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Abstract. This paper shows that if a horseshoe is created in a natural manner as
a parameter is varied, then the process of creation involves the appearance of
attracting periodic orbits of all periods. Furthermore, each of these orbits will
period double repeatedly, with those periods going to infinity.

1. Introduction

A two-dimensional horseshoe map is defined on a neighborhood of a rectangle and
maps it into a horseshoe shape that lies across the original rectangle, as in Fig. lc.
An analogous map can be defined in higher dimensions. Figure If shows the three
dimensional case. Since Smale described horseshoes [S], many dynamical systems
have been shown to have them. In the fully developed horseshoe, as described by
Smale, there are necessarily immense numbers of periodic orbits: the kth iterate of
the map has 2k fixed points. The dynamical behavior in the rectangle is indeed
complicated; however, all the periodic orbits there are unstable, and almost any
initial point chosen in the rectangle has a trajectory that eventually leaves it.

This paper investigates the dynamical behavior as the horseshoe is being
formed in the typical way shown in Fig. 1. At the initial parameter value (λ = 0), the
rectangle and its image are disjoint; at λ = ί, there is a horseshoe map, with
infinitely many unstable periodic points. We assume that for each parameter value,
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Fig. la-f. The typical way that a horseshoe is formed is shown in dimensions 2 and 3. The map
depends on a parameter λ. For n = 2, rectangle ABDE is mapped to A'B'DΈ'. At λ = 0, ABDE and
A'B'D'E' are disjoint; as λ increases to 1, the image A'B'D'E' is pulled through ABDE in the
horseshoe shape indicated. For n = 3, cylinder C is mapped analogously to C", with the top T and
bottom B mapped to T and Bf, respectively. The properties required in the theorems are
topological, so distortions of these pictures are allowed provided the hypotheses of the theorems
are satisfied. We require that as λ goes from 0 to 1 the images of the top and bottom (when n = 2)
never touch the rectangle ABCD, and the images of the sides never touch the sides

the map is area contracting. Then the way periodic orbits normally arise as λ
increases is through saddle-node bifurcations: a pair of orbits, both of minimum
period fc, pop into existence. One orbit is attracting and the other is unstable.
(Repelling orbits are ruled out by area contraction.)

The unstable orbit will be called a saddle. Two orbits have been created, but the
attractor is not altogether welcome since there are none at λ=\. What is most
likely to happen is that the attractor becomes unstable through a period-doubling
bifurcation. Now there are generally three orbits: 2 unstable orbits of period k, and
an attractor of period 2/c, though an "inverted" period-doubling bifurcation could
yield an unstable orbit. Figure 2a shows the most common pattern, in which the
period 2fc attractor becomes unstable as λ increases, through period doubling.
Each period doubling produces an attracting orbit of twice the previous period. A
schematic diagram of the pattern in Fig. 2a in which each point represents an entire
periodic orbit is shown in Fig. 2b. A more complicated pattern is shown
(schematically) in Fig. 2c. In each case there is a connected network of orbits in
(x, λ) space that we refer to as a component. In both components shown there are
attracting orbits of all the periods fc, 2/c, 4k,.... Hence there is a period-doubling
"cascade" of attractors. Such phenomena were first described in 1962 by Myrberg
[M] for 1-dimensional quadratic maps.

In describing our results, it is important to distinguish two types of unstable
orbits since they arise in different ways. Roughly half the unstable period k orbits
will be called "saddles." These arise paired with attractors of period k. The other
unstable orbits of period k are called "Mobius orbits," and these arise through



Period Doubling Cascades of Attractors 307

Saddle . ^

( f

Attractor — ^ *"3??"~
Mobius λ

r Γ

ί V
V _ Vw

λ

1 0

Fig. 2a-c. Diagrams of possible orbit components are shown for typical maps on C x /. The same
configuration is shown in a and b. In a the points on the orbit are shown while in b the diagram is
more schematic. The vertical axis is the space of orbits, so each point represents an entire orbit for a
given λ. The same representation is used in c where a more complicated web of bifurcations is
illustrated. The dots indicate an infinite sequency of period-doublings

period doubling: an attractor of period k becomes unstable, and the unstable
period k orbit is a Mobius orbit.1

The general result we prove in Sect. 4 may be stated loosely as follows. Choose
any saddle in the horseshoe (/l=l). Let k denote its period, (i.e., its minimum
period), so the orbit consists of exactly k points. Examine its component: the
network of orbits connected to it, as illustrated in Fig. 2. Then, necessarily, the
component will contain attractors of minimum period k, 2/c, 4/c,..., (Theorem A,
Sect. 4). That is, there will be a cascade of period doubling attractors connected to
the saddle. All these must occur before the horseshoe is fully developed at λ = 1.
Hence the title's claim that a cascade of period-doubling attractors is a prerequisite

1 For an unstable orbit of period k, the Jacobian of the kth iterate of the map has an eigenvalue μ
with |μ| > 1. When μ > 1, the orbit is a saddle. When μ < — 1, it is called a "Mobius" orbit reflecting
the half twist indicated by a negative eigenvalue. The odd name comes from cases where a flow is
being examined, and the map is a Poincare return map. Then μ< — 1 implies that the unstable
manifold of the periodic orbit has a half twist; that is, it is a Mobius strip
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Table 1. The number oίS(N) of saddle orbits of minimum period N in the standard horseshoe is
approximately 2N ~ 1/N

Minimum
period

N

1
2
3
4
5
6
7
8
9
10

No. saddle
orbits
S(N)

1
0
1
1
3
4
9
14
28
48

N

11
12
13
14
15
16
17
18
19
20

S(N)

,93
165
315
576
1091
2032
3855
7252

13,797
26,163

N

21
22
23
24
25
26
27
28
29
30

S(N)

49,929
95,232
182,361
349,350
671,088

1,290,240
2,485,504
4,792,905
9,256,395
17,894,588

for the horseshoe. This cascade is connected to the saddle of period k at λ = I.2

Table 1 gives exact calculations that illustrate that there are approximately 2k~ 1/k
saddle orbits of (minimum) period k in the horseshoe. Theorem C (Sect. 4) says that
each has its own cascade. Hence there are three cascades of period 5 and almost 18
million cascades starting from period 30 orbits. Each of the latter will contain
attracting orbits of period 30, 60, 120,....

One part of our result had been proved by Robinson [R] (in an investigation of
Newhouse's theory of horseshoes): namely, as a horseshoe is formed for an area
contracting map, an attracting fixed point must be created. He also showed that for
generic maps, i.e. maps whose bifurcations are not degenerate, attracting orbits of
all periods must occur. Sect. 4 shows how to forego genericity hypotheses. Our
main results were announced in [YA], and the announcement motivated Franks
[F] to give different proofs of our results together with new related results.

The ideas in this paper are developed further in [A] where it is shown that even
the Mobius orbits at λ=l are connected to cascades. More precisely, the
component of each Mobius orbit (or saddle as we prove here) of period k contains a
cascade of attractors of period k, 2k,.... It is also shown in [A] that the number of
Mobius orbits of period k equals the number of saddles of period k plus the number
of saddles of period fe/2 and fe/4, etc. Of course there are saddles of period fe/2, for
example, only if fe is even.

In Sect. 2 we describe and give examples of the formation of horseshoes.
Section 3 contains the development of the generic theory necessary for the main
results, which are stated and proved in Sect. 4. Variations of these results are
indicated in some further examples at the end of Sect. 4.

2 The main techniques in the proof are, first, to erase all the Mobius orbits in the networks
illustrated in Fig. 2b and c. We leave all attractors, saddles, and bifurcation orbits. Secondly we
examine the orbits still connected to any given saddle at λ = 1 and prove that this greatly simplified
network has all the required attracting orbits of the cascade. This proof uses an orbit index
developed in earlier papers. Non-generic situations in which an unusually large number of
branches emanate from a bifurcation orbit are handled separately in Sect. 4
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2. Forming Horseshoes

Let

x? + ... + x*_ 1gl and 0 ^ x n ^ l } ,

: x 2

1 + . . . + x ^ 1 = l},

: x n = l}9 a n d

We consider a C1 map /:Cx[0,l]->R n (occasionally writing fλ for / ( , A)) such
that /o(C) is disjoint from C, and, as /I increases to 1, /λ becomes a horseshoe map
in a regular fashion (see Fig. 1). Specifically, writing Cλ for fλ(C) and using the
corresponding notation for E, T, and E, we assume the following conditions that
describe how the horseshoe is formed:

(H 1) All periodic orbits in ConC are attractors.
In particular, ConC may be empty, as in Fig. 1.
(H2) TλnC, BλnC, and CλnE are empty, for all λ.
For more general examples in which horseshoes are not formed but to which

the theorems of Sect. 4 apply (e.g., the examples at the end of Sect. 4), we add that
the proofs of these theorems require only the following broader hypothesis, in
place of (H 2) that no periodic orbits of C touch the boundary of C, or more
precisely:

(H Ύ) Every periodic orbit of/ that lies wholly in the closed set C actually lies
in the interior of C, when 0</l< 1.

Now we describe the types of periodic orbits allowed in C at λ = 1:
(H 3) If /*(p, 1) = p, for some k ̂  1 and p e C, then Dpf

k(p, 1) has exactly one
eigenvalue μ such that |μ| > 1 and the remaining eigenvalues satisfy |μ| < 1.

In terminology we introduce later, this may be restated: each periodic orbit in
C at λ = 1 is either a saddle or Mobius orbit.

In addition, we wish to assume that the mapping is locally expansive in at most
one direction. We consider two distinct cases. Whenever fk(p,λ) = p for some
λe [0,1], k^ 1, and peC, and if μ l 5...,μn are the eigenvalues of Dpf

k(p,λ), we
assume either

(AC) (Area Contraction Hypothesis). There is a θ < 1 such that Iμ^l < 0, for i
Φj, l^iJSn; or

(AP) (Area Preservation Hypothesis). n = 2 and detDp/(p,λ) = l, (i.e., fλ

preserves area, for all λ).
We call (AC) the area contraction hypothesis because it is satisfied for maps F

on JR" if DXF contracts areas on every two dimensional subspace.
Let

P = {(p, λ)eC xl:fk(p, λ) = p, for some k^ 1} .

We identify points (p,λ) and (q,λ) in P if they are on the same orbit, i.e., if
/m(p, λ) = q, for some m. Now let &(f) be the "orbit space" - that is, the m points of
an orbit are represented as a single orbit in G(f). (See Fig. 2b and c for schematic
diagrams of orbit components.) Let Θ(f9 k) be the set of orbits of / of minimum
period k. Hence $(/)= U $(/ ? Ό For ease of notation, we sometimes write

keN



310 J. A. Yorke and K. T. Alligood
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Fig. 3. The horseshoe of the Henon map is shown (see Example 1, Sect. 2)

(p, X) E &(f) when (p, X) is a point in an orbit. For a point (p, X) e P, let
A(p, X) be the set of eigenvalues oϊDpf

k(p, X), where k is the minimum period of

(M).
We call Λ(p9 X) the eigenvalues of (p, X).

Under assumption (AC), each orbit (p, X) in Θ(f) is in one of the following five
disjoint subsets, classified according to the location of the eigenvalues of the orbits:

(1) the set A of attracting orbits, (|μ| < 1, for all μ in A(p, X));
(2) the set M of Mobius orbits, (μ< — 1, for some μ in yl(p, X));
(3) the set 5 of saddle orbits, (μ> + 1 , for some μ in A(p, X));
(4) 5+ = the set of orbits having + 1 as an eigenvalue; and
(5) B_ = the set of orbits having — 1 as an eigenvalue.
The reader should note our distinction between S and M. In particular, even

though orbits in M have a saddle structure, we distinguish them from orbits in S
because of the eigenvalue μ in (— oo, — 1). Notice also that in each of cases (2)-(5), at
most one eigenvalue in A(p, X) can lie on or outside the unit circle in the complex
plane. We sometimes specify the map for clarity by writing A(f) or B+(f)9 etc.

Under assumption (AP), the set A is replaced by the set L of elliptic orbits,
(|μ| = 1 and μ Φ1 or — 1, for both μ in A(p, X)). In this case the complex conjugate of
an eigenvalue is always an eigenvalue.

We conclude this section with three examples of functions which satisfy
(H 1HH 3) and (AC) or (AP), and hence to which the theorems of Sect. 4 apply.

Example 1. For (x,y)eR2, the Henon map, given by

f(x9y) = (λ-x2 + By,x) (2.1)

(λ and B, real constants), is area preserving for B = — 1 and area contracting for
0 ̂  |β | < 1. Fixing B and letting λ vary, Devaney and Nitecki [DN] proved that, in
the cases — 1 ̂  B < 0 (orientation preserving), / forms a horseshoe [in particular, /
satisfies (H 1)HΉ 3) on some subset of R 2 ] . The horseshoe configuration is shown
in Fig. 3. Notice that as λ is decreased in Eq. (2.1), the image f(C) is translated to
the left without any other change in size or shape. Hence for λ sufficiently negative,
C and f(C) are disjoint. As λ is increased from this value, the horseshoe is formed.
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Direction of pulse

Fig. 4. The rotor of Example 2 (Sect. 2) is shown. The revolving rod is kicked periodically (at times
f = 0,1,2,...) from right to left

In particular, Devaney and Nitecki show that for λ< — (1-I-|E|)2/4, / has no

periodic points, and for λ>(5 + 2]/5) (1 +|£|)2/4, a horseshoe exists [i.e., (H3) is
satisfied].

Setting B = 0 and neglecting the second coordinate (which is then redundant),
we obtain the one-dimensional quadratic map

g(x) = λ-x2. (2.2)

For λ< — \, g has no periodic points; for λ^2, g has unstable periodic points of
every period. (When λ = 2, the interval [ — 2,2] maps onto itself with g( — 2)
= g(2)=-2. It can then be shown that gn has 2" fixed points in [ - 2,2] - half of
which have positive derivative, for each w^O.)

In the Henon example above, the map (2.1) can be written as a dynamical
process:

The analysis of [DN] showing that a horseshoe is created can be applied with little
change to

x n + l = λ — Xn ± n k

with 0 ̂  λ < 1 - or, equivalently, letting β = B1/(k +1}, to the fc + 1 dimensional map,

xjyi,...,βyk-1). (2.3)

For β = 0, Df is a matrix with one dimensional range; hence, for any bounded set C
x [0,1] in Rk+1 x R, there will be a β0 for which (AC) is satisfied when β<β0.

Example 2. In this example, we look at the equations of motion of a rotor driven
by a periodic force. In particular, consider a one unit long rigid rod rotating in a
plane (see Fig. 4) which is kicked (from a fixed direction) at regular times
(ί = 0,1,2,...). Then letting

xn = angle of the rod at time n,

yn = distance travelled from n to n+1,

/c = frictional constant, and

P = magnitude of the kick,
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we have

xn+1 = (xn + yn)mod2π, yn + 1 = otyn- A cos(xn + yn), (2.4)

where a = e~k and λ = P '
k

The system (2.4) is a variant of the standard map of Chirikov [C] in that
dissipation is considered (when α < 1). A more general derivation of a perturbed
non-linear oscillator (which is equivalent to (2.4) under a change of variables) is
given by Zaslovsky [Z]. In [H], Holmes uses this system to model the motion of a
ball bouncing vertically on a sinusoidally vibrating plate (with certain approx-
imating assumptions). In this paper, he shows that in both the area preserving
case (α = l) and the area contracting case (0<α<l) a horseshoe is formed as A
increases from 0. Specifically, when α = 1, a horseshoe exists for A ̂  5π. (When α < 1,
the value of A for which a horseshoe first exists is not specified, but varies with α and
approaches 5π as α-> 1.) We should mention that since (2.4) has fixed points in R2

for all A, the domain considered for horseshoe formation can be restricted to satisfy
(H 1) and (H 2). Numerical studies of chaotic behavior for (2.4) as the horseshoe is
formed are reported in [SY].

Example 3. Let fλ be a one-parameter family of homeomorphisms on Rn, and let p
be a fixed point of /λ, for all A. We assume that p has one eigenvalue μx such that
I μ ^ l ; all other eigenvalues satisfy |μ7 | < l , and \μ1μj\<l, j = 2, ...,n. Suppose
further that a non-degenerate tangency is formed between the stable and unstable
manifolds of p as A varies. Then for some range of parameter values near that at
which tangency occurs (either before or after), and for k sufficiently large, the kth

iterate of the map will form a horseshoe. I.e., (H 1)-(H 3) will be satisfied on some
subset C of Rn near the point of tangency (see [S, N, R, GH]).

3. The Orbit Index and Oriented Paths of Orbits

Each saddle, attractor, or Mobius orbit in C x [0,1] persists as the parameter is
varied, so it lies on a segment of orbits having the same period. All the orbits on the
segment are saddles or all are attractors or all are Mobius orbits. Each segment is
monotonic in A, that is it has at most one orbit for each A. Each segment ends in a
bifurcation orbit (i.e. an orbit in B+ or BJ), except when the segment ends at λ = 0
or λ = 1. When it extends to A = 0, it is a segment of attractors terminating in an
attractor at λ = 0 (since by H1, the only orbits allowed at λ = 0 are attractors).
Similarly, when it ends at A = 1, it is a segment of saddles ending with a saddle at
A = 1, or a segment of Mobius orbits ending with a Mobius orbit at λ — 1.

In general, the structure of orbit components at bifurcation points can be quite
complicated. However, this structure is particularly nice for a set K of maps g(x, A)
studied in [AY]. We will say g is generic when g is in K. A map g is in K if all its
bifurcation orbits are of the two simple types described below. Furthermore, g has
only a finite number of bifurcation orbits of any given period in a specified compact
set. The value of studying the set K derives from the fact that it is dense in the space
of all C1 maps /(x, A); that is, / and its partials can be uniformly approximated on
C x [0,1] by maps geK. The cascade properties of / can be inferred from the
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Fig. 5a and b. The two generic bifurcations are shown schematically. The curve in a depicts a
saddle-node bifurcation at λ = λ0: each point on the curve represents a periodic orbit [i.e., a point
in Θ(g)~\. The three cross-sectional pictures show an example in R2 of two fixed points (an attractor
and a saddle) which coalesce in a saddle node and disappear as λ increases. The branched curve in
b depicts a period-doubling bifurcation at λ — λ0: points on the upper branch represent orbits with
twice the period of those on the lower branches. In b, the first cross-sectional picture (for λ< λ0)
shows an example in R2 of an attracting fixed point xQ approaching a period-doubling bifurcation.
At λ = λ0, a change in the stability of x0 occurs, and x0 becomes Mobius. The second cross-
sectional picture (for λ > λ0) shows the Mobius fixed point x0 and the period two attractor (points
x1 and x2) which has bifurcated from the xo-path at λ = λ0. Since xx and x2 are on the same orbit,
they are represented by a single point on the upper branch of the schematic graph

generic situation. The set K is discussed in detail in [AY]. A somewhat technical
proof that K is C1 dense is given in the Appendix to [AMY]. Here we describe the
types of bifurcation orbits that are allowed for g e K when g satisfies the area
contraction hypothesis (AC):

(1) Orbits in B+(g) are "saddle-node" bifurcation orbits from which two
segments of non-Mobius orbits emanate in (x, A)-space: the orbits on one are
saddles, and orbits on the other are attractors (see Fig. 5a). Passing through the
bifurcation orbit, from the segment of saddles to the segment of attractors one
eigenvalue crosses +1 (with non-zero derivative).3 Near the saddle-node, orbits
on both segments have the same minimum period as the bifurcation orbit.

(2) Orbits in B_(g) are "period-doubling" bifurcation orbits from which three
segments of orbits - two non-Mobius and one Mobius - emanate (see Fig. 5b.)
Orbits on one of the non-Mobius segments have twice the minimum period of the
bifurcation orbit, while orbits on the other two segments have the same minimum
period. Following the low-period path of orbits through the bifurcation orbit, one
eigenvalue crosses — 1 (with non-zero derivative).3

For generic maps, the topological structure of a connected set of orbits can be a
complicated network or graph with two segments coming from each B+ orbit and
three segments coming from each orbit in B_ but the structure of non-Mobius
orbits is quite simple, since by not considering Mobius orbits we eliminate exactly

3 These conditions are special cases of the transversality conditions mentioned in the Appendix
to [AMY]
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one of the branches coming from each J5_ orbit. By piecing together the two
segments of non-Mobius orbits, at each bifurcation orbit, we construct a (one-
dimensional) path. Proceeding from bifurcation orbit to bifurcation orbit, and
piecing together successive segments we construct a maximal path. Notice that
each hyperbolic non-Mobius orbit lies on a unique (fully extended) path of orbits.
This path can be a closed loop in some cases. In other cases it leads us through an
infinite sequence of bifurcation orbits. Of course then the path would never pass
twice through the same orbit, and the periods of the bifurcation orbits would be
unbounded. A fully extended path of non-Mobius orbits will be called a snake.
Hence we have the following lemma:

Lemma 3.1. Let g e K. Each non-Mobius orbit lies in a snake.

We remark that while the snake Γ may have an endpoint in bdry(C x /), i.e.,
the boundary of C x /, we will show in Lemma 3.3 that Γ intersects bdry(C x 7) in
at most one point (which must be a saddle at λ = 1 or an attractor at λ = 0).

The main tool used in proving the results in this paper is the φ-index (also called
the orbit index). It was introduced in [MY, CMY, AMY, AY 2], for studying the
global continuability of periodic orbits of ordinary differential equations, often
specifically the family of orbits that appears in a Hopf bifurcation. The paper
applies the orbit index to a rather different class of problems - maps whose
periodic orbits have at most one eigenvalue outside the unit circle. Recall that for a
C1 map g:Rn->Rn with a periodic point p of minimum period fc, the term
"eigenvalue of p" means an eigenvalue oϊDxg

k(p). For the moment λ plays no role
so it is not mentioned.

The orbit index is simplest to define for hyperbolic orbits, (i.e., orbits that have
no eigenvalues with absolute value 1), and there is no need here to consider the
index for more general orbits. In this paper the hyperbolic orbits studied have at
most one eigenvalue outside the unit circle, and for such orbits the orbit index is

φ = 0 for Mobius orbits,

φ = 1 for attractors,

φ= —ί for saddles.

For hyperbolic orbits in general, Mobius orbits are defined to be orbits for which
the number σ_ (counted with multiplicities) of real eigenvalues less than — 1 is odd.
For these orbits, φ is always 0. For hyperbolic orbits that are not Mobius orbits,
(i.e., σ_ is even), there are two cases:

φ = 1 if the number σ+ of real eigenvalues greater than +1 is even;
φ= — 1 if σ+ is odd.
For a component (i.e. a maximal connected subset) S oϊΘ(g), let Sλ be the orbits

in S that occur at a specified λ. The proof of the following invariance property is in
[MY] for generic maps and can be obtained by analyzing the stability of orbits and
the direction of their paths in neighborhoods of the bifurcation orbits. This
property can be generalized greatly, but it is sufficient here to assume the map is
generic.
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Fig. 6a and b. Two schematic diagrams of orbit components for a generic map on C x / are shown.
Each point on the branched curves represents a periodic orbit; the generic bifurcations are drawn
as in Fig. 5. The thicker paths represent snakes (i.e., paths of non-Mobius orbits); the thinner ones,
paths of Mobius orbits. In addition, the orbit index of orbits on each branch is indicated, as is the
orientation of the snakes. In a, one snake is shown which begins with a saddle orbit at λ— 1, then
changes λ-direction at the saddle node, and ends in a cascade of attractors. A more complicated
web of bifurcations is shown in b. Here one component of orbits contains two snakes. One begins
with an attractor at λ = 0 the other, with a saddle at λ = 1. Both snakes end in cascades of
attractors

Proposition 3.2. // the periods of orbits in S are bounded, then, for each λ, Sλ

contains at most a finite number of orbits, and

* W = Σ Φ(P)
peSΛ

is constant; that is, it does not depend on λ.

This result is applied by examining λ just before a bifurcation and again for λ
just after the bifurcation.

The invariance property of φ (Proposition 3.2) allows us to choose a preferred
direction on a snake Γ. Notice that Γ changes direction (from λ increasing to λ
decreasing, or vice versa) only at bifurcation orbits, in which case the index
changes from +1 to — 1, or vice versa. For convenience, we choose the following
orientation on each Γ (see Fig. 6): let (p, λ) e Γ,

(1) if φ(p)= + 1, follow Γ through increasing λ values;
(2) if φ(p)= — 1, follow Γ through decreasing λ values.
By examining the orientation of the snake through an orbit at λ = 0 or λ = 1, we

will show in the proof of the next lemma that the snake begins at the orbit. Since it
cannot have two beginning ends, only one end can be in the boundary.

Lemma 3.3. LetgeK satisfy (H 1)-(H 3). Each snake Γ of (non-Mobius) orbits in
Θ(g) has at most one point (jp, λ) in bdry(C x /), and such a boundary point must be a
saddle at λ— 1 or an attractor at λ = 0.

Proof By (H 2) there are no periodic orbits in E x / = bdry (C) x /. Let Γ be a snake
of Θ(g), and suppose that (p, l )eΓ. Then, φ(p) + 0, and by (H3) it is a saddle,
Φ(p)= — 1> a n d w e follow Γ through decreasing λ values from (p, 1), as its
orientation requires. Hence the path leads into Cxi, and (p, 1) is the beginning of
the oriented path. Similarly if (p, 0) e Γ, then p is an attractor by (H 1) and φ = + 1, so
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we follow the path with λ increasing. Hence the path again leads into Cxi. Hence
any point of Γ at λ = 0 or λ = 1 is necessarily the beginning of the oriented curve and
cannot be the final end. G

Lemma 3.4. Let geK satisfy (AC), and let (p,λ) be a period-doubling bifurcation
orbit (i. e., (p, X) e B_(g)). The low period segment of non-Mobius orbits emanating
from (p, λ) consists of attractors.

Proof Suppose otherwise - that the segment consists of saddles. Then along this
segment each orbit has an eigenvalue in (1, oo). However, following the segment
into (p,λ), another eigenvalue must approach —1. The bifurcation orbit would
have — 1 as an eigenvalue and would have another in [1, oo) contradicting
(AC). D

The following proposition shows (for g e K) how components of orbits which
originate in the horseshoe must terminate:

Proposition 3.5. Let geK satisfy (H 1)-(H3) and (AC), and let Γ be the snake
containing a saddle orbit (q, 1) of period k. Then the (minimum) periods of orbits in
Γ are unbounded. Furthermore, there is an attractor of (minimum) period 2nk on Γ,
for each n^tO.

Proof A snake may form a closed loop. When that is not the case, the path can
never pass through the same orbit twice. The snake Γ begins on the boundary so it
cannot be a loop. Since snakes are constructed segment by segment, leading us
from bifurcation orbit to bifurcation orbit, Γ must pass through an infinite number
of bifurcation orbits: Γ has a beginning (at λ = i), but it has no end. Hence, the
periods along Γ must be unbounded, since for g e K there are only finitely many
bifurcation orbits of each period. In fact there must be a last bifurcation orbit of
period less than k, so the periods tend to oo as we follow the path. In particular, Γ
must pass through J5_ bifurcation orbits of period fc, 2k, 4fc,.... By Lemma 3.4, Γ
has segments of attractors of period 2nk, for each n^O. D

With virtually no change in techniques we also obtain:

Proposition 3.6. For g as in Proposition 3.5, let Γbea snake containing an attractor
at λ — Q. Then again there are attractors in Γ of minimum period 2nk, for each n^:0.

4. Main Results

In this section, we use the results of Sect. 3 for generic maps and limit arguments to
prove the following theorems, dropping genericity assumptions.

Theorem A. Let f satisfy (H 1)-(H 3) and the area contracting hypothesis (AC). For
any saddle orbit (p, 1) or attractor (p, 0) in Θ(f) of minimum period k, the component
°f ®W) containing (p, 1) or (p, 0) has attracting periodic points whose (minimum)
period is 2mfc, for each m^O.
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Theorem B. Let f satisfy (H 1HΉ 3) and the area preserving hypothesis (AP)
(n = 2). If f is orientation preserving, then for any saddle orbit (p, l)e&(f) of
minimum period k, the component of Θ(f) containing (p, 1) has elliptic periodic
points whose (minimum) period is 2mfc, for each m^O.

We define a cascade from period k to be a sequence {Qo, Ql9...} of (non-empty)
components of A such that, for each m ̂  0, the orbits in Qm have period 2m/c, and
δ o u 6 i u i s contained in one component of # ( / ) . When there are an infinite
number of saddle orbits at λ = 1, such as in the horseshoe map (see, for example
[S]), the following theorem says that an infinite number of disjoint cascades must
exist. (See also Table 1, which shows the number of saddles in the horseshoe up
through minimum period 30.) Two cascades, {Qm} and {Rm}, are disjoint when
there are no periodic orbits that are in both cascades (i.e., β o

u δ i u is disjoint
from J R Q U I ^ U . . . ) . Notice that this definition does not preclude two disjoint
cascades from being in the same component of Θ(f).

Theorem C. Let f satisfy (H 1)-(H 3) and (AC), and let N be the number of saddle
orbits of (minimum) period kinCx {1} plus the number of attractors of period k in
C x {0}. Then there are at least N disjoint cascades from period k in Θ(f).

When / is generic, these results follow from the lemmas of Sect. 3. We now

develop the general case. For the proof of each theorem, we consider a sequence

0θ50i5 ••• of functions in K such that \im gt = f in the C 1 topology (uniform
i~* oo

convergence of gx and Dgt on Cxi to f and Df respectively). If (pf, Λf) is in Θ(gi9 k)
and if lim(pί9 λt) = (q, λ), then (q, λ) is a periodic point of/, and k is a multiple of the
period j of (q, λ). Let m = k/j.

Lemma 4.1. // m> 1, then 1 is an eigenvalue of Dqf
k(q, λ). In addition, for each i,

there exists an eigenvalue μt of Dpg
k(pι,λ^} such that Jim μ{— 1.

Proof of Lemma. Suppose 1 is not an eigenvalue of Dqf
k(q, λ). Then 0 is not an

eigenvalue of Dq[fk(q, λ)-q]. By the Implicit Function Theorem, there is a path
(in λ) of roots of fk(q, λ) — q = 0 through (q, λ) hence there is a path of fixed points
of fk through (q, λ). Furthermore, given a sufficiently small ε-neighborhood W of
(q, λ), there exists a δ > 0 such that if || g — fk \\ c i < δ, then the set of fixed points of g
in Wis a path (in λ). Choosing / sufficiently large so that \\g\ — / f c | | c i <δ and g\ has
m fixed points in Wn(C x {/IJ), we reach a contradiction. The second statement
follows from the fact that eigenvalues vary continuously in the C 1 topology. D

A version of the preceding lemma appears in [CMY] (the Virtual Period
Proposition); in particular, it is shown that there is a divisor r of m for which an r th

root of unity is an eigenvalue of Dqf(q, λ).
In the following proofs, we omit the ^-coordinate in (p,λ) when it is not

relevant.

Proof of Theorem A. We assume that gteK satisfies (H 1)-(H 3) and (AC) and that

Qi(' * 0) = /o a n d gk Ά) = fi, f° r each i. (The techniques of [AMY] allow such a
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perturbation4.) Let (p, 1) be a saddle orbit of fv [The proof for (p, 0) an attractor of
f0 is the same.] Then, for each i, (p, 1) lies on a snake Γt of (non-Mobius) orbits of g{.
Recall that on Γ{ periods can jump discontinuously only by a factor of 2 (or j).
Hence on each Γ{ [followed from (p, 1)] there is (for each m ̂  0) at least one orbit in
B_(0i) where the minimum periods jump from 2mk to 2m+ίk. Following Γt from
(p, 1), let βim be the first such orbit. Fix i and m, and let Gt be the set of orbits on Γt

between βi>m and βUm + v Parametrize Gt by ί, 0 ̂  t ̂  1. Let μ/ί) (j = 1,..., ή) be the
eigenvalues of G^t). We assume that lim μί(t) = l (guaranteed by Lemma 4.1)

and that lim μs(t)= — l,for some s (possibly s = 1), since/?, m + 1 isini?_. By (AC),

|μJ ( ί)μ f c (ί) |<θ<l 5 t / + fc, l ^ j , k^n. We claim there exist orbits on Gt such that

\μj\ S ] A for all;. Suppose not. Then for each t e /, |μ/ί)l > )fi*for some;. By (AC),

there is at most one such j . Since no other path of eigenvalues can cross the circle

|μ| = ]/0 (in the complex plane) while \μί(t)\>]/Ί), it must be the case that

\μi(t)\>]/θ for all t. Then lim μAt)=l and lim μΛt)=-\. The fact that

Iμ^OI > 0 implies thatμ^Q cannot be real for all t in (0,1). Thus for some t = t*9 the
complex conjugate μ^ί*) is an eigenvalue of Gt(t*) distinct from μ^ί*), and
\lJLi(t*)ljLι(1;*)\>θ> a contradiction.

Let vUm be an orbit of period 2 m + x k on G{ such that |μ| <Ξ]/θ, for all eigenvalues
μ of yim. Taking limits as z-> oo, {vijin}ίeJV must have a subsequence which converges
to an orbit vw of /. Since |μ| ̂  | / θ , for all eigenvalues μ of vm, vm is an attractor. In
particular, since μ J φ l for a n y ; > l , by Lemma4.1, the period of v is 2m+1fc. The
existence of an attractor v0 e Θ(f) of period k is argued similarly, except that jδί>0 is
perhaps in B + (g^ rather than in B_(gt), (i.e., the period-doubling bifurcations
described in the proof follow an initial saddle-node on Γb whose period is less than
or equal to fc, by Lemma 3.4).

Now let Γ™ be the segment of Γt with endpoints (p, 1) and vim. Notice that all
orbits on Γf have period less than 2m + 2k. Let Γm = {x: x = a limit point of { x j ^
where x^eΓf}. Then Γm is a compact, connected set of orbits containing vm and
(p, 1). Hence we conclude that {vm}m^0 is in the component of &(f) containing
(p,l). D

Proof of Theorem B. Following the notation in the proof of Theorem A, on each

Gh lim μ^ί) = + 1 and lim μs(ί) = — 1, s= 1 or 2. [Here we do not assume either
ί->-0+ ί-» l -

(AC) or (AP) for gt e K.~] Since we are assuming / is (AP), for i sufficiently large,
det(D^) = μ1(ί)μ2(ί) is approximately 1, where k = 2m + 1; in particular,
μ1(t)μ2(t)>θ>0. Hence μ^ί) and μ2(ί) are approximately 1 for t near 0 and are

4 The existence of local perturbations follows from [B] - i.e., in an ε-ball the map / may be
perturbed so that all orbits of period smaller than a given bound are generic. We use Peixoto's
technique [P] for patching such local perturbations together to obtain a global one. In the
Appendix to [AMY], these ideas are applied to prove that the set K of maps is residual. In order
for /0 and f1 to remain unchanged (both are in K) in the constructed perturbed map g, we simply
let the size of the ε-balls go to 0 at λ = 0 and λ=l. [Similarly, we may assume that g equals / on the
boundary of C, when using hypothesis (H 2')]
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B'

1
A

1)

0<λ>1 λ=1

Fig. 7. The formation of a non-standard horseshoe is shown (see Example 1, Sect. 4). At λ = 0,
rectangle ABDE maps to rectangle A'B'D'E', and there is a saddle fixed point. Throughout the
construction (0 S λ ̂  1), sides AB and DE map outside rectangle ABDE, as shown, and the image of
the rectangle remains disjoint from sides AE and BD. At λ = 1, the nth iterate of the map has 3" fixed
points - all of which are either saddles or Mόbius orbits

approximately — 1 for t near 1, and must be non-real for some range of t. For each
η, —π<η<π, there exists a t such that arg(μs(ί)) = ±η,s=l,2. Taking limits (for η
ΦO) and applying Lemma 4.1, as in the proof of Theorem A, the result is
obtained. •

Proof of Theorem C. Let (p, 1) and (r, 1) be two saddles of period k, lying on snakes
Γpi and Γr i of (non-Mobius) orbits of gb for each i e JV. Notice that ΓPti and Γr, are
disjoint. Fix ra, ra^O, and let Api be a component of attractors on Γ p Λ of period
2 k. Then ^4p>f is a path (in A) of orbits whose endpoints are in B + {g>) or B_{g^. Let
v4D = lim AΌ i be the set of limit points of sequences {aι}ieN, where at e AΌ t. Then

^ is a (closed) path of orbits of/. Let β1 and j82 be the endpoints of Ap, and let
Qp = Ap — {β1,β2}. By Lemma 4.1 and arguing as in the proof of Theorem A,
orbits in Qp are attractors of period 2mk. (In particular, these orbits are isolated in
x-space.) Hence Qp (respectively, Qr) is a component of attractors. Again, by
Lemma 4.1, Qp and Qr are disjoint. D

Remarks. If we replace A by L (the set of elliptic orbits) in the definition of cascade,
then Theorem C holds when / is (AC).

In Theorem B, if / is orientation reversing, the existence of an elliptic point of
period k is not assured by these techniques, since then + 1 and — 1 can
simultaneously be eigenvalues of an orbit under (AC). The existence of elliptic
points of period 2m/c, for each m ^ 1, is still obtained.

Further Examples. Minor variants of the theorems will occasionally be useful. We
illustrate such variations in the following two examples:

1. In numerical studies, one occasionally sees a horseshoe formed as in Fig. 7.
We assume that the map shown is area decreasing and that there is some regularity
of the stretching in (i) and (iii), (i. e., all orbits at λ = 0 and λ = 1 are hyperbolic). Then
there will be exactly one periodic orbit at λ = 0, and it will be a saddle; at λ = 1, the
nth iterate of the map will have 3" fixed points. For n > 2, the great majority of these
points will be on orbits of minimum period n - approximately half will be saddles,
and the rest, Mobius orbits. Assuming the map is generic, all but one of these
saddles will have arisen in a saddle-node bifurcation, and the snake containing the
saddle will contain a cascade of attractors. Our hypotheses are not satisfied
because there is a saddle at λ = 0. The orbit component containing that saddle will
also contain a saddle at λ = 1 and, in general, will not contain a cascade.
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' D

Fig. 8. A "ribbon" map / of the disk into itself is shown (see Example 2, Sect. 4)

2. An example where the modified hypothesis (H2') is useful is for area
contracting maps of a disk into itself. At λ = 0, there can be an attracting fixed point
and no other periodic orbits. At λ = 1, the map can be stretched to a ribbon and
bent to fit inside the disk, as shown in Fig. 8. It is difficult to prove for a particular
"ribbon" map that all orbits are unstable; but, when this is the case, the map for

1 will have at least one cascade of attractors.
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