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Abstract. We construct a continuum limit for the effective low energy
Lagrangians of the Gross-Neveu model in two euclidean dimensions by
showing that they are related to each other through convergent perturbation
expansions. This provides a rigorous control of the ultraviolet problem in a
renormalizable quantum field theory.

1. Introduction

It has been observed, back in the fifties, that in quantum field theories with
fermions, the perturbation expansion is better behaved than in purely bosonic
ones. Indeed, it was noted [1] that for QED with finite ultraviolet (UV) and
infrared (IR) cutoffs the expansion in fact converges, in sharp contrast with bosonic
theories where the perturbation series is only asymptotic. However, the situation is
much less clear in renormalizable theories of fermions once the UV cutoff has been
removed and the renormalization subtractions performed. The nice property of
the cutoff theory seems to be lost as is indicated by the conjectured presence of
renormalon singularities in the Borel transform of the renormalized perturbation
series of any asymptotically free model, regardless of statistics [2]. In the present
paper, we show that important traces of the convergence for cutoff fermions
remain when the cutoff is removed. In fact, we construct a local renormalizable
asymptotically free theory of fermions by a successive application of convergent
perturbation expansions, one per each limited range of momentum fluctuations.

We consider the Gross-Neveu models [3,4] in two (euclidean) dimensions: the
perturbatively renormalizable, asymptotically free field theories of Dirac fermions
ψlfa), α = 0,1, i= 1, . . .,N, with N>1 internal [U(ΛΓ) "flavor'"] symmetry indices,
and the action given by

S=ϊdx[\pi$ψ-g(ψψ)2'l, (1)
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or variations thereof. It is easy to show that such theories, say on a lattice and in a
finite box, have a convergent expansion in powers of g. In order to understand this,
first consider a free massive charged bosonic theory on the lattice. The Green
function

' = Σ ΠG^-^O ,). (2)
πeSn i=l

is a sum of n\ terms (G is the propagator and Sn the permutation group of n
elements) and e.g. for xt = yt = x will increase like 0(n!) with n. This leads to the well
known 0(n\) behavior of the perturbative expansion of the Green functions in the
g(φ*φ)2 model, for the nth order in g. For lattice fermions, the situation is drastically
different. Now (ignore indices)

= Σ (-1)' Π G(xί-yπ(ί}) = detG(xί-yj), (3)
i = l / πeSn ί=l

which is bounded, e.g. with the use of the Hadamard inequality, by 0(1)" if G has
mass or is confined to a finite volume. This observation leads to the convergence of
the perturbation expansion for our model with cutoffs. What happened? The point
is that in (3) the xc's and yf's must mostly be different: ψa(Xi)2 = ψi,(yi)2 = Q Thus
most of the graphs [even discarding ( — l)π] in (3) necessarily carry very small
factors due to the falloff of G (or in finite volume eventually, for n big enough,
vanish). Indeed. The divergence of the perturbation series for bosons is due to the
fact that arbitrary high powers of the field at the same point may occur. For
fermions, exclusion principle prevents that.

How does this observation survive the process of renormalization? Following
the Wilson renormalization group (RG) approach [5], we shall carry out the
functional integral with UV cutoff A as a sequence of fixed momentum-scale
integrals by slicing the interval [Q,Λ = LnΌμ] into intervals [L"~V>^nAO [μ is a
fixed scale, L= 0(1)], and integrating out successively fluctuations on these scales
(from n = n0 to n= I). Thus we produce a sequence of effective actions

cΛ . c Λ EFF . . cΛ EFF . c Λ EFF (Λ \
ύ -+ύL-iΛ-» ... -+&Lμ ~^^μ 9 W

3-4 EFF describing the theory with action SΛ at momenta ^ A (vaguely). The crucial
observation is that each such step is a finite (in dimensionless units) UV and IR
cutoff integration and may be performed perturbatively through a convergent
expansion. Now existence of the continuum limit means that SΛ may be chosen
appropriately as a function of A so that for A arbitrary but fixed,

which is a well defined action describing the continuum local field theory at
momenta \p\ rg A. In the present paper, we show that for the Gross-Neveu models,
the limit (5) exists as a convergent power series in ψ9 ψ both in finite and in infinite
volume:

Σίdx,... dxmdy, . . . dymS>%(x,
m = 0 i

(what we mean by convergence here is explained in Sect. 4).
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The main idea of our RG analysis is similar to Wilson's analysis [6] of a toy
fermionic model where boundedness of fermions was also heavily used. The
coefficients S™ in (6) are functions of the renormalized coupling g ̂  0 of the model
(which we take small) and may be expanded in powers of g. These renormalized
perturbation series should not converge. We hope to exhibit the presence of
renormalon singularities in their Borel transforms using our non-perturbative
analysis [7]. The instanton singularities present in bosonic theories are absent
here, reflecting again boundedness of fermions.

The rigorous RG analysis of the effective actions can be easily extended to the
Green functions. For models (1) with mass term added, one can obtain A = oo
infinite volume Green functions and control their short distance (scaling with
logarithmic corrections) and (massive) long distance behaviour. This will provide
first models of renormalizable asymptotically free theories satisfying all euclidean
and (after analytic continuation) Wightman axioms. For the massless models, it is
easy to construct A = oo finite volume Green functions. In the infinite volume, one
expects dynamic mass generation in this case, at least for large number JV of flavors
[4, 8]. The Green functions will be analyzed in a separate paper.

Finally, one should mention that a lot is known about the chirally invariant
version of the Gross-Neveu model discussed below: by the Bethe ansatz methods
its spectrum has been obtained [9] and its S-matrix has been found [10] (but not
the Green functions). The present paper provides quite a simple picture of what
renormalization is all about in such asymptotically free models. Certainly, it is a
simpler one than the standard perturbative approach and moreover rigorous and
non-perturbative. It also seems that the methods developed here may be carried on
to large JV, the number of flavors, uniformly in JV, allowing rigorous control of the
mass generation in the massless models and the construction of the non-
renormalizable three-dimensional theory for JV large but finite. Also by similar
methods, only with more sophisticated cluster expansions replacing the simple-
minded perturbative ones which diverge for bosons, one is able to control the
continuum limit of — λφ* euclidean theory [11].

When the paper was finished, we learned that J. Feldman, J. Magnen,
V. Rivasseau, and R. Seneor announced similar results [17].

2. The Models

We take the bare euclidean action with momentum cutoff A to be

SA = SOA + SIA, (7)

with the free part

SOA = ίdxφi$Aψ9 (8)

and the interaction for the simplest model

SIΛ = zA\ dxψi^ip + mΛ\ dxψψ

(9)
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Here ψ — (ψl

Λ), $ = dμγ
μ with anti-hermitian 2 x 2 Dirac matrices yμ satisfying

{/,/}=-2(^v, and

(10)

is the free momentum cutoff propagator. When mA — 0, the action SA has the
discrete chiral invariance

, ψ-*iψγ , (11)

where y5 = iy^y1, which forbids mass terms to appear in any of the effective actions.
We shall also consider the "chirally invariant" version of the model, where the
quartic interaction term in (9) is replaced by

— gΛ§ dx\j(ψψ)2 — (ψy5ψ)2^\ — g^ί dx(ψyμψ)2. (12)

If mΛ = 0, this model has the continuous chiral symmetry

(11) is a special case of (13) for θ= — 1.

In order to have finite functional integrals to start with, we shall make a
replacement

ψ(x) = (2π)~ 2 J dpelpxψ(p)-^> ^^~2elpx\p(p), (14)

where p E — Z2, p Φ 0 and \p\ < /A2 (and the same for φ). Thus we set the theory on
V

the finite periodic box of side / and throw out the zero momentum and the large
momentum modes, retaining only finite number of degrees of freedom [for { large,
the important cutoff is still A of (10)]. φ«(p) and ψ^ generate a finite dimensional
Grassmann algebra. Later, it will be convenient to use a generic notation for ψ and
ψ: we view the components ofψ and ψ as components of a single field denoted by
ψ. \p thus carries Lorentz, charge and flavor indices, collectively denoted by the
subscript in ψa and usually suppressed. We shall widely use a shorthand notation,
so e.g. tp(x, a) or ψ(x) or ψ(x)m will stand for ψaί(xι) . . . ψam(xm\ the latter if xf = x.
With the additional cutoff (14), the numerator and the denominator in the cutoff
Green functions as given by the Berezin integral

<φ(x)> = I Dψψ(x)e~SΛ(®/l Dψe-sΛ{® , (15)

are finite (Dψ = Π dψa(p)\ . As our later analysis will show, the denominator is

non-zero so that (15) is well defined.

3. Effective Actions

The analysis of the UV (Λ-^ao) (and infinite volume) limit of (15) is based on
lowering the cutoff through the process of integrating out high momentum fields.
We write

$Λ(x - y) = %λ(x - y) + ̂ (x - y), (16)
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where SΓ has the cutoff function (e~p2/Λ2-e~p2/λ2). Actually, with the full cutoff
(14), ̂  in (16) still has \p\ < fλ1. Our estimates will be uniform in ̂  and from now
on, we shall work in the infinite volume notation if no confusion arises. Equation
(16) allows us to split the fields φ and ψ into high and low frequency parts,

(17)

so that for any functional F on the (finite) Grassmann algebra,

f d^(v)F(φ) = f dμ^(ψ') J dμr(ζ)F(ψ' + ζ) , (18)

where we use the notation dμ#(ψ) for the "gaussian measure"

Dψe-(* *-ίvWDψe-® *-l'l». (19)

Now the effective action for momenta ^Λ, S^EFF(t/;), is defined by

SiEFFOTHί^^ (20)

(We shall see that the logarithm is well defined, note that exp[-S^EFF] is.) SjEFF

has cutoff A and residual dependence on Λ. It will be in general non-local with
couplings involving arbitrarily many φ's.

Let us state our main results. Consider the model (9) with mΛ = Q. For small
0^0 take the bare couplings as

(21)

where μ is a fixed scale and

with

- — ~n— 7r 9
P2

and β3 being a computable coefficient (/J2, jδ3, and j2 are first coefficients of the RG
β and 7 functions).

Theorem. The effective actions S%EFF on scales A^μ may be written as

Si EFF(t?) - ί dx(ψifaψ + zfcpijψ - d(w)2)

+ Σ ί rfxSimr(x) Π (δφ(xί)rv(xi)
mι"ri , (23)

where m = (mί)f=1, 0<m l <4, r = (rί)f=1, η — 0 or 1. On/y et?en m^^m; occur. For
m = 2, r = Σ r£ = 2 and /or m = 4, r ̂  1 . Ήze running coupling constant g\, the running
wave function renormalization \Λ-z\ and the kernels S^mr have continuum (Λ-*co)
and infinite volume limits

2 ) , (24)

T m

"~r
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where

| | fΓ2Pm rH = f Jv dx \H^mr(\\\eμ^(x}< < ^ ~ w<8,
ll^yl II — j M ^ . - . f l X j n l / l ^ VXJie = J£m/JI\3+ε(m-8) m>g V^J

wiί/i JS?(x) bemg the length of the shortest tree on the points of x and possibly other
points.

Remarks. 1. Component and derivative indices are suppressed and implicitly
summed over above. S jmr have all the (anti-)symmetries of the product of ψ's
in (23).

2. H™ are S™ written in dimensionless variables for easier comparison at
different values of A.

3. Equation (21) describes the behavior of the bare coupling constant in the
leading and subleading logarithms approximation obtained by solving the RG
equations with β function given to 0(g3). We could take ZA equal to zero, but (22)
has a more convenient form. Note how these exact expressions suffice for
renormalization.

4. To the order 0(gΛ\ SψF is equal to the bare action SA with cutoff Λ, the
difference being a sm^ll approximately local perturbation. The bare and re-
normalized trajectories almost coincide.

5. The S™ terms have positive dimension (are irrelevant under the RG). In
particular, the local part of the m = 2 term in (23) starts with J (φ$ψ)2 and that of the
m = 4 one with (ψ$ψ)2. Thus no negative dimension or dimensionless interactions
are generated.

6. For the chirally invariant model, we take gA and ZΛ as in (21) and (22), with

β2 = -- , y2 = -j ( N — — } , /?3 computable and g* = - — gΛ. Now the local
π π \ NJ N

quartic term in (23) becomes

- d ί rf*[(w)2 - (Ws?)2] - 9vλ ί dx(w"ip)2 , (26)

1
and when Λ-χχ>, gvΛ^dΐλ^ ~ Tf 9A + 0((gA)2). Again, we could also take
^ = 0 = <tf. N

7. In the case of the massive model, we take for m posit ive

mΛ = m.(gΛ/gT\ (27)

with v = — — — for model (9) and v = 1 -- -^ for model (12). It is then possible not

only to control the continuum limit of the effective actions but also to construct, for
0 < g < 00(m/μ), the infinite volume continuum Green functions again by applying
inductive convergent expansions. Note again that an exact formula for the
bare mass may be given.

4. The Renormalization Group Transformation

It is convenient to use dimensionless variables by introducing "Hamiltonians"

(28)
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The initial Hamiltonian is

HΛ(ψ) = $dx\ ψi

(ψ), (29)

and [see (20)]

(φ)Ξ(K^XvO = tf°(φ)

(30)

where in momentum space

p^Vμ2Λ2]). (31)

Below, we shall put μ = 1 for the sake of simplicity. In order to prove (23), we take
Λ = Ln°, Λ = L" and compute H\E¥Έ = Hn

n°
EFF mn0-n inductive steps using the

semigroup property of the RG transformation,

(32)

Thus we are led to study in general the transformation TL~ T (Γ = ΓL)

(33)

It is instructive to study the first application of T on HIΛ = HIn° (with mA = 0).
Recall that (Λ9 £<co) the functional integral in (33) is a well defined element of a
finite-dimensional Grassmann algebra. As we shall see later, the c-number part of
it is positive and hence the logarithm is also well defined. More interestingly, we
may express it as a finite perturbation series,

Π (ΨΨ)2(*. (34)
i k+t /r

Here φ(x) = L~1/2φ/(L~1x) + f(x) and < >? is the truncated expectation in the
measure dμr(ζ). Let us express (34) as a series in \pf [recall notation of (23)] :

ffίό°- ι(vx) = Σ ί dxH™(x) Π (dψWYWMΓ^ - (35)
rnr 1

Hmr(x) are given as sums of Feynman graphs with m external lines at q points xb ZΛ

and gΛ vertices of (29) and propagators Γ on the internal lines. As discussed in the
introduction, such expansions converge due to the exclusion principle and
exponential decay of Γ,

\Γ(x-y)\£C(a,L)e-°lχ-*, (36)

uniformly in cutoff ,̂ as is readily seen from its Fourier transform, see (31). The
estimates of truncated ζ expectations which provide a technical basis for the
convergence proof given in Sect. 6 and which exhibit a striking contrast between
the fermionic and the bosonic cases are discussed in the appendices.
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5. The β and 7 Functions

In this section explicit bounds for SψF are found assuming suitable convergence of
the perturbation series, which is established in Sect. 6. We start quite explicitly
with the lowest orders since these are crucial for the RG flow and illustrate
general analysis.

A. Extracting Local Couplings: 2nd Order. The term linear in HIn° is [suppress
superscript n0: consider the first step of iteration (34)]

z J dx\p'i$\p' — # J dx(ψ'ψ')2 + const, (37)

i.e. it reproduces HIn° [z and g are dimensionless and Γ(x) = 0 at x = 0]. For k = 0,
{ = 2, the graphs of Fig. 1 contribute, where the continuous lines indicate the flow
of the flavor indices and the arrow the flow of charge: <ζζ> Ξ—*-.

C7 ' ^ /vJ\ ' /v^\ ' /\^y\ ' /O\ ' Γ~|
Fig. 1

For example, the two-point function graphs give

-4L3g2^dx1dx2lNψ(xί)Γ(Lx1 -Lx2)ψ(x2)trΓ(Lxί -Lx2)
2

-ψ(xl)Γ(Lxl-Lx2)
3ιp(x2)']. (38)

For later book-keeping purposes, it is convenient to normal order the terms of
H£" _ i with m( = Σ ̂ i) ̂  8. For an arbitrary Hamiltonian H(ψ) and G = ̂ 1 of (10),

(39)

: H : has the convenient property that T acts on it as scaling in the linear order:

J dμr(ζ) : H(L~ 1/2ψ(L~ 1 ) + ζ): = : H(L~ 1/2ψ(L- 1 )) : . (40)

Performing the normal ordering of the contributions of the graphs of Fig. 1 and
using the identity G(x) = L~1G(L"1x) + Γ(x), we obtain:

I. The quadratic term

- Vί : Nψ(x1^LG(LXl-Lx2)tΐL
2G(Lx1-Lx2)

2-(L=

-V3(x1)[L3G(Lx1-Lx2)
3-(L=l)Mx2): , (41)

II. the quartic one

-2g2ί:Nψιp(x1)tτ(L2G(Lx1-Lx2)-(L=l))ψψ(x2)

+ l(ψ(xί)LG(Lx1 - Lx2)φ(x2))2 - (L= 1)]

-[(ψ(x1)LG(Lxί -Lx2)φ(x2))(ψ(x2)LG(Lx1 -Lx2)ψ(xί))-(L= 1)]

-2φV(χ1)φ(jc2)[L2G(Lx1 -Lx2)
2-(L= I)]ψ(x2) : , (42)

III. the sixth order one

-4ί72ί :φψ(x1)φ(x1)[LG(Lx1-Lx2)-(L=l)Mx2)w(x2): . (43)
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Next, we separate the dimensionless local parts of (41) and (42). We work
directly in the position space without going to the momentum representation. This
is somewhat unconventional but leads faster to the numerical results, exhibits
better their universality and will leave us with convenient expressions for the
remainders. First substitute into

J dxldx2 : φ(*ι)#2(xι -x2)v>(*2)
 : (44)

the decomposition

ψ(x2) = ψ(x1) + (x2 -x1)dψ(xi)
1

x1)), (45)
o

and notice that by the chiral symmetry the local ψψ term vanishes. Thus, after a
simple change of variables (s^ί"1), (44) becomes

ί dXi : tp(xι)(ί dx2H
2(xl -x2)(x2 -

00

— J ds(s—l)\dxldx2 :dψ(xί)(xί—x2)H2(sx1—sx2)(xl—x2)dψ(x2): .
(46)

But for (44) representing (41),

H2(x) = L3H2(Lx) - (L= 1) , (47)

so that

-
aλ

= -logLlim J dσ(x)\x\H2(x)x , (48)
R->ao \x\=R

where we have used the Gauss theorem. Now, at long distances,

1) (49)

(independently of the short distance regularization). Given (49), we easily compute
from (41) the value of (48), and hence the local contribution to (41) given by the first
term of (46) as

y2g
2 logL$dx : ψi$ψ : , (50)

where

)-1. (51)

y2 is the first (universal) coefficient of the RG γ function.
Similarly for the quartic term (42),
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by writing

i
W(*2> = Ψψ(*ι) + ί dt(x2 - Xι)3(w)(*ι + t(x2 ~ *ι)) , (53)

o

we get the expression

ίdx1 :ψ\p(x1)ίdxH4(x)\pψ(x1)
CO

- J dsίdxidx2ψψ(xi)H\x1-x2)(x2-x1)d(ipψ)(x2) : . (54)
1

But

H4(x) = L2H4(Lx)-(L = 1), (55)

so that

j dσ(x)\x\H\x) , (56)

and (42) and (49) give immediately for the first, local term of (54)

β2g
2logLSdx:(ψψ)2:, (57)

with

2)9 (58)

being the first (universal) coefficient of the RG β function. Note that for JV > 1 , β2 is
negative, demonstrating the perturbative asymptotic freedom of the Gross-Neveu
model.

B. Local Couplings: all Orders. Now simple generalizations of the procedures (46)
and (54) of separation of the local contributions may be applied to any (normal
ordered) Hmτ term of (35) quadratic or quartic in the fields. For example for m = 4,
mt= 1, r~0 term, we use

4 / 1 \

Π Ψ(xύ= Π V>(*ι)- ί dt(xi-x1)dψ(xi+t(xi-xi)) , (59)
i = l i \ 0 /

which allows us to rewrite j dxHmr(x) : Ylψ(xt) : as a local contribution

ίdxHau(x)ψ(xι)4

9 (60)

and a combination of terms

oo 4

-Xι)Srψ(xί) , (61)
1 « i > 0 1

where n1 =0, π2 j 3,4 = 0, l,and Σ nt>0. It is crucial for renormalizability to know
exactly the form of the local dimensionless terms. For the quadratic one, only \pi$\p
is compatible with euclidean and chiral symmetries (T preserves these!). For
quartic terms the situation is more subtle. Apart from (ψψ)2, also (ψyμψ)2

and (φy^\p)2 are allowed by the symmetries (these are all, see [3]).
We now show perturbatively that these terms are absent to all orders and for

all Λ. Since in finite volume the kernels of HψF of(30) are meromorphic in ZΛ and
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QA (as follows from the bounds of the appendices), this settles the question once and
for all: such terms will not emerge in the iteration. The absence of the unwanted
quartic terms follows from an analogue of Furry's theorem. Consider graphs
with four external lines. First we shall take graphs with (ψψ)2 vertices only.
Following the flow of flavor and charge from the external lines these may be
paired as in Fig. 2:

giving

y), (62)
where Kt(x - y) andL/x - y) are either Γ(Lx - Ly) or G(x - y) (the latter due to the
normal ordering). #(x, y) is a kernel. Note that if C is a spinorial matrix such that

-i

then, since — Kf(x) = K{( — x),

(63)

-Xi+ι)C~Ύ, (64)

and analogically for the L's.
But lCγ5C-ψ = -^andCCy CΓ1]^ -/. Thus only the expressions (ψip)2

will survive at zero momentum, the other contributions will cancel each other
between the graphs of Fig. 2. The above argument can be easily extended to
include the ψi$ψ vertices. It also survives in the presence of a mass term in the
original Hamiltonian which breaks the chiral invariance.

C. Operators of Higher Dimension. We have so far obtained, that after the normal
ordering of terms with m^8 and extraction of the local contributions from the
m = 2 and m = 4 ones, (35) can be written as (drop the superscript n0)

+ Σ
m,r,m^8

m > 8

Z-ι(χ) Π(3vW)rί(vω)Wί~rί

i

For m = 2, rt = 2 and for m = 4, r f ^l .
The wave function renormalization flows as

(65)

(66)

from (37) and (50). Due to the convergence of the expansion, (66) will become a
rigorous bound.
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The flow of the coupling from (37) and (57) is

We need the &(g3) terms exactly as well, to control the global flow. They come from
fc = 0, f=3 terms and k= 1, {=2 terms of (34). Denote them b0g

3 and c0zg2:

For the terms of higher dimension in (65) we also separate the leading perturbative
parts explicitly:

Hmr with m = (2,2), r = (0,1) (and permutations thereof). We write

rrmr /v γ \ n2 r /v v \ ι oτnr /γ v \ (£Q\
MO ~ 1V 1' 2/ — c/nn~ 1 1V 1' 2) ' nr\— 1 v 1' 2/ ' \^ /

where the Li term, modulo the change g2-*glQ-ι introducing an @(g3) error
absorbed into H, arises from the second order perturbative contribution (42) as a
kernel of the non-local term in (54).

Hmr wiίfc m=(l, 3), r = (l,0). We take out the contribution of the k = l= 1 term of
(34) given by the graph — —'r~, modulo the change zg h-> z n o_ 1^M o_ 1 :

(x1?x2). (70)

_ 1(x1,x2), (71)

where the Mί term comes from (43).
All our kernels are given in terms of connected graphs with lines Γ

decaying exponentially. This and the convergence of this graphical expansion
will allow us to prove in the next section bounds which we shall state now. We
denote [see (25)]

(72)

and for m = 4 or 6,

where H^_ί=H^^l except the cases listed above. In this notation,

for m=4,6,

(73)

(74)

(75)

(76)

Perturbatively, the ^-dependence in (74)-(76) is obvious. In fact, one has (76) with
s=^ the worst contributions coming from the graphs of Fig. 3. It is enough, and
convenient, to take β smaller, say ̂ . A is a suitably chosen constant, as is C1 in (72)
and Ct below.

Fig. 3
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D. Iterating the RG. Now consider iterating the above, i.e. applying T to ί/ί0-1 as
given by (65). The crucial point is that again we may proceed perturbatively.
Indeed, generally

00 / "j

5')=- Σ ~
k = l /C!

(77)

from which a representation like (65) with nQ-+n emerges if H^ has one. Here we
shall only state the estimates and see the general structure of the terms which arises
in the iteration. The proof establishing the convergence of expansions (77) will be
discussed in the next section.

The Wave Function Renormalization. Picking the lowest perturbative contri-
butions as in (66) and (67), we get for zn and gn

\zn^-zn~y2g
2logL\^C2g

3

nί (78)

\gn _! — gn + β2gl logL| ̂  C3g*. (79)

Expressions (78) and (79) allow us to trace (iteratively) the behavior of the wave
function renormalization. Namely, we get

72

Ύ2

! (80)

Indeed,

Zn - 1 9n- -^β2g
2

nlogL

(81)

But gn increases: g2

n = g2

n_, - 2\β2\gl logL+ Θ(g^\ thus (81) yields (80) with n -1, if
C4 is large enough (C2 and C3 don't depend on C4).

H£τ with m = 2. Since it enters into an irrelevant term, the bound (74) for it
easily iterates

\\Hl\\^A2g2

n. (82)

//Γ with m = (2,3), r = (0,1). We have

#Γ(*ι, x2)=9nLno-n(Xl, x2) + β?(Xl, x2), (83)

where

n0-n- 1

LM o_n(x1 ?x2)- Σ - (84)

The Ln o_« term collects the perturbative (9(gl) contributions (at each step the old
term picks powers of L, new Lί term is created and the coupling constant is
updated by delegating the error to H).

Similarly, for m = (l, 3), r = (l,0),

(85)
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with

^o-n(x)="°Σ"1^%(^x), (86)
( = 0

and /or m = (3, 3), r = (0,0)

HΓ(x) = ̂ 2Mno_n(x) + J?r(x)> (87)

with

Mno-n="°Σ 'L'MΛL'X). (88)
0

Since ULJ, HKJ, HMJ are finite and

IIL^^-L^J^-ILJ, (89)

it follows that

Lno-n-*L^ (90)

IIL.-L^J^I-L-^^-ILJ, (91)
and the same for K and M. For the remainders, (75) iterates:

\\H^\\^Amg^ m = 4,6. (92)

Finally, as in (76)

\\H™\\^Amgϊ+ε(m-8\ m^8. (93)

We end this section by showing how the ^-function (flow of gn) stabilizes to third
order and why this suffices for the global control of the flow. The (9(g%) terms of the
recursion of gn are besides the contributions — bQg^ and — cQzng

2 from the zn and gn

vertices [compare (68)], also the term bno-ngn linear in L Π o _ M and Mno_n and the
term Cno_nzng

2 linear in Kno_n and Mno_n [the fact that the K, L, M (9(g2

n) non-
local terms of Hl

n contribute at the third order to gn _ 1 was the reason for the special
treatment they obtained; notice that the non-local quadratic term, also Θ(gl\ does
not!]. We shall get

(94)

Note that due to (89) and its analogues for K and M,

l^o-n + i-^o-«U^0-M + 1-cn o_n |^CL»-»o. (95)

Expressions (80) and (95) imply that the coefficient at gl in the gn recursion

Bn^n=-b0-bno_n+^(c0 + cn^n), (96)
P2

stabilizes exponentially fast to a value B^.. B^. is related to the β3 coefficient of the
RG β-function appearing in (21) through

(97)
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(the right-hand side is L-independent as /?3 is universal, but we shall not need it).
Let us show iteratively that (94) is solved by

\gn-g»\^C(gn)2, (98)

where gn is given by (21) (with Λ = Ln). Indeed, we show equivalently that

Ift^-feT^C'. (99)

Namely, from (21), (94), and (96),

-β2\ogL-β3gJogL+(9((gnϊ2\\oggn\)\

(100)

The right-hand side is summable in rc, hence (99) is true.
Now we turn to the derivation of the bounds formulated above.

6. Convergence of the Iterative Perturbation Expansion

We have to iterate the data for Hn, the effective Hamiltonian on scale L". Let us
start by rewriting the representation (65) (with n0 — 1 replaced by n) in a more
compact notation. We shall include ψ(x) and dψ(x) into the same multiplet
denoted by (ΨA(x)). It has 12ΛΓ components indicated by subscript A. Equation
(65) becomes

H'n(Ψ)= Σ ΣfdxίC(x,A):<P(x,A):
m^8 A

+ Σ Σί^xH™(x,A)f(x,A), (101)
m > 8 A

with ίC(x, A) totally anti-symmetric under (xk, Ak) <-> (χp Aj) and including
^-functions to produce the powers of fields in the following way:

(102)
1=1 j^m',-1+1 " " /

In (102), H™ are local and non-local terms of (65) with m\ = mί + ... + mi9 #Γ(X> A)
is nonzero only if Δ = (Al9 ...,Am) contains the derivative indices in appropriate
places specified by r. j/ is the antisymmetrizer in {(xi9 At)}:

H™'s are no more functions but measures. The norm

\\Hn\\ = Σ$dx2 ... dxm\H%(\, A)|β^(x), (104)

still makes sense and the patient reader will check that with our index conventions,

,r

[cf. (25)], so that (104) is consistent with (72).
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Let us derive the recursion between Hn and Hn_l. We compute perturbatively

= -τΣ Σ HΠ .wv l i π

ml {/α} /=o * ! « = ι 0!P(xα, AJ α =*+ι

where {IΆ}\ is a partition of {1,..., w}, mΛ = \Ia\, (-1)* is a sign which we do not
δm<x δ

have to keep track of, s t r/, . , = Π *.„ , λ ,

and

ΨL(x) = (L- l/2ψ(x/L), L- 3/2(dψ)(x/L)) , Z = (£

Let us, for the time being undo the Wick ordering of m^8 terms. Since the
covariance G is bounded, we still have (using the same symbols and for A big
enough)

n, \\H4

n\\ ^A4gn, \\H6

n\\ ^A6g2

n, (107)

if the bounds described in the previous section hold for Hn. The kernels H™, m^ 8,
do not change and are bounded by (93). Now

cmα rrl
° nn

j
[ _Γfm α -r(A α ) ^ / Sa '
l^^o — ̂  2^ \

C ' (sα-mα)!

• Σ ί rfyα#
 s/(Lxα, yα? Aα, Bα)Z(yα, Bα), (108)

Bα

where r(Aα) is the number of indices in Aα, referring to dψ components of Ψ. Thus

"-1 ' ml ιx,t,Soc t\ α =ι (sα-mα)!

• Σ ί dy Π iWX Lya, Aα, Bα) ( Π Z(Lyα, Bα))Γ, (109)
B α \ α / r

where s = Σ^ ™« = ® for fc<α^k + ί, B = (Bβ)
k

1

+l, and y = (yα)
k!+ί

To bound (109), let us separate first the leading k=l, 1 = 0, s = m term:

Hί1_1(x,A)-L-m~f'(A)H^(Lx,A)+H;m !(x,A). (110)

Obviously [see (25)]
m

L/2 J uX|ιin (.ox, Aj|β ^ jL | |/I M | | , (111)

i.e. for m > 4 or m = 4, r(A) ̂ 1 or m = 2, r(A) = 2, the leading term contracts. This
contraction of the irrelevant terms, together with the convergence of (109) is,
besides the behavior of the running coupling constant and the running wave
function renormalization analysed in Sect. 5, the main mechanism behind the
iteration of our bounds.

For the convergence of (109), the crucial role is played by the following estimate
for the fluctuation Green function:

L
\ΓI — JSfίVα)

ΠZ(Lyα,Bα)) ^YlNΛexpl-L&di , ... yk+/)]ΠCSα~mαe2 . (112)
λ J
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The Nj are as follows. Cover R2 by unit cubes. Let XΛ be the union of cubes
containing the points Lyα. Then Nj are the multiplicities of occurrence of different
sets in the collection. Roughly, Nj measure number of similar Z(Lyα) as far as their
spatial location is concerned. L(y x ...;yk+l)is the length of the shortest graph on
points of yα and possibly other points, connected once yα are shrunk to points.
Inequality (112) is the typical behavior for the bounded spin systems in high
temperature confirming boundedness of fermions [12]. Since its proof is slightly
tedious, we defer it to appendices.

Given (1 12), it is an easy task to bound the expansion (109). Insertion of (1 12) to
(109) leads to

ι _ ™
\\H™ι\\£—L 2 Σ (£^L2*0-m 1 dxdj

ml {Jα},Λ(sα),A,B *ι = 0

' Π , u I W*» Ly«> A«> Bα)|̂ <x^> K, (113)
« \<A-O!

where now S > m for each α and

(114)
Note the connected structure of (1 14). Due to the extra L (resulting from scaling) in
the negative terms, we have

K^ΠNjle'*™. (115)

YlNjl is eliminated as follows. Let S = (yί, ...,yk+f) with yα in yα. Clearly

Π^ l^ΣΠM,!, (116)
3 S i

where Mf are the multiplicities of different unit cubes where yt lie. Also

where c^(S) is the length of the shortest tree on S and no other points (in fact one can
take ε = 1/2). But now

β-^<^C*+'ΠM?-M'Σe~e*τ(S), (117)
i τ

with τ running through all trees on S and JSfτ(S) being the length of τ. Inequality
(117) with C= 1 would follow if M/s were multiplicities of yα's as Mf* l~2 is the
number of trees on Mf vertices. Ck+f is the fine for making groups of Mt yα's
coincide. Equations (115) to (117) give

K^Ck+*Σe~^τ(S). (118)
τ

Upon insertion of (118) into (113), we may perform the integrals in the order
indicated by τ, successively trimming its outmost branches:

Σ ί dxdy Π I
A,B α

(119)
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This gives

\\HT-Λ^ ^L^^Σyrlc°-mι\(s

 s^m)l\m,
where we also used the fact that s — m ̂  k +1. As

(121)
s,τ

and

Σ - X l^L, (122)

m

\\i-f/m I ! < r 2 v^ ?s^s~m 1~T II f7S αll Π?λ^

Recall that ||H£a|| satisfy (107) or (93). Let us first consider the case m> 8, where no
low order analysis is needed. For ε small, it is easy to check that if m > 8, then

rε(m"8)6ff(Sα"mα). (124)
α

Thus

*}+ε. (125)

Equations (110), (111), and (125) yield (93) for m>8.
For m ̂  8, we need to extract some low order perturbative terms. Returning to

the normal ordered expressions, we see that fc=l, ^ = 0, m whatever terms of
(109) give for m<8

v — 0

(126)

the last contribution coming from s>8 terms. For the rest, separate the
expressions discussed in Sect. 5. For m = 8,

2*), (127)

where Dgl estimates the contributions of the graphs involving three local four-
point vertices or one four-point and one six-point expression, the latter
proportional to Mn. For A large, (93) iterates.

ί/^_ 1 is similar. Separate the second order contribution g^M1 to the M part of
it, write

Lx1,Lx2), (128)

change g% in front of it to g^1 [anticipating that ^-ι=^
estimate

\\H6

n_ , || ̂  L- 1 ||HΠ

6 1| + £fifΛ

3 + FzBflfΛ + ΦfeΛ

3 + 2ε) , (129)

which implies that (92) for m = 6 iterates.
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Finally, to get #4_ 1 and H%_ 1? we have to separate the local contributions. We
have (in a sloppy notation omitting (5-functions, indices, and anti-symmetrizers)

Hϊ-ι(*) = 9n + 0«ίι(x2»*4) + 9nLLno_n(Lx2, Lx4)

+ zngnK^(x^ x4) + zngnLKno_n(Lxl9Lx4) + L5#4(Lx)

+ g3

nPn(x) + zng
2

nQn(x) + z2

ngnRn(x) + Θ(gl + 2ε) , (1 30)

where / j term is (42) and Pn, βn, .Rn stabilize exponentially fast with nQ — n. Note
how (126) picked L5 instead of L6 because r(A) ̂  1 in (126). Extract the local part as
described in Sect. 5. This gives (94). The remainders can be collected into
g2_1Lno-n+1, ^_1Kn o_n_1, and Hn-\. Notice that the extraction of local terms
does not change the || || norm considerably. For example for the term of (61), we
get

I dx Π (ϊdstsM |HmV% )l^(x)^CJrfx|Hmr(x7.)|^(x). (131)

The change jSf(x)->2«jSf(x) can be easily accommodated due to the scaling of
distances by L in the RG transformation, see e.g. (114). Thus

(132)

and (92) for #4_ ί follows. H2_ t is similar (but easier). The induction is completed.

7. The Continuum Limit

The preceding analysis has shown that the effective actions stay bounded as the
cutoff is removed. Now we show that they actually converge as τl-»oo,

As before, we take A = L"°, A = Ln and denote H\ = ff"°, often dropping superscript
ΠQ if it does not lead to a confusion.

We shall study the variation of Hn

n

Q under the change of the cutoff:

With n fixed, we get for the UV limit

H?=Hn

n+ Σ δH*>. (135)

Thus convergence of (135) has to be proven. It is easy to derive a recursion for δH^0

in n,

-aH"°, (136)

where

dvna = e~ Hί-oίfe + )dμ^ ,}βe- H«-oWl.+bdμr(ζ). (137)

Hence

oo oo ί_~_

;°-1= Σ Σ ,,„ <(δH"n°)\H>n»°Yyτ

Γ. (138)
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We write again

δHy= Σ ΣldxδHn

n

tim(x,A):Ψ(x,\): + Σ Σί dxδHn

n°
m(x,A)Ψ(x,λ),

?w ίί 8 A WΊ > 8 A / -t o Q\

and compute first δH^.^ From (21), (68), (96), and (97), as in (100), we obtain

^ = ̂ Γ1-^° = (B*-B0)(ί"0)3 + ^(tollo)3 + 2β), (WO)

say. Similarly, (78) gives

δzZ = &((gn°f). (141)

The rest of the terms are as in Hn

n°o

 + i, cf. (69) to (71) and (74) to (76).
Let us first see what type of iteration for δgn

n

Q may be expected. Formally,

(142)

where we have ignored all higher order terms. Taking

0Λ = 9μ(l-β29μlo&ΛΓi,

we obtain by solving (142):

(143)

Thus the initial δgΛ has to be smaller than, say, 0(g\+&) to produce \δgj\
^=@(9Λ+εdλ)> which is integrable over log/1 >log/ϊ, and thus would yield
convergence in (135). The initial value δgΛ depends on how accurately we choose
the bare coupling. Our choice (21), dictated by the solution of the flow equation to
the third order, gives in principle δgΛ = &(g^\ reflected by (140) [the first term on
the right-hand side of (140) reflects the deviation of the initial effective Hamil-
tonians from the renormalized trajectory]. Notice that taking gΛ given by the
leading logarithms approximation would produce δgΛ = &(g^\ which would be
insufficient.

Let us pass to the exact bounds now. By induction we shall prove the following
estimates: (λ = Ln^n, g = gj

\δzn\^gί+εg2

n-*, (144)

EgΓε, (145)

\δgH-(B*-B^,teϊ\£*Aβ" gϊ> (146)

δH4

n(x) = gίλL,(λx29 λx.) + zngnλK,(λx^ λxj + δH^(x) , (147)

*6g
1+°g*-<9 (148)

λx6) + δH6

n(x) , (149)

Equations (144) to (150) are clearly satisfied for n = n0. Since the perturbation
expansion (138) converges as in Sect. 6, we only need to collect the leading terms in
order to show that the bounds iterate.
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I. For δzn we easily get

^n), (151)

since the leading contribution comes from y2gnδgn\ogL. Hence
£ + gll{ , (152)

as /11/4^ +ε ̂  ̂ (g1 +ε) The expression in the parenthesis in (152) is summable over n
so that (144) follows.

II. δH2 contracts in the linear approximation [this allows us to add up one L~ 1/2

factor in the first term of the bound (145)]. New leading contributions are (9(δznzn).
This gives (145).

III. δgn is the most subtle. We have

δgn~ i = δgn - 2β2gnδgn logL + Θ(g2)δgn + δbno^n

^rε). (153)

Note that the main terms of (153) can be obtained formally by taking the variation
of (94), which explains their origin. Θ(λll2gl + 2ε) has its main contribution from the
term linear in δH™ and &(gl+εgΐ~ε) from &(δzng

2

n) and &(δH4g"). Now, by (80),
(95), and (96),

δbno-ng
3

n + δcno_nzng
2 = - δBno^n + Θ(λgϊ) . (154)

Using (146) and (154), we obtain from (153)

εg4

n-
ε). (155)

But by (79),

Thus

(155)^(α4H-^1/4) + ̂ 2-ε))^1+ε^2-ι. (156)

Since the Θ(Lί/4(n~no)) + (9(g2~ε) are summable in n, this establishes (146).

IV. From δH* we single out the (9(g2) and @(zngn) parts, which easily iterate. The
rest is driven by a contracting (9(gl) term and the (9(δzngn) contributions.

V. δH™ for m^6, besides the contracting part, gains each time contributions,
having among the leading terms, for example, the ones coming from the graphs of
Fig. 3 with one δgn vertex. From the contracting part of δH% we single out the (9(g2)
term.

This establishes the bounds (144) to (150), which in turn imply convergence of
(135) and existence of the UV limit Λ-+VO. Since all our bounds are volume
independent, existence of the infinite volume /->oo limit is an easy exercise in the
application of the Dominated Convergence Theorem.
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8. The Chirally Invariant Model

The analysis of the chirally invariant model (12) is almost identical to the one of the
(φψ)2 theory. The only difference is that there are two couplings now (N > 1). In the
second order of the perturbation expansion, the flow of the couplings is [3]

2/V
, (157)

. (158)

Thus the vector-vector coupling constant flows with gn similarly as the wave

function renormalization zn:gvn=-—gn + 0(g2) .

For N = 1 the two couplings are no more independent as (φyμφ)2

= (φψ)2 — (ψysψ)2 in this case by a Fierz identity. The overall increment of g + gv

given in the second order by (157) and (158) is zero. Indeed, the complete β function
vanishes by the exact solution of this Thirring model [13].

9. The Mass Term

We can analyze the change of the effective interactions due to the presence of the
mass term as a perturbation AHn

n° = H^°-Hn

n

0, where H™° is the effective
Hamiltonian with the mass term. The flow of AH"° may be studied recursively in
convergent perturbation theory since [see (137)]

oo oo _ \fc + ί? + 1

\H^}e}τ

Γ. (159)

Denoting the coefficient in ΔHn

n

Ό at ψψ by rn (dimensionless mass!), we get in the
lowest orders [for the (ψψ)2 model]

rn _ i = Lrn(l - cgn logL) + Θ(rngl r2) . (160)

Solving this recursion yields

This explains our choice (27) of the bare mass \v= — — , mΛ=—rΛ}. The
\ P2 t* )

rigorous analysis of the recursion (159), as well as of the other one for δAH"°
= AHn°+l — AHn° used to establish the existence of the ultraviolet limit in the
presence of the mass term is left to the reader as a standard exercise in the
application of the method developed in the present paper.

Appendix 1

In this appendix, we prove a useful estimate for the free, ultraviolet and infrared
cutoff Green functions. This is a little more subtle with the momentum cutoff than
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on the lattice, since φα(x)φα(x 4- ε) φ 0 for each ε φ 0. Basically, the idea still is that
localized Green functions with many fields are heavily suppressed, since effectively
we have finite number of degrees of freedom per unit volume. Thus consider the
following Green function,

=ι

where all xt e A ± and allyieA2,A1,A2 being unit cubes, and at and βt refer to spin
and flavor indices. We show that

)V-4"dist<4"^' (A.2)

for any α: local powers of fare suppressed!
To prove (A.2), first note that

Γn = detuΓαί/^ - *,) ΞΞ det 7Ji}U} . (A.3)

We divide the analysis into two cases :

(A) dist (A ! , A 2) <z α log w ,

(B) dist(^ l 9J2)>alogn.

α will be explained below. We shall work with infinite volume covariance Γ. The
proof easily extends to the case of finite cutoff t giving { independent bounds.

(A). Write Γ as

Γ(x -y) = Γ°(x - y) + Γc(x - y) , (A.4)

where Γ° is Γ with periodic boundary conditions in the box of side R = 2a- logn
centered at zero (take the origin between Aί and ZJ2) Thus

Γ°(x-y)= Σ,Γ(x-y + aR)= Σ R~2eίp(χ-y)f(p)9 (A.5)

where

»2-e-^). (A.6)

Since Γ(x) decays exponentially, we get

\Γc(x-y}\^C(l)e~™ (A.7)

say. Now

detΓ{ί}tΛ= Σ(-)* detr^det/Jcjc, (A.8)

where I,Jc{l9...9n}9 |/| = |J| = wι. Inequality (A.7) gives

|detΓ/CJc|^(tt-m)! C(L)n~me~3R(n~m} . (A.9)

As for det/}j, note that

|det/#| =
j eJ

(A.10)
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where

Thus (A. 10) is bounded by

ml Σ' R~2mf[ f(pi)^ml(C(L)/R)2m Σ' έΓ?W p\ (A. 13)
Pi^fz2 '•=! PzeZ2

where at most 2N of the p,'s may coincide. This implies that pf's must at worst fill a
ball in ΊL2 of radius ^ Cm1/2, and hence

Using (A. 14) in (A. 13), we obtain

IdetΓjjI^m! (C(L)R~l)2m J e~Cp2/R2d2mp^ml C(L)mexp[-Cm2/#2].

(A.15)

Equations (A.8), (A.9), and (A. 15) give

But

Λ» C™Λ

max I 3κm —-j-

Hence

which yields (A.2) for α= 1 +2α.

(B). By brute force estimation,

(A.19)
and the claim follows.

Obviously (A.2) still holds if some of the fields in (A.I) are differentiated, as
derivatives of Γ(x— y) can be accommodated in the bounds we have used.

Appendix 2

Here we shall derive a convenient representation for (partially) truncated
correlations. Let us start with the expectation

CWW Π ζβj(yώ - (A.20)
k = l U e / k j'eJTfc r
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Again we may also admit derivatives of f's (of bounded order). The sets of indices Ik

and Jk are assumed to be disjoint. For A being a unit lattice square, let

IkA = {ieIk:XieA}9 IA = (J IkA,

and similarly for J. Let

χk=( U /ΛnZ 2 , *=U* f c (A.22)

Exhibiting the "geography" of the pairings in the expectation (A.20), we may write

E = Σ (-)* Π det%,Jf, (A.23)

where {IA'}Δ> forms a partition of IA (possibly with empty sets), {J^}Δ of JΔ,,
\IΔ'\ — \J$\ and # gives the parity of the permutation which brings the original
product of fields in (A.20) into the one implied in (A.23).

Now associate to a term of (A.23) a graph ^ of lines joining pairs of different
points x, x'e X, centers of unit squares A, A', in the following way: x, x' are joined
by a line if

II. for some fe, /kjuJ
Thus X k's are by definition connected, the other lines of ̂  being provided by

the propagators Γ of (A.23). The decomposition of ̂  into connected components
induces a partition { Xα} of the "support" X of E. Let

Kα = {k:XktXα}. (A.24)

Notice that {Kα} is a partition of {!,... ,IV} (without empty sets). Given a set
K C {!,... ,N}, let us define

Q(K)= Σ' (-)* Π d e t Γ , (A.25)

where the right-hand side is as (A.23) except that we consider an expectation like in
(A.20) but with fe running only through K and the summation in (A.25) is restricted
to terms producing connected graphs ̂  on the points of Xκ= U %k- Notice that

keK

E=Σf(-)*ΠQ(Kα), (A.26)
{Kα} O

where the sum runs over the partitions {Kα} of {1, ...,N} such that {XKα} are
disjoint and Φ is a parity depending only on the partition. We shall rewrite (A.26)
as an unconstrained sum over all the partitions

E= Σ (-)* Π U(#)Ue(KJ, (A.27)
{£«} 3? α

where ̂  runs over the unordered pairs of different sets of the partition {Kα} with

K \Kα,)= . .
(0 otherwise.

Writing U = (l+A) and expanding Π(l + A(5?)\ we obtain from (A.27),
&

E= Σ (-)*Σ Π A(3>)ΠQ(Kα), (A.29)
{Kα} Γ 3?eΓ α
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where Γ runs through the collections of "lines" & (Mayer graphs on vertices Ka).
Grouping all the vertices Ka of the connected components Γc of Γ together, we
obtain a partition {Hb} of (1, ...,N}. Equation (A.29) becomes

E= Σ(-)*Π{ Σ (-)*Σ Π A(&)ΠQ(KJ\, (A.30)
{Hb} b I {Ka} Γc tfeΓc a I

\part. of Hb /

where the first + is the parity of {Hb} and the second one is the parity of {Ka}
relative to Hb. On the other hand, the expectation (A.20) can be expressed by
truncated expectations (with truncations between TV groups of variables) as

F — Y ί — ϊ* FT / FT ίΓ\ f f r Ί F F Γ h& — 2-, \ ) 1 1 ( 1 1 1 1 bαΛ ^i/ 1 A ^βλj
{Hb} b \keHb\ίeIk JeJk

which in fact defines the truncated expectations. From (A.30) and (A.31), we read
off (the parities agree)

Eτ= (Π(Π ίaW Π to)i)T = Σ (-)*Σ Π A(&)l\Q(Kύ. (A.32)
\ k = l V i e I k JeJk J/ Γ (Ka} Γc^eΓc a

This is the formula which serves as a basis for the estimation of the truncated
expectations which we do in

Appendix 3

Let us start with showing that

where Iκ= (J IkJKΔ= U /kj? and similarly for J, and ̂ ({XJfceK) is the length of
keK keK

the shortest graph on the points of Xκ and possibly other points which become
connected when JΓfc's are shrunk to points.

To show (A.33), use first (A.2) and (A.25) to get

Σ Π

Consider the sum over [IΔ

A '}, A fixed. Order zΓfor which J Δ, φ 0 as zΓ1? Δ'^ . . ., so that
d(A9A^d(A9A'2)^ ... . Denote |/^|=p;.ZPj = l^l- Thus

Σ'{/i'i ^'

<T V

^ Σ(PJ)

as dist(J,zl})^;1/2/C for some C. Find

ι
J) (11 ̂ j!)

1̂ 1 !

max Πp7 ( β + 1 ) P j«p- (A36)

Zpj=\lA\ J L 2C J

It is easily seen that the maximum is attained at the solution of the extremal
equations

+ 71/2-^^0. (A.37)
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Thus

(A.38)
j

To eliminate λ, compute from (A. 3 7)

so that

ι r | _ _ g α + ι y<£ 2C(α+i) J <Cea+1 " (A40)
j

From (A.38) and (A.40), we obtain

Expressions (A.35), (A.36), and (A.41) imply that

(|/,|!)α. (A.42)

Bounding similarly the sum over {JΔ

Δ} with A' fixed in (A.34), we obtain (A.33).
Let us pass to the estimation of (A.32). This is a typical Ursel function

expression and we shall closely follow the standard procedure, see [14 and 15,
Theorem 3.6 and pp. 47-48]. First notice that (A.32) may be rewritten as

Eτ= Σ'^r Πe(*α)α(G), (A.43)
(Ka) Λl a=l

where the sum over ordered partitions is restricted by demanding that the graph G
on vertices Ka formed by all the lines Sf with A(&) = — 1 (i.e. by the lines between
the vertices with XKa intersecting) be connected. α(G)= Σ (-)|Γcl The crucial
combinatorial estimate is ΓcCG

(A.44)

where T(G)= Σ 1, see e.g. Theorem 3.6 of [15]. Thus
trees ΓCCG

\^Σ'^ Σ Π\Q(KJ\ (A.45)
(Ka) Λ\ trees ΓCCG α = l

With the use of (A.33), this yields

\£ Π
k=l \A J (Ka) Λ\ Γc a

• Σr ϊ Σ Π exp Γ -i^(xx J -i Σ ^( f̂c)Ί . (A.46)
(Ka) Λl rc a [_ keKa

In (A.46) we have extracted e-&((χύ"= ι)? which is bigger or equal to γ\
a

for any (Ka) in the restricted sum. We have also used the obvious estimate
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expΓ-i Σ ^(XJ-^({Xk}keκJ]^pl-^(Xκχ, (A.47)
L fce£α J

where Jδf (Jf ) denotes the length of the shortest tree on X and possibly other points.
But

(Ka) Λ\ Γc a |_ feeKα J

= Σ jr Σ Σ" ΠexpC-..] , (A.48)
A=l Al τ on { ! , . . . , A} (Ka) a=l

where now we restrict the sum over (Ka) by demanding that for each line (α, a') of
the tree τ, Jf Xβn Jf Xβ/ φ 0. Let (JV7), Nj^l,ΣNj = Nbe the multiplicities of different
sets Xkj = Yj among (JΓfe), fc = 1, ..., N. For KC{1, ...,N}, let £ = (%/), n^O, be
the multiplicities of Yj among (Xk\ kεK. Notice that the sequence (n^) determines
Xκ, which we shall also denote as X&. It is convenient to replace the sum over

£=l in (A.48) by the sum over (Ka)a=ι with the same constraints:

Σ ^Σ Σ"A=\ Al τ (Kα)

• exp Γ-iJSP(XsJ-ί Σ »« ĵ (5}) (A.49)

We shall need the following estimate

Σ β- **<**> Πexp[-%J.(C|y/.i+i^(^))]^|7|εs, (A.50)
, \XK\=S j

for some ε \ < - } and C big enough.
\ eJ

The sum in (A. 50) is estimated by the method of combinatorial coefficients
[16]: Σ^maxflA, if Σ>f ̂ 1, ̂  Λ^O.

We can choose K with the required properties in the following steps:
I. Choose X% with

II. Choose a set
III. Choose a number n > 0.
IV. For each xeβ, choose n jc>0 so that Σ nx = n.

Λ e Q

V. For each x e Q, choose nx times a set ̂ ax.
The choices in which Jff's are sets YJ with multiplicities (n )̂, Σ w j — w an(i
—Xg give K with demanded properties. The sums over the choices I. to V.

are controlled by the following combinatorial coefficients:

II. 2s, (A.52)

III. 2", (A.53)

IV- !-, (A.54)

V. Π ΠCl*''exp(iJ2TO). (A.55)
xeQ i=l
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Altogether, by multiplying (A.51) to (A.55), we get a coefficient which for the
choices leading to K can be written as

(A.56)
j

Inequality (A.50) follows.
Now notice that we may estimate the sum over (Kα) in (A.49), given τ, by

successively using (A. 50), starting with the outermost lines of τ. This produces

Σ Σ"Πe
τ (Kα) α

1 oo

Σ^ΣΠ Σ ε^-1, (A.57)
A Λl τ α Sα=l

where dα is the incidence number of the vertex α of τ. Using the estimate
ε (

Σ ε~nnp^p! - - and the fact that there are —
»ιu 1-ε Π
numbers dα (Σdα = 2A-2) (cf. [15]), we obtain

ε (A — I) \
Σ ε~nnp^p! - - and the fact that there are — — - — -— trees with the incidence

j k Λ = 1

Equations (A.46), (A.48), (A.49), and (A.58) give finally

(A.58)

\£ Π C'H?**™m|/J!^ (A.59)
k=ί

from which (112) follows, since we could have put derivatives of fields in the
expectation (A. 3 2) as well.
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