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Abstract. We consider the dynamical system (ϊ, μ, Tt) where (£, μ) is the Gibbs
ensemble at some fixed temperature and density for a semi-infinite one-
dimensional ideal gas of point particles. The first particle has mass M, all the
other particles mass m < M. Tt is the time evolution which describes free motion
of the particles except for elastic collisions with each other and with the wall at
the origin. We prove that (3£, μ, Tt) is a K-ύow.

1. Introduction

The ergodic properties of the infinite ideal gas are well established, cf. [1, 2].
However there is at present no idea on how to treat interacting systems. We
investigate here a somewhat intermediate system, in which interaction is confined
to a finite subsystem.

More precisely, we consider an infinite system of point-like particles on the half
line R+ = [0, oo), which interact only by elastic collisions with each other and with
a "wall" placed at the origin q = 0. We assume that the mass of the first particle, i.e.
the one closest to the wall, is M > 0, and that all the other particles have a common
mass m<M. We shall refer to the first particle as the "heavy particle" (h.p.).

The Gibbs state for the ideal gas corresponding to any choice of the inverse
temperature β and of the particle density ρ is an equilibrium state for the system.
The dynamics is most conveniently described in terms of "pulse trajectories."
When two particles of mass m collide we let them cross each other, keeping their
velocities. The dynamics for these new objects ("pulses") is as follows: they move
with constant velocity until they collide with the h.p., then they change their
velocity according to the law of elastic collisions, and keep their new velocity until
the next collision with the h.p. Clearly the new description is equivalent to the
traditional one and it has the advantage that the interaction is reduced to collisions
with the h.p.

Since the incoming flow of particles keeps the h.p. close to the wall, a pulse will
interact with the h.p. maybe several times, but finally it will escape to infinity
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without recollisions. It would seem that we have a cluster structure: the pulses
come in independent clusters, interact and go away. Therefore we would expect
good ergodic properties. However since the h.p. can reach any given point, the
existence of a cluster does depend on the future. In paper [3], which studies a
mechanical model for a thermal bath, the difficulty is removed by the presence of a
second wall at distance L, which is transparent for the pulses but reflects the h.p.
The ergodic properties of the system are essentially due to the fact that the past is
forgotten each time the h.p. reaches L, i.e. given its velocity at that time, the
distributions of the future evolution is completely determined.

In the proof which we give below the cluster idea still plays a fundamental role.
We prove that sooner or later a particular configuration of pulses arrives near the
origin, such that the last moment of interaction of the h.p. with them is a "good
candidate" to be a cluster time (i.e. a time after which the h.p. never collides again
with any of the particles with which it collided in the past). A "good candidate"
means that the probability of a recollision is very small.

It seems to us that the idea of our proof recalls what Landau and Lifshitz [4]
say in the first pages of their Statistical Physics: "A subsystem of the system under
consideration is a mechanical system, but certainly not a closed one. On the
contrary it undergoes all kinds of interactions with other parts of the system....
Owing to their complexity it will pass sufficiently often through all its possible
states .... The substantial distribution of a given subsystem is independent of the
initial state of any other small part of the same system, because, after a sufficiently
long time, the influence of the initial state will be completely outweighed by the
influence of other, much larger parts of the system."

The plan of the paper is the following. In Sect. 2 we give definitions and state
the results. We also establish the following criterion: The K property is equivalent
to the fact that the conditional measures, given the past history of the h.p., are
equivalent when relativized to the σ-algebra generated by the behavior of the h.p.
in the distant future. In Sect. 3 we prove some probabilistic results, and we show
that there are cluster times in a set of full measure. In Sect. 4 we prove the
equivalence required by the criterion, making use of a "copying procedure," by
which we "copy" the distant future history of the h.p. in a configuration x with that
determined by configurations x' which can have "almost any" trajectory of the h.p.
up to time t = 0. We do this by using the existence of cluster times proved in Sect. 3.
In the Appendix we prove some probabilistic estimates.

2. Description of the System and Formulation of the Results

The one-particle phase space is R2+ = {(q, v) e JR2 q > 0}, where q denotes the posi-
tion of the particle and v its velocity. X denotes the space of the locally finite
configurations in R2

+ and 3K the σ-algebra of the Borel sets of X. If x e X and A Q R2

+

is a measurable set we denote by xA the configuration xnA. WA denotes the sub-σ-
algebra generated by xA. By XA we denote the phase space of a particle system
in A. Sometimes we shall not distinguish between XA and the subset
XA = {xeX:χR2χA = φ) and we shall identify the subsets of WA with the corre-
sponding subsets of XA. A point xeX can be identified by a sequence
χ = {Qk(χ)>vk(χ)}k>=o i n which the particles are labelled in order of increasing
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position, and, for equal position, of increasing velocity. M is the mass of the first
particle (qQ,v0), and m<M the masses of the other particles.

μ denotes the free gas Gibbs equilibrium measure corresponding to some fixed
values of the particle density ρ and of the temperature β. By μ° we denote the same
measure for M equal to m. μ° is a Poisson stochastic field on R\. By μA, μ° we shall
denote the measure induced on WdA, AcR2

+, measurable. We shall sometimes
understand such measures as measures on XA.

The dynamics can be described as follows: all particles keep their velocity until
either (i) the h.p. reaches the origin and reflects its velocity, or (ii) the h.p. collides
with a light one (pulse). If Fand u are the velocities before collision of the h.p. and of
the light one, respectively, we prescribe that at the collision time they have the
outgoing velocities V and vΐ respectively:

(2 la)

(2.1b)

with

M — m

M + m
(2.1c)

We define in such a way a measure preserving flow { Tt}tR, on an invariant set of
μ-measure one. We denote by Tt° the "free flow," i.e. the flow when all masses are
equal to m, and (elastic) collisions occur only at the origin.

Our main result is the following:

Theorem 2.1. (£, μ, Tt) is a K-system.

To prove Theorem 2.1 we introduce the measurable partition ζ_ [5],
generated by the random variables qo(t), t ̂ 0 , where qo(t) denotes the position of
the h.p. at time t (here and in the following, partitions should always be understood
as defined μ-modulo zero). By definition Ttζ^^ζ^ for ί^O,

VΉ-=ε, (2.2)

ε being the partition of X into points. In fact with probability one all particles have
nonzero velocity, so they eventually collide, in the future or in the past, with the h.p.
Their velocities can therefore be reconstructed from the path of the h.p., which is
measurable with respect to the partition on the left-hand side of Eq. (2.2).

To show that the system is K it remains to prove that

ΛT f ζ_=v, (2.3)

where v is the trivial partition. We will use a criterion given in Proposition 2.1
below, to state which we need some more notation.

If ζ is a partition we shall use the same symbol to denote the σ-algebra
generated by it, and denote by ζ(x) the atom of ζ containing the point x. Let ζt

denote the partition generated by qo(f), t'>t and

C^ΛC (2-4)
ί > 0
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Proposition 2.1. // there is asetEζ_ -measurable and such that μ(E) — 1, and for any
x, x 'eE, the measures μ( |ζ_(x)) and μ( |£__(x')) a r e equivalent on the σ-algebra C00

[defined by Eq. (2.4)7, then C00 is trivial.

Remark 2.1. Under the assumptions of Proposition 2.1 (3£, μ, Tr~
x) is a K-system,

and this implies that (3E, μ, Tr) is also a K-system [5].

Proof of Proposition 2.1. Let A e £°°, μ(̂ 4) > 0. Then there is a sequence (sn, Bn), with
εM|0 and Bn cylindrical [i.e. measurable with respect to the σ-algebra generated by
qo(t) for t in a bounded interval] such that

μ(AABn)<εn. (2.5)

(Here ^zJ5π denotes, as usual, the symmetric difference of the sets.) Since Bn is
cylindrical, for some negative tn the set Dn = StnBn is C_ -measurable. So for
An = Sfn̂ 4 we have

μ ( Λ / ^ ) = μ 0 4 ^ n ) ^ => μ ( ^ n i ) π ) ^ β n , (2.6)

where Ac

n is the complement of An. From Eq. (2.6), using Chebyshev's inequality

μ({x E Dn: μ(Ac

n\ζ _ (x))

and setting

we have, from Eq. (2.6)

μφn) ^ μ(Dn) - ]fϊn ^ μ(A) - 2\fin. (2.7)

Let D-limsupDn . Then by Eq. (2.7)

Taking xeDnE there is a subsequence nt (depending on x) such that

l . (2.8)

Since for x'eE μ(- |C-(^0) is equivalent to μ( |ζ_(x)), we have

limμ(Anί\ζ_(x'))=l Mx'eE,
i~* oo

where {n(} is the same sequence as in Eq. (2.8). Since μ{E) = \ we have

1 =1 μ(dx') lim

3. Existence of Cluster Times

We prove in this section an intermediate result, which has interest also for itself,
namely the existence of "cluster times" for a.a. x e 3E.



Semi-Infinite One-Dimensional System 367

Definition 3.1. We say that Γis a cluster time (c.t.) for x e X if it is a collision time for
the h.p. such that the h.p. never collides for t>ΐwith the particles with which it
collided for t^L

We describe the collision of the h.p. by a set of "collision parameters."

Definition 3.2. The triple Q = (t,q,v), where t is the time of the collision, q its
position and v the outgoing velocity of the h.p., is the set of the collision parameters
of a collision of the h.p.

It can be seen that except for a set of μ-measure 0 (for which multiple collisions
occur) the sequence of the collision parameters completely identifies the configu-
ration x e 3£.

Before proving the existence of cluster times we give three basic lemmas.

Lemma 3.1. There is a constant c>0 such that for μ-a.a. x e X,

* ' - ( 3 1 b )

/ 2 / 2
Proof Let E(t) = {xeX:\v0(Ttx)\>clog1/2\t\} with c>]/-—>]/—-. Since the

y βm y pM

distribution of v0 is stationary with density 1/^-—expί -βM — J, we have
]/ 2π \ 2)

00

Σ μ(E(u)) < °°> s o t r i at Ineq. (3.1a) holds for the integers. Now if |t?0(x)| < c log1/2/c
u = 0

and |vo(7Jx)| ^c log 1 / 2 k for some t e (0,1), there must be at least one particle with
velocity v< -clog1/2k in the region

{(q, υ)eR2

+:ve(-Gθ,-c log1/2 k), q e (q0,2q0 + \vo\ - υ)} .

If Ek denotes the corresponding event, we have

( flU\l/2oo clog1/2^

ψ- ί dqoe~^ i dvϋe-w2°'2μ(Ek\q0, v0).
ιlz<f ,

c l o g / ^ c l o g / ^

• f ώ o e - ^ / 2 J d t , e - ^ / 2 ( 9 o + k | ^
- c l o g 1 / 2 ^ - o o /C

for some c1 > 0 and δ > 0 . This proves Ineq. (3.1a). An analogous argument shows
that Ineq. (3.1b) holds for t integer, and Ineq. (3.1b) is easily deduced for
continuous t using Ineq. (3.1a).

Definition 3.3. For any L > 0 and s > t > 0 we set

CL(ί, s) = {(q, v) E R\ : q ̂  L, q + ϋτ = L for some τ e [ί, s)} , (3.2)

KL(0-i^2

+\CL(ί,(X)). (3.3)
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vj

vt2=0

Fig.l q-L + vti =0

In what follows we shorthand CL = CL(0, oo) and RL^RL(0, oo) (see Fig. 1).
CL(ί, s) contains the particles which, under free dynamics, cross L between times t
and s.

Since the h.p. is "confined" close to the wall we expect that "most" of the
negative particles never collided with it. We shall now show that those which
collided are a finite number, i.e. that for μ-a.a. x we can find an L so large that all
such particles are in [0,L).

Lemma 3.2. Let JίL denote the subset of 3£ for which qo<L and all the negative
particles which collided with it in the past have coordinates in [0, L). Then

L->σo

Proof Consider the region ΓL C CL

(see Fig. 1), and a configuration x e ^ n / / , where

is the subset for which ΓL is empty, and

(3.4)

(3.5)

Then the h.p. in x did not collide with the particles of XCL in the past. In fact,
suppose that such collisions took place, and that ί0 is the last collision time. Clearly
ί0 < 0 and for ί0 < t % 0 we have

Ttx = TtxRLκjTt°xCL.

So for t e(£ 0,0] the particles of XCL are in the region CL( —ί, co)\ΓL( — ί), where

(3.7)
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is the preimage of ΓL. But a simple computation shows that

inf {q: (q, v) e CL(τ, oo)nΓL(τ)} ̂  max(L, j/X log + τ).

So there is no such collision, or ί o = — oo. Therefore JfL~2>^[(^^L By Lemma 3.1
lim μ{Jί{)=\. Moreover, since the Lebesgue measure of ΓL is

we have

lim μ(3lL) = 1, (3.9)
L-»oo

which proves the result.

Remark 3.1. Clearly JfLsζ_. Moreover if ζL denotes the partition generated by
XRL, then its restriction to Jίh ζL\jrL is a refinement of ζ^\jrL:ζL\jrL^C-Lr^

Remark 3.2. It is easy to see that Λ^n2lL = ̂ L π2l L , where (fL e 9JlKjL (= CL) is given
by

/ L = { x e S : β 0 ( T ^ Λ J < ] / L l o g + | ί | , ί ^ O } , (3.10)

because there are no collisions with XCL, and as a simple consequence of the proof
above we get

lim/ι(4) = l . (3.11)
L->oo

The following simple lemma shows that the infimum of the positions of the
positive particles goes away faster than any power ίy, y < 1/2.

Lemma 3.3. For α>0, γ e(0,1/2), αnd ί o

> 0 , consider the set

Then

lim μ({x: xVa t = 0}) = 1,

αwd ί/zβ /zmiί is uniform in ae [0, oo).

Proof VUtt0 is the region between the half-line [α, co) on the # axis and the curve

ΊIz^zA f o r q-a^-y)tl

It is easily seen that for (1/y)—1>1 the Lebesgue measure of Ffl?ίo goes to 0
uniformly in a as fo-κx), which proves the lemma.

We can now state the main result of this section.
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Theorem 3.1. There is a set E\ μ(E')=l, such that for xeE' there is an infinite
number of positive cluster times.

Proof The theorem is proved by proving the following two statements.

Statement 3.1. If L > 0 is large enough there is a set 3^0) C £, μφ^) > 0 such that for
xeX^ there is a c.t. with parameter Q = (ΐ,q,ϋ) such that FG (0,1),
^e(2L/3,(ε + 2/3)L), ε = ί Γ 1 / 6 , ϋ<0.

Statement 3.2. There is a set XLC (J T_J^ 0 ) such that

limμ(XL) = l . (3.12)
L->-oo

In fact, take an increasing sequence Ln such that μ(XLn)>l-2~n. Then by the
Borel-Cantelli Theorem the set

E ^ l i m i n f ϊ ^ (3.13)
n-+ oo

has the required properties.

Proof of Statement 3.1. We construct X^\ by giving separate conditions on XRL and
XCL. TO make the text legible we give some reference or commentary for each
condition.

A. Conditions on XRL

al) xeSLj2\ [see Eq. (3.10)];
a2) xRLnΓL/2 = φ: [see Eq. (3.7)];
a3) xe$/

L:$'Le<$JlRL is defined in the appendix [Eq. (A.I)], and is a set
satisfying some condition of "uniform distribution" for the particles in [0,L);

a4) x e f [ J [ e 9 W R L is defined in the appendix (Eq. A.2) and is the set for
which the absolute value of the velocities in [0,L) does not exceed clog 1 / 2 L for
some constant c > 0 ;

a5) x E Ϋ"L, where

eX: min q + vt>2L/3 + t215 for t>rL\ (3.14)
{q,v)ex >

q>2L/3,v>0 )

for

rL = (2L/3)2/5. (3.15)

We denote the set on which conditions al)-a5) are satisfied by d£0). Clearly
i{L]smR^ and by Lemmas 3.3 and A.I, Eqs. (3.8) and (3.11) it follows that

\im μ{i^)=l. (3.16)
L-»-oo

B. Conditions on XcL(o,rLy The region CL(0, rL) (given by Definition 3.3) contains
the negative particles which cross L before time rL. We want them to be arranged in
a very special way so that they can produce a c.t. The construction (as well as the
"copying" construction of next section) is made possible by the fact that, as it follows
from the collision equations (2.1), if we let w-» — oo for fixed F,ι/-> + oo (and
V2* — oo), i.e. a very fast incoming particle reflects from the h.p. almost as from a
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"wall", i.e. preserving a high energy. This clearly depends on the fact that α > 0, i.e.
M>m. For M ^m our arguments do not apply, although, presumably, the results
are still valid.

We shall describe the particles in CL(0, rL) as well as the effect which they
produce.

bl) A particle (q, v), -v(\-a)e (ecL, ecL +1) and q + vto = L, for some

c>c = ρlog(l/α)ί0e (0,1/2).

It follows from Proposition A.I of the Appendix that if x e f [ n ^ , then for L large
the h.p. in xL = xRjyj{q, v) after colliding with (q, v) reflects from the wall and never
after reverses its velocity. Moreover, since \υ\ is large, the motion of the h.p.
becomes "almost deterministic" (on scale L), which implies (Corollary A.I) that
there is a time t, depending only on (q,υ) such that \ί—to\<2Le~λL

9 0<λ
< min(c,c-c), and at time t the h.p. is in the interval (2L/3,(ε + 2/3)L) with
velocity Ve(Vm,VM), Vm = (l-a)\v\a2L(1+ε)/\ KAf = ( l - α ) | φ 2 L ( 1 " £ ) / 3 , ε = L~1/6.
Furthermore all the particles which collide with it in [0, L) get a velocity larger
than w = eλL.

b2) A second particle (quvx) such that

(2L/3, (ε + 2/3)L) and - υx{\ - α) e ((1 + α)FM, 2VM).

In the configuration xRL}J(q9v)u(qί,vί), (q1,υ1) it will collide at some place

«e(2L/3,(ε

— ^ _ 1 —α 1 _
and at some time ί, \t — t\<εL- — . Hence t<\ for L large. Moreover the

1 +α VM

outgoing velocity V1 of the h.p. is such that - Vi e(VM,2VM).
b3) A sequence (qi9 vt), i = 2,3,..., N, which collides with the h.p. after time Fin

such a way that after hitting the wall the first time it is kept in [0, L/2) with velocity
less in modulus than F = l + - VM until time rL — ί. The sequence can be

1 — α
realized in the following way. Since \t — T\ = 0(Lε/VM) and V1e(~2VM,- VM\ there is

an interval (f1? t2) depending only on (q, υ) such that for te(tl912) the h.p. is in
XL

[0, L/2) and t2 ~h<- —. So if we take (q2, υ2) such that4 K

and q2 + τv2 = L/2 for some τe(tl9t2), it collides in [0,L/2), and the outgoing
velocity of the h.p. will be negative. To choose the other ones take the first integer n
such that α" < 1/2 and δ so small that 2αn < 1 - δ/V. Then choose vke(-V,-V+δ)

and #k such that for the times tk= —-I qk— — I the inequalities th — tk^1 < —*n
\vk\ \ 2/ 2Vn

hold for k = 3,4,..., 1. It is easy to see that the h.p. by colliding with such particles
and with the negative particles of XRL which are left at time Γ(right of 2L/3) never
gets a velocity larger (in absolute value) than V. If it starts off at the wall with such
velocity, then because tk — tk-1 is so small, it must undergo at least n collisions
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before reaching L/2, which are enough to make it go back. So it cannot cross L/2
before colliding with the last particle of the sequence.

b4) A sequence of at least JV>logF/log(l/α) particles with velocity between
— 1 and — 2 which at time rL— 1 are in (L/2, L).

We denote the set for which X C L ( 0 TJL) satisfies conditions bl)-b4) by J ^ 0 ) .

Clearly # l 0 ) e 9WCI.«>,ΓΓ.) and

° 2 0 ) (3.17)

Remark 3.3. For x e ^LO)XcL{o,rL)n^Li2 = ^ f ° r L la rge> since XcL(o,rL) does not
contain any particle (q, v) with \υ\ < 1.

Remark 3.4. By b3) at time rL— 1 the h.p. is in [0,L/2) with velocity less than Fin
absolute value, and by condition b4) there are enough slow negative particles in
(L/2, L) to make it go back with velocity less than 2 in absolute value. So we
conclude that i) at time rL it is still in [0, L) and ii) it cannot get out of L with
velocity larger than 2 unless it collides with particles which are not in

C. Conditions on xCL{rLO0)

cl) xCL(rL, oo)nΓL/2 = φ. This condition, together with conditions a2) and Re-
mark 3.2 ensures that x e Jfhl2. By the construction above the h.p. between times ΐ
and rL does not collide with particles with which it collided before ΐ.

So Γis a c.t. unless it is spoiled by recollisions at times t > rL. Such recollisions
can be i) with the particles of xRjL which at time t were to the right of q, and ii) with
other particles of XRL and with the two incoming particles of points bl) and b2). By
condition a5) the particles of group i) are at least at distance 2L/3 +1 2 / 5 from the
origin. (The particles of group ii) go away with very high velocity, so that by time rL

they will be farther away than that, and we don't have to take account of them.)
Our next condition is stated in the following result.

Lemma 3.4. There is a set ^ L G ^ C Z ^ , O O ) > l imμ(^ L )=l , such that if x e f L and
satisfies conditions al)-a5), bl)-b4) above, then q0(Tt+rLx)<L + L/4 + \og2t for

Proof. First note that in order to get a bound for qo(Tt+rLx) we cannot use
equilibrium estimates, since at time rL the situation in [0, L) is certainly not typical.
We use the fact that for the h.p. to cross a point a > L before time rL + T there must
be a time t e [rL, rL + T) at which it starts off at q = 0 with a velocity Fso large that
MV>πa(t,t + a/V)9 where

a( ) m Σ \v\ M > 0 (3.18)
(q,v)eCa(t,t + s)

is the absolute value of the total momentum of the negative particles which cross a
between times t and t + s.

We shall prove that we can take

^{x^c^^T^βt'} fco = [2L/9], (3.19)

where °lί{lΌ) is defined by Eq. (A.I 1) of the Appendix. In fact we know that at time rL

the h.p. is still in [0,L). Suppose that at some time t>rL it starts off the wall and
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reaches L + k before time tk = e^, k = 1,2,..., without inverting its velocity. If k is
so large that

vk = (2/βm)(]/k + log(l/k2))>2 and XcL(,L !oo)eT_0

r L«L)(DT_° r Lffo ))

[see Eq. (A.9)] this cannot happen unless the h.p. collided in the time interval (rL, t]
with some particle of XcL(rL,ao) with velocity larger than vkm modulus. Indeed,
otherwise the h.p. would start with a velocity less than 2 < vk9 and it would be
driven back by the particles crossing L + fe (see Proposition A.2). So if
Tr°LXcL(rL, oo)e ̂ ϊ ( i ) it cannot cross L + k before time tk unless Tr°LxCL{rLί oo) e 3l'k(L).
Now if L is large υko>2 for k0 = [2L/9] and if T^xCu{rjLt^ e<%£°\ kύkowe find

sup ( 2 ( 7 ; + , ^ ) ^ L + l + / c 0 + log 2τ^5L/4 + log 2 τ. (3.20)

The fact that lim μ(%L) = 1 is an easy consequence of Eq. (A. 16) of the Appendix.
L-»GO

We can now state our second condition:
c2) xe°iίL. Note that, since 5L/4 + log2τ<2L/3-f-(τ + r L ) 2 / 5 , if conditions

al)-a5), bl)-b4), and cl)-c2) are satisfied there is actually a c.t.
We denote by ^ 0 ) the set for which conditions cl)-c2) hold. Clearly

2Ϊ^0) e WlcL(rL, oo) a n d ? by Eq. (3.8), Lemma 3.4, and Remark A. 1 of the Appendix we
have

lim μi&V) = lim μ°(&i0)) = 1 (3.21)
L—• oo L—* oo

The proof of Statement 3.1 is accomplished by setting

£(p> = gMn&lWn&M, (3.22)

since we have

0 { ] H ° } i o V O O ) i O ) 4 ° ° ° ( 2 ί L O ) ) > 0 .
Proof of Statement 3.2. Statement 3.2 would follow from Statement 3.1 if we had an
ergodic theorem. Since we don't, we give an explicit construction of the set £L. The
main point consists in the observation that for TτxeX^} for some τ > 0 , it is
enough, in most cases, that 7Λ^ ( τ ) e <f[0) [see Definition (3.3)] and

i.e. we can assume the particles outside RL(τ) to move freely. This is not surprising
for small τ, but it is true for τ arbitrarily large, because, even if the h.p. can go by
time τ much farther than L, it is nevertheless unlikely that it collides with the
particles of xCjL(τ>00).

Consider the sets [see Eqs. (3.3), (3.4)]

(3.23)

21? = Γ_°τ9IL = {xeX: XΓL{X) = 0} . (3.24)

Following the proof of Lemma 3.2 it is easily shown that for x e Jf{τ) = e ^ n S I ^
the h.p. does not interact with the particles of xCL{τ,oo) f° r - oo < ί < τ . Again the
main point in the proof is the inequality

q9 υ) e CL(τ, oo)nΓL(τ)} ̂ max(L, {/L log+ τ)
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which, by the way, implies (qθ9 v0) e RL{τ) for xeJίL(τ) and that (Tτ°x)CL\Γ]L

contains no particles of xRL{τy Moreover we have

which, since the Lebesgue measure of ΓL(τ) does not depend on τ, by Lemma 3.2,
Eq. (3.8) and the invariance of μ under Tτ, gives

l . (3.25)

L->oo

Set now

i? = {xeX: TtxRL(τ) e ^ 0 > n9ϊ L / 2 } n ^ / 2 ,
where d£0) is defined by conditions al)-a5). Making use of the fact that for
x G JV"L/2(t) the particles of xCjL/2(τ, <»)> moving by free dynamics, cannot get into ΓL at
time τ, and of Eqs. (3.9), (3.16), and (3.25) we get

- — > 1,

uniformly in τ e [0, oo). By the same argument for the set

^ = 4 τ ) π# L / 2 n{xe3e:x^ ( τ ) nΓ L / 2 = 0}, (3.26)

we get

liminf μ ( 4 τ ) ) - l . (3.27)

Consider now the set

$£) = i£)n&rPn%£\ (3.28)

where J^L

(τ) = T^τJ^0), %{l] = T^τ^\ and $i 0 ) is given by conditions cl)-c2)above.
We prove that for all x e X^ there is a cluster time by proving that

TXX?CX{?K (3.29)

Inclusion (3.29) follows from the two relations X{1] C J£τ) and X£] C JfL{2{τ). The first
one is obvious. For the second one observe that for x e X(l\ the regions ΓL/2(τ)
n CL(τ + rL,oo) and ΓL/2(τ)n CL(τ, τ + rL) SLTQ empty because x e SI^ and x e J^(τ) (see
Remark 3.3). So since xGd| τ ) c4 τ )

? it follows xeyPL/2(τ). The proof of State-
ment 3.2 will be accomplished by the proof that for the set

we have

XL=U Xΐ\ (3.30)
Jc = O

l imμ(* L )=l . (3.31)
L~• oo

For this we need Proposition 3.1 below. Before that we state a remark.

Remark 3.5. X(l} C SLj2r\^iLj2 C JίLj2. This follows by the definition (3.26) and by the
fact that

, oo)cΓL/2(τ)nCL(τ + rL, oo).
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Proposition 3.1. For any ε>0 there is Lε so large that

μ(θ (£g*n&W))>l-ε. (3.32)

Proof. The sets J ^ H where &,.=;([>] + 1), j = 0,1,2,... are independent with
respect to the measure μ° and

So, by the Borel-Cantelli lemma

μ ° ( u HkjΊ = 1 . (3.33)
\k = o J

Iko \
Therefore there is some k0 so large that μ° [j #L

(/c) I > 1 - ε/2. Consider the sets
\k = 0 J

\ J~ι

L L ? L L \ W L 5 J ? ? ? ̂ 0 '

Clearly F%}eSRCL(fc>«,), fc = 0 , 1 , . . . ,k 0 , a n d

U (^L°

Since the sets F^} are disjoint, we have

Σ
k=0

= Σ M ^ V W ) ^ α - ε/2)μ° f u

\k=0

M ^ V W ) ^ α /2)° f u nk)) > i -
k=0

where we used the fact that μ(^t W ) = / ( ^ f ) if <lf' C {x: qo(x) < L} and we took
L so large that μ(S£») > 1 - ε/2.

Proof of Eq. (3.31). By Proposition 3.1 for L large and suitable /c0,

Consider the sets

y = o

Clearly the sets ^ e 9WR L ( / C ) are disjoint a n d
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so that

00 %ΐ
\

which proves Eq. (3.31).

4. Proof of Theorem 2.1 by a Copying Procedure

Consider the sets

£ί-00)>l-2-" / 2 }, (4.1)

where XL is given by Eq. (3.30), the partition ζL is defined in Remark 3.1, and the
sequence Ln, n= 1,2,...,« is the one used in defining the set E [Eq. (3.13)]. [Our
notation for the conditional probability suggests its interpretation as a measure
on the partition atom £_(x). We recall that we often use the same notation for the
partition and the σ-algebra generated by it, which for ζL is 9Jt#J.

Consider the set

£=liminfX L n . (4.2)
H-> 00

Clearly Eeζ_ and by a Borel-Cantelli argument we see that μ(E)= 1.
In the rest of this section we shall prove that the set E defined by Eq. (4.2)

satisfies the assumptions of Proposition 2.1, which by Remark 2.1 accomplishes
the proof of Theorem 2.1. Namely we shall prove the following result.

Proposition 4.1. For any x{1\ x{2) e E the measures μ( \ζ-(x{1)))andμ(- \ζ_{x{2)))are
equivalent on £°°.

Proof. The proof is based on the following lemma which we shall prove later. [We
recall that by ζ(x) we denote the atom of the partition ζ which contains x.]

Lemma 4.1. Suppose that for any L > 0 and x,x'eXL the condition:

μ(Ar,XL\ζL/2(x))>0

implies μ(AnXL\ζL/2(x'))>0 for Aeζ™. Then Proposition 4.1 holds.

In fact, suppose that x(1), x{2)eE and that μ(A\ζ_(x{1)))>0. We can take n0 so
large that for n^n0 i) x(1), x (2) e XLn, and ii) μ(AntLn\ζ^(x{1)))>0. Since XLC JVLJ2

and by Remark 3.1, CL/2\^L/2^C-\^L/2, we have

μO4n£LJζ_(x ( 1 )))= J Λ μ(AnXLn\ζLI2(x))μ(dx\ζ_(x{ί)))>0.

Similarly we have

Since x{2) eXLn μ(XLn\ζ_(x(2)) > 1 - 2 " " / 2 >0, so that we get jφln£ L JC_(x ( 2 ) ))>0,
and the conclusion.
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Proof of Proposition 4.1. The conditional measure μ( |ζL/2(x)) for x ε XL does not
depend on x and is a Poisson measure, i.e. μ( |£L/2(x)) = /4L/2- I*1 what follows we
set for brevity F = £ C l j / 2 and m = μ£L/2. Let now ^e£°° and x e £ L be such that
μ ( ^ n ^ ) | C L / 2 W ) > 0 . This implies that for some k μ(AnX(£)\ζL/2(x))>0, and
therefore the set Φ{k) = {y: xRL/2vy e AnX{£]} has positive m-measure m(Φ{k))>0.
From now on k is fixed. By the construction of X{k) i n Sect. 3, we can divide
yeΦ{k) into two parts: y = wuz, where w denotes the particles which collide with
the h.p. up to the cluster time tc = k + ΐ(ΐe(0,1)), which corresponds to the
collision of condition b2), and z denotes the particles which collide after that. We

introduce the spaces W= U (CL/2)
j= (j WU) and Z=Y, so that (w,z)eWxZ

;=o j=o
for all y ε Φ(fe). Let P{k)(dw, dz) denote the joint distribution of w and z induced by
the measure χφ(k)(y)m(dy) (χ denotes as usual the indicator function). By the
properties of the Poisson measure it is easy to see that P{k\dw,dz)<ξmes(dw)
x m(dz), where mes is the standard measure: the restriction to Wu\ mesω, is the

measure induced on Wij) by the Lebesgue measure in R2\ and mes(P0O ))= 1. So

P{k\dw, dz) =/(w, z) mes(dw)rn(dz) (4.3)

and / can be chosen in such a way that Φ(/c) = supp/. A point w ε Wij) can be
identified with a point of R2j and, for mes-a.a. points w such that (w, z) ε supp/,
there is a neighborhood ^/(w)zR2j such that the collision parameters Qc (see
Definition 3.2) corresponding to the cluster time tc9 are C00 functions of w in <^(w).
Clearly there is at least one such neighborhood <%l C R2j for some j , such that

j /(w, z) mes (dw) mes (dz) > 0, and so the set

has positive m-measure, m(Φ) > 0. (For brevity, we do not distinguish here between
sets of R2j and their images under symmetrization in Wij).) We can suppose °U so
small that there is a time τ which for all w e °U is larger than tc, smaller than the
subsequent time of collision with the wall and moreover such that the h.p. at time τ
lies in the interval (L/3, L/2).

In the configuration x β L / 2 uwuz for (w, z)eΦ the position and velocity of the
h.p. at time τ, λ = (go(τ), uo( τ))5

 a r ^ functions of w only, A = ̂ (w), since the particles
of z, by the construction of Sect. 3, collide with the h.p. only after it reflects from the

wall, and the map φ: %-+R2

+ is C00 and of full rank, since det f — I J ^ L ) φ Q where
\3(βi^i)/

(qu vt) is the last particle of w to collide with the h.p., as described in condition b2).
Therefore the joint distribution v of λ and z induced by the restriction of P(dw, dz)
to °lί x Z is absolutely continuous with respect to mes(d/l) x m(dz) [where mes(dλ)
denotes the Lebesgue measure]:

v(dλ, dz) = g(λ, z) mes (dλ)m(dz), (4.4)

and we can assume that g(λ,z) = 0 unless there is a w such that φ(w) = λ and
(w, z) e Φ. As a consequence, the marginal distribution of λ, ρ(dλ) = v(dλ, z), is
absolutely continuous with respect to mes(dλ). Let A* = (q*, v*) be a density point
for it. This implies that for any neighborhood ^ * of Λ* we have

ί χ®*Wg(λ, z) mes (dλ)m{dz) > 0,
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i.e. the set Φ* C Φ,

Φ* = {{λ9z):λeW*9g(λ9z)>0}

has positive v-measure. Moreover if Z^* = {z: v(Φ*)>0}, by Fubini's theorem we
have that m(Z<%*)>09 and we can assume that Φ* C ^ * x Z^*. In what follows we
shall only consider a neighborhood of the type

W} = {λ = (q9v):\q-q*\<δ9\v-υ*\<δ}9

where λ* = (q*,v*) is a fixed density point, and we set Zδ = Z<%*.

Copyίnq Procedure. We now take another point x'e%L9 and we are going to
construct a neighborhood °UcW such that the trajectory of the h.p. for the
configurations ^ L / 2 u w u 2 for (w,z)eΦ* will be "copied," at large times, by the
trajectories of the h.p. of the configurations xjjL / 2uwuz, w e W. To do that we first
construct a configuration w, depending on XRL/2, made of the following particles:

1) A particle (qo,vo) with qo>L/2 and £ 0 < 0 such that in the configuration
xRL/2u(q0, ΰ0) the h.p. collides with (qΌ, v0) at time t0 < krL, and, after bouncing off
the wall i) it collides with all the particles which at time t were in the interval
[0, L/2), before they reach the point 3L/5, ii) impresses them a positive velocity > 1,
and iii) reaches 3L/5 at a time t1=τ-(l/V*)(3L/5-q*);

2) A second particle (qt, vx) with qί > 3L/5 and q1 + t1v1= 3L/5 such that in the
collision at 3L/5 the h.p. is left with velocity 0. We can assume |0O| so large that the
particle (ql9 vx) bounces off with a velocity v\>\\

3) A third particle (q2,v2)9 q2 = 3L/5 — t*v2, v2 = v*/(l—oc), which clearly
collides with the h.p. at time ί* and gives to it a velocity v* such that at time τ it is in

Clearly it is possible to determine w for a particular xr e XL in such a way that all
the conditions above hold. Consider now a neighborhood 4ί of w, and the map
φ(w) = λ = (q,v), which gives position and velocity of the h.p. in Tr(xiL/2Uw) as a
function of w. Clearly we can choose w and % in such a way that the map φ: 4ί^>R\
is C00 and of full rank, and moreover such that ^ ( f ) = f* (possibly by taking a
small δ).

Remark 4.1. The particles of vv e ^ are located in a region of #+ different from that
of the particles of z e Z ό . This is because if (q9 υ)ezeZδ, q + τv>3L/5, whereas a
particle (g',t/)ew has to be in the region g/ + τi;<L/2.

The following observations show that the above construction achieves our aim
of "copying."

i) For L large wnΓL/2 = Φ for w e l , so that for zeZδ and xyeXL we have
4 L / 2 u w u 2 C / L / 2 , and there are no particles of the past right of L/2.

ii) If (w,z)eΦ and w is such that λ = φ(xv) = λ = φ(w), then the h.p. in
x^L/2uvvuz will never catch up, after time τ, the particles with which it collided
previously. In fact at time τ it has the same position and velocity as in X Λ L / 2 U W U Z }

and until time k -f rL — 1 it has the same story. After k + rL the bound (3.20) clearly
holds, because z e Zδ, and, as in Sect. 3, we see that the h.p. can never reach the
particles of its past because x' e XL and the particles of w have got a high positive
velocity. So the trajectories ofx i L / 2 uwuz and XRL/2KJWUZ coincide for ί ^ τ , and
since XRL/2UWUZGA, SO does XRL/2UWKJZ.
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By observation ii) Proposition 4.1 will be proved if we prove the following
statement.

Statement 4.1. The set Φ = {(w,z)e$ xZδ: (φ(w),z)e Φ*} has positive measure
m(Φ)>0.

Proof. The result will follow if we prove that R(Φ) > 0, where R(dw, dz) = mes (dw)
•m(dz). Now we know that for zeZδ v(Φ*|z)>0 which implies
me${{λe<%f:g(λ,z)>0})>0. Since we know that the map φ:Φ~+<Wf is C^ and
of full rank, and $($) = <%*, we conclude that mes({w:#(^(w),z)>0})>0, which
proves the result.

Appendix

We prove the "almost deterministic" behavior for very fast particles in
Proposition A.I, after proving a lemma.

Lemma A.I. Set

and

: max \v\^clog1/2Ll. (A.2)
[ (q,v)ex[o)L)xRi J

Then there is a constant c > 0 such that lim μ(J* L )=l, where <%\ = gβ'Lc\3ϊ"h.

Proof (\x\ denotes here the cardinality of a configuration x.) Since the measure
induced by μ on the particle positions is the usual Poisson measure on R+ with
intensity ρ we have

κ(L)

rL)=Π
Moreover, using the Chebyshev inequality for the exponential function
exp{A|x/l XRί\} and minimizing in λ, we get (a bar denotes the complementary set)

where G = (l +x)log(l +x)-x is a C00 function in R+ such that
^ O ) - ! . So we find

^ (1 - exp { - ρίGis/iρηW^-γ^ 1,

and lim μ(β'j) = 1. Moreover by the properties of the measure μ it is easy to see

L->oo

that
ί e-βmv2/2dv] ^exp{-^

\v\>logί/2L J

and the last expression goes to 1 as L->oo if c' = c]/rβm>l.
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Proposition A.I. Let x e i L and set x = xRlyj(q,v) with — v(l—oί)e(ecL,ecL+ί),
c>c = ρlog(l/α), and q + vto = L for some toe(0,1/2). Then for L large enough the
evolution of x is such that

i) after colliding with (q, v) the h.p. hits the wall at a time tλ and for t>tί never
inverts its velocity;

ii) (q, v) and all the particles which collide after time tγ and are in [0, L) get a
positive velocity larger than eλL, 0</l<min(c, c — c);

iii) after time tx the h.p. crosses the points fef+ clog 1 / 2 L with a velocity smaller
than VM(k), at a time larger than tm(k), and crosses the points fef — clog1/2fc with a
velocity larger than Vm(k) and at times not exceeding tM(k), k~ 1,2,..., τc(L), where
the quantities

fiί3, (A.3a)

ε L ) , (A.3b)

and for k>\

U v~'ύ (A4a)

(1+^} (A'4b)

do not depend on xe$L, εL = e~λL4/\ λe(0,c — c), and σ = s/ρ/.

Proof The absolute value of the velocity of the h.p. until it collides with (q, v) and of
all the other particles which collide with the h.p. after time tx in [0, L) is less than
F0 = clog 1 / 2L. The only possible exception is the (q,v) particle itself, which may
collide (for α > 1/2) twice with the h.p. However the analysis below is not changed
by adding a collision with a positive particle, and we will neglect this fact. By the
collision laws (2.1) we see that after colliding with (q, v) the h.p. has a velocity — Vx

with

JWl-oOMίl+ei), \H\<e~λL, λe(0,c), (A.5)

and after time tγ and before crossing L its velocity is always larger than

eλL, λe(0,c-c) (A.6)

[where n is the number of particles in [0, L)], which proves assertions i) and ii).
When it collides with (q, v) the h.p. can be at most a distance Vo from its

position at time 0 and therefore we have

By Ineq. (A.6) it follows that the particles which collide with the h.p. after time tγ in
[0, L) are at most at a distance Vo from their position at time 0. So when the h.p.
crosses k{ + Vo it has already collided with all the particles which were at time 0 in
[0, kί) and its velocity cannot exceed the value
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Similarly when it crosses kt — Fo it has collided at most with all the particles which
were in [0, kt) and its velocity will be larger than

Therefore the time at which it crosses kt + Fo is larger than

t+V0 t t Vo t βk-l 1
ί + + + + ί + + α)N

whereβ_=(l/u)e'a~σ\ and we suppose k>\ and make use of Ineq. (A.7).
In a similar way one sees that the time at which it crosses kt — Fo cannot exceed

t — V t

and assertion iii) is proved.

Corollary A.I. Let x be as in Proposition A.I. Then for L large enough there is a
t>tί depending only on (q,υ) such that \t-to\<2Le~λL and at time i the h.p.
is in the interval (2L/3,(β + 2/3)L) with a velocity Fe(F m , VM) for

Proof Set ko= \ ~ +2. Since σk0^2σ+l~σ = O(Lί/5-8'25) >0 for
[_3 I J 3 t L->co

large L, we have tm(k0 + 2) > tM(k0) and (since Vo/S-»0) for t e (tM(kΌ)9 tjko + 2))
the h.p. is in (2L/3,(ε + 2/3)L) with a velocity

Ve (VJk0 + 3), FM(fe0 -1)) C (Vm, VM).

Moreover, since its collision with (q, v), the h.p. has always a velocity larger in
modulus than w = eλL, and therefore \t — to\<2L/w =

Proposition A.2. Let v\ - (2/βm) (]/k + log 1/fc2), tk = exp (|/fc), fe=l,2,... α ^ /or
α > 0 consider the sets

= fx G ΐ c : min t; > - ϋfcl, (A.8)
I α (q,v)eSa,k(tk) J

ί + /l»)>M»ik},

^ko)= Π @M) (A. i i)

is such that lim μ°(<%fo)) = l.

Proof The complement ^ = 3EC α ( 0 ) 0 0 )\^ has measure
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and

μ o (^"(α)) <> tke " c A k / 4 <e~cΛkjS, (A. 13)

where M'k\d) = Hc\β'k\d). The result follows from inequalities (A. 12) and (A. 13) by
the Borel-Cantelli lemma.

Remark Λ.l. Since Δk increases with α, by the definition of ^ f e o ) it follows that if
ar>a and Sq denotes the space shift, then

c aΛko) -N a/(ko) u _ i 9
O - ^ ' - ^ ) Ua> J (la , K - Q — l ,Zr, . . . ,

which implies

for any integer valued function /co(L)f oo.
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