Communications in
Commun. Math. Phys. 101, 449-457 (1985) Mathematical

© Springer-Verlag 1985

The Chern Classes of Sobolev Connections

Karen K. Uhlenbeck
Department of Mathematics, University of Chicago, Chicago, Illinois 60637, USA

Abstract. Assume F is the curvature (field) of a connection (potential) on R* with

finite [*norm|{ | |F|?dx < oo).We show the chernnumber ¢, =1/87% [ F A F

R R
(topological quantum number) is an integer. This generalizes previous results

which showed that the integrality holds for F satisfying the Yang—Mills
equations. We actually prove the natural general result in all even dimensions
larger than 2.

0. Introduction

All solutions of the Yang-Mills equations on R* with finite action actually arise
from connections defined on R*U(00)=S* [1,2]. This implies that the chern
numbers of these connections are the chern numbers of a bundle over S, and hence
are integers. It seems to be a question of general interest whether this result holds for
arbitrary connections on R* with finite energy [3]. Schlafley showed this is indeed
true if the curvature or field | F| has growth at most (r2logr) ! [4]. We prove that
finite energy j |F|?dx is sufficient. We prove general n-dimensional results. We
R4

assume throughout the paper that G is a compact Lie group with bi-invariant metric
and g is the Lie algebra for G.

Theorem. Let A;eLy}, (R",g), j=1,2,...,n>2andlet F=F,=dA+ A A A be the

curvature of the connection d+ A. If n is even, n#2, and | |F|"?dx < co, then the

chern number arising from a representation p:G —SU(N) is integral.

The proofis somewhat lengthy, and could be shortened considerably for the case
A;smooth. However, it seemed worthwhile to treat the most general case, A;€LY3,,
for the purpose of completeness. The various technical theorems we use to handle
non-smooth A4; have interesting features and possible applications elsewhere. The
main idea of the proof is to choose a good gauge near (co). This relies on an earlier
theorem on the existence of good (Coulomb) gauges [5]. The idea for the proof arose
from conversations with L. M. Sibner about the removable singularities theorem in
dimension 3 [6].
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1. Sobolev connections and Chern Number

Let P be a principal bundle over a compact Riemannian n-manifold M with
structure group G, Lie algebra g. Recall that the class of smooth connections is an
affine space, described by choosing any base connection D, and setting

A(P)={D=Dy+ A: AcC*(T*M ® Ad P)}.

We shall use the bundles T*M ® Ad P=n,(P)and T*M A T*M ® Ad P =1,(P) of
Lie algebra-valued one and two forms, so often we use the notation #,(P) and #,(P).
The space of Sobolev connections is

A{(P)={Do + A: AcL{(n,(P))}.

Here L{(n) denotes the Banach space of sections of n with partials up through order k
in L?. There is an equivalent local description. If % is a cover of M and p:P|%, ~
G x %, are smooth local trivializations, then

D\U,~d+ A,,

where A,eLE(%,, R"® g). It is a well-known fact that &/(P) is dense in /§(P).

The curvature of a smooth connection D is a smooth section F(D) of the bundle
1,(P) of Lie algebra-valued two forms. In local coordinates F|%,=dA,+ A, A A,.
From the local description, we easily see the following lemma:

Lemma 1.1. The curvature map F:of — C®(n,(P)) extends to a smooth (in fact
quadratic) map F: /% A3 — LE(n,(P)). If 2p 2 n=dim M, then o/% c o/3F and
F:al§ — L§(n,(P)).

Now let A"(M)= A" be the bundle of n-forms over M. A smooth bundle map
¥Y:n— A" is said to be a homogeneous polynomial of degree q if ¥.(1,) =
h(n.®n,® ---®n,), where h:(® n) - A" is linear.

q
This thinking leads us to the elementary observation:

Proposition 1.2. Let ¥:n,(P)— A, be a homogeneous polynomial map of degree p.
Then the induced map ¥: s/ —R given by

D) = Aj{ ¥(F(D))
extends to a smooth map ¥:/%(P)n.s/?P(P)—R.
Proof. Note ¥ factors into a composition
AP)NAL(P) 5 Li(n) S LA > R.

Each piece is smooth. The map ¥ itself is polynomial. If ¥ is merely homogeneous
of order p, (¥ (cn,) = c?¥,(n,), c>0), then ¥is C* for k any integer less than p.

Corollary 1.3. If ¥ takes on a constant value y on </(P), then it has the value y on every
connection in sf5(P)n o/ 37(P).

Proof. This follows from the density of .2/(P) in «/%(P)n o/ 3?(P) and the continuity
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of ¥. For m < n/2, the following can be compared to Sedlacek’s result [7].

Corollary 1.4. If p:G— SU(N) is a representation, and w a smooth n-2m form on M,
then the characteristic class cupped with w and evaluated on [M], c,{w), which is a
multiple of

[ (tr p(FY") A o
M

is constant on o7 N\ /™. In particular, if n is even and m=n/2,
J tr p(F)"?
M

is a fixed integer times the appropriate dimensional constant on /",

Proof. Here ¥ is given by (tr p(F)™) A @, which is polynomial. Since L%? c I*, we
may replace o/7?n.o/" by /2.

Corollary 1.5. Let S:5*" — {c0} >R*S™1:R*" 8> — {0} be the usual stereo-
graphic projection and its inverse. Let De o/ be a connection in a principal bundle P on
S2™ and let the connection d + A on R*"

d+A=(S"YH*D
be obtained by pull-back of D. Then the chern number
B 1 m( . 1)m+ 1 "
n = (27) S [ (el

RZm
is integral, where F = F(d + A)=dA + A A A.
Proof. Due to the way chern number is defined, on S”

1 m_ 1 m+ 1
Cn = <%> (—n)l—sf tr (o(F(D))™), (€RY

2m

which is integral by the previous corollary.

2. Construction of the Bundles on S"

Recall that if M’ is a non-compact manifold, by L ;,(M’) we mean the Frechet space
of functions whose restriction to any compact domain % = M’ lie in L{(%). Let
B = {xeR", 0 <|x| < 1}. In Sect. 4, we obtain the following result as Corollary 4.6.

Theorem 2.1. There exists ¢ = &(G, n) > 0 such that if De /73, (B') and
[ |F(D)2dx=lim | |FD)"dx<e,

0<[x|s1 r=>0rgix|<t

then there exists se L}j2, (B", G) such that in the gauge
s Ds=d+s 'ds+s 'As=d + A,
we have AeL"*(B,R"®g). Also
I A1l 2 = cn, G) | F(D) |l pr2s)-
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Moreover, s may be chosen smooth on {x:0<p=<|x|<1—p<1}.

We now describe how to pass from this technical result to our main result. We
state the result for R”, although it, of course, applies to any conformal equivalent of a
compact manifold with a finite number of points omitted.

Corollary 2.2. Let AcL}3 (R, R"® g), and f |F 4|"2dx < oo. Then the connection

D =d + A is gauge equivalent to the pull- back via the inverse stereographic projection
of a connection De.ofV*(P), for some smooth principle bundle on S

Proof. Since [ |F 4|"?dx < oo, we can choose a K < co such that [ |F |"?dx <e.

n x|2 K
Cover S with two coordinate charts, %, =S~ }(x:|x] £4K) and’ |@22=S’1(x:|x|g
K)u{o}. Parametrize B=%,, B =S~ (x:|x| 2 K) conformally in the obvious
way. Now apply Theorem 2.1 to the connection d + A4, which is now regarded as a
connection d + A’ on B'. By conformal invariance.

[ |FPdx= [ |Fy|*dx<e.

IxIZ K IxI=1
The overlap between two charts is in the coordinates in %, =B (letting %, =
{Ix| =3}
Uy U, = {xeB 5= |x| <3},
The map s:B'— G restricts to the overlap function g,,:%,N%,— G, and can be
chosen smooth in this range {x:} < |x| <4} (p =%). This map g,, = s describes the

principal bundle P on S". Since we started with 4|%, in L}?, and by coordinate
change we obtain in %,

A=s"Yds+s YA |U,)s,
in L%2, we have a local description of a connection in 2/%?*(P).

Corollary 2.3. If AeL3.(R",R"®¢g), (n=2m) and lim | |F,|"?dx < oo, then

roo X<y

B m(_l)m+1 "
c,,,—<2m> ftr (F))"dx

is an integer.

Proof. By the preceding corollary, the connection d + A is obtained via a pull-back
from an &//*(P) connection on S*. By Corollary 1.5, c,, is integral.

3. A Density Theorem

In Sect. 4, we obtain a map u: B'> G, ueLy} (B, G). Now u is not necessarily
continuous (it is if ue L% ,..(B’, G) for any p > n/2). We wish to approximate u by a
map which is smoothin an annullus 0 < p < |x| <1 — p < 1. To do this we mimic the
proof of the approximation of L? maps from surfaces by Schoen and Uhlenbeck [8].
The slight technical difference is that we wish to keep the approximation fixed near
the boundary.
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For the following, G is any compact manifold isometrically immersed in R* (i.e.,
the Lie group structure is irrelevant). In our case, we consider p:G < SU(N) <
CY x C¥ =R* (k= 2N?). Let O, be the set of points at distance § from G. If 6 is
sufficiently small, the nearest point projection from R* to G is well-defined and
smooth on ;. Call this I1:0;— G. Given any domain £2 = R”, define

LD, G) = {ue L2 R":u(x)eG ae.}.

Let 0, = {xe:dist(x,R"— 2) < h}. Also, let ¢ be any positive, smooth bump
function with compact support in the unit ball, [ ¢(y)dy = 1. Given ue L{(€2 R¥),

RI!
xefl,

u'(x)= | u(x+ hy)e(y)dy. (3.2)

jx—ylsh

It is well-known that u" is smooth on £,. However, u"(x)¢G.

Lemma 3.1. There exists e, = &(n, G) such that if | |dul|'(y)dy << ¢, then the
By(x)
mollified function u" has the property dist(u”(x), G) < Ke!/™,

Proof. The condition given in Schoen and Uhlenbeck [9.32]is h™"*% | |dul|*dy<
Bn(x)

ce!/2, which is implied by our assumption and the Holder inequality.

Theorem 3.2. Let ueL}(Q,G), and Q be a compact domain in R" with smooth
boundary. Then given u>0, d >0 there exists ieL{(Q,G), i=u on Q—Q,,
192,,€C™(£2,4,G) and |ii—ull ey < p If nelY*(2 G), we may find i with
lld—u “L;/Z(Q,R") S

Proof. For xe2,, we have that e(x,h)= | |du|"dx is a continuous family (in h) of
Ix=ylsh

continuous functions on £, decreasing to 0. Therefore ¢(n) = max &(x, k) = 0. So for h
sufficiently small, dist(u"(x), G) < K(e(h))'"—0. We observe that the proof that

limuf = u in L}(£2) is exactly as in the classical case f= 1, once we show that the
h—0

linear map v— v} on L] satisfies ||v} || oS Kol L@ But
o I 2nc < § @) f 100 — Bf (x)y)I"dxdy
< [ @)K [|u(z)"dzdy
= K[lo e (3.3)

Here K = max (deta(—xw

yxhsd
|d(vi) ()] = vl (x)| + hmax |df [([vF(x)]).
From this we get (using (3.3) again on dv and |v{)

1) I < KM ([ dv [l niy + KH"h max [df | | 0]|n oy

-1
> . By differentiating (3.2), we obtain
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Finally, we show |ujf — ;1o — 0, (Which completes the proof). We have
already

max | i1,(x) — uf(x)| < K,(e(n))"" >0

xeQ
from Lemma 3.1. By the chain rule
|dity(x) — duy(x)| < |dIT(ui(x)) — || dug(x)|
< K(e(h) "l dugi(x)|.

Integrating both inequalities completes the proof. The proof for L¥?(2) simply
involves one more differentiation.

Note that this would be the first step in a proof that an L%? bundle is “equivalent”
to a smooth bundle. See Sedlacek [7] for a situation where such a theorem might be
useful.

4. Coulomb Gauges
The theorem we wish to extend is the following theorem, proved in [5].
Theorem 4.1. There exists ¢, =¢n,G)>0 and K,=Kyn,G) such that if
AeL/*B"R" x g) and [ |F 4|"?dx <e, then there exists seLy*(B",G) such that
A=s5s"lds+s 'A4s satis}znes

a) d*A=0

b) Bjn(|dz "2+ |A"%)dx < K, | |F 4" dx.

Bn
We use this above theorem and the following compactness theorem where m =n — 1
[51
Theorem 4.2. If 2p>m, M = M™ is a compact manifold, and D; is a sequence of
connections with j | F(D;)|Pdx < b, then a subsequence of the D; is gauge equivalent to a
M

sequence D; which converges weakly in the space of L% connections.
The general techniques give an immediate corollary, which is what we shall use.

Corollary 4.3. If 2p>m and M =M™ a compact manifold, then there exists an
€1(p, M, G) > 0 such that if D is a connection with | |F(D)[Pdx <, then there exists a
M

flat connection d on M such that D is gauge equivalent to D' with
lld — D" || Zep) < Ky A); |F(D)|"dp.

Proof. By the weak compactness theorem we may assume that for ¢; small, D’ is
weakly close to a flat connection and close in L for m < g < 2p. We may then find a
Coulomb gauge for D’ by solving

d*g~'dg+g~'(d—D")g)=0
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in the space ge LY(M, G) = C°(M, G) by means of the implicit function theorem. In
the new gauge D' = d + A4, where Aissmallin LY, g > m,d*A = 0, and it is easily seen

that the L} norm of 4 is bounded by a multiple of fIF(D)I”d,u by the usual
M

techniques of standard elliptic theory.
We now prove our main extension lemma.

Lemma 4.4. There exists &, =¢&,(n, G) such that if AeLy* ({x:p; £x<p,}, R"xg)

and p;' [ |F,|"*du=c<e,,then A is gauge equivalent to a connection 4 which
[x{=p,

extends to a connection (again called A), AcL"*(|x| < p,, R" x g) and [ |F4|"?
Ix|sp

dx £ K,e. '

Proof. By conformal invariance, we may assume p, =1, p, =p>1. Let i(x) =x

imbed §"~! = R" and let i*4 = A* be the pull-back Sobolev connection in a bundle
over S"" 1. [ |Fu|"?%1= [ [i*F,|"*%1<¢,. By Corollary 4.3, with p=n/2,
n=1 n=1

N
m=n—1, M=8""1, if ¢, is sufficiently small d + A* is gauge equivalent to
d + A**, where
IIA**”"nlzsn L, S Ky _f |F 4 "?%1 < K é,.
st 1
Since C® is dense in LY*(S"~ ') we may assume the gauge transformation s is

)

smooth. Extend it to all of the annulus by s(x) = s(%) and transform A via it. In the

new gauge i*A, the tangential part of 4 is small on §"~'.

Let the normal part of 4, 4,e L7*(S" !, g), be approximated (to within (¢)2") by a
smooth C* section g,. Define a second smooth gauge transformationon 1 £ |x| < p
by g(1,0) =1, dg/or (1,6) = — g, and g(r, 0) is geodesic in G as a function of . Gauge
transform again. Now we have the norm in this gauge

A4|S"~1 ”24;%2(3"'*11")(9) <Kje

Extend (in this gauge) by setting

A =7094 (I |>

for f(x) a smooth function, f(x) =0 for | x| < 1/2 and f(x) =1 for |x| = 3/4. Now

J IF"2dx < Cy || A|B" | iy

LY*B"
IxIs1 (

SCLC | AIS" R gn-1 <C1C2K'23

LY

This completes the proof, with K, = C,C,K/,. The main technical difficulty is next
solved.
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Theorem 4.5. There exists anes > 0and K 5 < oo such that if Ae L3, .(B,R" x g) and
[ |F 4I"?dx < &3, then there exists a gauge transformation ge L33 (B, G) such that
BH

the gauge transformed connection

A=g 'dg+g 'AgeL"*(B,R" x g).
Moreover d*A =0 and | 4 ”2/"2’213)— K, j |F;|"?dx.

Proof. Choose a sequence of radii p;—0 such that A|{|x|=p;}eL??® and
pi | |F4"?dx=¢—0. Let A; be the extension of A; gauge equivalent to
|x|=p;
Al{x:p; < |x| =1} given by Lemma 4.4. We see immediately that
J IFI"dx < [ |Fg"dx+ [ |F,"dx < K,e +¢;.

|x|=1 IxI<p; Ix|=1

Apply Theorem 4.1, which gives a gauge equivalent A; which can be estimated by
|4, 725, < Ko(K 28; + €3). Here d*4,=0.

First we may choose a weakly convergent subsequence A, — AeL"*(B"R" x g).
The weak convergence implies d*4 = 0, and the inequality

||A”'11%2(3)—— Koes.

Let €, = {x:p; < |x| < 1} and §;eLY*(%,, G) be the composition of the several gauge
transformations constructed by Lemma 4.4 and Theorem 4.5 relating 4|%; and A;.
Then

A;=§;todg + gi * A
If we fix j, this equation holds on % for i 2 j. Since A|% ;e L}*(%;,R" x g)and on ¥,
i =j, we have for almost all x
|dgi| = lgizi —Agi| = I71,| + A4l
|d*§;| = §.dA; — dAG, + dg.A; — Adg,|

S|dA| +dAL + 1dgil | 4| + | Alldg,l.

From the first inequality and the Sobolev theorem we find for i =
1Gillae) = I Al gy + 1 419G y + £
S AU Al g + 1 A1E; l 2ey) + £

From this estimate, the second almost everywhere inequality and the Holder
inequality we obtain

I g; ”L;/z(@)— “A “L"/Z(B )+ ||A|(g ”L';/Z(B") + 1 g: ”Ll(@ )( [ Zi ”L"(B") + “Al(gj “L"(gj))-

By a diagonal argument, we extract a subsequence which converges weakly to a limit
g in LY*(%,, G) for all j. This produces geLy} . (B", G). Since the weak limit implies
almost everywhere convergence for A; and §; we obtain

A=g 'dg+g *Ag.
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This completes the proof.
We obtain Theorem 2.1 as a simple corollary of this theorem and Theorem 3.2.

Corollary 4.6. In the statement of Theorem 4.5, if we relax the condition that
d*4 =0, we may assume g|{x:p <|x|<1—p}eC™.

Proof. Let 2= {x:p/2 <|x| <1} andd = p/4. We may approximate ge L%*(£2, G) as
closely as we like by a function which is smooth on £,. If the approximation is close
enough, the inequalities remain valid, although d* 4 will no longer be zero in the new
gauge.
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