminated by using the whole
space of smooth functional over s4> no doubt that they still sit there when one
restricts to the physical case of functional locally depending on gauge potentials.
Clearly, one gets more anomalies with such a restriction, but none of the non-
abelian type. In particular, the occurrence of abelian anomalies in quantum field
theory draws us back to study local BRS cohomology. However, one may notice
that:

a) Abelian anomalies actually arise in terms of global group actions; for
instance one does not need to gauge chiral U(l) symmetry or dilatations.

b) For power-counting renormalizable theories, the space of local functional
should be restricted to a finite dimensional linear space generated by the
functionals having the correct physical dimensions of an action.

Thus the study of the unicity problem for abelian anomalies in BRS
cohomology can be tackled via explicit computations. As it is well known, some of
these anomalies are due to the topology of finite dimensional manifolds, but it
seems that, at least for the case of trace anomalies, topology alone does not control
the whole anomaly structure, as shown for instance in [21].

Finally, we would like to add some physical comments. Consider a path
integral of the form

S=ί@A(...)e-s™iΛ)ί@ψ@ψe-Siii''ψ'>A\ (20)

which gives the expectation value of some physical observable (...) in a gauge
theory with chiral fermions ψ,ψ. The fermion path integral can be explicitly
computed yielding after regularization the vacuum functional W= W(Λ) consi-
dered above. Thus one has

J = J 9A{... )e~s™iA)W(A), (21)

and one would like to write W(A) as the exponential of an effective action Γ = Γ(A)
to get

S = !@A(...)e- {SΎM{Λ)+Γ{Λ)). (22)

If Γ{A) were ^-invariant, one could consistently factor out the integration on
gauge equivalent potentials by inserting a gauge fixing term and the relative
Faddev-Popov determinant [22]. Then one can prove renormalizability and
unitarity as usual.

The occurrence of anomalies can break this procedure at two levels. First of all,
as we have seen, non-abelian anomalies imply that the effective action Γ(A) is not
well defined, so one should work with the form (21) of the path integral. Clearly,
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this makes it impossible to define a perturbative series. Accordingly there is no
surprise that these anomalies can be seen perturbatively, although their origin is by
no means of perturbative nature. Notice also that, since W(A) is not ^-invariant,
there is little motivation to introduce a gauge fixing and Faddev-Popov ghosts.

Secondly, when Γ(Λ) exists, that is non-abelian anomalies are absent, one can
apply perturbative techniques to study the path integral in the form (22). However,
Γ(Λ) may not be ^-invariant, and one seeks for a local counterterm Λloc(A) to be
added to the Yang-Mills action in order to restore the gauge invariance of the total
action SYM + Λloc + Γ. Here "local" anomalies of the abelian type arise and local
BRS cohomology is effective. Notice that gauge invariance is turned into BRS
invariance after the Faddev-Popov trick is performed.

From these remarks it is clear that non-abelian anomalies forbid the
perturbative study of quantum field theories. It is tempting to wonder whether
some future non-perturbative approach might give some physical meaning to
these topological effects, as it is at present done for abelian anomalies via
perturbative techniques.
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