

The Chern Classes of Sobolev Connections

Karen K. Uhlenbeck

Department of Mathematics, University of Chicago, Chicago, Illinois 60637, USA

Abstract. Assume F is the curvature (field) of a connection (potential) on \mathbb{R}^4 with finite L^2 norm $\left(\int\limits_{\mathbb{R}^4}|F|^2dx<\infty\right)$. We show the chern number $c_2=1/8\pi^2\int\limits_{\mathbb{R}^4}F\wedge F$ (topological quantum number) is an integer. This generalizes previous results which showed that the integrality holds for F satisfying the Yang-Mills equations. We actually prove the natural general result in all even dimensions larger than 2.

0. Introduction

All solutions of the Yang-Mills equations on \mathbb{R}^4 with finite action actually arise from connections defined on $\mathbb{R}^4 \cup (\infty) = S^4$ [1,2]. This implies that the chern numbers of these connections are the chern numbers of a bundle over S^4 , and hence are integers. It seems to be a question of general interest whether this result holds for arbitrary connections on \mathbb{R}^4 with finite energy [3]. Schlafley showed this is indeed true if the curvature or field |F| has growth at most $(r^2 \log r)^{-1}$ [4]. We prove that finite energy $\int_{\mathbb{R}^4} |F|^2 dx$ is sufficient. We prove general *n*-dimensional results. We assume throughout the paper that G is a compact Lie group with bi-invariant metric and g is the Lie algebra for G.

Theorem. Let $A_j \in L_{1,loc}^{n/2}(\mathbf{R}^n,\mathfrak{g}), j=1,2,\ldots,n>2$ and let $F=F_A=dA+A\wedge A$ be the curvature of the connection d+A. If n is even, $n\neq 2$, and $\int\limits_{\mathbf{R}^n}|F|^{n/2}dx<\infty$, then the chern number arising from a representation $\rho\colon G\to \mathrm{SU}(N)$ is integral.

The proof is somewhat lengthy, and could be shortened considerably for the case A_j smooth. However, it seemed worthwhile to treat the most general case, $A_j \in L_{1,\text{loc}}^{n/2}$, for the purpose of completeness. The various technical theorems we use to handle non-smooth A_j have interesting features and possible applications elsewhere. The main idea of the proof is to choose a good gauge near (∞) . This relies on an earlier theorem on the existence of good (Coulomb) gauges [5]. The idea for the proof arose from conversations with L. M. Sibner about the removable singularities theorem in dimension 3 [6].

1. Sobolev connections and Chern Number

Let P be a principal bundle over a compact Riemannian n-manifold M with structure group G, Lie algebra g. Recall that the class of smooth connections is an affine space, described by choosing any base connection D_0 and setting

$$\mathscr{A}(P) = \{ D = D_0 + A \colon A \in C^{\infty}(T^*M \otimes \operatorname{Ad} P) \}.$$

We shall use the bundles $T^*M \otimes \operatorname{Ad} P = \eta_1(P)$ and $T^*M \wedge T^*M \otimes \operatorname{Ad} P = \eta_2(P)$ of Lie algebra-valued one and two forms, so often we use the notation $\eta_1(P)$ and $\eta_2(P)$. The space of Sobolev connections is

$$\mathscr{A}_k^p(P) = \{ D_0 + A \colon A \in L_k^p(\eta_1(P)) \}.$$

Here $L_k^p(\eta)$ denotes the Banach space of sections of η with partials up through order k in L^p . There is an equivalent local description. If \mathscr{U}_{α} is a cover of M and $\rho_{\alpha}: P | \mathscr{U}_{\alpha} \sim G \times \mathscr{U}_{\alpha}$ are smooth local trivializations, then

$$D|\mathcal{U}_{\alpha} \sim d + A_{\alpha}$$

where $A_{\alpha} \in L_k^p(\mathcal{U}_{\alpha}, \mathbf{R}^n \otimes \mathfrak{g})$. It is a well-known fact that $\mathcal{A}(P)$ is dense in $\mathcal{A}_k^p(P)$.

The curvature of a smooth connection D is a smooth section F(D) of the bundle $\eta_2(P)$ of Lie algebra-valued two forms. In local coordinates $F|\mathcal{U}_\alpha=dA_\alpha+A_\alpha\wedge A_\alpha$. From the local description, we easily see the following lemma:

Lemma 1.1. The curvature map $F: \mathcal{A} \to C^{\infty}(\eta_2(P))$ extends to a smooth (in fact quadratic) map $F: \mathcal{A}_1^p \cap \mathcal{A}_0^{2p} \to L_0^p(\eta_2(P))$. If $2p \ge n = \dim M$, then $\mathcal{A}_1^p \subset \mathcal{A}_0^{2p}$ and $F: \mathcal{A}_1^p \to L_0^p(\eta_2(P))$.

Now let $\Lambda^n(M) = \Lambda^n$ be the bundle of *n*-forms over M. A smooth bundle map $\Psi: \eta \to \Lambda^n$ is said to be a homogeneous polynomial of degree q if $\Psi_x(\eta_x) = h_x(\eta_x \otimes \eta_x \otimes \cdots \otimes \eta_x)$, where $h: (\otimes \eta) \to \Lambda^n$ is linear.

This thinking leads us to the elementary observation:

Proposition 1.2. Let $\Psi:\eta_2(P)\to \Lambda_n$ be a homogeneous polynomial map of degree p. Then the induced map $\overline{\Psi}:\mathcal{A}\to \mathbf{R}$ given by

$$\bar{\Psi}(D) = \int_{M} \Psi(F(D))$$

extends to a smooth map $\Psi: \mathscr{A}_1^p(P) \cap \mathscr{A}^{2p}(P) \to \mathbb{R}$.

Proof. Note Ψ factors into a composition

$$\mathscr{A}_1^p(P)\cap\mathscr{A}^{2p}(P)\overset{F}{\to}L_0^p(\eta_2)\overset{\Psi}{\to}L_0^1(\Lambda^n)\overset{\int}{\to}\mathbf{R}.$$

Each piece is smooth. The map $\overline{\Psi}$ itself is polynomial. If Ψ is merely homogeneous of order p, $(\Psi_x(c\eta_x) = c^p \Psi_x(\eta_x), c > 0)$, then $\overline{\Psi}$ is C^k for k any integer less than p.

Corollary 1.3. If $\overline{\Psi}$ takes on a constant value γ on $\mathcal{A}(P)$, then it has the value γ on every connection in $\mathcal{A}_0^p(P) \cap \mathcal{A}_0^{2p}(P)$.

Proof. This follows from the density of $\mathcal{A}(P)$ in $\mathcal{A}_1^p(P) \cap \mathcal{A}_0^{2p}(P)$ and the continuity

of Ψ . For m < n/2, the following can be compared to Sedlacek's result [7].

Corollary 1.4. If $\rho: G \to SU(N)$ is a representation, and ω a smooth n-2m form on M, then the characteristic class cupped with ω and evaluated on [M], $c_m(\omega)$, which is a multiple of

$$\int_{M} (\operatorname{tr} \rho(F)^{m}) \wedge \omega$$

is constant on $\mathcal{A}_1^m \cap \mathcal{A}^{2m}$. In particular, if n is even and m = n/2,

$$\int_{M} \operatorname{tr} \rho(F)^{n/2}$$

is a fixed integer times the appropriate dimensional constant on $\mathcal{A}_1^{n/2}$.

Proof. Here Ψ is given by $(\operatorname{tr} \rho(F)^m) \wedge \omega$, which is polynomial. Since $L_1^{n/2} \subset L^n$, we may replace $\mathcal{A}_1^{n/2} \cap \mathcal{A}^n$ by $\mathcal{A}_1^{n/2}$.

Corollary 1.5. Let $S: S^{2m} - \{\infty\} \to \mathbb{R}^n \cdot S^{-1}: \mathbb{R}^{2m} \to S^{2m} - \{0\}$ be the usual stereographic projection and its inverse. Let $D \in \mathcal{A}_1^m$ be a connection in a principal bundle P on S^{2m} , and let the connection d + A on \mathbb{R}^{2m}

$$d + A = (\mathbf{S}^{-1})^*D$$

be obtained by pull-back of D. Then the chern number

$$c_{m} = \left(\frac{1}{2\pi i}\right)^{m} \frac{(-1)^{m+1}}{m} \int_{\mathbf{R}^{2m}} \operatorname{tr}(\rho(F)^{m})$$

is integral, where $F = F(d + A) = dA + A \wedge A$

Proof. Due to the way chern number is defined, on S^n

$$c_m = \left(\frac{1}{2\pi i}\right)^m \frac{(-1)^{m+1}}{m} \int_{S^{2m}} \operatorname{tr}\left(\rho(F(D))^m\right),\tag{3.1}$$

which is integral by the previous corollary.

2. Construction of the Bundles on S^n

Recall that if M' is a non-compact manifold, by $L_{k,loc}^p(M')$ we mean the Frechet space of functions whose restriction to any compact domain $\overline{\mathscr{U}} \subset M'$ lie in $L_k^p(\overline{\mathscr{U}})$. Let $B' = \{x \in \mathbb{R}^n, 0 < |x| \le 1\}$. In Sect. 4, we obtain the following result as Corollary 4.6.

Theorem 2.1. There exists $\varepsilon = \varepsilon(G, n) > 0$ such that if $D \in \mathcal{A}_{1, \text{loc}}^{n/2}(B')$ and

$$\int_{0<|x|\leq 1} |F(D)|^{n/2} dx = \lim_{r\to 0} \int_{r\leq |x|\leq 1} |F(D)|^{n/2} dx < \varepsilon,$$

then there exists $s \in L_{2,loc}^{n/2}(B^n, G)$ such that in the gauge

$$s^{-1}Ds = d + s^{-1}ds + s^{-1}As = d + \tilde{A},$$

we have $A \in L_1^{n/2}(B, \mathbb{R}^n \otimes \mathfrak{g})$. Also

$$||A||_{L_1^{n/2}(B)} \le c(n,G) ||F(D)||_{L^{n/2}(B)}.$$

Moreover, s may be chosen smooth on $\{x:0<\rho\leq |x|\leq 1-\rho<1\}$.

We now describe how to pass from this technical result to our main result. We state the result for Rⁿ, although it, of course, applies to any conformal equivalent of a compact manifold with a finite number of points omitted.

Corollary 2.2. Let $A \in L^{n/2}_{1,\text{loc}}(\mathbb{R}^n,\mathbb{R}^n \otimes \mathfrak{g})$, and $\int_{\mathbb{R}^n} |F_A|^{n/2} dx < \infty$. Then the connection D=d+A is gauge equivalent to the pull-back via the inverse stereographic projection of a connection $D \in \mathcal{A}_1^{n/2}(P)$, for some smooth principle bundle on S^n .

Proof. Since $\int |F_A|^{n/2} dx < \infty$, we can choose a $K < \infty$ such that $\int |F_A|^{n/2} dx < \varepsilon$. Cover S^n with two coordinate charts, $\mathcal{U}_1 = \mathbf{S}^{-1}(x:|x| \le 4K)$ and $\mathcal{U}_2 = \mathbf{S}^{-1}(x:|x| \ge 4K)$ $K) \cup \{\infty\}$. Parametrize $B = \mathcal{U}_2$, $B' = \mathbf{S}^{-1}(x:|x| \ge K)$ conformally in the obvious way. Now apply Theorem 2.1 to the connection d + A, which is now regarded as a connection d + A' on B'. By conformal invariance.

$$\int\limits_{|x| \ge K} |F_A|^2 dx = \int\limits_{|x| \le 1} |F_{A'}|^2 dx < \varepsilon.$$

 $\int\limits_{|x|\geq K}|F_A|^2dx=\int\limits_{|x|\leq 1}|F_{A'}|^2dx<\varepsilon.$ The overlap between two charts is in the coordinates in $\mathscr{U}_2=B$ (letting $\widetilde{\mathscr{U}}_2=B$) $\{|x| \leq \frac{1}{2}\}.$

$$\widetilde{\mathcal{U}}_2 \cap \mathcal{U}_1 = \{ x \in B' : \frac{1}{4} \le |x| \le \frac{1}{2} \}.$$

The map $s: B' \to G$ restricts to the overlap function $g_{12}: \widetilde{\mathcal{U}}_2 \cap \mathcal{U}_1 \to G$, and can be chosen smooth in this range $\{x: \frac{1}{4} \le |x| \le \frac{1}{2}\}$ $(\rho = \frac{1}{4})$. This map $g_{12} = s$ describes the principal bundle P on Sⁿ. Since we started with $A|\mathcal{U}_1$ in $L_1^{n/2}$, and by coordinate change we obtain in $\tilde{\mathcal{U}}_{2}$

$$\tilde{A} = s^{-1}ds + s^{-1}(A'|\tilde{\mathcal{U}}_2)s,$$

in $L_1^{n/2}$, we have a local description of a connection in $\mathcal{A}_1^{n/2}(P)$.

Corollary 2.3. If $A \in L_{1,\text{loc}}^{n/2}(\mathbb{R}^n,\mathbb{R}^n \otimes \mathfrak{g})$, (n=2m) and $\lim_{r \to \infty} \int\limits_{|x| \le r} |F_A|^{n/2} dx < \infty$, then

$$c_m = \left(\frac{1}{2\pi i}\right)^m \frac{(-1)^{m+1}}{m} \int_{\mathbb{R}^n} \operatorname{tr}(\rho(F))^m dx$$

is an integer.

Proof. By the preceding corollary, the connection d + A is obtained via a pull-back from an $\mathcal{A}_1^{n/2}(P)$ connection on S^n . By Corollary 1.5, $c_{n/2}$ is integral.

3. A Density Theorem

In Sect. 4, we obtain a map $u: B' \to G$, $u \in L_{2,loc}^{n/2}(B', G)$. Now u is not necessarily continuous (it is if $u \in L_{2,loc}^p(B',G)$ for any p > n/2). We wish to approximate u by a map which is smooth in an annullus $0 < \rho \le |x| \le 1 - \rho < 1$. To do this we mimic the proof of the approximation of L_1^2 maps from surfaces by Schoen and Uhlenbeck [8]. The slight technical difference is that we wish to keep the approximation fixed near the boundary.

For the following, G is any compact manifold isometrically immersed in \mathbf{R}^k (i.e., the Lie group structure is irrelevant). In our case, we consider $\rho:G\subset \mathrm{SU}(N)\subset \mathbf{C}^N\times\mathbf{C}^N=\mathbf{R}^k$ $(k=2N^2)$. Let \mathcal{O}_δ be the set of points at distance δ from G. If δ is sufficiently small, the nearest point projection from \mathbf{R}^k to G is well-defined and smooth on \mathcal{O}_δ . Call this $\Pi:\mathcal{O}_\delta\to G$. Given any domain $\Omega\subset\mathbf{R}^n$, define

$$L_k^p(\Omega, G) = \{ u \in L_k^p(\Omega, \mathbf{R}^k) : u(x) \in G \quad \text{a.e.} \}.$$

Let $\Omega_h = \{x \in \Omega : \operatorname{dist}(x, \mathbf{R}^n - \Omega) \leq h\}$. Also, let φ be any positive, smooth bump function with compact support in the unit ball, $\int_{\mathbf{R}^n} \varphi(y) dy = 1$. Given $u \in L_k^p(\Omega, \mathbf{R}^k)$, $x \in \Omega_n$

$$u^{h}(x) = \int\limits_{|x-y| \le h} u(x+hy)\varphi(y)dy. \tag{3.2}$$

It is well-known that u^h is smooth on Ω_h . However, $u^h(x) \notin G$.

Lemma 3.1. There exists $\varepsilon_0 = \varepsilon_0(n, G)$ such that if $\int_{B_h(x)} |du|^n(y)dy \le \varepsilon \le \varepsilon_0$, then the mollified function u^h has the property $\operatorname{dist}(u^h(x), G) < K\varepsilon^{1/n}$.

Proof. The condition given in Schoen and Uhlenbeck [9.3.2] is $h^{-n+2} \int_{B_h(x)} |du|^2 dy \le c\varepsilon^{1/2}$, which is implied by our assumption and the Hölder inequality.

Theorem 3.2. Let $u \in L_1^n(\Omega, G)$, and Ω be a compact domain in \mathbb{R}^n with smooth boundary. Then given $\mu > 0$, d > 0 there exists $\tilde{u} \in L_1^n(\Omega, G)$, $,\tilde{u} = u$ on $\overline{\Omega - \Omega_d}$, $\tilde{u} \mid \Omega_{2d} \in C^{\infty}(\Omega_{2d}, G)$ and $\|\tilde{u} - u\|_{L_1^{n}(\Omega, \mathbb{R}^k)} \leq \mu$. If $\mu \in L_2^{n/2}(\Omega, G)$, we may find \tilde{u} with $\|\tilde{u} - u\|_{L_2^{n/2}(\Omega, \mathbb{R}^k)} \leq \mu$.

Proof. For $x \in \Omega_d$, we have that $\varepsilon(x, h) = \int_{|x-y| \le h} |du|^n dx$ is a continuous family (in h) of

continuous functions on Ω_d decreasing to 0. Therefore $\varepsilon(n) = \max \varepsilon(x, h) \to 0$. So for h sufficiently small, $\operatorname{dist}(u^h(x), G) \leq K(\varepsilon(h))^{1/n} \to 0$. We observe that the proof that $\lim_{h\to 0} u_h^* = u$ in $L_1^n(\Omega)$ is exactly as in the classical case $f \equiv 1$, once we show that the linear map $v \to v_h^*$ on L_1^n satisfies $\|v_h^*\|_{L_1^n(\Omega)} \leq \overline{K} \|v\|_{L_1^n(\Omega)}$. But

$$||v_h^*||_{L^n(\Omega)}^n \leq \int \varphi(y) \int |v(x - hf(x)y)|^n dx dy$$

$$\leq \int \varphi(y) K \int |v(z)|^n dz dy$$

$$= K ||v||_{L^n(\Omega)}^n. \tag{3.3}$$

Here $K = \max_{y,x,h \leq d} \left(\det \frac{\partial (x - hf(x)y)}{\partial x} \right)^{-1}$. By differentiating (3.2), we obtain

$$|d(v_h^*)(x)| \le ||dv|_h^*(x)| + h \max |df|(|v_h^*(x)|).$$

From this we get (using (3.3) again on dv and |v|)

$$\|d(v_h^*)\|_{L^n(\Omega)} \le K^{1/n} \|dv\|_{L^n(\Omega)} + K^{1/n} h \max |df| \|v\|_{L^n(\Omega)}.$$

Finally, we show $\|u_h^* - \tilde{u}_h\|_{L_1^n(\Omega)} \to 0$, (which completes the proof). We have already

$$\max_{x \in \Omega} |\tilde{u}_h(x) - u_h^*(x)| \le K_2(\varepsilon(n))^{1/n} \to 0$$

from Lemma 3.1. By the chain rule

$$|d\tilde{u}_h(x) - du_h^*(x)| \leq |d\Pi(u_h^*(x)) - I| |du_h^*(x)|$$

$$\leq K_3(\varepsilon(h))^{1/n} |du_h^*(x)|.$$

Integrating both inequalities completes the proof. The proof for $L_2^{\eta/2}(\Omega)$ simply involves one more differentiation.

Note that this would be the first step in a proof that an $L_2^{n/2}$ bundle is "equivalent" to a smooth bundle. See Sedlacek [7] for a situation where such a theorem might be useful.

4. Coulomb Gauges

The theorem we wish to extend is the following theorem, proved in [5].

Theorem 4.1. There exists $\varepsilon_0 = \varepsilon(n,G) > 0$ and $K_0 = K_0(n,G)$ such that if $A \in L_1^{n/2}(B^n, \mathbf{R}^n \times \mathbf{g})$ and $\int_{B^n} |F_A|^{n/2} dx < \varepsilon$, then there exists $s \in L_2^{n/2}(B^n, G)$ such that $\widetilde{A} = s^{-1} ds + s^{-1} As$ satisfies

a)
$$d*A = 0$$

b)
$$\int_{\mathbb{R}^n} (|d\tilde{A}|^{n/2} + |\tilde{A}|^{n/2}) dx \le K_1 \int_{\mathbb{R}^n} |F_A|^{n/2} dx$$
.

We use this above theorem and the following compactness theorem where m = n - 1 [5].

Theorem 4.2. If 2p > m, $M = M^m$ is a compact manifold, and D_i is a sequence of connections with $\int_M |F(D_i)|^p dx < b$, then a subsequence of the D_i is gauge equivalent to a sequence D_i which converges weakly in the space of L_1^p connections.

The general techniques give an immediate corollary, which is what we shall use.

Corollary 4.3. If 2p > m and $M = M^m$ a compact manifold, then there exists an $\varepsilon_1(p, M, G) > 0$ such that if D is a connection with $\int_M |F(D)|^p dx < \varepsilon_1$, then there exists a flat connection d on M such that D is gauge equivalent to D' with

$$||d - D'||_{L_1^p(M)}^p \le K_1 \int_M |F(D)|^p d\mu.$$

Proof. By the weak compactness theorem we may assume that for ε_1 small, D' is weakly close to a flat connection and close in L_0^q for m < q < 2p. We may then find a Coulomb gauge for D' by solving

$$d^*(g^{-1}dg + g^{-1}(d - D')g) = 0$$

in the space $g \in L_1^q(M,G) \subset C^0(M,G)$ by means of the implicit function theorem. In the new gauge D' = d + A, where A is small in L_0^q , q > m, d*A = 0, and it is easily seen that the L_1^p norm of A is bounded by a multiple of $\int_M |F(D)|^p d\mu$ by the usual techniques of standard elliptic theory.

We now prove our main extension lemma.

Lemma 4.4. There exists $\varepsilon_2 = \varepsilon_2(n,G)$ such that if $A \in L_1^{n/2}$ ($\{x: \rho_1 \le x \le \rho_2\}$, $\mathbf{R}^n \times \mathbf{g}$) and $\rho_1^{-1} \int\limits_{|x| = \rho_1} |F_A|^{n/2} d\mu = \varepsilon < \varepsilon_2$, then A is gauge equivalent to a connection \widetilde{A} which extends to a connection (again called \widetilde{A}), $\widetilde{A} \in L_1^{n/2}(|x| \le \rho_2)$, $\mathbf{R}^n \times \mathbf{g}$) and $\int\limits_{|x| \le \rho_1} |F_A|^{n/2} dx \le K_2 \varepsilon$.

Proof. By conformal invariance, we may assume $\rho_1 = 1$, $\rho_2 = \rho > 1$. Let i(x) = x imbed $S^{n-1} \subset \mathbb{R}^n$ and let $i^*A = A^*$ be the pull-back Sobolev connection in a bundle over S^{n-1} . $\int\limits_{S^{n-1}} |F_{A^*}|^{n/2} * 1 = \int\limits_{S^{n-1}} |i^*F_A|^{n/2} * 1 \le \varepsilon_2$. By Corollary 4.3, with p = n/2, m = n - 1, $M = S^{n-1}$, if ε_2 is sufficiently small $d + A^*$ is gauge equivalent to $d + A^{**}$, where

$$\|A^{**}\|_{L^{n/2}_1(S^{n-1})}^{n/2} \leq K_1 \int\limits_{S^{n-1}} |F_A|^{n/2} * 1 \leq K_1 \varepsilon_2.$$

Since C^{∞} is dense in $L_1^{n/2}(S^{n-1})$ we may assume the gauge transformation s is smooth. Extend it to all of the annulus by $s(x) = s\left(\frac{x}{|x|}\right)$ and transform A via it. In the new gauge i*A, the tangential part of A is small on S^{n-1} .

Let the normal part of A, $A_r \in L_1^{n/2}(S^{n-1}, \mathfrak{g})$, be approximated (to within $(\varepsilon)^{2/n}$) by a smooth C^{∞} section g_r . Define a second smooth gauge transformation on $1 \le |x| \le \rho$ by $g(1,\theta) = I$, $\partial g/\partial r$ $(1,\theta) = -g_r$ and $g(r,\theta)$ is geodesic in G as a function of r. Gauge transform again. Now we have the norm in this gauge

$$||A|S^{n-1}||_{L_1^{n/2}(S^{n-1}\cdot\mathbf{R}^n\times\mathfrak{q})}^{n/2} \le K_2'\varepsilon.$$

Extend (in this gauge) by setting

$$A(x) = f(x)A\left(\frac{x}{|x|}\right)$$

for f(x) a smooth function, f(x) = 0 for $|x| \le 1/2$ and f(x) = 1 for $|x| \ge 3/4$. Now

$$\begin{split} \int\limits_{|x| \le 1} |F_A|^{n/2} dx & \le C_1 \, \|\, A \, |\, B^n \, \|_{L_1^{n/2}(B^n)}^{n/2} \\ & \le C_1 C_2 \, \|\, A \, |\, S^{n-1} \, \|_{L_1^{n/2}(S^{n-1})}^{n/2} \le C_1 C_2 K_2' \varepsilon. \end{split}$$

This completes the proof, with $K_2 = C_1 C_2 K_2$. The main technical difficulty is next solved.

Theorem 4.5. There exists an $\varepsilon_3 > 0$ and $K_3 < \infty$ such that if $A \in L^{n/2}_{1,\text{loc}}(B', \mathbf{R}^n \times \mathbf{g})$ and $\int_{B^n} |F_A|^{n/2} dx < \varepsilon_3$, then there exists a gauge transformation $g \in L^{n/2}_{2,\text{loc}}(B', G)$ such that the gauge transformed connection

$$\tilde{A} = g^{-1}dg + g^{-1}Ag \in L_1^{n/2}(B', \mathbf{R}^n \times \mathfrak{q}).$$

Moreover $d^* \tilde{A} = 0$ and $\|\tilde{A}\|_{L_1^{n/2}(B^n)}^{n/2} \le K_3 \int_{\mathbb{R}^n} |F_{\tilde{A}}|^{n/2} dx$.

Proof. Choose a sequence of radii $\rho_i \to 0$ such that $A | \{|x| = \rho_i\} \in L_1^{n/2}$ and $\rho_i \int\limits_{|x| = \rho_i} |F_A|^{n/2} dx = \varepsilon_i \to 0$. Let A_i be the extension of A_i gauge equivalent to $A | \{x: \rho_i \le |x| \le 1\}$ given by Lemma 4.4. We see immediately that

$$\int\limits_{|x|\leq 1}|F_{A_i}|^{n/2}dx\leq \int\limits_{|x|\leq \rho_i}|F_{A_i}|^{n/2}dx+\int\limits_{|x|\leq 1}|F_A|^{n/2}dx\leq K_2\varepsilon_i+\varepsilon_3.$$

Apply Theorem 4.1, which gives a gauge equivalent \widetilde{A}_i which can be estimated by $\|\widetilde{A}_i\|_{L_1^{n/2}(B_n)}^{n/2} \leq K_0(K_2\varepsilon_i + \varepsilon_3)$. Here $d^*\widetilde{A}_i = 0$.

First we may choose a weakly convergent subsequence $\tilde{A}_i - \tilde{A} \in L_1^{n/2}(B^n, \mathbf{R}^n \times \mathfrak{g})$. The weak convergence implies $d^*\tilde{A} = 0$, and the inequality

$$||A||_{L_1^{n/2}(B^n)}^{n/2} \leq K_0 \varepsilon_3.$$

Let $\mathscr{C}_i = \{x : \rho_i \leq |x| \leq 1\}$ and $\tilde{g}_i \in L_1^{n/2}(\mathscr{C}_i, G)$ be the composition of the several gauge transformations constructed by Lemma 4.4 and Theorem 4.5 relating $A | \mathscr{C}_i$ and \tilde{A}_i . Then

$$\tilde{A}_i = \tilde{g}_i^{-1} \circ d\tilde{g}_i + \tilde{g}_i^{-1} A \tilde{g}_i.$$

If we fix j, this equation holds on \mathscr{C}_j for $i \ge j$. Since $A | \mathscr{C}_j \in L_1^{n/2}(\mathscr{C}_j, \mathbf{R}^n \times \mathfrak{g})$ and on \mathscr{C}_j , $i \ge j$, we have for almost all x

$$\begin{split} |d\tilde{g}_i| &= |\tilde{g}_i \tilde{A}_i - A \tilde{g}_i| \leqq |\tilde{A}_i| + |A|, \\ |d^2 \tilde{g}_i| &= |\tilde{g}_i d\tilde{A}_i - dA \tilde{g}_i + d\tilde{g}_i \tilde{A}_i - \tilde{A} dg_i| \\ &\leqq |d\tilde{A}_i| + |dA| + |d\tilde{g}_i| |\tilde{A}_i| + |A| |d\tilde{g}_i|. \end{split}$$

From the first inequality and the Sobolev theorem we find for $i \ge j$

$$\begin{split} \| \, \tilde{g}_i \|_{L^n_1(\mathscr{C}_j)} & \leq \| \, \tilde{A}_i \|_{L^n(B^n)} + \| \, A \, | \, \mathscr{C}_j \, \|_{L^n(\mathscr{C}_j)} + \ell \\ & \leq c^j (\| \, \tilde{A}_i \, \|_{L^{n/2}_1(B^n)} + \| \, A \, | \, \mathscr{C}_j \, \|_{L^{n/2}_1(\mathscr{C}_j)}) + \ell. \end{split}$$

From this estimate, the second almost everywhere inequality and the Holder inequality we obtain

$$\|\tilde{g}_i\|_{L_{1}^{n/2}(\mathscr{C}_{j})} \leq \|\tilde{A}_i\|_{L_{1}^{n/2}(B^n)} + \|A|\mathscr{C}_j\|_{L_{1}^{n/2}(B^n)} + \|\tilde{g}_i\|_{L_{1}^{n}(\mathscr{C}_{j})} (\|\tilde{A}_i\|_{L^{n}(B^n)} + \|A|\mathscr{C}_j\|_{L^{n}(\mathscr{C}_{j})}).$$

By a diagonal argument, we extract a subsequence which converges weakly to a limit g in $L_2^{n/2}(\mathscr{C}_j, G)$ for all j. This produces $g \in L_{2,loc}^{n/2}(B^n, G)$. Since the weak limit implies almost everywhere convergence for \tilde{A}_i and \tilde{g}_i we obtain

$$\tilde{A} = g^{-1}dg + g^{-1}Ag.$$

This completes the proof.

We obtain Theorem 2.1 as a simple corollary of this theorem and Theorem 3.2.

Corollary 4.6. In the statement of Theorem 4.5, if we relax the condition that $d^*\tilde{A} = 0$, we may assume $g|\{x: \rho \le |x| \le 1 - \rho\} \in C^{\infty}$.

Proof. Let $\Omega = \{x: \rho/2 \le |x| \le 1\}$ and $d = \rho/4$. We may approximate $g \in L_2^{n/2}(\Omega, G)$ as closely as we like by a function which is smooth on Ω_d . If the approximation is close enough, the inequalities remain valid, although $d^*\widetilde{A}$ will no longer be zero in the new gauge.

References

- 1. Uhlenbeck, K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys. 83, 11-29 (1982)
- Parker, T.: Gauge theories on four dimensional Riemannian manifolds. Commun. Math. Phys. 85, 563-602 (1982)
- 3. Witten, E.: Instantons the quark model, and the 1/N expansion. Nucl. Phys. B 149, 285-320 (1979)
- 4. Schlafly, R.: A Chern number for gauge fields on R⁴. J. Math. Phys. 23, 1379–1394 (1982)
- 5. Uhlenbeck, K.: Connections with L^p bounds on curvature. Commun. Math. Phys. 83, 31-42 (1982)
- Sibner, L. M., Sibner, R. J.: Removeable singularities of coupled Yang-Mills fields in R³, Commun. Math. Phys. 93, 1-17 (1984)
- 7. Sedlacek, S.: A direct method for minimizing the Yang-Mills functional over 4 manifolds. Commun. Math. Phys. 86, 515-528 (1982)
- 8. Schoen, R., Uhlenbeck, K.: J. Differ. Geom. 18, 253-268 (1983)
- 9. Schoen, R., Uhlenbeck, K.: J. Differ. Geom. 17, 307-335 (1982)

Communicated by S.-T. Yau

Received October 1, 1982, in revised form March 22, 1985