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Abstract. We consider the quantum dynamics of a particle in a time dependent
potential V(t), assuming it to be a Markovian random function of time. We
derive a formula for the density matrix at time ¢ averaged over the realisations of
the potential. We then obtain a kind of RAGE theorem for the time evolution of
compact observables, and some information on the phase space behaviour of the
system.

I. Introduction and Results

Since the pioneering work of Anderson [1] on localisation of electronic states in a
static disordered lattice, random time independent Schrodinger operators have
become increasingly popular in solid state physics to describe effects of impurities
and thermal disorder in crystals. By now such models are also fairly well understood
mathematically, see for example [2] and [3]. On the other hand time dependent
random Hamiltonians received much less attention, probably because of the
intrinsic difficulties encountered when dealing with non-autonomous systems. We
mention some works (see for example [4]) on the d(t)-correlated gaussian random
potential, typically a problem of the form:

0y, =(—A4 + VY, on the lattice Z°, (1.1

where A is the discrete Laplacian (or some tight binding Hamiltonian), and V(x) a
gaussian random field of mean zero and covariance

< I/t(x) Vs(y)> = gé(t - s)éx,y'
Such models can be explicitly solved to give a finite diffusion constant, i.e.

0 < lim <%szll//,(x)|2> =D < 0,

t—= o0

and thus a finite electrical conductivity. Another interesting special case is to take
the potential V,in (1.1) as a Markovian random function of time. Such potentials can
be constructed in the following way: choose a homogeneous Markov process &(t) on
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some state space E (for example E a discrete set or a bounded region of R”) and a
function V(x, &), then simply set Vy(x) = V(x, &(t)). Such systems have been used to
describe electron propagation in disordered media. However, the methods used are
all approximate and difficult to control (see [16]). The purpose of this paper is to
derive an exact formula for the mean time evolution of the density matrix associated
with (1.1). It turns out that this evolution is rather simple, since it is given by a
contraction semigroup, a fact reflecting the absence of memory of the potential. We
also apply ergodic theory to this contraction semigroup to obtain information on
the asymptotic behaviour of some observables, and then using a random ergodic
theorem, we convert this mean result into an almost sure one.

In this paper we consider the continuum case, i.e. Equation (1.1) on R, but it will
be clear that all our results are also valid on the lattice with a bounded potential
V(x, &). In the continuum we assume V(x,¢) to be a small perturbation of — A
uniformly in ¢, and a smooth function of x and &. Furthermore we require &(t) to be
continuous or at least piecewise continuous (allowing for a discrete set of jumps); the
precise hypotheses are exposed in Sect. 1.

Since our discussion is rather technical, we shall expose here the underlying
heuristic ideas. Let p(x, x') be a density matrix, its time evolution is governed by the
equation,

0ip, = —iLH(E()), p.] = — K(£(D))p,, (12)

where we have set H(¢) = — A + V(,x), and K(&) =i[H(&),-] a linear operator on
the space of density matrices. If we allow for a dependence of the initial state p, of the
system on the initial state of disorder £(0), we are then interested in computing the
expectation value

E[p(£(0))] (1.3)

giving the mean state at time ¢t. To do that we first look at the conditional
expectation,

Elp/£0))o(¢(1)—9)]
E[6C0)—91

from which (1.3) is obtained by integration over the (time independent) distribution
of &(t). To first order in dt we have

Pr+al€(0)) = p&(0)) — K(&(1))p(¢(0))dr.
So that taking expectation
E[p.+ad€ODIE( + dr) = &'T = E[(1 — K(&(1))dt) pSO)) | &(¢ + dr) = ']

Now using a well known property of conditional expectations and the Markov
property

E[(1 — K(&(1)dD)p&(0)1&(2), &t +de)1 = EL(1 — K(&(0))dt)p,(E(0)1(2)],
since p,(£(0)) is independent of &(t + dt), we obtain

E[pi+alS(0)|E(z + dt) = &'] = E[E[(1 — K(&(2))d)p &0 @)1 E(t + di) = £'].

E[p(c(0))I&(0) = &1 =
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If we now introduce the infinitesimal generator A of the process &(t) as

eI =ELfCE0IEn=¢1 (0<s<i),

we can rewrite (1.4) to first order in dt as

E[p,+a(&0)[&(t + dt) = &] = (e "E[(1 — K(£(0)dt)p&0) () = -1)(&)
=((1 = (A4 + K)t)E[p(£(0))[¢(0) =-1)(&)
where we have to interpret K as a multiplication operator in ¢, i.e. (Kp)(&)=
K(&)p(&). The last identity can be recast in differential form as

O.ELpLEO)IE(1)="1= — (K + AE[pO0)I¢ =],

and thus integrated to give

E[p[&0))&(1) = &] = (™" **po) (&),

which is the promised semigroup formula. In Sect. 3 this is proven rigorously for a
large class of equations of the type

d
20 = — KEOX(), x(0)=x (1.5)

on abstract Banach spaces. This result is also of potential interest in other problems,
like diffusion in disordered media, wave propagation etc....

The reader who accepts the above derivation may skip Sects. 2 and 3, going
directly to the application given in Sect. 4. There we remark that under some very
weak spectral assumption on the generator (K + A), the mean ergodic theorem
applied to the semigroup e~ ¥+ 4" implies

lim — [ E[{c,(0)]dt =0 (1.6)
Tow 10

for any compact observable ¢, where {c),(t) = tr(cp,) is the quantum mechanical
expectation of ¢ in the state p,. Our main achievement is then to remove the
expectation symbol in formula (1.6) to obtain an almost sure result. This is done
using a random ergodic theorem due to Beck and Schwartz [S]. At the end we
discuss some consequences of this result on the phase space behaviour of the system.

Perhaps the most interesting consequence is for discrete systems (i.e. (1.1) on the
lattice Z*). Then under the above assumptions we prove the absence of bound states
in the following sense: in any state i of the system, the mean occupation probability
of any bounded region B = Z" vanishes, i.e.

T
lim ij‘ Y Y (x)|2dt = 0.
T—o T 0 xeB
Finally let us note the analogy between our technique and the approach to time
dependent (and in particular time periodic) Hamiltonians initiated by Howland in
[20] and further developed by Yajima ([21]) and Yajima and Kitada ([22]). For a
periodic Hamiltonian (of period 1) they introduce the augmented space

L(R/Z,d)@ H,
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where S is the usual quantum mechanical state space. On this space the self adjoint
operator,

.0
P= —la'}'H([),

generates a unitary group which in some sense is equivalent to the quantum
evolution generated by H(¢). In this case questions like existence of bound states,
asymptotic completeness, etc. .., may be answered in terms of spectral and scattering
theory for P. This operator thus bears some analogy with the generator

B =[H(),.]—iA

of the mean evolution of density matrices in the Markovian case. There are however
two major differences: first the semigroup generated by £ only gives statistical
information on the solutions to the time dependent Schrédinger equation (1.1) fora
given class of potentials. More technical is the fact that, while P is self adjoint, £ is
not, due to the dissipative effect of randomness (i.e. to the term — iA4). At first sight
this may seem troublesome, but the non-self adjoint (and perhaps non-spectral)
operator 4 turns out to be much easier to analyse than P. The point is that for the
large time behaviour of the corresponding semigroups only the real part of the
spectrum is relevant. While for P the nature of the spectrum (and hence the
asymptotic behaviour of the state ,(x)) depends very sensitively on the potential
(with the possible occurrence of resonances, see for example [23] or [24]), it is very
easy to control the eigenvalues of 4, the dissipative term —iA4 always pushing them
down in the lower half plane, thus making random systems much simpler than
deterministic ones!

2. Notation and Hypotheses

a) The Driving Dynamics. We denote by (£, Z, P) the underlying probability space:
Z is a set of paths ¢ = ({(t)),, on the topological state space E, Z a g-algebra on &
and P a probability measure, we write E[-] for the associated expectation. We
assume P-almost all paths in = to be right continuous and to have a finite number of
discontinuities on any compact time interval. Introducing the past (respectively the
future) o-algebra P (respectively F) at time s as usual, the Markov property may be
stated as:

P[ANB|{(t)] = P[A|{(t)JP[B|(t)]  for any AeP, and BeF,.
Time translations are given by a family (t,),,, of measure preserving map, on =:
(@o(s) =<t + ).

Finally E being the Borel o-algebra on E we assume the existence of a unique
invariant measure u on (E, E):

P[A]= [ PLAI&() = E1du(&).
We also introduce the Hilbert space
h = I*(E,E,dp)
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on which the operator family

S ELfEO)IED=¢] 20

is well known to be a strongly continuous contraction semigroup. Let A be its
generator:

(e™*f)(&) = ELA(&0))I &) = &]. 21
Thus A is a m-accretive operator on h. If the process is symmetric, i.e. if:
P[&(t)eBI(0)] = P[£(0)eBIS(1)], BeE, 120,
then 4 will be self-adjoint; however we do not assume that in the following.

b) The Evolution Equation. Now we describe the hypotheses on the generator of the
evolution, essentially Kato’s conditions [ 10] assuring existence and uniqueness of
the solution to the initial value problem (1.5):

(i) The underlying space X is a separable Banach space with the norm |- |.
(i) There is a second Banach space Y with the norm ||y densely and
continuously embedded in X.

(iii) To each &eE there is a densely defined operator K(£) on X generating a
strongly continuous contraction semigroup:

e KO >0,

(iv) Y = [\ D(K(&)) so that K({)eB (Y, X). We also assume the map

éeE
EeEm K(§)eB(Y, X)

to be norm continuous and bounded.
(v) There is an isometry S: Y — X such that

SK(&S™ ' =K(&)+ B() B()eB(X)
and B(+) is strongly continuous.

Then they are two constants M and f such that for P-a.a. paths £ a unique
propagator
U(lt,s)=Uf(t,s) 0<s=t
exists, with the properties:
M 1UE9l =1, Ult,)=1, Ult,s) = U(t, r)U(r, s).
(Il) U(t,s)Y = Y and || U(t,s)|ly < MePt™9,
(ITI) U(t,s) is jointly strongly continuous in (¢,s) both in X and Y.
(IV) For any yeY and at each continuity point of the path &

d
g U9y = — KU, s)y  (X-strongly).
(V) For fixed 0SS < T, let

.T—-S§ T-S —
i(,,,(t)=§<S+]T> for S+jT§t<S+(j+1)u
n
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then we have the bound

T
HUGIT.S) = Ul T.9)}yll < Me‘”’s’g I K(E(s) — K(EinfS)) lyxds [y Iy
for any yeY, in particular,

n—1
U|T,S) =slim U(,| T, S) = s-lim [] e KES+AT=S)m)(T=$)in

n—ow j=0
(VD) [{UEIL0)— I}yl = Me”’([) | K(S(s)) llyxdslylly for any yeY.

(VII) U(&[t, s)x(&) is strongly measurable for all strongly measurable X-valued
functions x(*).

The propositions (I)—~(VI) are the results of Kato, thus we only give a
Proof of (VII). First we note that for any yeY,

Ed,e —K(C)(!—S)e—K(n)sy - e—K(i)(t—s){K(é) _ K(n)}e—K(n)sy’
S

so that by integration
{e—K(é)t _ e—K(rI)t}y - _ j e K@ (=s) {K(é) _ K(ﬂ)}e_K(")sde,
0

and using the bound (II) for the path ¢(¢) =,
le™ KO — e K|y < tMeP | K() — K1) llyx,

so we obtain the bound

n n
{ n e—K(éj)tJ — I—[ e'K('lj)lj}y"
Jj=1 j

j=1

n k-

1 n
~K(E)t) { o~ K&tk = K(motk ~K(nj)tj
e K&t —e }OI] e Ky
1 =K+

K=1j=

< 3 Met, £ o Me™ | K(E) — Kon el Yy,

where we have used (II) again. Thus by assumption (iv),

n
[] e kemy
i=1

is jointly continuousin £, ¢,,...,¢,, and so is Borel measurable. But since U(¢|¢, 0)y
is by (V) a norm limit of such expressions, it is also Borel measurable. Now any
strongly measurable X-valued function x(-) on E is by definition and (ii) a norm limit
of Y-valued simple functions y(-) for which U(¢|t, 0)y(¢) is Borel measurable, so that
since the U(£|t,0) all are contractions, U(E|t, 0)x(£) is Borel as norm limit of Borel
functions. Finally since we assumed X to be separable, strong measurability follows.
Note that as a by-product
T e KCx(Z,)
=1

J
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is strongly measurable in (¢, &,,...,£,)eE" for any strongly measurable X-valued
function x(*) on E. O

Remarks. (1) Separability of X was only assumed to simplify measurability
questions. In the general case Petti’s theorem should do the job.

(2) Condition (iii) is not so restrictive as we may think, for if K(-) is stable in the
sense of Kato [10], i.e.

n
< Moeﬂojgl i

n
[] e K@
i=1

for some M,, f,, we may first absorb S, in K and then introduce a new but
equivalent norm on X:

I x}I"="sup
n>0

[ STONN t,20

&y, L E€E

b

J

n
oK@y
=1

thus obtaining condition (iii).
Before ending this section we want to prove a Banach space version of the
Markov property which will be useful in the next section:

Lemma 2.1. Assume the map =— B(X), {—B({),
is such that:

(i) b=esssup || B(¢)l < oo
(i) B(g)x“isustrongly F,-measurable for any xeX.

Then for any strongly P,-measurable, Bochner integrable x(-):

E[B(£)x(21¢0)] = E[BOEXIEM]IEWD]  pas..

Proof. Assume first x({)=f({)x with xeX and f a P, measurable essentially
bounded function, then

B(9)x() =f(©B()x

is strongly measurable, and since

ELIBExOI1EOI =111l esssup IBOI x|l < oo,

is also Bochner integrable. Then for any le X* a well known property of Bochner
integrals and the ordinary Markov property give
CLEDBEXS(IE)]) = E[KLB(E)x > f(£)IS(H)]
= E[<LB(E)x»ELf(DIEM11ED)]
= CLE[BQEXEIENIENT ).
Thus the desired identity holds in that case. But by definition of Bochner
integrability (see for example [6]) there is a sequence x,(-) of finite linear
combinations of such functions such that
lim x,(§) = x(¢) P-a.s. and lim E[||x(¢)— x,(£)]|]1=0. (2.2)

n— o n— o
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Then the simple estimates
IELB(9x(9)1 (0] — E[B(Ox(DIEOI < bELIIx(E) — x,(&) I11£(0)]
IELBQELx(DISO 10— E[BELx(DIENTIEOTI S BELIIX(E) — x I E(0)],
combined with the triangle inequality give
ELIE[B()x(9)1¢(0)] — E[BEX(OISO IS T1T = 2bEL [ x(§) — x4 1],

which using (2.2) give the desired result as we let n— co. |

3. The Mean Evolution

In this section we show that the mean solution to Eq. (1.5) is given by a contraction
semigroup on the Banach space

X = [2(E, E, dy; X),

which is defined as the set of all X-valued strongly measurable functions on E being
norm square integrable,

Ixlx=§Ix(&)1*du(&) < oo.

The space Y is defined in the obvious analogous way. From assumption (ii) it follows
that Y is densely and continuously embedded in X. In the following we will drop the
subscript X on the norm since no confusion can arise.

On X we define the operator family

(Q'x)(&) = ELU(S]t, 0)x((0)1£(2) = £1.
This makes sense by (VII) and the bound:
1Q% |12 = [ Il ELU(&]t, 0)x((0))| &(t) = | *dpa(m)
< J ELIU(E]1, 01x(Z(0)) 121 £(0) = ldutn)
S E[) €012 =l x>
Thus Q' is a contraction on X. In fact we now prove the
Lemma 3.1. Q' is a strongly continuous contraction semigroup on X.
Proof. We first show the semigroup property:
(Q""*x)(&) = ELU(&]t + 5,00x(&(0))I&(t + 5) = £]
= E[E[U(|t + 5, )U(E |1, 0)x(£(0)] £(e), &(t + 5) = ETI (e +5)=C].
Now by (V), (VII), U(£]t,00x(¢(0)) is strongly P-measurable and for any
xeX, U(&|t + s, t)x is strongly F,-measurable, so application of Lemma 2.1 gives:
(Q"**x)(&) = E[E[U(It + s, ) ELU(]£,0)x(£(0) | &(1) 11 £(0), &t +5) = ED &t +5) =]
= E[Ut +5,0{Q'x} (ENIEE + ) =]
By homogeneity and the fact that
Ult +s,0)=U(t,£]s,0),
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we obtain
(Q'*x)(&) = E[U(£]s,0){Q"x}(&(0))[&(s) = &1 = (@°Q"X)(&).

Now we prove strong continuity. Since Q' is a contraction, it suffices to prove it on a
total subset of X. We choose

x(&)=f(&)y with fehand yeY,
then

Q' —Dx |1 = [ || ELU(Z |, 0)yf (£(0) — uf (€)1 &(1) = ET 1 2d (&)
< 2 f(IIEL{U(£]L, 0) — I}y (010 = 11
+ 1y lIPH{e™ = I} f(O)P)du(C)
S 2AELI{UEIL0) = Iy 2L FEODIPT+ Iy {e™* = T3 f11%)
< M sup IO I Iy IFI LI+ 1212 e 4 =1} £ 112),

where we have used the bound (VI). Since the last expression clearly converges to
zero as t )0, the proof is complete. O

To get a precise description of the generator of Q' we will need two further
operators on X which we now define. By the remark in the proof of Lemma 2.1, the
operator

x(&)—eM9'x(E)

makes sense on X. That it is a contraction semigroup is clear. Strong continuity is an
easy consequence of the bounds used in the proof of Lemma 2.1 and the dominated
convergence theorem. We denote by K the generator of this semigroup:

(e X x)(&) = e KOx(¢)  p-ass..

Using the same technique, we can easily show Y < D(K) and
(Ky)(S) = K(y() for yeY.

Further since Y is invariant under the semigroup, it is a core of K.
The second operator we will need can be defined by

x(¢)— E[x(£(0)[£(0) = £].

By the proof of Lemma 3.1 (with K(&) =0), this is also a strongly continuous
contraction semigroup on X, the generator of which we call A. The dense set
D(A)® X (i.e. the set of finite linear combinations of terms of the form f(&)x, fe D(A)
and xeX) is invariant and thus a core of A. Clearly: (Axf)(&)=x(Af)({) n-a.e.

Remarks. (3) Let P'(¢|dn) = P[&(0)edn|é(t)=&] be the transition kernel of the
process. Then

(e~ Ax)(&) = [ x(n)P*(¢|dn).

(4) D(A)® Y is dense in X and contained in D(A)nD(K), so B,=A+K is a
densely defined accretive operator on X.
We are now ready to characterise the generator of Q.
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Theorem 3.2. Let Bo=A +K on DA)nDK), and Q'=e 8 then B,<B. In
particular if Ran (B, + 4) is dense in X for some />0, then B, = B.

Proof: We fix T > 0 and define &,(t) for 0 < ¢t < T as in (V) (with S = 0). Pick xe X
and set

Yl = U t, 0)x(£(0)),
(&) = U(£],0)x(£(0)).
By (V), lim y,({) = y(&) P-as., and since || y(¢)]| and |y,(¢) ]| all are bounded by

n— o

[ x(£) [, we have by the dominated convergence theorem:
lim EL || () — v 1?1 =0.

But then, setting

(@x)(&) = ELy§I1<(6) = &1,
1{Q" — Qi}x|I> = [ | EDNE) — yulOIE(e) = E111Pdu(E)
< FELIE) — vl 171E(0) = E1du(€) = ELI (&) — y &) II7].
So we have shown
s-lim Q! = Q.

We now seek an explicit formula for Q}:

(Q;x)(é) =E [nl:f e~ K(&(jt/n))t/n X(é(O))
j=o

€)= «:]

= “ o™ KON )PINE|E, - Y&, |dE,5) -+ P&, |dEo)
= [ PEIdE, - Je™ KEnmntin. PUR(E | dE)e ™ KM (E )

= (e —Atlng—Kin o -Atjn - K""x)(ﬁ),
Le.
Ql — (e—Ar/ne~ Kl/n)n
n .

The result then follows by standard arguments on the Trotter product formula (see
for example Davies [7]). O
Thus defining P: X— X by Px = j x(&) du(&), we formulate our result as

E[x(t)] = Pe Bx,
for the solution x(t) to (1.5).

4. An Application to Quantum Mechanics

We now consider the quantum mechanical system with time dependent Hamilton
operator

H(E(1) = — A + V(). x), (4.1)
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A being the ordinary Laplacian on H= [*(R"), and V a measurable function on
E x R". Assuming for some a < 1 and a.a. {€E,

D(V(&,)) = D(4) } A)
VoeD(A): |V )l =allAgll+bliel ’

formula (4.1) defines, via the Kato—Rellich theorem ([8]), a family of self-adjoint
operators with common domain D(H(&)) = D(A). Further assuming

the function V(&,-)(1 —A)™ ! to the B)
bounded operators on H to be norm continuous ’

we fulfill condition (iv) with Y = D(4). Finally choosing S =1 — A and requiring

v (V) OV(EX)
; 1[ a2 o, }(1 N7 o,

to be bounded and strongly continuous

we also assure condition (v). Thus the unitary propagator U({|t,s) of the system
satisfies (I)~(VII). Let us denote by #(¢|t,s) the induced propagator of density
matrices, and by # *(|t, ), its dual which propagates bounded observables,

AT (&N, 5)C = U*(E|t,s)CU(E]L, ).

We first prove an almost sure result on the propagation of compact observables:
Theorem 4.1. Let C be the space of compact operators on H, then the ergodic mean
C(¢) =lim- VZZ (&ls,0)Cds

t— oo
exists P-a.s. in the uniform topology and is a continuous linear map from C to
LNE,dP;C).

Proof. Using the density of finite rank operators in C, it is not hard to see that the
restriction of % *(¢|t, 5) to compact operators is strongly continuous in s and ¢, and
strongly measurable in ¢, so the ergodic mean

1 t
;j(; U*(&)s,0)Cds 4.2)

exists as a strong Riemann integral and is strongly measurable. Now set t =n +¢
with 0 < e < 1. Then (4.2) can be written as

n+e

no In-1ktl
+ wu*(&ls,0)Cds + —— (s, S
(n+e)~' [ u*(]s,0) s+n+£nk;) { U+ (E|s,0)Cds

n

which as n— oo is the same as

ii FEI,0). (L, k— 1y (E]k + s, k)Cs.

Using the time translation by one t = 1, this becomes
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%"f W EIL,0)... U (¢, 0)[ % ()5, 0)Cs. 4.3)
k=0 0

If we assume now C to be Hilbert—Schmidt we are exactly in the situation of the
random ergodic theorem of [5] which assures the P-a.s. existence of the uniform
limit of (4.3) as n — oo (we must first restrict C, because this theorem only works on
reflexive Banach spaces). But then using the density of Hilbert—-Schmidt operators in
C, it is easy to show that the limit exists for any compact operator. The asserted
linearity and continuity is also an easy matter. O

To get more information about the ergodic mean C(¢) we now proceed to apply
the result of Sect. 3 to %(£[t,0). Using the well known isomorphism between
Hilbert—Schmidt operators and H® H, we may identify density matrices (which are
trace class and hence Hilbert—Schmidt) with elements of H® H. Doing so, the
evolution equation for %(£|t,0) becomes

d
 XEIL0) =~ i{HE0) @1 —1Q H(EW0) }«(£]1,0).

Thus setting K(¢&) = i{H)® I — I ® H(&)} and formally B=K + A, we have

E[%(E1t,0)p1&(5) = &1 = (e~ ™p)(&).

Let C be some positive Hilbert—Schmidt operator and denote by {,) the inner
product of I*(E,du; H® H). Then

(C,e"™p) = [tr(Cle”p)(&)du(&)= E[tr(C(]1,0)p)]
= tr(E[% " (¢]1,0)C]p).

Taking the ergodic mean of the last identity, we obtain

%j(C,e‘BS/DdS=tr<E[%j%+(§|s,0)Cds]p>. 4.4
0 0

If we now make the crucial assumption,
(3)): zero is not an eigenvalue of B,

(see the appendix for a simple criterion), we obtain as t — oo in (4.4), using the mean
ergodic theorem for contraction semigroups,

0= tr(ELC($)1p) = E[tr(C(&)p)].

Since p is arbitrary and C positive we easily see that C(¢) =0 P-a.s., and since any
Hilbert-Schmidt operator is a finite linear combination of positive operators of the
same class, the result extends to arbitrary Hilbert—Schmidt’s and by continuity to all
compact operators. Furthermore,

lt t
;g ICUEls, 0)f ||2d5=%£(f, U(Els,0)*C*CU(£]s, 0)f)ds

<Isi?

%j U(&ls, 0)*C*CU(¢)s, 0)ds




Particle in a Markovian Potential 249

%[ U(&|s, 0)*C*CU(E|s, 0)ds
0

Upon setting F(|t) =

, we have proved the
Theorem 4.2 Under assumptions (A), (B), (C) and (Z)

lim =0 P-as.

t—> o

%j U(&Ls, 0*CU(E s, 0)ds
0

for any compact operator C on H. In particular there is a function F(E|t) with

lim F(¢|t)=0 P-as.
t— o0

and
1!
;gIICU(ﬁlS,O)fllzdséFc(élf)llfllz-

In the case of time independent potential, this RAGE theorem holds on the
continuous spectral subspace of the Hamiltonian (see e.g. [9]), so we would expect
our result to imply absence of bound states in some sense. However the lack of
energy conservation introduces new complications, for the energy can now grow
without bounds as t— co. As already remarked by Enss and Veseli¢ [11], time
boundedness of energy is a very difficult question which, to our knowledge, has only
been answered in explicitly solvable cases (see [11] for further comments and
examples). No attempt will be made here to solve this problem.

A geometric characterisation of bound states was first proposed by Ruelle [12]
on the basis of ergodic theory for unitary groups (see also [13] for further
developments). It reads

Hy($)=H, = {fGHl;im sup || F(Ix] > R)U(]t,0)f || = 0}.

O >0

Further we may define a subspace of states having time bounded energy in a
completely analogous way:

H,(¢) = Hy. = { feH| lim sup | F(H, > E)U([1,0)f || = 0}.

E-o 120
These two subspaces are closed, as is
H,=H,nH,,
which can also be characterised as the set of states with precompact trajectories
H, = {feH|{U(|t,0)f|t =2 0} is compact in H}
(see [11] for an easy proof). We can now state the

Corollary 4.3. Under the assumptions of Theorem 4.2, H, = {0}, i.e. they are no bound
states of bounded energy.
In particular

lim = [ F(1x] < RUGI0)f [2di =0 ¥feHyu(@)
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Proof. Let feH, nH,,. Then
2 e 2
I/ —?g 1U(EI,0)f (| *dt

1T
=?£{HF(|XI>R)U(§It,0)f||2+2llF(IXI <R)F(Ho>E)U({|t,0)f |2
+ 21 F(Ix| <R)F(Ho < E)U(E]t,0)f | *}dt

<sup || F(Ix|>R)U(E|4,0)f |* + 2sup || F(Ho > E)U(£]t, 0) f ||

t20 t20

1 T
+ Zﬂ IF(1x] < R)F(Hy < E)U(|t,0)f || d.
First allowing T — oo and using Theorem 4.4:

I£1? <sup [ F(Ix| > RYU(IL, 0)f II* + 2sup | F(H, > E)U(E|1,0)f |12,

t=0 t=20

since F(|x| < R)F(H, < E) is compact. Letting then R, E — co, we obtain f = 0. The
last statement of the corollary is proven in the same way.

Remark (5). We worked in the continuum R, but clearly all our results also hold on
the lattice Z* with a tight-binding Hamiltonian H(t) = — 4 + V(&(t), x). Then the
energy is always bounded, so there are no bound states in this case,

H, = {0}.
Finally let us make the further assumption:

[V(E,x)| S C(1+|x])~@®
(D){for some C,e=0.

Then by Cook’s method (see [9]) the wave operator

Q(¢) = s-lim U(¢|t, 0)* ' 4

t=+ o

exists. The vectors in the range of £2(£) are called scattering states, H; = Ran Q(¢),
because they have an asymptotically free motion:

peH;= lim || U(¢|t,0)p —e || =0 for some yeH.

t=+ o0
It then clearly follows that H, = H,.. We have the following
Corollary 44. If v= 5, then H; = H,.
Proof. Jafaev proved (see [17]):

H((¢) = { feH|VR > 03{t,},t,— o0, | F(|x| < R)U({|t,,0)f | =0 as n— oo},
but by Corollary 4.3 any feH,, has the desired property. |

Remarks. (6) In some cases it is possible to show the wave operator £2 to be unitary.
Then H = H,; = H,,. This occurs for example:



Particle in a Markovian Potential 251

(1) for short range repulsive potential (see [18]),
(i) in the weak coupling case (see [19]).

(7) More elaborated consequences of our formalism will be published in a
forthcoming paper.

Appendix: The Condition (X)
We begin with a simple

Lemma. Assume .o to be m-sectorial (see [14]) and ue D(9) with Bu =0. Then
ueD(A)ND(A") and fu=Hu=0.

Proof. Since 4 is accretive the quadratic form

q(f)=Re(f,28f) onD(g) =D(%B)

is closable with closure §. Restricting this form to D(4) ® H*(R?") which is a core of
</, we obtain the form

qo(f) =Re(f,( + A) f) = Re(f, Lf),
since A is anti self-adjoint. But ./ is m-sectorial, so it has the representation
oA =6(1+i9)€¢ with €=€*=20 and |D| <1, D(C)=Q(4)>D(F).
Thus

qoN=16f1? qgocqacq.
Clearly ¢, is also closable with closure
qo(/)=II€f 11>, D(o)=D(€)=Q(«4) and G,=q.

But since € is self-adjoint the form g, has no proper closed extension, i.e.

qd=4do-
So

Bu=0=qu)=0=34y(u)=0=>ueD(¥) and bu=0
=ueD(o/) and Lu=0.
Now clearly (B — ),y p) = K\ piar)nnion)» 50 letting ve D(f) N D(A'):
(A v, u) = (Bv,u) — (v, u) = (v, B*u) — (v, o *u) =0,
so A *u=—Au=0. Here we have used a well known fact about m-accretive

operators, namely: If G is m-accretive, ueD(G) and Gu =0, then ueD(G*) and
G*u =0. The proof of the lemma is now complete. O

Now by unicity of the invariant measure y, the equation .o/u =0 has only
solutions of the type

u=1®C with CeH®H.
So we need only to consider the equation

HC=0. (A.1)
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Looking at C as an operator on J, this is equivalent to
[e @ C1=0 foranyt=0 and écE.

Then the spectral projections of the self-adjoint compact operator C*C all commute
with the unitaries e”#®", This means that for (u-a.a.) &y€E, any such projection
(associated with a positive eigenvalue) can be written as

P: zlfrl®fﬂ9

where the f, are normalised eigenfunctions of H(¢,). The invariance condition (A.1)
now implies
[V(E x) = V(E y)1P(x, y) = Q(x, y)
with
0(x,y)={[Ho®I —1®H,]P}(x, ).

To exclude such a possibility we now formulate two conditions on V:

(LB) Local boundedness: for fixed é€E, there is a closed set I” = R” of measure
zero so that R*\I" is connected and so that V(&,.) is bounded on any
compact subset of R\ T

(LI) Local irreducibility; there are two disjoint non-empty open sets €,
(¢, = RY such that for almost all xe@,, ye0,:

V(,x)= V(.
is not u-a.s. constant.
These two conditions will be very easy to verify in almost all applications.
Clearly (LI) implies:
P(x,y)=0 on0, x 0,.

So for any ges# supported in 0,:

N
(Pg)(x Z (fnr9) =0 on0,.

Grouping in this equation the eigenfunctions according to their eigenvalues we
obtain

M
Z ](,,(X) =0 on @1
n=1
H(CO)](":E,,_?,, E1<E2<<EM
By locality of the Schrodinger operator H(&,) this further implies

{H(E)*Pg) (x) = ﬁf EXT(x)=0on O, fork=0,1,....M —1.
n=1

But since

1 E, E% ...... EM-1
1 E, E? ... EM-1
det| . 2 77 | =TT E—E)#0,

k<j
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it follows f,(x)=0on O, forn=1,...,M.
Now by (LB), the unique continuation theorem for Schrodinger operators (see
[15]) yields

f,=0, ie. Pg=0.
Then (g, Pg) = Z I(fn9)1* =0, ie.:

(fn,9)=0 for any ges# supported on O,
or
fa=0o0n 0,,

so that a new application of the unique continuation theorem gives f, =0, which
contradicts the hypothesis | f, || = 1.
We have thus proven the

Lemma. Under the assumptions (A), (B), (C) and:
(i) A is m-sectorial,
(i) (LB),
(iii) (LI),
the condition (X) is satisfied.
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