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Abstract. We study the loop expansion for the effective potential, defined as the
Fenchel transform (convex conjugate) of the pressure in an external field, in the
P(φ)2 quantum field theory. For values of the classical field a for which the
classical potential U0(a) = P(a)-\-jm2a2 equals its convex hull and has
nonvanishing curvature we prove that the 1-PI loop expansion is asymptotic as
h 10. We also give an example of a double well classical potential for which the
1-PI loop expansion fails to be asymptotic, and find the true asymptotics.

1. Introduction

The effective potential for the P(φ)2 Euclidean quantum field theory is defined as
the Fenchel transform of the pressure in an external field :

V(Λ9a)=sup[jιa-p(Λ,μy]. (1.1)
μeR

Here the positive parameter h is Planck's constant divided by 2π, the classical field
a is real, and p(ή9 μ) is given by

= * lim -i-lnj expfc 1 f [:P(flx)): -μφ(x)-]dx]dμhC, (1.2)
ΛTiR2 \Λ\ L n Λ J

where C = (— Δ -f m2) ~1 for some m2 > 0, dμhC is Gaussian measure on ̂ (R 2 ) with
covariance hC, the Wick order is with respect to fiC, and /L|1R2 through a
sequence of rectangles. In [14] the limit (1.2) is shown to exist for a wide variety of
boundary conditions on dΛ, in particular for periodic boundary conditions which
we will use unless otherwise indicated.

The importance of the effective potential is that it characterizes the occurrence
of phase transitions in the theory [2, 16]: linear portions of V(ή, •) are in a one-
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one correspondence with points of nondifferentiability of p(ή, ), and hence with
discontinuities in the one point function D2p(fι, •) [9].

Since p(ή, ) is strictly convex [9], if the supremum in Eq. (1.1) is attained it is
attained at a unique μ(/z, a). But by the large external field cluster expansion of [19]
if η(μ) is the location of the unique (for large |μ[) minimum of P(x) — μx then
\D2p(fί> μ) — η(β)\ is bounded uniformly in large |μj, and hence, D2p(fι, μ)-> ± oo as
μ-> ± oo. It follows that the supremum in (1.1) is attained for all Λ9 a, at the unique μ
for which a e [D2p(ή,μ), D2p(ft,μ)~], where D{

2

±] denotes the right (left) derivative.
The most common method for calculation of the effective potential is to

approximate it by the first few terms of the loop expansion [2,15], which provides
N

a power series in h\ V(ή, a)« Σ vn(a)hn. In [2,15] it is argued that the coefficients
« = o

vn(ά) are given by sums of one-particle irreducible (1-PI) n-loop Feynman
diagrams. In particular, vo(a) is given by the classical potential U0(a) = P(a)
-\-\m2a2 so that V(fi, a) is in some sense a quantum analogue of U0(ά). The main
results of this paper are a proof that for the P(φ)2 model the usual loop expansion is
asymptotic as h [Q for those values of a at which Uo has nonvanishing second
derivative and is equal to its convex hull, and an example of a double well classical
potential for which the usual expansion fails to be asymptotic. In the example it is
shown that for values of the classical field lying between the minima of the classical
potential the true asymptotic expansion of V(ή, a) involves connected rather than
1-PI n-loop diagrams.

Before stating the main results we describe the graph notation used in this
paper. To begin with an example and a fixed translation invariant covariance

λi

C(x, y) = C(x - y\ the graph h—) is by definition equal to

= λλλ2λ3 J dx1dx2C(09 xx)C(0, x2)C(xl9 x2)
2. (1.3)

The right side of (1.3) is obtained from the left side by identifying any one vertex as
the origin in R 2 and associating with the remaining vertices the variables xt and
x2. To every line there corresponds a factor of C evaluated at the endpoints of the
line. These factors are multiplied by the vertex factors λt. This procedure is
followed to obtain the value of any graph. Usually the vertex factors depend only
on the number of lines emanating from a vertex and are understood to be part of
the graph without writing them explicitly. Graphs also usually include com-
binatoric factors as explained below. Some standard terminology is: A self-line is a
line connecting a vertex to itself, a connected graph is a graph for which any two
vertices are path connected by lines, a one-particle irreducible (1-PI) graph is a
connected graph such that the removal of any one line leaves a connected graph, a
one-particle reducible (1-PR) graph is a graph that is not 1-PI, and a graph having L
lines and Vvertices is an n-loop graph, where n = L—VJtl. Finally, we need the
following definition.
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Definition 1.1. Given a graph ^ and d e R, the d-renormalized graph &d is the graph
obtained by removing all self-lines from &, introducing a vertex factor d for each
removed self-line, and introducing a factor ck 7 for every fc-legged vertex of ^

fe!
having) self-lines, where ckJ= . ———. For example,

= OO - o, = c4il d Q

The following definition introduces the set B governing the asymptotics of
V(h,a); conv/ denotes the convex hull of a function /.

Definition 1.2. For U0(a) = P(a) + ̂ m2a2, define

: C/0(α) + (convU0)(a)} , £ 2 = {αeR: C/'ό(α) = O}, B = BxuB2.

In the remainder of this section we state the main results and comment on their
proofs.

Theorem A. lim V(ή,a) = (convU0)(a).
hi o

This theorem is proved in Sect. 4 by first using the elementary convex analysis
of Sect. 2 to show that the limit can be taken under the supremum, reducing the
problem to finding lim p(ή, μ). This limit is found to be — m(μ) = — min Uμ(x),

h I 0 χ

where Uμ(x) = U0(x) — μx, by translating the field φ in the functional integral (1.2)
by the location ξ(μ) of the global minimum of Uμ (which is unique for all but
finitely many μ) to obtain

p(Λ,μ)=-m(μ) + ft lim - ^ - l n j e x p ^ j Σ ^ ^ :φk: \dμhC, (1.4)
ΛtR2 \Λ\ |_ fl A k = 2 /C! J

where we drop the variable x of integration from the interaction. For those μ such
that Uμ has a uniquely attained global minimum and Uμ(ξ(μ)) Φ 0 it will be shown
in Sect. 4 using an estimate of Sect. 3 that the argument of the logarithm in (1.4) can
be bounded above uniformly in A and small ή by eκ^Λ\ using the fact that for some
δ(μ)>0,

k[ - , 2... ,;
2 = Uμ(x + ξ(μ))-Uμ(ξ(μ))>δ(μ)(x2 + xn),

where n = degP. Since by Jensen's inequality the argument of the logarithm is
bounded below by 1, \imp(fι,μ)= —m(μ).
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Theorem B. (a) Let aφB. Then there exists ay>0 such that V(ή,a) is analytic in fi
for /ze(O,γ). Moreover, V(ή,a) is C0 0 at ή = 0 + , and so the expansion V{fι,a)

oo

~ Σ vn(a)ήn is asymptotic, where vn(a) = Dn

ιV(O +,a)/nl.

(b) Let aφB. Then vo(a)=Uo(a) and

vM= -7(a)= - Jim -Injexp^- J — i * * : ] ^ .

For n^2, —vn(a) is the (finite) sum of all d(a)-renormalized 1-PI n-loop diagrams
with k-legged vertices taking factors — P{k)(a)/k\ (3^k^dQgP) and lines corre-

q to the free covariance of mass Uo(a)i/2, where d(a)= — τ~log j ~ ^

combinatorial factor is associated with each graph - see Remark 1 below.

Remark L The renormalized graphs in — vn(a) are to be understood to include
combinatorial factors. Given a renormalized graph, let Vkj be the number of
vertices that originally had k legs and have been renormalized with the removal of
j ^ O self-lines. The combinatorial factor for the graph is the factor associated with
the graph by Wick's theorem divided by Π Vjk\. For example, the combinatorial

i s — 1728 = 288.

As an example of Theorem B we obtain a renormalized (and rigorous) version
of a result of [15]. Let U0(x) = x4+^x2 and P(x) = x4. Then B = φ and for d(a)

-v2(a)= t φ + 8 U ) = G>3d(a)2x
and

• 6 d ( a )

Lines are ( — A -f 1)~x lines and 3- and 4-legged vertices take factors — 4a and — 1,
respectively. Amputated legs have been partly drawn to keep clear what the vertex
factors should be.

The proof of Theorem B(a), given in Sect. 4, involves translation of the field φ in
p(ή,μ) in (1.1) by a to obtain a new pressure having vertices as in Theorem B(b),
together with some elementary convex analysis (Sect. 2) which reduces the study of
smoothness of V(ή, a) in h to smoothness of the translated pressure in both ή and
the external field. Smoothness of the translated pressure is obtained via a high
temperature cluster expansion [12] whose convergence is shown to follow in
Sect. 3 from the eκ^ upper bound on the partition function used in the proof of
Theorem A. The aφB requirement is needed for this bound. Theorem B(b) is
proved in Sect. 5 using an irreducibility analysis in the spirit of [3].

Similar methods can be used to show that for any compact KcBc there is a
ρ > 0 such that V{h, ) is analytic in an open neighborhood of K, for all ή < ρ.
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Finally, in Sect 6 we prove the following result which gives an asymptotic
expansion for V(h, a) when a is the bad set B, for the classical potential U0(a)
= (α2-έ)2.

Theorem C. Let V{h,a) denote the effective potential for m=\ and P(x)

| \|/8/

-D\ F(0 + , a) is given by the sum of all n-loop connected graphs with no self-lines,

with three- and four-legged vertices taking factors ~wr P^3\ ~/

P ( 4 ) I —==) = — 1, respectively, and lines corresponding to the free covariance of
4 ! \j/8/

mass 1. Graphs take combinatorial factors as per Remark 1.

A number of authors [10,1,4] have recently calculated the 0{h) contribution to
the effective potential corresponding to the classical potential considered in
Theorem C, and find it to be the straight line interpolation of the 0{h)

approximation given for \a\ > -η= by Theorem B. Theorem C gives a rigorous

1/8
justification of this fact; the proof is an easy consequence of using the Fenchel
transform to define V(fi, a) and the known fact that there is a phase transition in
this model if h is sufficiently small [13].

2. Preliminaries

In this section we prove some elementary theorems that will be used to reduce the
study of smoothness of the effective potential to smoothness of the corresponding
pressure, and comment on some properties of the classical potential.

For / IR- ÎR, its convex conjugate or Fenchel transform /* is given by

/*(α)=sup[>i-/(μ)] . (2.1)

Denote by ^s the set of strictly convex functions / for which lim D ±f(μ) = ± oo.
μ-» + GO

Then for feΉs the supremum in (2.1) is finite and attained at the unique μ for
which aε[_D-f(μlD+f(μ)l

Theorem 2.1. Suppose f(ft, -) and f are in %>s for all h>0, and suppose lim f(Λ, μ)

—f{μ) for all μ. Denote by μ(ή, a) and μ(a) the unique values of μ where μa —f(fι, μ)
and μa —f(μ) attain their suprema. Then lim μ(ή, a) = μ(α) and lim /*(#, a) =f*(ά).

hio mo

Proof. We first prove that limμ(ft,a) = μ(a). Fix aeR and ε>0. Choose ρ e(0,ε)

such that Df(μ(a) ± ρ) exist. Let

α=imin {Df(μ(a) + ρ)-D +f(μ(a)), D ~f{μ(a)) - Df(μ(a) -ρ)}.
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Since / is strictly convex, α>0. Then Df(μ(ά)-f ρ)>D +f(μ(a)) + α^α + a and
similarly Df(μ(a) — ρ) < a — α

so there is a 5 > 0 such that

similarly Df(μ(a) — ρ) < a — α. By convexity, lim Ό2f(h, μ) = D/(μ) if D/(μ) exists,
ft I 0

\D±f(h,μ(a)±ρ)-Df(μ(a)±ρ)\<^ for all

Therefore, D2~f(fι,μ(a) — ρ)<a<D2f(ή,μ(a) + ρ) for all /ί<<5 and so
μ(/z, a) e \_μ(a) — ρ, μ(α) + ρ] for all h < δ, and hence lim μ(ή, a) = μ(a).

hi 0

Now

|/*(Λ, α) -/*(α) | = sup [μa -f(Λ9 μ)] - sup [ > -
μ

^ sup
μe[μ(α)-ρ,μ(α) + ρ]

for any ή<δ. Since f(Λ,μ)->f(μ) uniformly in compact intervals, the right side
goes to zero as h { 0.

Theorem 2.2. Suppose f(ή, ) and / belong to the set # s, vvzί/i lim /(#, μ) =f(μ) for
hi 0

all μe R. Fix a and suppose that for some λ>0 there is an open interval I containing
μ(a), such that f is analytic in (ή, μ) e (0, λ) x J c C 2 and

\Dlf(Λ,μ)\^C>0 for every (fi9μ)e(09λ) xl. (2.2)

Then for some / > 0 , f*(ή,a) is analytic in #e(0, y')- ίΛ ^n addition, there are
constants Mmn such that

\D™Dn

2f(ή,μMMm,n forevery (Λ9μ)e(09γ) xl; m9n = 091,2,...,

(2.3)

then f * { h , a ) is C™ a t ή = 0 + .

Proof. By Theorem 2.1 we can choose y'<y such that μ(ή,a)el if

Also, it follows from analyticity of / and the bound (2.1) that there is a neigh-

borhood 0yD(0,y)x/ on which |D|/(/*,μ)|> y . Let g(Λ,μ)=-jj-lμa-f(Λ9μ)]

= a-D2f(ή,μ) for (Λ,μ)eV. where we set Vy, = 0yn{(ή,μ)e(£2: 0<Re/z</}.
Then μ(ή,a) is uniquely defined by g(ή,μ(ή,a)) = 0, for h<f. By the fact that

Q

Dlf(ή, μ) ̂  — in 0y and the implicit function theorem it follows that μ(/z, α) is

analytic in fi in an open neighborhood C/yO(0,/), with (ή, μ(ή, a)) e Vy> for all
ήeUr. Therefore, f*(ή,a) = μ(ή9a)a—f(fi,μ(fί9ay) is analytic in #e t/^.

Differentiating the equation g(h, μ(h, a)) = 0 with respect to h gives

-DJ)2fφ,μtfi,a))

The bounds (2.2) and (2.3) imply that \Dxμ{h, a)\ is bounded uniformly in h e (0, /) .
Repeated differentiation shows that |D"μ(#, a)\ is also bounded in h e (0, y'). These
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bounds on D\μ(h,ά) and the bound (2.3) imply that \Dlf*(fi,ά)\ is bounded

uniformly in h e (0, / ) and hence D"/*(0 + , a) exists and equals lim D\f*(fi, a). D
h I 0

We now turn our attention to establishing some elementary properties of the
classical potential Uo. For L/0(x) = P(x)+^m 2 x 2 , let Uμ(x)=U0(x)-μx. Let
Gί = {μ e IR: Uμ has a uniquely attained global minimum}, and for μeGί denote
the location of the minimum by ξ(μ). It is not hard to see that G\ is finite. Define
F = {μeG1: l/'ό(<!;(μ)) = 0} and G = Gi\F. Since ξ is strictly increasing, F is finite,
and hence Gc is finite. Let m(μ) = min £/μ(x). Then for μ e G1 ? m(μ)=Uμ(ξ(μ)).

Lemma 2.3. The functions m and ξ are analytic on G, with m'(μ) = — ξ(μ) and

ξ'(μ) = . Furthermore, ξ is strictly increasing onGu continuous onGu and

discontinuous on G\, lim ξ(μ) = + oo, and —
μ-» + oo

Proof. The derivative U'o is an entire function, and for μeG, U'0(ξ(μ)) = μ and
U"0{ξ(μ)) > 0. By the Inverse Function Theorem there are open neighborhoods 0
containing μ and V containing ξ(μ) such that U'0\v is invertible and the inverse is
analytic on 0. This inverse is an extension of ξ. Since for μ e G, m(μ) = Uμ(ξ(μ))
= U0(ξ(μ)) — μξ(μ), m is also analytic on G with m'(μ) = - ξ(μ). To calculate ξ(μ\

differentiate the equation U'Q(ξ(μ)) = μ with respect to μ to obtain ξ'(μ) =

The fact that ξ is strictly increasing and discontinuous on G\ is clear from the
definition of ξ. It is also easy to see that ξ is continuous on F, and hence on Gv For
large μ, ξ(μ) is the unique root of U'0(x) = μ. As μ-^ + oo that root diverges to + oo,
so lim ξ(μ) = ± oo. This last fact, together with the strict monotonicity of ξ and

the equation —m'(μ) = ξ(μ), implies that —me%>s. D

Lemma 2.4. Bc = ξ(G).

Proof. Suppose a e ξ(G). Then there is a μa e G such that ξ(μa) = a. Since U"0{a)
= U'ό(ξ(μa))>0, aφB2. We now show aφBv Now (comU0)(a) = U$*(a)
= sup [μα~ £/$(μ)]. Since

l/J(μ) = sup iμx - l/0(χ)] = - min I7μ(x) = - m(μ), (2.4)

(conv£70)(α)= sup[μα + m(μ)]. But -m is differentiable at μa and ΰ(-m)(μ α )

= ξ(μa) = a. Since ~me^si this implies that

(conv 17O) (α) - μflα + m(μα) = μaa + l/JξCμJ) - ί/0(«μ f l)) = U0(a). (2.5)

Since G is a union of open intervals and ξ is strictly increasing and continuous on
G, ξ(G) is a union of open intervals. Together with Eq. (2.5), this implies that aφBί.

On the other hand, let a e Bc. Suppose contrary to the statement of the lemma
that aφξ(G), i.e., aeξ(F) or asξiβtf. If aeξ(F\ then l7J(a) = 0 so aeB2.
Therefore, aeξ(G1)

c. By Lemma 2.3 there must be a μ o eGi. for which
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a G KG"o I ξ(μo)l C £(Gi)c The interval K(μo), ξ(μo)) is nontrivial since μ0 e G\ is
a point where £ undergoes a jump discontinuity. Since ξ(μQ) = D±( — m)(μ0) by
Lemma 2.3, a e [D~(-m)(μo)> £ + (~ w)(μ0)] C ξ(Gi)c. It follows from the fact that
a eBc and Eq. (2.4) that

0) for all α e [Ό~(-m)(μ0),D + (-m)(μ0)] .

But this is impossible because Uo cannot have a linear segment. D

Definition 2.5. For <5,L>0 denote by 3~δh the set of all polynomials

Γ ( x ) = Σ ίjx* with | ί k | ^ L (fc = 2, . . . ,n)

k = 2

and T(x) ̂  (5(xn + x2) for all x.

n

Lemma 2.6. Suppose T(x) = Σ ίkx
k attains its global minimum atx = 0 only, where

k = 2

tn,t2>0. Then there exist δ,L>0 such that Te^δiL.
Proof. Let L=max{|ίk|: l^k^n). For large |x|, say |x|> A, there is a ^ ^
that T(x) is bounded below by δxx

n, while for small |x|, say |x| <ε, there is a δ2 >0
such that Γ(x) is bounded below by δ2x

2. Let α= min Γ(x)>0. Then for

D

3. The Main Estimates

To prove analyticity in ft for the effective potential and obtain the desired form for
the derivatives at ft = 0 it is convenient to perform a change of variable, so as to
explicitly isolate the leading term. Let C = ( — A H-m2)"1 with periodic BC on dΛ
and recall that l/μ(x)=l/0(x)-μx, where U0(x) = P(x)+^m2x2. Fix αeR.
Translating φ by a gives [11]

jexp\Ξ^U:P(φ):-μφ'] \dμ
hC

(3.1)
Here and throughout this paper the Wick dots appearing in an integrand are with
respect to the co variance of the measure unless otherwise indicated. By definition
of the pressure in Eq. (1.2), Eq. (3.1) implies

μ # , μ - U ' 0 ( α ) ) , (3.2)

where

— f Γ ££ ^ - : φ k : - # l l φ « c (3-3)
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Inserting Eq. (3.2) in the definition of V in Eq. (1.1) gives

F(/z, a) = sup [μa + Uμ(a) -ήσ^μ- [/{,(*))]
μeR

= l/ 0 (α)+sup[-Λσ 1 (Λ,/i)]. (3.4)

Next, we perform a mass shift so as to explicitly isolate the 0(ή) contribution to
the effective potential. Let mί = l/o(α) = P''(α) + m2. For aφB, mj>0. For the
remainder of this section we assume a φ B. Let Cγ = ( - A + mf)"* with periodic BC
on 5τl. By a mass shift [11] it follows from Eq. (3.3) that

UμhCl

+ lim—-lnjexp — f —j—'-Φ2' U^c (3 5)

Introducing

1 Γ —1 P"ίV> Ί
u f t C , (3.6)

it is clear by scaling φ->fί1/2φ that y is independent of /z>0.

Let

(3.7)

Then by Eqs. (3.4) and (3.5),

V(h, a) = U0(a) - hy(a) + sup [ - hσ2h, μf] . (3.8)
μeR

The next step is to Wick re-order the interaction in σ2 to match the covariance
C1. Writing ak = P(k)(a)/k\ (fc = 3, ...,n) and using the standard Wick reordering
formula [11]

[n/2]

•Φ\x):Cι= Σ cnklδC(x)T:φ»-2\x):C2,
k = 0

where δC(x) = lim [C2(x, y) — Cx{x, y)] and cnk = k ——•, the interaction in

σ2(ή, 0) can be rewritten as

Σ ak:φ
k:hC= Σ qM-Φk-nCl, (3.9)

k=3 k=0

u u 1 1 eΛ \n-\-k\. Λ(-^Λ ml\ i
where each qk is a polynomial of degree \mnd = n\ I log—j 1 plus an

^-independent term that goes to zero as A \ R2 .To simplify the notation we drop

the yl-dependent term (which is insignificant for large A and disappears in the
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A]R2 limit). The qks obey

(3.10)

Explicitly,

qo(fι)= "ί c2k,ka2k(M?. (3.11)
k = 2

Writing μa for the unique element of G satisfying ξ(μa) = a (which exists by Lemma
2.4) we have

Σ qMxk + \m\x2 = Uμa(x + ξ(μa))- Uβa(ξ(μa)),
k = 2 2

so by Lemma 2.6 there exists δ, L > 0 such that

Inserting Eq. (3.9) in Eq. (3.7) gives

1—
A \Λ\

(3.12)

Let

Γ - l Γ " Ί Ί
\ — S\ Σ Cίkm Φk''-(μ-<lι)Φ\\
[_ h Λlk-2 JJ

σ(Λ,j)= Mm ̂ r l n j e x p Γ ^ J Γ £ & : ^ : - j
Λ \Λ\ \_ ή Λ[_k=2

^ ^ ^ , (3.13)
Λ \Λ\ \_ ή Λ[_k=2 JJ

so that

Inserting Eq. (3.14) into Eq. (3.8) gives

)], α ^ 5 . (3.15)

Dka (0)
Observe that — - ^ — =c2kίkalkd

k gives the value of the d-renormalized k loop

graph with a single 2fc legged vertex a2k and legs joined up in pairs. To show that
the translated effective potential

E(h) = sup [ — hσ(fι, μ)~] (3.16)

is analytic in small #>0 and C00 at ή = 0+, we will use Theorem 2.2 to reduce the
problem to the study oϊήσ(ή, μ). This pressure is studied using a high temperature
cluster expansion.

Convergence of the cluster expansion follows from upper and lower bounds on
a partition function. We now give the first steps towards obtaining these bounds.
The idea for the proof of Lemma 3.1 below originated in work of Spencer [19].
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After this research was completed the author learned of a paper by Eckmann [7]
where an estimate very similar to Eq. (3.17) was obtained by essentially the same
method.

Let S f l j = {zeC: 0<Rez<y, 0<|Argz|<#}, and denote by dμm2(s) the
Gaussian measure on ^ ( R 2 ) with covariance

beΓ beΓc

where 3ftΛ is the set of all bonds joining nearest neighbor sites in the periodic lattice
ΛnZ2 and ΔΓ° is the Laplacian with Dirichlet BC on Γc and PBC on dΛ.

Lemma 3.1. Let T(fi,x)= Σ ak(ή)xk and a1(ή) = O(ή1/2), where the ak are
_ fe=2

continuous in Sθ>tγ> for some 0',/>O. Suppose ReT(0, ) G ^ , L for s o m e δ,L>0.
Then there exist θ,y>0 such that

1 :T(ή,hί'2φy.+a1(ή)φ-~m2:

(3.17)

for every he Sθy and for every s, and for every finite union V of lattice squares in A.
The constant K depends on δ and L.

Proof. It is not hard to see that without loss of generality we may take h and the ak

to be real. Furthermore, by conditioning [14] we may take s = 1, corresponding to
the co variance ( —zl+m 2)" 1 with PBC on dΛ. By performing a mass shift we
obtain

, (3.18)

where dμδ is the Gaussian measure with periodic covariance
( — A +δχv + m2χΛ\V)~1. Wick order with respect to dμδ is denoted : :δ. Applying
Jensen's inequality to the denominator of the right side of Eq. (3.18) we obtain

where
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The polynomial A has the form

*Λ(x)= /Γ * T(fi,ήίl2x)~^x2+ *Σ άk{fϊ)fιkl2xk,
2 k = o

(3.19)

with the dk bounded in absolute value by a constant depending only on δ and L.
We now introduce the momentum cutoff field ΦXx)^ i φ(y)δrfX(y)dy, where

δrx(y) = r2h(r(x-y)) with h e C^(R 2), h^O, h(0)>0 andf h{y)dy = ί, and obtain a
lower bound on :,4(^r):<5 as follows. Let σr(x) = $ δrx(y)C(y, z)δr x(z)dydz. Then
σr(x) = O(logr) as r->oo. Using Eq. (3.19) and undoing the Wick order gives

with \ck(ή,r)\ uniformly bounded in small h and large r. Since Γ(0,
follows that for h sufficiently small T(ή, ) e ^s_ δ_9 and hence

' L +

where x = h1/2σ~ll2φr. Therefore, there is a constant independent of small h and
large r such that

: ^ r ) : d έ -(const)(logr)n / 2. (3.20)

The estimate (3.17) follows from (3.20) by a standard result [6]. D

The following theorem gives bounds which imply convergence of the cluster
expansion.

Theorem 3.2. Let T(Λ,x)= Σ ak{h)xk and a1(h) = O(ή1/2), where the ak are
_ k = 2

continuous in SΘ>γ> for some θ\ y' > 0. Suppose Re T(0, x) G &~δt L for some δ, L> 0, and
fix m,ε>0. Then there exist θ,y,b>0 such that if \a2(0)—^m2\<b, then

is) (3.21)

for every h e Sθ: y, for every s, and for every finite union V of unit lattice squares in A.
Moreover,

is)

for every h e Sβt r for every s, and for every unit lattice square A.

Proof. The proof follows [19].
For ΔcV we define

(3-22)

(3.23)
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ΔCV XCV ΔCX

We claim that there is a y = y(ε,δ,L) such that for h<y,

ί Π ΨΔdμm2(s]
ΔCX

Given (3.25), it follows from (3.24) that

(3.24)

(3.25)

\v\
ύ Σ * m = Σ xxcv m=o\yn

which proves (3.21). The bound (3.22) follows from (3.25) with X = Δ.
It remains only to prove the inequality (3.25). To simplify the notation, let

By the Fundamental Theorem of Calculus.

By Eq. (3.26) and Holder's inequality

ί Π ΨΔdμnM ύ ||Γ

(3.26)

(3.27)

where p> 1 will be chosen below to be near one. The norm || ||p is the norm in
L"(dμm2(s)).

By assumption the coefficients of S are 0(ή1/2) or O(b). For h < y, it follows from
standard estimates on Gaussian integrals [11] that for given fixed p\

sup | e x p Γ - _
1 I I L *

Π : (3.28)

for some constant M independent of h and s.
To bound the other factor on the right side of Eq. (3.27), we cannot use Lemma

3.1 directly because when λι = 0 the classical potential will not be in any &~δtL.
However, the proof of Lemma 3.1 can be modified to overcome this difficulty, as we
will now show. As in the proof of Lemma 3.1 we assume that h and T are real and
that s = 1. Note that for p > 1 and γ e (0, m2),
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by Jensen's inequality. But

^λJpή^^i^h^φ^^ + pa^φ.-^ψf:^

If T(0, ) e ̂  L, then for p e (1,2), pT(0, ) e ̂  2 L, so the estimates of the proof of
Lemma 3.1 shows that

ph~ι: T{h,hlj2φt)\m2Jrpa1{fi)φr '-Φr' m
2= — M 1 ( l o g r ) " / 2 .

ί—* -<Λ J J A • -^^>«. -t -ΛΛ. J V *-*•-« -v T >-v J-Ϊ J I ""-*/! ^ I I f 1/1/1Choosing p = l H — ^ and y = min< —— 5 — > gives ylj-ί — —-m2 J + - ( m 2 - y ) ^ 0 f o r

A fG[0,l]. Therefore,

so by [6]

sup
0 ^ Λi ̂  1

(3.29)

Using the bounds (3.29) and (3.28), Eq. (3.25) follows from Eq. (3.27) by taking b
and y sufficiently small. D

Theorem 3.2 and standard results [12, 5], together with a standard scaling
argument, imply the following corollary:

Corollary 3.3. For an interaction T and a function a1(ή) = O(h112) as in Theorem 3.2,

there exist θ,γ,b>0 such that the cluster expansion for the interaction — T(ή, ή1/2φ)

+ ax{ln)φ — -m2φ2 and mass m converges with bounds depending only on m, <5, and L,

independent of A and of heSθtT In particular, truncated expectations of the form

— (:φkl(Λ):; ...;:φkr(Λ):}hfΛ are bounded in absolute value uniformly in A and

h G Sθt7, where (-}h,Λ denotes the expectation corresponding to the given interaction
in a periodic volume A. D

The following theorem, whose proof relies on Corollary 3.3, is the key to the
proof of Theorem B(a).

n

Theorem 3.4. Let T(/z, x) = Σ αk(^):χfe? where the ak are analytic in an interval (0, ρ)
k = 2

and C00 atθ + ,and T(0, ) e 3~b L. Then for |α2(0) —\m2\ sufficiently small there exist
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y > 0 and complex open neighborhoods 0y D (0, y) and D containing 0 such that

= h lim τΛ(h, μ)
A

^ Γ ^ \ X2:φ2:J \-.T(ή,φ): - X-=Λlim ^ j l n J e x p Γ ^ J \-.T(ή,φ): - X-m2:φ2: -

is jointly analytic in (ή,μ)e0γxD and C°° at ή = 0+, with uniformly bounded
derivatives. Moreover, there is a c>0 such that

\D2

2ήτ(ή,μ)\^c for all (ή,μ)e0γxD. (3.30)

Proof. Since T(0, ) G ^ , L there exist y\ε'>0 such that for μ ε ( —ε',ε') and
# ε (0, y7), Γμ(^, x) = T(ή, x) — μx has a uniquely attained global minimum, at say
ξ(fi9 μ\ with

S(Λ, μ; x) = Γμ(Λ, x + «A, μ)) - Γμ(Λ, ξ(fi, μ)) 6 ^ f L ,

for all (Λ, μ) ε [0, y') x ( - ε', ε').

Moreover, ξ is analytic in Vr x Dε,, where Dε, = {z e (C: |z| < ε7} and Fy, is an open
neighborhood of (0,/), and C00 at ή = 0 + .

Translating in τΛ by ξ and then scaling φ^ήll2ψ gives

^ ! ! , (3.31)

for all (h,μ)eVyxDε,. Since i/) |S(0, μ; 0)=4D^Γ(0, ξ(0, μ)), we can make
%DlS(Q, μ; 0) as close as desired to ^m 2 by taking ε" and | α 2 ( 0 ) ~ i m 2 l suf"
ficiently small. Then by Corollary 3.3 expectations of the form

— <: φkι(Λ):;...;: φkr(Λ): >̂  Λ are bounded in absolute value independent of Λ, h, μ,

where

S(Λ1/2

9μ;x) = Λ-1S(fi9

and

L Λ J
The first term on the right side of Eq. (3.31) is analytic in (ή, μ) ε Vy> x Dε> and C00

at ή = 0 + , and does not depend on A. Its derivatives are uniformly bounded. To see
that ήτ(fi, μ) is analytic, we note that the infinite volume limit of the second term on
the right side of (3.31) is analytic in small (/z1/2,μ) by Corollary 3.3 and Vitali's
theorem. To see that hτ(h,μ) is C00 at h = 0 + , we need only show that odd
derivatives of

ζΛ(t,μ)= -—ln$Qxp\- j :§(t9μ;4
\A\ [_ A
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with respect to t vanish as £->0. Now

.J Dl-i-ilD^ΊS: j : D ^ + l l S:; ... J D ^ l S : ) (3.32)

where ^ n is the set of partitions of {1,..., n}, πf are the elements of a partition π, cπ σ

are positive integers, and \σx\, ...,k|π |l m a Y be zero. Since

k= 2 »v ^

the ί = 0 contribution to D{Dj

2S is a linear combination of terms of the form
c(μ)φr(A), where r is odd if j is odd and r is even if j is even. By Corollary 3.3, as ί->0
the right side of Eq. (3.32) approaches uniformly in A a sum of terms of the form

c(μ)(:φri(A):; ... '-φr*σ[{A):y§φtμ;.)tΛ, (3.33)

wherwhere ru . . . , η π | have the same parity as IπJ, . . . , |π ) π | | , and η π | + 1, . . . ,η σ ( all
equal 2. Since | π 1 | + ... + |π | π | | = 2fc+l is odd, r t + . . . + r N is also odd. The
expectation in (3.33) is invariant under φ-* — φ since S(0,μ; •) is quadratic, and
hence equals zero.

It remains to prove the lower bound (3.30). By differentiating under the integral
sign, translating by ξ(h,μ) and scaling φ-^h1/2φ it is seen

ΛDlτ(Λ,μ)= lim —-(φ(A); φ(A))§>Λ,

which approaches lim — (φ(A); φ{A)y§{0 m) Λ as h [ 0 by Corollary 3.3. This last
A \A\

quantity is continuous in μ and equals J { — A +2a2(0))~1(x)dx for μ = 0.
IR2

Therefore, taking ε and γ smaller if necessary, the lower bound (3.30) holds. D

4. Proofs of Theorems A and B(a)

Theorem A. lim V(ή, a) = (conv U0)(a).
hlO

Proof. As was pointed out in Sect. 1, p(ή, •) is strictly convex [9] and
lim D2p(ή,μ)= ±oo, so p(ή, )G<^s I n Theorem 4.1 below we will show that

ju-+± oo

lim p(ή, μ)=— m(μ) for all μ. Using this, and the fact that - m e ^s by Lemma 2.3, it
h i 0

follows from Theorem 2.1 and Eq. (2.4) that for all αelR,

lim V(Λ, a)=- m*(ά) = 1/J*(α) - (conv U0)(d).
h I 0

We now prove the promised limit, which is a Laplace's method type result for
functional integrals on ^'(R2). For related results in the context of Gaussian
integrals on C[0,1], see [8, 18].
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Theorem 4.1. lim p(h, μ) = — m(μ), for all μeR.
hi 0

Proof. Let

pΛ(ή, μ) = — In ί exp — J [: P($: - μφ] I

and fix μ e G. Let T(x) = Uμ(x + £(μ)) - U(ξ(μ)). By Lemma 2.6, Te 3ΓδL for some
<S,L>0. Translating the field by ξ(μ) gives

^ ^ ^ μ i l C . ( 4 . 1 )

By Jensen's inequality the argument of the logarithm on the right side of Eq. (4.1) is
bounded below by one, and by Lemma 3.1 it is bounded above by eκ^ if h is
sufficiently small. These bounds and Eq. (4.1) show that \pΛ(ή,μ) + m(μ)\->0
uniformly in A, as h[ 0, for μ e G. But since Gc is finite, lim p(h, μ) = —m(μ) for all
μ G R by convexity. D

Theorem B(a). Let aφB. There exists ay>0 such that V(ή,a) is analytic in ft for
he(0,y). Moreover, V(h,a) is C00 at ή = 0 + , and so the expansion V(ή,a)

~ Σ vn(a)ήn is asymptotic, where vn{a) = -

Proo/. Recall Eq. (3.15)

F(/z, α) - t/0(α) - ήγ(a) + ? 0 ( ί ) + sup [ - hσ(h9 μ)] ,

where ^o and σ are functions of α. Fix a φ B. Since q0 is a polynomial we need only

show that E(h)= sup [ - hσ(Λ9 μ)] is analytic on (0,y) and C00 at ̂  = 0 + . We show

this using Theorem 2.2.
Note that it suffices to show that

limhσ(h,μ) = — mo(μ), for all μeR, (4.2)
hi 0

Γ n i Ί
where m o (μ)=min X g k (0)x f e +-m^x 2 —μx . To see that this is suffi-

x lk=3 2 J
cient, note that by Lemma 2.3 the location of the supremum in

n \

sup [ 4- mo(μ)'] is the unique μ, say μ(0), for which Σ 4kΦ)χk + ̂  m2*1 — μx attains

its global minimum at zero. Since aφB, there are δ,L>0 such that

k=3 I

and so μ(0) = 0. Now given Eq. (4.2), it follows from Theorem 3.4 that hσ(h,μ)
satisfies the analyticity requirements of Theorem 2.2, as well as the necessary
bounds on the derivatives, and hence E is analytic in (0,y) and C00 at h = 0 + . It
remains to prove Eq. (4.2).
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We show that (4.2) holds for μe G(0), where for A^O

G(λ)=\μeR: £ qkΨ)xk + \m\x2-μx

has a uniquely attained global minimum

and has positive curvature at the minimum

Since G(0)c is finite, (4.2) holds for all μ if it holds for μ e G(0), by convexity.
Let

σΛ(h, λ, μ) = — In j exp I — J | Σ 9fc(A): ̂ k : - μφ\\ dμhC,

and let σΛ(ή, μ) = σΛ(ή, ft, μ), so σ(fι, μ) = lim σΛ(ή, μ). By the Fundamental
A

Theorem of Calculus,

\haA(h, μ) + mo(μ)\ g \hσΛ(h, 0, μ) + mo(μ)\ + ft ] \D2σΛ(h, λ, μ)dλ\. (4.3)
0

By Theorem 4.1, the infinite volume limit of the first term on the right side of (4.3)
goes to zero as h [ 0. As for the second term, fix μ e G(0) and γ > 0 sufficiently small
that μ e G(λ) for λ e (0, γ). In the expectation hD2<JΛ{fι, λ, μ\ translate the field by the

n \

location ξ(λ, μ) of the global minimum of Σ <l?>(X)Φk + ̂  ̂ i ^ 2 — μ<̂ 5 scale the field
k=3 2

φ->ή1/2φ, shift the quadratic term of the interaction over to the measure, and Wick
re-order the interaction to match the new measure. Then by Corollary 3.3,
h\D2σΛ(fι, λ, μ)\ is bounded uniformly in A and in small ft and λ, and therefore, the
second term on the right side of (4.3) is O(h) uniformly in A. •

Note that it was also proven in Theorem 2.2 that the point μ{fi) at which
sup[ — ήσ(ή, μ)~] is attained is analytic and bounded on (0,y) and hence C00 at

μ

ή = 0 + . In particular,

0. (4.4)
ft I 0

5. Proof of Theorem B(b)

Theorem B(b). Let aφB. Then vo(a) = Uo(a) and

A
—rlnjexp - f —^-:φ2: \dμc.
\A\ L A I J

For N^2, —vN(a)=-—D^V(0 + ,ά) is the (finite) sum of all d(a)-renormalized

_p(k)

1-PI N-loop diagrams with k-legged vertices taking factors ——— (3^k^degP)

and lines corresponding to the free covariance of mass (UQ(O))1/2, where d(a)
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= — — log—^—. ^ combinatorial factor is associated with each graph as per

Remark 1 of Sect. 1.

This section contains the proof of Theorem B(b). Fix aφB. By Eq. (3.15),

V(h, a) = U0(a) - ήy(a) + qo(ή) + E(h), (5.1)

where E(ή)= sup [ — ήσ(ή, μ)] = — fiσ(ή, μ(h)) and σ is given by (3.13). By Eq. (3.11)

1 D>a (01- H * ^ ' k 2> - ' ^ d e g p ) ' (52]

UDqo{ΰ)-\0, otherwise, (52)

i.e., in the notation of Definition 1.1, — •^τD2q0(0) = — a,
ί_

*> " 3 l J

i9 etc., where d= — —\og(Uo(a)/m2). As we will now show, E(K)

— O(ή2), and for JV ̂  2, — DNE(0) is given by a sum of graphs having the specified
lines and vertices. Afterwards these graphs will be identified to be as in the
statement of Theorem B(b).

Lemma 5.1. For some y>0, σ(ή,μ(ή)) is C00 in he[09γ), with σ(0,μ(0)) = 0.

Proof. By Theorem B(a) and Eq. (5.1), E is C°° in h e [0, y), so it suffices to show that

\imσ(hfμ(ή)) = 0. By (4.4) and the fact that Σ # y + - ^ x 2 e J u , if h is
n o u=2 2
sufficiently small the polynomial Q(ή, ) given by

β ( M ) = Σ qk(fi)xk+\m2

lX

2i-μ(fi)x
k = 2 I

has a uniquely attained global minimum, at say ξ(ή), with ξ smooth and £(0) = 0.
Moreover, there exist δ\ U>0 such that

)~ Q(fh ξ(h)) e Pδ.tL.,

if h is sufficiently small. Translating by ξ(ή) and scaling φ-+ή1/2φ in Eq. (3.13) gives

(5.3)

By (4.4) β(Λ, ξ{ή)) = O(ή2), so the first term on the right side of (5.3) vanishes as h 10.

ήώ

d

Call the second term on the right side of (5.3) β(fi)= \imβΛ(h). By Corollary 3.3
A

there is a constant M such that
dhιi2HΛK

D

< M for all /I and small h and so
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Corollary 5.2. E(0) = D£(0) = 0.

Writing n = degP, let

qkj = ̂ qk(0) ( j = 0 , . . . , ^ , (5.4)

s o t h a t f t ( A ) = ΣQkfi3.

Theorem 5.3. For aφB and iV^2, the derivative —DNE(0) is given by a linear
combination of connected graphs with no self-lines, with positive or negative
coefficients, made up of lines of mass m1 and k-legged vertices taking factors —qkp

fc = 2 , 3 , . . . , n ; . / = 0 , l , . . . , - .

Proof Let f(t) = μ(t2)t~K By (4.4), f(ή = O(ή. Let

and ζ(t,x)=\imζΛ(t,x).
ΛΛ

Then E(t2)=-t2σ(t2,μ(t2))=-t2ζ(tJ(ή), and it suffices to show that
d<2N

dt 2N

dk

ζ(t, f(t)) is a sum of graphs as stated, for N ^ 2. Now ~—^ ζΛ(t, f(t)) is a sum of
\ ut

positive integers multiplied by nonnegative powers of t multiplied by expressions
of the form

(5.5)

where < >(> Λ is the expectation corresponding to the measure occurring in ζ(t,f(t))

and/c ;e{2, ...,n},j ;ε<0,1, . . . ,->, r^O, s^O

limit of the expression (5.5) graphically by

and/c ;e{2, ...,n},j ;ε<0,1, . . . ,->, r^O, s^O, / ; ^ l . We denote the infinite volume

(5.6)

We now show that the vertex factors f(lί\0) are actually graphs which hook

onto the corresponding legs. To simplify the notation we use HΓ ) j to denote a

linear combination of terms of the form (5.6) with vertex factors 1 instead of f{lι)(t),
which linear combination will be apparent from the context. The coefficients of the
linear combination will include combinatorial factors and powers of t.
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Since D2σ(h,μ(h)) = 0, D2ζ(t,f(t)) = O and

Df(t)- Dlζ(t,f(t))

445

(5.7)

Using the graph notation described in the last paragraph, Eq. (5.7) can be written

-o
Df( t ] [ - 1 ! (5.8)

As explained below, differentiation of Eq. (5.8) gives

— O — Ml-
O 2 f ( t ) = (-1)

(5.9)

The terms on the right side of Eq. (5.9) arise as follows. The first three terms come
from differentiating the numerator — O ^ of Eq. (5.8): the first term comes from
differentiating ί's appearing as coefficients of — O ^ ; the second term from

n

differentiating the Σ <lk(t2)tk~2 '-φk' part of the interaction; the third term from
k=2

differentiating the f(t)φ part of the interaction and using Eq. (5.8). The last term on
1

the right side of Eq. (5.9) comes from differentiating the factor ~ . Dropping
minus signs we can rewrite Eq. (5.9) as

-A-
(5.10)

In the last three numerators of (5.10) note how all but one of the single legged
vertices can be matched in pairs, and that the power o f — O — i n the denominator
exceeds the number of matched pairs by one.

We will now show how Eq. (5.1) generalizes to higher order derivatives. By the
same reasoning used to differentiate — - O ^ above,

d

"dΓ
. (5.11)
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Using the formula (5.11) it follows from Eq. (5.8) and induction that Dkf(t) is a
linear combination of quotients of the form

(5.12)

where the diagram eventually terminates, M— 1 is the total number of matched
pairs of legs, i.e., M = mί + m2 + m3 +. . . + 1, and there is only one unmatched leg.
To see this, suppose Dk~1f(t) is of the form (5.12) and note that differentiation of
any factor of the numerator [using (5.11)] produces a sum of terms of the form

(5.12). Also, considering each factor of' to be associated with a different

1
matched pair of legs in the numerator, differentiation of" " introduces new

in the denominatormatched pairs of legs in the numerator and powers of
producing terms of the form (5.12).

In the limit ί->0 the measure in (5.5) becomes dμCl. Hence by Wick's theorem
Dkf(0) is a linear combination of products of connected graphs without self-lines,
with vertices and lines as in the statement of the theorem as well as one-legged
vertices which match up in M - l pairs as depicted in (5.12), divided by
( . )M. Thus there is one power of for each matched pair of legs,
with one power left over. The unmatched leg in (5.12) should be thought of as being
matched to the corresponding leg of (5.6), and the extra power of in the
denominator as corresponding to these legs. As we will now show, at ί = 0 each
factor of in the denominator serves to link together one matched pair of
legs to create a connected graph.

We will now show that at ί = 0

Li L2

(5.13)

where each circle denotes a connected graph with no vertices other than those
explicitly drawn. In fact, each of the lines Lt and L2 must be connected to a multi-
legged vertex; choose these to be the vertices fixed at zero when evaluating the
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graphs. Then the numerator can be written

(5.14)

where the dashed lines indicate the absence of hx and L2. One of the factors
\ dxC^O, x) on the right side of Eq. (5.14) cancels the denominator on the left side
of Eq. (5.13). The remaining factor serves to link up the two graphs on the right side
of Eq. (5.14). To see this, take one of the graphs under the integral f dxC^O, x) and
use translation invariance to fix the fixed vertex of that graph at x instead of at the
origin. Since the remaining graph has one vertex fixed at zero, C^O, x) links the
two graphs together. This proves Eq. (5.13).

Theorem 5.3 now follows by repeated application of Eq. (5.13) to see that at ί=0
the M—l matched pairs of legs in (5.12) can be joined by cancelling M—1 factors of

• in the denominator, and that the single unmatched leg of (5.12) can be
joined to the appropriate unmatched leg of (5.16) by cancelling the remaining
factor of in the denominator, resulting in a connected graph. D

To identify the topological structure of the graphs given by Theorem 5.3 we
employ an irreducibility test introduced in [20] as used in [3]. However, this test
applies to graphs having fixed vertices. Since all but one of the vertices in the
graphs of Theorem 5.3 are integrated over, we will introduce space-time dependent
coupling constants with respect to which partial differentiation yields fixed vertex
graphs. These space-time dependent coupling constants force the external field to
be also space-time dependent to preserve irreducibility, i.e., we deal with the
effective action rather than the effective potential. To simplify the analysis we
introduce a lattice analogue of the effective potential E(fi) which generates graphs
having the same topological structure has those in DNE(0) but assigns values to the
graphs in such a way that the irreducibility test described below can be applied.

Definition 5.4. A topological graph is a collection of finitely many vertices, each
having a finite number of legs (half-lines joined at one end to the vertex), such that
every leg of every vertex is paired with some other leg to form a line. D

We now explain the method of [20] for testing a graph for one-particle
irreducibility in the context we need. For a fixed positive integer m, we consider the
lattice L 2 m of 2m points {xl5..., x2m}, thought of as consisting of the two sublattices
{xl5 ...,xm} and {xm+1, ...,x2m} Write mi = [/'ό(α) as usual and let

R R2\>

where

and Rίj — r for all ij. The matrices R, Rl9 and R2 are all mxm, the r^ are strictly
positive with rV} ̂  r, r o = rβ for all i and j , and r > 0 is chosen sufficiently small that
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C(λ) is positive definite for all λ e [0,1] and all rtj e (0, r). [It is possible to so choose
r since for r — 0, C(λ) = mϊ2I.~\ The variable λ measures the coupling between the
sets {x1?x2,...,xm} and {xm+1,xm + 2, ' ,X2m}.

Definition 5.5. Let L2m (the lattice of 2m points) consist of the 2m points labeled
{x!,..., x2m} A topological graph G is imposed on L2m by assigning each vertex of G
to a different point in L2m. Such an assignment is called an imposition of G on L2m.
An admissible imposition (AI) is an imposition for which at least one vertex is
assigned to each of the sublattices {xί9 ...,xm} and {xm+1, ...,x2m}. α

Now consider a graph with 2m vertices or less that has been imposed on L2m.
x x

For example, G = u Π , where the i} are different elements of {1,..., 2m}. The

\
rule for evaluating such a graph is to form the product with one factor of C(λ)iik for
each line joining xt. to xt . The graphs G depicted above has the value G(λ)
= C(X)flhC(X)hhC(X)i2i4C(X)f3i4.

The test for irreducibility is the following [20].

Lemma 5.6. A topological graph G with V vertices is 1-PI if and only if DGφ)
= G(0) = 0 for every AI of G on L2m, for some m^V.

Proof. Gis 1-PI if and only if two lines of G join {xl5 ...,xm} to {xm+1, ...,x2m}for
every AI of G on L2 m, i.e., if and only if G(λ) = O(λ2) for every AI. D

We now introduce the lattice theory. The lattice interaction in an external field
μ e R 2 m is given by

2m Γ n nil Ί

UKg9x)= Σ Σ Σ qkjtigkjrf-μiXi I (5.16)
i=lik = 2j=0 J

where μ = (μu ...,μ2m)eR2m, x = (xί, . . . ,x 2 w )eR 2 m , and the qkj are defined in Eq.
(5.4). The variable gkjί serves to label the quantity hjx\ in I. The vector g has

c o m p o n e n t s ^ ! k = 2, ...,n;j = 0,...,-; ί= 1, ...,2m I and is restricted to lie in the

/ \
subset Cε C RNm, Nm = 2m ( - -f 1 ) (n — 1), defined as follows. The positive constant
ε will be fixed below. ^ ^

Definition 5.7. For ε > 0, Cε C RNm is the open cone with vertex at the origin, axis the
line segment {(£, ί, £,..., ί) e RNm: 0 < t < 1}, and radius ε at its wide end. D

Let P: Cε->[0,1] denote the mapping which takes a vector in Cε to the first
component of its orthogonal projection on the axis of Cε.

Lemma 5.8. For any g&Cε and any component gkji of g,

\gkji-Pg\^εPg.

Proof. Let Pγg denote the projection of g e Cε on the axis of Cε. By the triangle
inequality \gkji-Pg\ύ\9-Pi9\> But by the cone geometry, \g-Pxg\
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The import of this lemma is that by choosing ε small, we can make the
n n/2 n

coefficients of Σ Σ <lk$9knχki n e a r t o those of Pg Σ Q_k{fι)xk

i.
k = 2 j=0 k = 2

The analogue of the pressure in the lattice theory is given by

[ - 1 Ί

— :Iμ(h,g9x): \dyhC(λ),
{Λ, g, μ, λ) e (0, α ) ) x C > R 2 m x [0,1], (5.17)

where dγD = (2π)~m(detD)~1/2 exp[-jxD~1x]dx and the Wick dots are with
respect to the covariance hC(λ). The lattice analogue of E(ή) is the Legendre
transform Γ2m (evaluated with the classical field equal to zero) given by

Γ2m(tί,g,λ)= sup [-ΛΓ2M(Λ,μ,0,λ)], (Λ,fif,A)e(0,oo)xCβx[0,l].(5.18)
2

The following lemma will be used in the proof that Γ2m is finite.

Lemma 5.9. Let dv = g(x)dx be a finite positive measure on R1, with g>0 and
ejxdv

e±jxeL1(dv). Let dv = c , . Then lim \xdv:= ±oo.
J J ejxdv j^±ao J

Proof. It suffices to prove that lim f xdvj= + co, since J xdv_j= — J xdvj, where

eJ
χq( _ xjdx

dv 7 = f , r — - τ τ ~ > a n ( 3 dv~ =g(- x)dx satisfies the hypotheses of the lemma. To
J eJ g( — x)αx

prove the j-> + oo case, we begin by showing that given any a<\ and y > 0
there is a J(y) such that

00

J dVj ̂  α for every j ^ J ( j ) .

y

In fact, let ε > 0 and choose xo<y such that j dvS^ Choose Jo such that

ej(xo -y)^ε for j ^ j o

J ejxdv^ejXo T v̂ + Λ + J ejxdv
— oo — oo 3;

ε J
- 0 0

SO

oo Γ o o Ί Γ

J d v ^ e~ J > J ejxdv ε

for ε sufficiently small. But for y > 0 and 7 ^

00 — y y 00

v7 + J xdVj+
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And if y > 0 and j > 0, then

7
— oo

= J xdvZjS J
ί g(-χ)dχ

so J xdVj^ — c + (2a— \)y if j^.J(y). The lemma then follows by taking
— oo

α=f. D

Theorem 5.10. 77ιe /αίίice Legendre transform Γ2m(ή,g,λ) is finite for
(ή, g, λ)e(0, oo) x Cε x [0,1], ami ί/ie supremum in its definition is attained at a
unique point μ(ή, g, λ).

Proof. The variables ft, g, λ, m play no role in the proof, so we drop them from the
notation and simply write Γ = — inf T(μ). By Holder's inequality T is strictly

convex, so if T is bounded below then its infimum is attained at a unique point. By

a standard theorem [17, Theorem 27.2], Tis bounded below if lim — T(tμ) > 0 for
ί-»oo Ot
p.

every μφO. We use Lemma 5.9 to show that in fact lim —T(tμ)= +oo. By
definition of T,

d_ J μx exp [ - : I0(x): + tμx~\dyc

dt jexp[-:/ 0 (x

Expand the Wick dots, write dyc = conste~*x C~ ί χdx, and choose an i for which
μ^φO. Let z = μ x and y = (x l J ...,xί5 . . . , x 2 m ) G ^ 2 m ~ 1 Then for some polynomial
P in 2m variables,

which goes to + oo as ί->oo by Lemma 5.9. D

LetD β={μeR 2»: |/ι |<ρ}.

Theorem 5.11. There exist γ, ε, ρ, r0 >0 such that for all r<r0 hT2m(h,g, μ, λ) is C™
in(h,g,μ,λ)eίO,y)xCεxDex[_O,ίl

Proof. Let Jμ(h, g, λ,x)=: I0(h, g, x) :SC(λ) — μx -\-\xC(λ) ~~ ιx. By Lemma 5.8 and the
fact that elements of C(λ) ~J differ from those of m\l by at most r, for r, h, and ε
sufficiently small J0(h,g,λ,x) has coefficients close to those of

L k=3 2 J

2m

i = 1 I k = 3

Hence if |μ| is also small, then Jμ(ft, g,λ, ) has a uniquely attained global minimum
at say ξ(ft, g, μ, 2), with ξ C°° and

K(fi, g, μ, λ, x) = Jμ(fi, gyλ,x + ξ(ή, g, μ, λ)) - Jμ(h, g, λ, ξ(ft, g, μ, λ)) ^c\x\ 2

(5.19)
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for some c>0. Translating x by ξ in Eq. (5.17) and then scaling by ή1/2 gives

ήT2m(ή, g, μ, λ)= -Jμ(fi,g, λ; ξ(h,g, μ, λ))

ί exp
- 1

--xC{λ)-ιx\dx

(5.20)

Using the bound (5.19) and Lebesgue's Dominated Convergence Theorem, the
second term on the right side can be differentiated under the integral sign with
respect to

(

The only thing to check is that odd t derivatives vanish at ί = 0, i.e.,

dtk as ί | 0 , if U s odd. (5.21)

To see this, note that by (5.19),

~K(t\g,μ,λ tx)^c\x\2

for all (t, g, μ, λ, x) e ( - y1/2, γ1/2) xCεxDρx [0,1] x R2m,

so that in fact the second term on the right side of Eq. (5.20) is C°° in (ί, g, μ, λ)
e ( - y 1 / 2 , ? 1 / 2 ) x C ε x Z ) ρ x [ 0 , 1 ] . But by scaling,

Therefore, the second term on the right side of Eq. (5.20) is invariant under f-> — t,
and Eq. (5.21) follows. G

In the next lemma, we use the notation

J exp ——:IJn,g,x):\ \dγ
hC{λ)

ϊhC(λ)

Lemma 5.12. The following limits are uniform in (g,μ,X)eCεxDρx [0,1].

(i) lim ήT2m(ή, g, μ, λ) = -Jμ(0, g, λ; ξ(0, g, μ, λ)),

(ϋ)

(iii)

where Mnh =

timtί
n I 0

8xaδxb

ft JO " ' " ' » " * " "

lim/z~1<x ί.; X;>ft,g „ λ = ( M ~ 1 ) f / ,
ft I 0

K(0, gf, μ, λ; x) is invertible by (5.19). In particular,
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Proof, (i) is immediate by (5.20) and (5.19).
(ii) follows by differentiating (5.20) with respect to μt and using (5.19) to see

that the derivative of the second zerm on the right side of (5.20) is 0{h).
(iii) Translation of x by ξ followed by scaling by ft112 gives

t ;x7 )exp -~-K(ή,g,μ,λ;ήll2x) \dx

ίexp

By (5.19) the right side approaches $(xί;xj)e->xMxdx/$e->xMxdx = (M-%n

Lemma 5.13. lim μ(ή, g,λ) = 0 uniformly in (g, λ) e Cε x [0,1].
hi 0

Proof. To simplify the notation, let f{ή,μ) = ftT2m(ή,g,μ,λ) and f(μ)

= - Jμ(0, g, λ; ξ(0, g, μ, λ)). By Lemma 5.12(i), lim /(/z, μ) =f(μ) uniformly in g and
fι j . 0

λ. Since f(h, •) is convex, so is /. Also, / is smooth for small |μ| and f(μ) ^ 0 with
d

f(μ) = 0 only if μ = 0. Let ε e (0, ρ) and set α = min
ds

f(sβ) . Then α > 0 and for any

s=-ε,

But by Lemma 5.12(ii) there is a (5>0 such that

and so

ds

TsMsβ)

f(ή,sμ)-—f(sμ) ^ for all h<δ,

s= — ε,

s= 4-ε

for all ή<δ, \β\ = l.

It follows that the minimum of f(ή, μ) is attained at some point s{h)μ{h) with
D

Theorem 5.14. Γ2m(/z,ΛA) is C 0 0 in ( Λ , g , λ ) e [ 0 , y ) x C Σ x [0,1] .

Proof. We first show smoothness of Γ2m(h,g,λ)= —ήT2m(ή,g,μ(h,g,λ),λ) in the
open set (0,y) x Cε x (0,1). By Lemma 5.13, μ(h,g, λ) eDρϊorή<y sufficiently small.
Therefore, by Lemma 5.12(iii),

det
dμidμj μ{h,g,λ)

hT2Jh,g,μ,λ)\ =

(5.22)

uniformly in ft, g, and λ if ε and γ are sufficiently small. By Eq. (5.22) and the implicit
function theorem μ(ft, g, λ) is C00 in {ft, g, λ) e (0, y)xCεx (0,1), and hence so is Γ2m
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by Theorem 5.11. The extension of smoothness to [ 0 j ) x ζ x [ 0 , l ] poses no
difficulty since derivatives of Γ2m can be seen to be uniformly bounded in
(#,g,λ)e(0,y)xC εx(0,1) using Eq. (5.22) and the fact that derivatives of T2m are
uniformly bounded by Theorem 5.11. D

The following theorem allows us to analyze the graphs occurring in
D^Γ2N(Oyg,λ) instead of those in Z)?£(0).

Theorem 5.15. For N ^ 2, — D^Γ2N(0, g, λ) is given by a finite linear combination of
graphs which is topologically identical to the sum of graphs equal to —D^E(0) (as
given in Theorem 5.3), with the following rules of evaluation:

1. Whereas a vertex in —D^E(0) takes a factor — qkj:φ
k(TR.2):, a vertex in

2N

-D?Γ(O,0,λ) takes a factor - Σ q^m'^-.
i = 1

2. No vertex is fixed - all are summed over the lattice.
3. A line joining xt to Xj contributes C(A)ί<7 .

Proof. Since

r2fβ, g, X)

Γ 2NΓ n n/2

. j j

and

1 Γ Γ n n/2 J + k-1 Ί Ί

i m — l n j e x p - J Σ Σ & j « 2 :φk:~fι~^2μ(ή)φ \\dμCι,
Λ \Λ\ L Λ[_k = 2j = 0 JJ

differentiation of Γ with respect to t = ή1/2 is formally very similar to differentiation
of £ with respect to t = # 1 / 2 , and with the rules 1-3 above, yields graphs of the form
(5.6) with / replaced by b(t, g, λ) = t~Λμ(t2, g, λ). A mechanism similar to that
described in the proof of Theorem 5.3 is responsible for hooking the graphs
D[b(t9 g, λ) onto the corresponding legs. D

Corollary 5.16.

D?Γ2 W(0,M)= Σ -.D^Γ^O^λ),

where a is a multi-index with 2ΛM - -f 1 ) (n— 1) components.

Proof. By T h e o r e m 5.15, D^Γ2N(0, g, λ) is a polynomial in g of degree JV, so the
Corol lary follows by Taylor 's theorem. D

The following lemma shows that when g = 0 the interact ion [defined in (5.16)]
occurring in the lattice pressure T(h,g,μ(ή,g,λ),λ) vanishes.

Lemma 5.17. μ{h, 0, λ) = 0 for (ή, λ) e [0, y) x [ 0 , 1 ] .

Proof. Since ήT2N(ή, 0, μ,Λ) = / U n J e x p -μx \dyhC{λ) is strictly convex as a func-

tion of μ a n d ήT2N(h, 0, - μ, λ) = ήT2N(ή, 0, μ, λ), it follows tha t inf ήT2N{ή, 0, μ, λ)

occurs at μ(/z,(U) = 0. D R22V
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To simplify the notation for derivatives with respect to components ofg, given
indices kιjb ib we write g^g^j^, and denote derivatives with respect to gι with a

dN

subscript /, e.g., Γ12 N= ^ z—, and we drop the subscript IN from Γ2N and

γ2Nt '" dgί...dgN

The following lemma is the first step in identifying the graphs contributing to

-Γ 1 2 . . . N (/ί ,0,4

Lemma 5.18. For h<y, — Γx 2 _ _ N(h, 0, λ) is a finite sum of graphs with the N vertices
~QkιjftJι + ^ k ι 1 :χ]ί}' Γ'— 1? ---iN) and lines C(λ). No self-lines can appear. Graphs
enter the sum with either a plus sign or a minus sign, but all those with minus signs are
1-PR. Furthermore, every 1-PI graph with the mentioned vertices enters the sum with
a plus sign. The combinatorial factor of a 1-PI graph is the same as for
7i2...*(Λ, 0 ,0,4

Lemma 5.18 will be improved in Theorem 5.20 where it will be shown that all
the 1-PR graphs in — Γ12N(ή,0,λ) cancel.

Proof of Lemma 5.18. The variables fi and λ play no significant role in the proof so
we drop them from the notation. Derivatives are denoted by subscripts and an
implicit summation convention is used. In the following, all derivatives of T are
evaluated at (g, μ(g)).

Differentiating the equation —Γ(g) = T(g,μ(g)) with respect to gx gives
— Γ1 = T1 + Tμμγ = Tί9 since Tμ = 0. Note that in Tx the g dependence of μ is not
differentiated. Differentiating —Γί = T1 with respect to g2 gives

To compute μb differentiate the equation Tμ = 0 with respect to g{ to obtain

u.= — T~ίT.

where the inverse on the right side is a matrix inverse. Therefore,

μ Tμ2. (5.23)Tμ2

Note that when g=0, (g9 μ(gj)=φ, 0) by Lemma 5.17 and we have a free theory.
A derivative of the form Tijmmtkfl_μ at g = 0 is the sum of all connected graphs with

M

fixed vertices as specified by the gt% and M fixed one-legged vertices. A factor Tμμ

 1

serves to link up graphs in a free theory. We use a graph notation for the derivatives
i

• ^7~~^j^ S—N
as follows. Denote Ttj feμ μ by J ^ > ( ) . M and μf by ( - 1 ) / V > i, where

k

the dot on the μt = - Tμμ

 x Tμi graph indicates that a Tμμ

 1 has amputated a leg that

i k

was brought down by differentiation with respect to μ. When g = 0
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/ \=~ i is given by a sum of connected lattice graphs without self-lines. (In

particular, at g = 0, f J=^==0. I In this notation, Eq. (5.23) becomes

2

The theorem now follows by repeated differentiation of Eq. (5.23) using the
following facts:

—- T'1—- T'1 = — T'1(T 4-T / / Ί T " 1 = —
Λ Aμμ λμμ \1μμl~-LμμμhίlJ1μμ

i k

M / M v M π

Clearly, all graphs occurring in —Γ12N(0) with a minus sign are 1-PR,
because a minus sign is introduced with every factor of T~μ

 1 (and in no other way)
and a factor of T~μ

 ι corresponds to a line whose removal disconnects the graph.
Furthermore, — Γ 1 2 . . .N(0) contains the term + Tί2 ...JV(O? 0) which is the sum of all
connected graphs (with combinatorial factors) having vertices as in the statement
of the lemma, and hence contains as a subset all 1-PI graphs. D

The following theorem, inspired by [3], is the key to obtaining the cancellation
of all 1-PR graphs in -Γ 1 2 < J V (^,0,0) .

Theorem 5.19. Given g^g^j^ (l= !?•••?N), if at least one ix is an element of
{1, ...,iV} and at least one it is an element of {iV-h 1, ...,2iV}, then for all he [0,y)

Proof. Since h plays no role in the proof it is omitted.

[ n - l A Ίj

I. n - l
0 R2 J

{xu...,xN} and {xN + 1, ...,x 2 ] v}, we can write
T(g, μ9 0) = S(1)(flf(l), μ(l)) + Si2)(g(2), μ(2)),

where μ(l) and g{\) [respectively, μ(2) and gf(2)] consist of those μf and gfej£ with
ie{l,...,iV} (respectively, ie [N + 1, ...,2iV}), and

[ N Γ n n/2 Ί Ί

- Σ Σ Σ qkjgkji:x
ki:-μiXi \dym-4Rl(x1,...,xN),

i = l[_k = 2 j = 0 JJ 1
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S,2){g{2\μ(2))

Γ 2JV Γ n n/2

= lnjexp - Σ Σ Σ
(_ i = N+l[_k = 2 j = 0

Therefore,

•T(g9μ,O) =

ie{JV+l,...,2JV}.

It follows that

and hence

g, 0) = - S(1)(flf(l), μ ( 1 )(#(l)), 0) - Si2)(g(2), μ{2\g{2)\ 0),

and the theorem follows in the case 5 = 0.
To prove the theorem in the case 5 = 1 , we begin by noting that D2Γ(g,0)

— — D3T(g,μ(g,0),0), since D2T(g,μ(g,λ),λ) = 0. Denoting expectations with

respect to dγC(λ) by [ ] λ and expectations with respect to -

by < }g,μ,λ, we have

-:Iμ(g,x): - 1 S

3 dλ

g,μ,0

and hence

2N

,μ(g,0),0

\ 2N

- Σ (5.24)

Now differentiate Eq. (5.24) with respect to ga and gb where zα e {1,2,..., N} and

d
ij6{N + l , N + 2,...,2JV}.Since: i s a s u m of two polynomials: one

in xu...,xN depending only on gι with Z Z E { 1 , ...,JV}5 and one in x ^ + j , ...,x2 Λ Γ

depending only on gx with ix e {N + 1,..., 2N}> and since as was seen in the proof of
the 5 = 0 case the measure < )^,μ(9,o),o factors into a product of probability
measures in xu ...,xN and xN+ί, ...,X2JV depending only on gx with ^ e { l , ...,iV}
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and gι with ί,e {N + 1,..., 2iV}, respectively,

Λ Λ ( τ 7 ^ θ ( ^ ^) C(A)) = 0 .

Next, observe that the term involving [x̂ X/lo on the right side of Eq. (5.24) does
not depend on # at all and hence vanishes after taking g derivatives. It remains only
to show that

Consider the case where both i andj are in {1,...,iV}. Then by factorization of the
measure <X/Xj)g,M(g,o),o depends only on the gι with ^ G { 1 , ..., JV} and the above
derivative vanishes since ibe {N+ 1, ...,2iV}. The case where both i and; are in
{N +1, ...,2iV} is similar. Now consider the case where exactly one of ij lies in
{1,..., JV}. Then by factorization of the measure,

\XίXj/g,μ(g, 0), 0 — \xi/g,μ(g, 0), 0 ' \Xj/g,μ(g, 0),0

Each factor on the right side of the above equation vanishes by definition of
μ(£,0). D

We now show that all 1-PR graphs occurring in — Γl2N(h,0,λ) cancel, and
identify explicitly the remaining 1-PI graphs. As in the statement of Theorem B we

write ^ ^

Theorem 5.20. The derivative — Γί2 N(ή,0,X) is a polynomial in h where the
coefficient of ήm is the sum of all d{a)-renormaliied m loop 1-PI graphs with vertices
-(P^Xayk^; (l=l,...,N)and C{λ) lines with self-lines allowed. Note that the
vertices are fixed. Each graph takes the same combinatorial factor that it has in

Proof. We first show that — Γ12 #(#,(),/I) can be written as a sum of 1-PI graphs
having h dependent vertices. By Theorem 5.18 we can write

-Γ12...N= Σ / * ( M ) + Σ Rm(h,λ)- Σ ΛT,(M), (5-25)
k=ί m=ί 1=1

where the three sums on the right side of Eq. (5.25) are, respectively, the sum of all
1-PI graphs made of C(A)-lines and vertices, — qkιjιfϊ

jι + *kι"ί: x\\: [having the same
combinatorial factor as in Tί2m,;N(fί9 0,0, A)], the sum of all 1-PR graphs occurring
in the expansion of Theorem 5.18 with a plus sign, and the sum of all 1-PR graphs
occurring in the expansion with a minus sign. We now use Theorem 5.19 to show
that the last two sums cancel.

In fact, treating iu ..., iN as free variables, it follows from Theorem 5.19 and
Lemma 5.6 that for any admissible imposition of xh, ...5xίw. on L2N

Σ D2Rm(h, 0) = Σ OΊNiifi, 0), s = 0,1. (5.26)
m = l 1=1
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M

We now show that this implies that Σ ^m(̂ > ̂ ) consists of exactly the same graphs
m = 1

as
/ = 1 ^

For a graph G with vertices as in Rm or JV/5 denote by G the graph obtained from
k

G by cancelling all factors — qkjfι
 2 . Since Rλ is reducible and has N vertices, it

can be imposed on L2N by choosing i l 5 . . . , ίN in such a way that a line of reducibility
of # ! (i.e., a line whose removal disconnects Rx) joins xx to xN+u and no other line
joins {xu ...,xN} to {xN+u ...,x2N}- This imposition of Rx on L2 N, of course, also
imposes the other R^s and JV/s on L2iV. Since all these graphs are connected, at
least one line crosses from {xl9...,xN} to {xN+u ...,x2N} for each graph. But
d d

— J?m(0) or — iV,(0) is zero if and only if more than one line makes the crossing
dλ dλ
from {x1? ...,xN} to {xN+ί, ...,x2N}. Hence for the above imposition

T i T l J «(<>), (5.27)
ίίΛ one line #A one line CIA

d ~
where Σ TT^ΐ denotes the sum over those i for which Ĝ  has a single line

one line MΛ

joining {x 1 ?...,%} t o {χiv + i5 •• ?-X2N} But because of the form of C(λ), for a graph

~ d ~
iV̂  on Km with exactly one line joining {xu ...,xN} to {xN + 1, ...,x2iv}? JχNι^ o r

M

Σ
m = l

d ~

dίλ
0) = Σ

one line

d ~

dλ
0)= Σ

one line

—-jRm(O) is r multiplied by a product of η/s (l^ίJ^N or
dλ
because it is only when the line joining {x l5...,%} to {xN+1, ...,x2N} is
differentiated that the result is non-zero. It follows that the second equality in Eq.
(5.27) is an equality of polynomials in the ri} (1 ̂  i, j :g N or JV + 1 ̂  i, j ^ 2JV), and so
the coefficients of these polynomials must agree. However, these coefficients
characterize the graphs topologically. To see this, note that the rtj are in a one-one
correspondence with lines joining xf to Xj. Thus a product of η/s characterizes the
parts of the graph sitting in each of the sublattices {xl5 ...,xN} and {xjv+l3 ...,x2N}.
Because there will be only one vertex xip in each sublattice that does not have its
full quota kp of lines provided by the sublattice graphs, there is one and only one
way that the line crossing from {xl5 ...,XJV} to {xN + 1, ...,X2iv} can join the two
sublattices, and the graph is uniquely determined. Therefore,

Σ £ m = Σ N, (5.28)
one line one line

with exactly the same graphs occurring on each side of the equation. Now discard
the graphs contributing to Eq. (5.28) from Eq. (5.26) and repeat the above
procedure until none of the Rm remain. We now show that no graphs Nt remain,
arguing by contradiction. Discarding all Rm graphs and the corresponding Nι

graphs from Eq. (5.26) leaves 0=Σf Ds

2Nι(fί90), s = 0,1, for every AI, where Σ '

denotes the sum over the remaining graphs. Therefore, 0 = Σ ' T T iV|(0), s = 0,1, for
dλ
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d ~
every AI. Each term in Σ'~7yN/(0) is nonnegative, and since Nt is 1-PR, for a given

dλ
d ~

/0 the il9 ...,iN can be chosen in such a way as to make —riV/o(0)>0. But this
dλ

contradicts 0 = Σ'—iVj(O), and hence there can be no iV, remaining. The end result
dλ

M L

is that Σ Hm(/j,/l) = Σ N(ή,λ), with exactly the same graphs on each side of
m = l Z = l

the equation, and hence

-Γ12...N(fiAλ)= Σ /*(M). (5.29)
fc=l

To identify the graphs contributing to the right side of Eq. (5.29) as those stated
in the theorem, we begin by obtaining an explicit formula for qkj. By definition [Eq.

1 . n

(5.4)], qki = — Djqk(0), where qk is defined in Eq. (3.9) by the requirement Σ ak •' Φk :nc

= Σ clk(fι)' Φk''hc1' Let dk= < . and extend the definition of

fc! ΓfeΊ

cfê . = . ' by setting cfcJ = 0 if j > — . Then a simple computation gives

4kj = ak+2fk + 2jtJd
j> s o a v e r t e x

k k

-qkjfι
J+2 1:x%\ = -άk + 2jfΐ

+2 c dj:x^:

can be interpreted as j ^ / Γ O K where each closed loop takes a factor of d, the

combinatoric factor ck+2jj counts the number of ways of choosing j pairs from
k + 2j lines, each half-line takes a factor ή1/2, and the vertex takes the factor

- — dk + 2j. This means that there is a one-one correspondence between 1-PI graphs

having vertices —qkjlV
Jr*k~1\xk

i\ and no self-lines, and d-renormalized 1-PI

graphs having vertices - — dk + 2jx
k + 2j with self-lines allowed and each line taking a

factor ή.
It remains only to identify the overall power of h of a graph. An unrenormalized

graph has a power of h given by /— F + 1, where / is the number of lines of the
graph, V is the number of vertices, and the extra + 1 comes from the fi in —Γ = ήT.
But I—V+X is exactly the number of loops in the unrenormalized graph. D

In conclusion we combine the results of this section to prove Theorem B(b). By
Eq. (5.1) and Corollary 5.2 we need only show that for JV^2,

-vN(a)=j±DN

1V(O,a)=- ^ 0 * ^ ( 0 ) - iyD?JE(O) (5.30)

is the appropriate sum of graphs. The first term on the right side of Eq. (5.30) was
identified in Eq. (5.2) to be the d(α)-renormalized single vertex iV-loop diagram. By
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Theorem 5.15 the second term is a sum of graphs topologically identical to the L2N-

graphs whose sum is — —-D^Γ(0,1,1), where Γ is the L2N Legendre transform

(evaluated at the classical field equals zero). By Corollary 5.16,

- J - D y / X α U ) - ^ Σ ! D 2 Γ ( M , 1 ) . (5.31)
JV! JV! dhN o ι«ι^N α!

But by Theorem 5.20 the right side of Eq. (5.31) is exactly the desired sum of
graphs: the different terms in the sum over α give the JV-loop graphs with different
kinds of vertices.

Finally, we show that the combinatorial factors are as indicated in Remark 1
under Theorem B. By Theorem 5.20 the combinatorial factor of a graph
contributing to Da

2Γ(ή,0,l) is the same as for D«2T(ή, 0,0,1), namely the factor

associated with the graph by Wick's theorem. The factor of — occurring on the

right side of Eq. (5.31) provides the factor appearing in Remark 1. Since the
1 1 *jft

1 dN

—- on the right side of (5.31) is cancelled by an AT! brought down by — „ , the

N! dn

combinatorial factor of a graph in — -~D^Γ(0,1,1), and hence in — vN(a), is as

stated in Remark 1.

6. Proof of Theorem C

Theorem C. Let V(ή, a) denote the effective potential for m = 1 and P(a)

— \ a 771 ~~ ̂ β 2 - Then for \a\< —i=, DίV(0,a)= —γ\ —p=) =0, and for N^.2,
8 / 2 1/8 \V8/

_ i
—— D^V(0, a) is given by the sum of all N-loop connected graphs with no self-lines,

-1 / 1 \
w i t h t h r e e - a n d f o u r - l e g g e d v e r t i c e s t a k i n g f a c t o r s — - P { 3 ) I — — ) = — 2 a n d

3? Vl/8/
-1 / 1 \
—— P ( 4 ) ( —= J = — 1, respectively, and lines corresponding to the free covariance of
4 \|/8/

mass one. Graphs take combinatorial factors as per Remark 1 under Theorem B.

Proof. Translation of φ by + —= in the pressure (1.2) with m= 1 and the given

interaction polynomial, followed by scaling φ-+ή1/2φ, gives

p(fi9μ)=±^=μ + fi lim -j-lnj expΓ- J [ή:φ4: ±]/ϊή1/2 :φ3:
|/8 ΛΪRI \Λ\ I A

(6.1)
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In Theorem 2.2 of [13], for sufficiently small h and μ the one-point function
corresponding to the pressure p(h, μ) is controlled using a low temperature cluster
expansion. It follows from their results that

D}p(ή,0)-l±
1

= O(1ι2),

as perturbation theory and Eq. (6.1) would suggest. Therefore, for any \a\ <•§• there
is a δ(a)>0 such that aG[D^p(^,0),Djp(/z,0)] for all h<δ{a\ and hence

Λ,α)= sup[μα-p(Λ,μ)]= -p(Λ,0),

In [13] an infinite volume theory corresponding to the interaction
fe4-{-]/2/z1/2x3 and covariance C (with free boundary conditions) is obtained. In
Sect. 6 of [13] it is shown that the perturbation series in h1/2 for a generalized
Schwinger function of this theory is asymptotic. The pressure is not discussed, but
it is straightforward to use the estimates of [13] to show that perturbation theory is

also asymptotic for p(h,0), and hence for iV^l and |α|<—τ=, — — D^F(0?α)
1 I/8

- — £>?p(0,0) is as stated in Theorem C. D
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