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Abstract. Assume F is the curvature (field) of a connection (potential) on R 4 with

finite L2 norm I J | jF| 2dx< oo j . We show the chern number c2 = l/8π2 J F A F
\R4 / R4

(topological quantum number) is an integer. This generalizes previous results
which showed that the integrality holds for F satisfying the Yang-Mills
equations. We actually prove the natural general result in all even dimensions
larger than 2.

0. Introduction

All solutions of the Yang-Mills equations on R 4 with finite action actually arise
from connections defined on R 4u(oo) = S 4 [1,2]. This implies that the chern
numbers of these connections are the chern numbers of a bundle over S4, and hence
are integers. It seems to be a question of general interest whether this result holds for
arbitrary connections on R 4 with finite energy [3]. Schlafley showed this is indeed
true if the curvature or field \F\ has growth at most (r2\ogr)~1 [4]. We prove that

finite energy J \F\2dx is sufficient. We prove general n-dimensional results. We
R 4

assume throughout the paper that G is a compact Lie group with bi-invariant metric
and Q is the Lie algebra for G.

Theorem. Let AjeLnβoc{Rn

9 g), 7 = 1,2,...,n> 2 and let F = FA = dA + A A A be the

curvature of the connection d + A. If n is even, nΦ2, and J \F\n/2dx < 00, then the

chern number arising from a representation p:G—•SU(N) is integral.
The proof is somewhat lengthy, and could be shortened considerably for the case

Aj smooth. However, it seemed worthwhile to treat the most general case, AjELnl2

oc,
for the purpose of completeness. The various technical theorems we use to handle
non-smooth Aj have interesting features and possible applications elsewhere. The
main idea of the proof is to choose a good gauge near (00). This relies on an earlier
theorem on the existence of good (Coulomb) gauges [5]. The idea for the proof arose
from conversations with L. M. Sibner about the removable singularities theorem in
dimension 3 [6].
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1. Sobolev connections and Chern Number

Let P be a principal bundle over a compact Riemannian n-manifold M with
structure group G, Lie algebra g. Recall that the class of smooth connections is an
affine space, described by choosing any base connection Do and setting

stf{P) = {D = D0 + A: V 4 G C ° ° ( Γ * M ® AdP)}.

We shall use the bundles T*M® Ad P = ηx(P) and T*M A T*M® Ad P = ιj2(P) of
Lie algebra-valued one and two forms, so often we use the notation η^P) and η2(P).
The space of Sobolev connections is

Here Lξ(η) denotes the Banach space of sections off/ with partials up through order k
in U. There is an equivalent local description. If ^ α is a cover of M and p
G x f α are smooth local trivializations, then

where AaeLp(^β, R"<g)g). It is a well-known fact that J / ( P ) is dense in j?/f(P).
The curvature of a smooth connection D is a smooth section F(D) of the bundle

η2{P) of Lie algebra-valued two forms. In local coordinates F\tfίa = dAa + Aa/\ Aa.
From the local description, we easily see the following lemma:

Lemma 1.1. The curvature map F.stf ->Cco(η2(P)) extends to a smooth (in fact
quadratic) map F\stf\cΛ$4lv -+ Lp

0(η2{P)). lflp^n = dim M, then sί\ cstf\v and

Now let Λn(M) = Λn be the bundle of n-forms over M. A smooth bundle map
Ψ:η-+Λn is said to be a homogeneous polynomial of degree q if Ψx(ηx) =
hχir1x®r1x® •• ®*?x)j where h:(®η)-+Λn is linear.

This thinking leads us to the elementary observation:

Proposition 1.2. Lei Ψ:η2(P)-+Λn be a homogeneous polynomial map of degree p.
Then the induced map Ψ:s/ -»R gfit en by

extends to a smooth map *

Proof Note Ψ factors into a composition

-̂  LJ(ΛM) -i R.

Each piece is smooth. The map Ψ itself is polynomial. If Ψ is merely homogeneous
of order p, (Ψx(cηx) = cpΨx(ηx\ c > 0), then •Fis Ck for k any integer less than p.

Corollary 1.3. // Ψ takes on a constant value y on s#(P), then it has the value y on every
connection in

Proof This follows from the density of J / ( P ) in J / ? ( P ) n s&lp{P) and the continuity
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of Ψ. For m < n/2, the following can be compared to Sedlacek's result [7].

Corollary 1.4. If p\ G -> SU(ΛΓ) is a representation, and ω a smooth n-2mform on M,
then the characteristic class cupped with ω and evaluated on [M], cm(ω), which is a
multiple of

J(tr p(F)m)Λω
M

is constant on srf™ n stf2m. In particular, if n is even and m = n/2,

J t r p{F)nl2

is a fixed integer times the appropriate dimensional constant on srfnγ2.

Proof Here ψ is given by (tr ρ(F)m) A ω, which is polynomial. Since L"/2 c Ln, we
may replace J / " / 2 n j / π by stfψ.

Corollary 1.5. Let $:S2m- {oo}->R" S - 1 : R 2 m - S 2 w - {0} be the usual stereo-
graphic projection and its inverse. LetDestf™ be a connection in a principal bundle P on
S2m, and let the connection d + A on R 2 m

be obtained by pull-back of D. Then the chern number

cm = I -— I f tr(p(F)
\ / R2m

is integral, where F = F(d H- A) = dA + A A A.

Proof Due to the way chern number is defined, on Sn

which is integral by the previous corollary.

2. Construction of the Bundles on S"

Recall that if M' is a non-compact manifold, by L£ loc(M') we mean the Freche^space
of functions whose restriction to any compact domain # <= M' lie in L£(#). Let
B' = {xeR", 0 < |x | g 1}. In Sect. 4, we obtain the following result as Corollary 4.6.

Theorem 2.1. There exists ε = e(G, ή) > 0 such that ifDej^nβoc(B') and

J I F(D) \n/2 dx = lim J I F(D) \n/2dx < ε,

then there exists seL%2

oc(Bn,G) such that in the gauge

s~1Ds = d + s~1ds + s~1As = d + Ά,

we have i46L"/2(B,R"®g). Also

\\A\\Lni2iB)Sc(n,G)\\F(D)\\Ln/2iB).
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Moreover, s may be chosen smooth on {x:0 < p ^ \x\ -^ 1 — p < 1}.

We now describe how to pass from this technical result to our main result. We
state the result for Rn, although it, of course, applies to any conformal equivalent of a
compact manifold with a finite number of points omitted.

Corollary 2.2. Let ^GL"/joc(R",RM(x)g), and j \FA\
n/2dx < oo. Then the connection

R"

D = d + Ais gauge equivalent to the pull-back via the inverse stereographic projection
of a connection Des/n^2(P\for some smooth principle bundle on Sn.

Proof. Since J \FA\
n/2dx < oo, we can choose a K < oo such that J |FA\n/2dx < ε.

Cover Sn with two coordinate charts, Φ 1 = S " 1 ( x : | x | ^ 4 X ) and W2 = S~1(x:\x\^
X)u{oo}. Parametrize B = ύll2, B' = S~~1(x:\x\^:K) conformally in the obvious
way. Now apply Theorem 2.1 to the connection d + A, which is now regarded as a
connection d + A' on B'. By conformal invariance.

J \FA\
2dx= J \FA.\

2dx<ε.
\x\^K \x\£l

The overlap between two charts is in the coordinates in ϋlί2 = B (letting %2 =

The map s:B'-*G restricts to the overlap function gl2\%2r\%γ-^G, and can be
chosen smooth in this range {x:£^ |JC| ^\}(p = | ) . This map g12 = s describes the
principal bundle P on SH. Since we started with A\%1 in L"/2, and by coordinate
change we obtain in 4?2

in L"/2, we have a local description of a connection in J / " / 2 ( P ) .

Corollary 2.3. // y4 eL^o c(Rn, R" ® g), (n = 2m) and lim J | FA \n/2dx < oo, then

is an integer.

Proof By the preceding corollary, the connection d -f A is obtained via a pull-back
from an J / " / 2 ( P ) connection on Sn. By Corollary 1.5, cn/2 is integral.

3. A Density Theorem

In Sect. 4, we obtain a map u: B'-+G, ueLn

2

l2

oc(B\G). Now w is not necessarily
continuous (it is if ueLp

2Λoc(B\ G) for any p > n/2). We wish to approximate u by a
map which is smooth in an annullus 0 < p ^ | x | ^ l — p < l . T o d o this we mimic the
proof of the approximation of L 2 maps from surfaces by Schoen and Uhlenbeck [8].
The slight technical difference is that we wish to keep the approximation fixed near
the boundary.
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For the following, G is any compact manifold isometrically immersed in Rk (i.e.,
the Lie group structure is irrelevant). In our case, we consider ρ:G c SU(N)cz
C ^ x C ^ Rk (fe = 2N2). Let Θδ be the set of points at distance δ from G. If δ is
sufficiently small, the nearest point projection from Rk to G is well-defined and
smooth on Θδ. Call this Π:Θδ-+G. Given any domain ΩaW, define

Lp

k(Ω, G) = {ueLp

k(Ω, Rk):u(x)eG a.e.}.

Let Ωh = {xeΩ:dist(x,Rn — Ω)^h}. Also, let φ be any positive, smooth bump

function with compact support in the unit ball, J φ{y)dy = 1. Given ueL%(Ω, Rk),

xeΩn

u\x)= ί u{x + hy)φ{y)dy. (3.2)
\x-y\£h

It is well-known that uh is smooth on Ωh. However, u\x)φG.

Lemma 3.1. There exists ε0 = εo(n, G) such that if j \du\n(y)dy ̂  ε ^ ε0, then the
Bh(x)

mollified function uh has the property dist(wΛ(x), G) < Kε1/n.

Proof The condition given in Schoen and Uhlenbeck [9.3.2] is h~n + 2 j \du\2dy<^
Bh(x)

cs112, which is implied by our assumption and the Holder inequality.

Theorem 3.2. Let MGL"(/2, G), and Ω be a compact domain in R" with smooth

boundary. Then given μ > 0 , d>0 there exists weL"(ί2,G), fi = u on Ω — Ωd,
ύ\Ω2deCco(Ω2d,G) and \\ ύ - u \\Ln(Ω>Rk) ^ μ. If μeLn

2

l2(Ω,G), we may find u with

Proof For xeΩd, we have that ε(x, h) = J \du\ndx is a continuous family (in h) of
|x-j>|^Λ

continuous functions on Ωd decreasing to 0. Therefore ε(n) = max ε(x, h) -> 0. So for h

sufficiently small, dist(uh(x\G) ^K(ε(h))ί/n-+0. We observe that the proof that

limw£ = u in L"(ί2) is exactly as in the classical c a s e / = 1, once we show that the
h->0

linear map v-+v$ on L" satisfies | | ^ | | L n ( β ) g K||t;| |Ln ( β ). But

- hf(x)y)\ndxdy

{z)\ndzdy

= K\\v\\ln(Ω). (3.3)

Here K = max ( det J l x W j β y differentiating (32), we obtain

F r o m this we get (using (3.3) again o n dv a n d (u|)

IIdipt) | | L n ( β ) ^ K 1 / M II<fo | | L , ( β ) + K ^ Λ m a x |d/l II v\\Ln(Ωy
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Finally, we show \\u* — wΛ||L«(β) ->0, (which completes the proof). We have
already

xeΩ

from Lemma 3.1. By the chain rule

\dύh(x) - dut(x)\ ^ \dΠ{ut{x)) -I\ \duϊ(x)\

Integrating both inequalities completes the proof. The proof for LnJ2(Ω) simply
involves one more differentiation.

Note that this would be the first step in a proof that an U[2 bundle is "equivalent"
to a smooth bundle. See Sedlacek [7] for a situation where such a theorem might be
useful.

4. Coulomb Gauges

The theorem we wish to extend is the following theorem, proved in [5].

Theorem 4.1. There exists εo = ε(n,G)>0 and Ko = Ko(n,G) such that if

AeLt\/2(B\Rn x g) and J \FA\
n/2dx <ε, then there exists seLψ(B\G) such that

A = s~xds + s~λAs satisfies

a) d*A = 0

b) $(\dΆ\"ί2 + \Ά\"/2)dx^K1 f \FA\
nl2dx.

We use this above theorem and the following compactness theorem where m = n— 1
[5].

Theorem 4.2. // 2p > m, M = Mm is a compact manifold, and Dt is a sequence of

connections with J | F(Df) \
pdx < b, then a subsequence of the D{ is gauge equivalent to a

sequence D( which converges weakly in the space of L\ connections.

The general techniques give an immediate corollary, which is what we shall use.

Corollary 4.3. If 2p>m and M = Mm a compact manifold, then there exists an

ε1(p,M,G)>0 such that ifD is a connection with J | F(D) \pdx < ελ, then there exists a
M

flat connection d on M such that D is gauge equivalent to D' with

Proof. By the weak compactness theorem we may assume that for βx small, D' is
weakly close to a flat connection and close in L% for m < q < 2p. We may then find a
Coulomb gauge for D' by solving
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in the space geL\(M, G) a C°(M, G) by means of the implicit function theorem. In
the new gauge D' = d + A, where A is small in L%, q > m, d*A = 0, and it is easily seen

that the L\ norm of A is bounded by a multiple of j \F(D)\pdμ by the usual
M

techniques of standard elliptic theory.
We now prove our main extension lemma.

Lemma4.4. There exists ε2 = ε2(n,G) such that if Aeϋ]12 {{x:pι ^x^p 2 }> R" x 9)

and pi1 j \FA\
n/2dμ = ε < ε2, then A is gauge equivalent to a connection A which

extends to a connection (again called A), ΆeLnl2(\x\ ^ p 2 , R" x g) and j \FA\
n/2

dx ^ K2ε.

Proof By conformal invariance, we may assume pί = l, p2 = p>l. Let i(x) = x

imbed Sn~1 c Rn and let i*A = A* be the pull-back Sobolev connection in a bundle

over S"-1. J \FA.\
n/2*l= J | i*F^Γ / 2 *l ^ ε 2 . By Corollary 4.3, with p = w/2,

m = n - l , M = S71"1, if ε2 is sufficiently small d + A* is gauge equivalent to
d + ^4**, where

Since C00 is dense in Lnl2(Sn~~1) we may assume the gauge transformation 5 is

smooth. Extend it to all of the annulus by s(x) = s[ — 1 and transform A via it. In the
Wχ\J

new gauge i*A, the tangential part of A is small on Sn 1.
Let the normal part of A, AreLn

1

/2(Sn~1, g), be approximated (to within (ε)2/n) by a
smooth C00 section gr. Define a second smooth gauge transformation on 1 g |x| g p
by g(\, θ) = /, dg/δr (1,0)= — gr and g(r, θ) is geodesic in G as a function of r. Gauge
transform again. Now we have the norm in this gauge

Extend (in this gauge) by setting

for f(x) a smooth function, f(x) = 0 for \x\ ̂  1/2 and f(x) = 1 for |x | ^ 3/4. Now

This completes the proof, with K2 = C ^ A ^ The main technical difficulty is next
solved.
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Theorem 4.5. There exists anε3>0 and K3<oo such that if A eL$joc(B\ R" x g) and

J \FA\
nl2dx<ε3i then there exists a gauge transformation geLnJ2

oc(B\G) such that

the gauge transformed connection

Ά 1 ( B \ W x g).

Moreover d*Ά = O and || A Wff*^ ̂  K3 J \FA\
nl2dx.

Bn

Proof Choose a sequence of radii p f-»0 such that A\{\x\ = pi}eLn

1

/2 and

Pi ί \FA\
nl2dx = εi-+0. Let At be the extension of A{ gauge equivalent to

A\{x\pi S \x\ ύ 1} given by Lemma 4.4. We see immediately that

J \FAt\"'2dxZ J | ^ , | " / 2 ^ + ί |FJ" / 2 ^K 2 ε i + e 3.
| χ | ^ i I^I^Pi | χ | ^ i

Apply Theorem 4.1, which gives a gauge equivalent At which can be estimated by
|| Άt \\l$w ^ K0(K2εi + ε3). Here d*Zt = 0.

First we may choose a weakly convergent subsequence Άi — AeLnJ2(Bn, R" x g).
The weak convergence implies d*A = 0, and the inequality

Let c€i = {x'.Pi S M ^ 1} and gieLt]!2((^h G) be the composition of the several gauge
transformations constructed by Lemma 4.4 and Theorem 4.5 relating A \(€i and Ά{.
Then

If we fix7, this equation holds on (€j for i ^j. Since A l ^ eL"/2^-, Rn x g) and on <gj

i ^ j , we have for almost all x

\d2gt\ = iQidλi - dAg{

^ \dλt\ + |dX| +

From the first inequality and the Sobolev theorem we find for i ^ j

From this estimate, the second almost everywhere inequality and the Holder
inequality we obtain

By a diagonal argument, we extract a subsequence which converges weakly to a limit
g in Lψ{^p G) for all;. This produces geLn^2

l0C{Bn, G). Since the weak limit implies
almost everywhere convergence for A{ and gt we obtain
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This completes the proof.
We obtain Theorem 2.1 as a simple corollary of this theorem and Theorem 3.2.

Corollary 4.6. In the statement of Theorem 4.5, if we relax the condition that
ά*Ά = 0, we may assume g\{x:p ^ |x | ^ 1 — ρ}eCco.

Proof. Let Ω = {x:p/2 ^ | x | ^ 1} and d = p/4. We may approximate geLψ (Ω, G) as
closely as we like by a function which is smooth on Ωd. If the approximation is close
enough, the inequalities remain valid, although d*Ά will no longer be zero in the new
gauge.
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