
Communications in
Commim. Math. Phys. 102, 327-336 (1985) MathΘΠΓI3tiC3l

Physics
© Springer-Verlag 1985

Localization in General One Dimensional Random
Systems, I. Jacobi Matrices

Barry Simon*

Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA
91125, USA

Abstract. We consider random discrete Schrόdinger operators in a strip with a
potential Vω(n,a) (n a label in Z and α a finite label "across" the strip) and Vω

an ergodic process. We prove that H0 -f Vω has only point spectrum with
probability one under two assumptions: (1) The conditional distribution of
{Kω(n,α)}n=ola l lα conditioned on {Kω}^01;allα has an absolutely continuous
component with positive probability. (2) For a.e. E, no Lyaponov exponent is
zero.

1. Introduction

This is the second of three papers exploiting ideas of Kotani [11] to understand
localization of random Schrδdinger operators. In the basic paper of the series
with Wolff [20], we combined ideas of Aronszajn [l]-Donoghue [7] and an
abstract analog of averaged boundary condition results of Carmona [2]-Kotani
[11] to prove localization in the Anderson model (potential given by i.i.d.'s). In this
paper, we discuss more general discrete random Schrδdinger operators, and in a
companion paper with Kotani [12], we discuss the continuum case. Our main
result is stated in the abstract, but we would emphasize also our new and, we feel,
especially transparent way of going from positive Lyaponov exponents to the
critical condition J(x — E}~2dμ0(x) < oo on spectral measures (see Sects. 3 and 4).

After completing the research we describe here, we learned that Delyon, Levy
and Souillard [4-6], also motivated by Kotani [11], had proven results very close
to those we find here. They follow Kotani's approach more clodely than we do;
in particular, generalized eigenfunction expansions play a crucial role in their
arguments, while they do not herein.

We also learned that Frδhlich et al. [21] use their study of localization in
v-dimensions (at large couplings or energy) to study the one-dimensional case at
arbitrary coupling and energy.

The fundamental result of Wolff-Simon [20] is the following:
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Theorem 1. Let Abe a selfadjoint operator, and let P = (φ,.) φ be a rank 1 projection.
Let Aλ = A + λP, and let dμλ be the spectral measure for Aλ associated to the vector
φ. Then dμλ is pure point for a.e. λ if and only if

f dμ0(x)

for a.e. real E.
We use the function Fλ(z) = §(dμλ(x)/x — z)) for Im z > 0. Note that by the

dominated convergence theorem, if (1) holds, then F0(E -h ίO) = limF0(E + iε) exists
.40

and is real. An important element in the proof of Theorem 1 is the following:

Theorem 2 (Aronszajn [1]). Fix λ Φ 0, ana suppose that E is not an eigenvalue of A.
Then the following are equivalent:

(i) E is an eigenvalue of Aλ

(ii) (1) holds and F0(E + iO) = - λ~ *.
In [20], we gave a proof of Theorem 2 closely related to that of Aronszajn. In

Sect. 2, we provide a variant of Donoghue's proof [7]. Our purpose in doing this is
primarily to handle the case λ = oo, i.e. we will give a natural meaning to A^, and
prove Theorem 2 also if λ = oo. While the later proofs can go without the case λ = oo,
the discussion is simpler and more natural if we consider the case λ < oo.

In Sect. 3, we turn to the study of operators on /2(Z) given by Hω = H0 -h Kω,

(HQu)(n) = u(n + 1) + u(n - 1), (Vωu)(n) = Vω(n}u(n\

where V(n) is a stationary ergodic process. We will prove:

Theorem3. Let df/^oi/^o^i) be tne conditional joint distribution on t>0?^ι
conditioned on fixing Vω(j) to be Vjforj Φ 0, 1. Suppose that with positive probability,
dη has an absolutely continuous (with respect to άv^άv^ component. Then for a.e. ω,
Hω has only point spectrum.

In Sect. 4, we consider operators in a strip. Explicitly, let 2tf = /2(Z, Cd) and let
w(ft;α),α = l,. . .,d denote the components of u(n). Let Fω(n;α) be an [Revalued
ergodic process, let A be a fixed real symmetric m x m matrix, and let

(H0M)(n;α) = u(n H- l α) + u(n - l α) +

In the usual way, for E real we can form a 2d x 2d transfer matrix Tn(E) and
define Lyaponov exponents γί ^ ^ y2d with y7 = — y2d-j+ 1 > §ince Tis symplectic.
We will prove:

Theorem 4. Suppose that
(a) For a.e. £, yd(E) > 0.
(b) The conditional expectation d^ovo,i)(^o>^ι) nas an absolutely continuous

component (relative to A/oΛ^) with positive probability. Then for a.e. ω, Hω has
dense point spectrum.

The analog of hypothesis (a) is not needed in Theorem 3, since the discrete
version [19] of Kotani theory [10] implies that y(E) > 0 for a.e. E (since the
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hypothesis implies that V is a nondeterministic process). It is quite likely that (b)
implies (a) in great generality, but since no one has developed Kotani theory on the
strip, there is no proof.

2. Donoghue's Proof of Aronszajn's Theorem

We want to use a variant of the method that Donoghue gave to prove Theorem 2,
that allow us to prove a generalization of it that includes the value of λ = oo. We
must begin by defining A^.

Lemma 2.1. Let P = (φ,'}φ be a rank 1 projection, and let A be self adjoint. Let B =
(1 - P)A(l - P) on (1 - P)jf , explicitly

) = D(A)nRan(ί-P)9

Bφ = (l-P)Aφ if φεD(B).

Then B is density defined and self adjoint on Ran(l — P).

Remark. In applications φeD(A), in which case the proof is easy. But since the
general result is true, we give it.

Proof. Let ψ = (A + i)~ίφeD(A)9 so (φ9ψ) = (φ9(A + i)~1φ)^Q9 since
is strictly positive. Any ηeD(A) can be written:

(η - cψ) + cψ, c = (φ, η)/(φ, ψ),

so D(A) = D(B) 0 [ι//] (algebraic and topological but not orthogonal direct sum). Let
ηe(l-P)J^9 and let ηneD(A) converge to η. Then cn = (φ,ηn)/(φ,\l/)-+(φ9η)/
(φ, (//) = 0, so ηn — cnψ converges to η and B is densely defined. It is easy to see
that B is symmetric.

Let ηεD(B*) c (1 - P)jV , and let γ = (B*- i)η. A straightforward calculation
shows that ηeD(A*) with

so nεD(A), and thus D(B*) c D(B) and hence B is selfadjoint.
We define A „ = (I - P)A(l - P) on (1 - Ppf . We note that Aλ-^AOQ in

generalized strong resolvent sense as A-χx), i.e. for z nonreal, (Aλ — z)~lζ^>
(B - z)-\i - P)ζ as /l-> oo. For ifζ = φ9

so (A + λP - z)~ 1P -> 0. Thus, i ΐ ζ = (B- z)η (with Pη = 0), then

(A + λP-zΓlζ = (A + λP- z)'\A + λP- z)η

-(A + λP- z)~lPAη -*η = (B-zΓ 1ζ.

Theorem 2.2. Fix 1^0 (but λ= oo allowed). Suppose that E is not an eigenvalue of A.
Then the following are equivalent:

(a) E is an eigenvalue of Aλ.
(b) $dμ0(x)/(x - E)2 < oo and F0(x + ity=-λ~1.
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Remark. We emphasize once more that (1) implies F0(x + iϋ) exists and is real. Thus
E is an eigenvalue of some Aλ if and only if (1) holds.

Pr<90/(patterned after Donoghue [7]). Suppose first that λ < oo. E is an eigenvalue if
and only if (A — E)η = — λPη has a solution η = 0. Since E is not an eigenvalue of
A, Pη φ 0, i.e. (φ, η) Φ 0. Normalize η so — λ(φ, η)=l. Thus E is an eigenvalue of Aλ if
and only if

(A-E)η = φ (2a)

has a solution and

λ-1 = -(φ9η). (2b)

We claim this remains true for λ = oo. For (A^ — E)η = 0 if and only iί(η, φ) = 0 and
(A — E)η = P(A — E)η (which cannot be zero since E is not an eigenvalue of A).

Thus we have proven that E is an eigenvalue of Aλ if and only if (2) has a solution.
Pass to a spectral representation so ffl — L2(R, dμ0\ A is multiplication by x and
φ(x) = 1. Thus (2a) becomes (x - E)η(x) = 1 or η(x) = (x-E)~1. Thus (2a) has a
solution if and only if ηeL2 if and only if (1) holds. Equation (2b) says that
-λ~1=lim(φ9(A -E + iεΓ».

εjO

3. Localization in One Dimension

Our main goal in this section is to prove Theorem 3. We begin with a result that is
connected only with y(E) > 0. As noted in [20], this result (or one essentially as good)
can also be proven from the work of Ishii [9] or Deift-Simon [3].

Theorem 3.1. Let V(n) be a (deterministic) potential for a one-dimensional Jacobi
matrix, H. Suppose that

(i) E is not an eigenvalue of H.
(ii) The transfer matrix T(n) at energy E obeys

]im—]n\\T(n)\\=γ>0.
N->oo n\

Let dμQ be the spectral measure for H associated to y0. Then

$dμ0(x)(x-EΓ2<co.

Proof. By the Osceledec theorem [17,18], Hu = Eu has solutions u± decaying
exponentially at oo. Suppose first that neither vanishes at n = 0 so we can normalize
them by w ± (0)=l. Define

so ηeέ2 and

(Hη)(n) = Eη(n) + cδnθ9 (2)
with
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Notice that c φ 0 since E is not an eigenvalue of H . Since η(Q) = 1, (2) can be rewritten
(H-cP)η = Eη with P = (<50, )<V Thus E is an eigenvalue ofH-cP, so (1) holds by
Theorem. 2.2.

Next suppose that w+(0) = 0. Then take

η(n) = u + (n), n ̂  0,

- 0, n ̂  0,

Let P = (<50, )V Then it is easy to see that

(l-P)η = η (l-P)(H-E)η = 0.

Thus E is an eigenvalue of Hλ=ao, and again (1) holds by Theorem 2.2.

Remarks. 1. Formally this analysis is connected with the method used in [20] to
prove (1). There we used

J(x - E) ~ 2dμ0(x) = lim X I G(n, 0; E + iε) \ 2,
ε|0 n

with G the matrix elements of (H — E — iε) ~ 1 . One expects that lim G(n, 0; E + iε) =
1 ^^(n)^"1 with VK the Wronskian of w + and M _ .

M odulo the interchange of sum and limit, this provides a way of understanding why ( 1 )
holds. This leads to the formula:

2. Since the above derivation is formal, it might be worth giving a real proof of
the last formula. Notice that W = M + ( l ) - w _ ( l ) = w+(l) + w _ ( - 1)+ F(0)-E,
which is just the value of c in the proof. Moreover, the weight, Γ, of the point mass at

/ °°
E in the spectral measure for H + cP is just (η(0))2 I £ \η(n)\2 = l [ _ Σ \ η ( r i ) \ 2 Y l .

I n — — oo

Thus, the above formula comes from the relation found in [20] between 7", c and
$(x-EΓ2dμ0(x)

3. The proof did not require γ >0, but only that (H — E)u = 0 had solutions I2

and + oo and I2 at — oo.

Proof of Theorem 3. The idea of the proof is the same as in [20]. Fix { Ĵ }J ̂ 2 ^Y
Kotani's theorem, γ(E) > 0 for a.e. E since the hypothesis of the theorem implies that
Vω is nondeterministic. Thus, for a.e. choice of { V ( j ) } j f 2 > we have for a.e. E
Lyaponov behavior with γ > 0 at both -f oo and — oo. We suppose ^ is such a
choice for V(j). For each value of ̂  and ^0, the operator H with V(n) = v(n) has
J(dμ (x)/(x — E)2) < oo for a.e. E by the above discussion coupled with Theorem 3.1.
Thus, by Theorem 1, for each choice of v ± and a.e. choice (with respect to Lebesgue
measure) of ?>0, the cyclic subspace generated by <!>0 has only point masses in its
spectral measure. Thus, iϊv0, v-l lie in their a.e. component, both δ0, δ1 are sums of
eigenfunctions. Since this pair is cyclic for /2, we see that if ^O9v ί lie in their a.e.
component, Hω has only point spectrum. Thus, Hω has only point spectrum with
nonzero probability, and so, by general principles [13], with probability 1.
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The above proof, if looked at in detail, seems almost circular. We show that a.e. E
is an eigenvalue of Hω -f λP for some λ, and then use this to show that H ω + λP has
only point spectrum! The point is that once E is an eigenvalue for some λ, it will have
nothing to do with the singular spectral measure for any other value of λ.

Example 1. If Vω is a Markov process with an invariant measure f(x)dx and
transition integral kernel K(x,y) (so $K(x,y)f(y)dy=f(x)), then

and the hypotheses of the theorem hold.

Example 2. Let Vω be a Gaussian process with covariance

Suppose that g has an inverse matrix /z, i.e. ̂ h(i —j)g(j — k) is absolutely convergent
j

and equals δik (as well as the right inverse). Formally

*Lu * o, i)K > *> i ) = N ~ 1 exP ( - A(v) )dvQdv ί ,

where

with

π V-l I / .x

Since

l)= Σ h(a-j)g(j-k)h(k-a)

is easily seen to be finite, we have C0, C: < oo for a.e. {^J^o, i It is then easy to see
that exp( — A(^))eL1(d^0di>1), and to justify the formula for dη and to verify the
hypotheses of Theorem 3.

Example 3. The hypotheses of Theorem 3 suggest the identification of an interesting
problem in probability theory. Let am(ω) be i.i.d.'s with some distribution,

dκ(λ) = F(λ)dλ. Let Vω(n) = Σam(ω)f(n — m). When does V obey the hypotheses of
m

Theorem 3?

Example 4. Clearly DLR processes (i.e. Gibbs' states for one dimensional lattice
systems) with a priori measure a.e. component and finite range interactions will give
examples of Fω's obeying the hypotheses of Theorem 3.

Example 5. If (50 and δ2 are sums of eigenvectors of Hω, then so is <5 l 5 since
(Hω — 7(1)11) !̂ = δ0 + (52. Thus, Theorem 3 has an analog where { 7̂ }j^0,2 are fixed.
For example, if Vω is the process V(n) = 0 if n is even and the odd K's are i.i.d.'s with
a.e. distribution and Vω is the suspension of Vω, i.e. with probability ^, Vω(n) =
Vω(n) and with probability \, Vω(n) = Vω(n — 1), then Hω has dense point spectrum
by this alternative theorem. Another example where the alternative theorem is
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applicable is the Markov process where, if K(0) = 0, then K(l) = 0 with probability
\ and is uniformly distributed in [1, 2] with probability \ and if K(0)e[l,2], then
7(1) = 0 with probability 1 (with invariant measure f S0 + ix^^x).

4. Localization on the Strip

Localization for the discrete Schrodinger operator in a one-dimensional strip with
a potential given by i.i.d.'s with some extra hypotheses on the density has been
announced and sketched by Goldsheid [8]. A complete proof has been given by
LaCroix [14, 15]. In this section, we will prove a more general result. We begin
with a deterministic theorem. Let ̂  = ̂ 2(Z, Cd), i.e. wave functions have values
in Cd. We will think of the distinguished basis in Cd to write the components of
φ)eCd as {φ;α)}α= ι,...,d, so tf is thought of as /2(Z x {!,..., d}).

A "potential" will be a set of real d x d matrices, W(n\ indexed by neZ so that

(Hu)(n) = u(n + 1) + φ - 1) + W(ri)u(n\

The example to bear in mind is where {!,..., d} has some symmetric set, S,
of "neighboring pairs" S = {(α,/?)} (e.g. α,j8 are neighbors if |α- β\ = 1, which is
a strip approximating Z2) and

(W(n)u)(n 9<ή = £ u(n;β) + K(n α)φ α)
{B|(α,0)eS}

with V the "real" potential. When one has thin set up, one can define a
transfer matrix in Sp(d), the 2d x 2d symplectic matrices by T(n) = A(ri) ... ̂ (1) and

»]

with 1 the d x d identity matrix. We say there is Lyaponov behavior at + GO
and an energy E if

exists where Λp is the alternating function and this relation defines yjf There is
a similar definition at - oo. By the symplectic nature of T,y1^ ^72d

 and

χ/= -72d-j+i-
By the subadditive ergodic theorem, if W is an ergodic process, then for

each fixed £0 one has Lyaponov behavior (with equal yj at + oo and — oo and
jj independent of ω) for a.e. ω and so for a.e. ω for a.e. E.

It is a trifle easier not to worry about some of the possibilities λ = oo, so we
will rule out a countable set in proving the analog of Theorem 3.1. Let H~ denote the
operators on /2([± 1, oo),Cd) with w(0) = 0 boundary conditions. The analog of
Theorem 3.1 is

Theorem 4.1. Let W(ri) be a deterministic potential for a Cd-strίp. Suppose that
(i) E is not an eigenvalue of H,H+ or H~ .

(ii) H has Lyaponov behavior at ± oo and energy E and yd > 0.
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Let dμ0 α be the spectral measures for H associated to <Sn = 0,α Then

ldμ^(x}(x-EΓ2«κ (!')

for each α.

Proof. By hypothesis (ii) and the Osceledec theorem [18], there is a d-dimensional
set, S+, of solutions decaying exponentially at + oo. No such solution can vanish
at n = 0, since E is not an eigenvalue of H+ . Thus, the map u\-+ u(Q) from S+ to
(Rd is one-one and so onto. Thus, given an αelRd, there is a unique solution
u+( \ά)εS+ with u+(fya) = a. Define M + α = M + (l;α). Then M + maps ̂  to #d.

We claim that M+ is a symmetric matrix. For, given any α, α', the Wronskian

(u+(n+l,a),u+(n,a'))-(u+(n9a)9u+(n+l,a'))

is constant. Because of the decay at plus infinity, this Wronskian is zero.
Thus for n = 0:

M_ is defined similarly. Given a, define

η(n; ά) — u+ (n; a\ n ̂  0,

= M_(n;α), n^O.

Let P be the rank one projection onto δn = ΌtΛ in /2(Z, C^), and let β be the
rank one projection onto δa in Cd. Then it is easy to see that ϊorη = η(-9a) and λ < oo :

(H + λP)η = Eη (3)

if and only if

= Ea. (4)

Thus we have reduced the eigenvalue problem (3) under a rank one
perturbation in /2(Z, Cd) to a rank one eigenvalue problem (4) in Cd! The above
calculation was for λ < oo, but a check of what the λ = oo result means shows (3) is
equivalent to (4) in that case also, i.e.

Eη (3')

is equivalent to

Qa = 0; (1 - β)(M+ + M _)a = Ea.

As we note in the lemma below, since M+ + M_ is symmetric with /l^O,
(4) always has a solution if the λ = 0 equation has no solution. Thus (3) always
has a solution with λ Φ 0, since £ is not an eigenvalue of H. By Theorem 2.2, (Γ)
holds.

Lemma 4.2. Lei A be a finite Hermitian matrix, P a rank one projection and
E not an eigenvalue of A. Then for some λ (possibly λ=ao\ E is an eigenvalue of
A + λP.

Proof . By Theorem 2.2, we only need the fact that B(E)~1 = fdμφ(x)
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|x - E\~2 < oo. But if Ei and φt are the eigenvalues and eigenvectors, B(E)~1 =
dimH
£ I (φ, cpt) 1 2 (E - Et) ~ 2 is trivially finite.

i = l

Given Theorem 4.1, the proof of Theorem 3 immediately yields Theorem 4.
Finally, one can ask when hypothesis (a) (yd > 0) holds. If the K's are i.i.d.'s,

then Furstenburg's theorem (see [22] for recent literature on this subject) implies
that yd > 0 for all E, and we recover Lacroix's result [15]. In fact, in this i.i.d. case, all
that one needs is that the density of Kω(0; α) has an a.c. component. Ledrappier [16]
has proven that γ1 > 0 under great generality in the strip, but it remains to be seen if
one can prove yd > 0 under such conditions.

Acknowledgements, It is a pleasure to thank T. Wolff for useful discussions, and S. Kotani for
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