
Communications in
Commun. Math. Phys. 101, 21-46 (1985) Mathematical

Physics
© Springer-Verlag 1985

Constructive Proof of Localization in the Anderson Tight
Binding Model

J. Frόhlich1*, F. Martinelli2, E. Scoppola3, and T. Spencerlf

1 The Institute for Advanced Study, Princeton, NJ 08540, USA
2 Dipartimento di Matematica, Universita di Roma "La Sapίenza", Piazzale A. Moro, 2, 1-00185 Rome,

Italy

3 Dipartimento di Fisica, Universita di Roma "La Sapienza", Piazzale A. Moro, 2,1-00185 Rome, Italy

Abstract. We prove that, for large disorder or near the band tails, the spectrum
of the Anderson tight binding Hamiltonian with diagonal disorder consists
exclusively of discrete eigenvalues. The corresponding eigenfunctions are
exponentially well localized. These results hold in arbitrary dimension and with
probability one. In one dimension, we recover the result that all states are
localized for arbitrary energies and arbitrarily small disorder. Our techniques
extend to other physical systems which exhibit localization phenomena, such as
infinite systems of coupled harmonic oscillators, or random Schrodinger
operators in the continuum.

1. Introduction and Outline of Paper

In this paper we analyze the spectral properties of Anderson's tight binding
Hamiltonian, H, with diagonal disorder, [1]. This operator describes the dynamics
of a quantum mechanical particle moving under the influence of a random potential,
v. For convenience, we study the discrete case, where the particle may hop on a
lattice Zv, but our techniques can be extended to continuous systems. Our main
result asserts completeness of the point spectrum and exponential decay of
eigenfunctions of H in the band tails, or throughout the spectrum of H provided the
disorder is large. This result holds with probability one and in arbitrary dimension v.
Related results have recently been announced by Ya. GoΓdsheid, but his proofs do
not seem to have appeared, yet. In one dimension we may combine our techniques
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with the positivity of the Lyapunov exponent to recover the result that localization
persists at arbitrary energies and for arbitrarily small disorder.

The Hubert space, §, of the system studied in later sections is given by

ξ> = l2(Z*)9 (1.1)

and the tight binding Hamiltonian by

H = H(v)= -Δ + υ9 (1.2)

where Δ is the finite difference Laplacian (with diagonal elements set to zero), i.e. for
z , ; i n Z v ,

Δ 4 1 ' i f | * ; l 1 (13)
13 JO, otherwise, v '

and v is the random potential. More precisely

!> = {</)}, jeZ\ (1.4)

where the v(j) are independent, identically distributed real random variables, and v
acts as a multiplication operator on §. The distribution of v(j) has a density g(v(j)). If
F is a function on the probability space, Ω, of all potentials, we denote its average, or
expectation, by

F = J F(v) Π g(v(j))dv(j) = J F(v)dP(v). (1.5)
Ω &

We let
}-1 (1.6)

be a measure of the disorder of our system.

It is well known that the spectrum, σ, of the Hamiltonian H is given by

σ{H) = σ{-Δ) + σ{v) = [ - 2v, 2v] + supp gf, (1.6)

with probability one [2]. Here

A + BΞΞ{CI + b'.aeA c IR,beB cz [R}.

The spectrum of H can be decomposed into pure point spectrum, σpv(H\ absolutely
continuous spectrum, σac(i/), and singular continuous spectrum, σsc(H). Let TEo be
the union of the intervals (— oo, Eo) and (Eθ9 oo). Our main result can be rephrased
as follows: Suppose that the density g is a bounded function. If δ + Eo is large enough
(depending on v) then

°JH)nTEo = σsc(H)nTEo = φ, (1.7)

with probability one, and for arbitrary v. Furthermore, if supp g is large enough

(1.8)

and eigenfunctions corresponding to eigenvalues in σpp(H) n TEo have exponential

decay.
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The strategy of our proof is rooted in several earlier results and methods.

(i) Exponential decay estimates on the Green's function \_H — E — iέ]β 1 of H, for any
fixed EeTEo,ε φ 0. In [3], Frohlich and Spencer established exponential decay of the
Green's function

for any fixed EeTEo, with probability one, provided δ + Eo is sufficiently large.
Absence of diffusion was shown to follow from this result. The decay estimates on G
are based on an inductive perturbative analysis which shows that "tunnelling at a
fixed energy" over long distances is unlikely. A brief description of the techniques of
[3] appears in Sect. 2.

While the methods of [3] are strong enough to construct localized states and
prove the existence of dense point spectrum in TEo, for large δ -f £ 0 , (these results are
described in [4]) they are not sufficient to prove completeness of point spectrum in
TEo. In order to prove a result like (1.7) one would like to show that tunnelling over
long distances is very unlikely, for all energies Eeσ(H)c\TEo simultaneously. This
will be shown in Sects. 3 and 4, extending ideas in [3,4].

(ii) Absence of absolutely continuous spectrum in TEo. Recently, Martinelli and
Scoppola [5] proved that the exponential decay of the Green's function implies the
absence of absolutely continuous spectrum. Their proof combines the exponential
decay estimates for G(E + iε j , I) with the fact that generalized eigenfunctions oϊH are
polynomially bounded [6]. This fact plays an important role in the present analysis
as well.

(iii) Completeness of point spectrum in a certain range of energies for a Hamiltonian
with hierarchical random potential. In [7] Jona-Lasinio, Martinelli and Scoppola
proved that for a Hamiltonian with hierarchical random potential the spectrum is
pure point near the lower band edge. Such models are already remarkable at the
deterministic level, as they can essentially be solved exactly. The potential has
minima separated by barriers of rapidly increasing width in such a way that the
potential is approximately self-similar over a sequence of length scales. In the
stochastic version of these models the heights of the minima fluctuate randomly. The
tunnelling processes in the hierarchical models mimick tunnelling processes in
Anderson's model studied in this paper. The strategy of our proof of localization, as
described in Sect. 3, is patterned closely after the work in [7].

In Sect. 4 the key probabilistic lemma is proven. The proof uses the methods of
[3].

We now make the above remarks more precise.

Definition 1. We say that a function φ on Z v is a generalized eίgenfunction of the
Hamiltonian H = H(v), defined in (1.2), corresponding to a generalized eigenvalue
E(v) iff φ is a polynomially bounded solution to the equation

H(v)φ = E(υ)φ. (1.9)

Definition 2. Given a self-adjoint operator H on the Hubert space §, let EH() denote
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the spectral projection for H. We define a Borel measure

p(B) = fj2'\en,EH(B)en), (1.10)
n = 0

where <-,-> denotes the scalar product on §, {en}™=0 is an orthonormal basis of §,
and B is an arbitrary measurable subset of U. Every Borel measure equivalent to p is
called a spectral measure.

In our proof of localization we use the following result. (For proofs see [6].)

Theorem 1.1. For almost every potential v, there exists a spectral measure pv such that
almost every energy, E, with respect to pv, is a generalized eigenvalue corresponding to
a generalized eigenfunction (in the sense of Definition 1).

Theorem 1.2. /// is an interval with the property that every generalized eigenfunction
corresponding to a generalized eigenvalue in I decays exponentially fast, then

i.e. the spectrum of H in I is pure point.
The proof of Theorem 1.2 is obvious.

Theorem 1.3. Let H = H(v) be the tight binding Hamiltonian defined in (1.2). IfE0 + δ
is sufficiently large then every generalized eigenfunction of H(v) corresponding to a
generalized eigenvalue E(v), with \E(v)\ > Eo, decays exponentially fast.

Remark. As shown in [5], the set of generalized eigenvalues in TEo depends
nontrivially on the potential configuration v. In particular, any fixed energy EeTEo is
not a generalized eigenvalue with probability one.

Combining Theorems 1.1 through 1.3 we obtain our

Main Result. For Eo + δ large enough, the spectrum of H(υ) outside [ — E0,E0~\ is
pure point, and the eίgenfunctions of H(v) corresponding to eigenvalues outside
[ — E0,EQ] decay exponentially.

As a corollary of our main result we get some information about the spreading of
wave packets under the dynamics eitH(v\ as t -» ± oo. Let

Corollary. IfE0 + δ is sufficiently large and ifφ is a wave function with the property
that \φ(j)\ is of rapid decrease in \j\, and

EH{v)(l-Eo,Eo-])φ = 0,

then

r\t, φ) ̂  const,

uniformly in t, with probability one.

The proof of this Corollary follows directly from Theorem 5.2 of [7] and our
Main Result and is therefore omitted. (For an earlier, related but weaker result see

[3].)
Our results are reviewed in [8]*
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Next, we show how Theorem 1.3 (exponential decay of generalized eigenfunc-
tions) can be reduced to proving exponential decay of Green's functions at energies
corresponding to a generalized eigenvalue in TEQ. We define

GΛ(z;ίJ)^ίHΛ-z^j

1 = (δhlHΛ-zT1δjy, (1.12)

where z is a complex number, (H Λ ) 0 = Htj if i and; belong to a subset A of Zv, and
(HΛ)ij = 0, otherwise. Moreover <5f(/) is the Kronecker ^-function. Let

be the set of nearest-neighbor pairs </J> with exactly one site in A. We identify JΓ
with an operator whose matrix elements are

[ 0, otherwise.

Clearly

ξ> = l2(Λ)@l2(Λ%

and

H = HΛ®HΛC-Γ. (1.14)

Let E(v) be a generalized eigenvalue and φ the corresponding generalized
eigenfunction of H(v). Then, for any subset A of Zv, the time-independent
Schrodinger equation for φ can be written in the form

and hence, using (1.14) and estimates on GΛ(E(v);j,l).

ΦU)= Σ GΛ(E(v);j,ΐ)Γwψ(η, (1.15)
1,1'edΛ

for jeA.
In order to prove exponential decay of φ outside some finite box, it is convenient

to apply (1.15) to a sequence of annular regions

Ak = Λk+ί\λk9

where Λk and λk are cubes centered at the origin of Z v with sides parallel to the
lattice axes of length 8dk, 4dk, respectively, and

4 = exp[j3(5/4)fc], fc = 0, l ,2, . . . , (1.16)

for some constant β chosen later. Exponential decay of φ then follows from
exponential decay of GAk(E(v);j, /), for all sufficiently large k.

In Sect. 3 we prove that, for large δ + Eo, there is a finite integer Tc such that, for all
k> Έ and all j and / in Ak, with \j — l\7z dk^J59

\GAk(E(v);jJ)\^exvl-m\j-l\l m>0, (1.17)

with probability one, where E(v) is an arbitrary generalized eigenvalue with
\E(v)\ >E0; m depends on E(v). Let j be an arbitrary site. We choose an integer k
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such that jeAk = Λk + 1\λk and

l Ί^K-i, (1.18)

where
Γk = dAk.

A simple geometrical consideration shows that an integer fc with these properties can
always be chosen. One then applies Eq. (1.15) with A = Ak and Γ = Γk. Exponential
decay of φ then follows from (1.17) and (1.18) and the fact that φ is poly normally
bounded.

Straightforward modifications of the arguments just given show that the decay
rate of \φ(j) |, as \j\ -• oo, is bounded from below by the decay rate m = m(E(v)) of the
Green's function GAk(E(v); j , /), for k>Ίc.

Remark. The proof of the basic estimate (1.17) consists of two parts [3]: In a
deterministic part, one characterizes the potential configurations, v, which are "non-
singular on scale fc," in the sense that GAk(E(v);j91) decays exponentially in \j — l\, for
\j — l\ > 0(dk). In a probabilistic part one shows that, with probability one, potential
configurations are actually non-singular on scale k, for k large enough.

One possible characterization of typical configurations is the following (see Sect.
6): Let E(v) be a generalized eigenvalue, with \E(v)\ > Eo and Eo + δ large enough.
Then (with probability one)
(a) dist(σ(HΛk(v)\E(v)) ^ e~^\ for k large enough;

(b) dist(σ(HAk(v)\ E(v)) > e~idl/3\ for k large enough. Here 0 < γ < 1.
(c) (1.17) holds.

This characterization of the typical configurations is analogous to the one given
in [7] for the hierarchical random potentials. We shall, however, use a somewhat
different characterization of typical configurations which is technically more
convenient.

Our paper is organized as follows.
In Sect. 2 we review results on the density of states, due to Wegner [9], and the

decay of the Green's functions, GAk, proven in [3]. We also describe an extension of
the inductive construction of [3], which is useful for the analysis of the one-
dimensional tight binding Hamiltonian. These results are needed in Sects. 3-5.

In Sect. 3 we reduce the proof of our basic decay estimate (1.17) to several
technical lemmas, in particular some kind of non-resonance condition for the spectra
of the Hamiltonians Hc and Hc,, where c ranges over some family of subsets of Λk

(cubes of different sizes), and d ranges over a family of subsets of the annulus Ak, for
all sufficiently large fc.

In Sect. 4 we prove the main technical lemma used in Sect. 3. This requires some
fairly lengthy probabilistic estimates.

In Sect. 5, we show how one may recover the results on localization in one
dimension [10-12] by making use of the positivity of Liapunov exponents in order
to prove the decay estimates on Green's functions required in our approach to
localization theory.

In Sect. 6, we briefly describe some other physical systems which exhibit
localization and which could be analyzed with the help of our techniques.
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Remark. After completion of our paper we were informed of two new proofs of
localization, based directly on the decay estimates of reference 3 and combining
them with general functional analysis—in addition to the announced proof of Ya.
GoΓdsheid. One proof is due to Simon and Wolff. We thank B. Simon for informing
us of their work and sending us a preprint prior to publication. The second proof is
due to Delyon, Levy and Souillard.

Our own proof, though technically more complicated, may have the advantage
of having a very simple and transparent strategy, of being more constructive and
extending to other problems, like random Schrodinger operators in the continuum;
see [13] for some results on this case.

2. Review of Previous Methods and Results

In this section we describe configurations of non-singular potentials, v, for which we
prove exponential decay of the Green's function, for fixed E. The regularity
properties of these potentials, for a fixed value of E, are expressed inductively, the
induction extending over a sequence of rapidly increasing length scales, dk, [3]. We
also recall Wegner's result on the density of states of tight binding Hamiltonians [9]
which is important for the probability estimates in Sects. 3 and 4. Finally we sketch a
"renormalized" inductive construction of non-singular configurations designed to
prove decay of the Green's function for a larger range of energies, in particular for all
energies when v = l.

Given an energy E and a subset A of Zv, we define a decreasing family of singular
sets Sk(E, v, A), with the property that

The set Sn(E, v9Λ)is the set of sites where the potential v is "singular of strength ^ n"
and is defined inductively. We set

S0(E,v,A) = {jeA:\υ(j)-E\S2v + m0}, (2.1)

with

Notice that if δ or | £ | is large, S0(E,υ9Λ) is a subset of A of very small density. If
SQ(E9v,Λ) = φ, then we can prove exponential decay of the Green's function
GΛ(E;j,l) in \j — l\ by perturbation theory: The Laplacian A can be regarded as a
small perturbation of v — E — iε. It is easy to see that

c=/l

= {-Δ+2v + mo)]i1, (2.2)

which decays exponentially fast in \j — l\. Here ω denotes a nearest-neighbor walk
starting at j and ending at /, and njiω) is the total number of visits of ω at j ; see
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[14,3]. (The walks ω just serve to label terms in the Neumann series expansion of
[-Δ+υ-E- iέ]]i* in Δ)

It is necessary to extend the decay estimate (2.2) to Green's functions, GΛ, with
the property that ΛnSoφφ. For this purpose we define the sets Sk = Sk(E, v,Λ)c=Λ
inductively as follows.

Sk+ί = Sk\[jσk9 (2.3)

where (J Ck is the maximal union of components C\ £ Sk which are regular at the kth

a

scale; more precisely {Q} α = 1 2 3 > is the maximal family of disjoint components
satisfying

Condition k.
(a) Cl c A, and diam(Q) ^ dk9 (2.4)

(b) dist(Q, Sk\Cΐ) ^ Idf* = 2dk + ι (2.5)

(c) dist(σ(Hct\E)^e^\ (2.6)

Here "diam" denotes the diameter of a set,

dist(A,B) = inf\a-b\9

and

aeA
beB

^ exp[i?(ί)], /c = 0,1,2,.... (2.7)

Moreover, C% ^ /i is a lattice set containing Q with the property that

4dk (2.8)

and is further specified as follows. Let (£m be the collection of lattice cubes with sides
parallel to the lattice axes and of length 2m which are centered at the sites of 2m~ 1ZV.
We require that

(2.9)

where c belongs to (ίn(k) and n(h) is determined by

2"ik)^10dk^2nik)-1. (2.10)

Remarks. In [3] only condition (2.8), but not condition (2.9), was imposed on the
choice of Ck. It is easily verified that condition (2.9) can be imposed without
invalidating any of the arguments in [3]. In the following condition (2.9) will turn
out to be convenient.

We also note that we could have defined the numbers dk to be powers of 2, i.e.
dk = 2δk, for some integers δk. In this case the lattice sets A, Λk9 Άk are all centered at 0
and have sides of length 2", n = 1, 2, 3,..., parallel to the lattice axes. We can then
choose the cube c in (2.9) to lie entirely inside A, and hence every Ck cz A belongs to
some Cn(k).
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Definition 3. Given A, a set A a A is said to be k-admissible iff

dAnQadA, 1 = 0, \,...,k.

Remark. If Sk(E,v,A) is empty and A is a (fc— l)-admissible subset of Λ, then
Sk(E9 v, A) is empty, as well.

It is easy to see that /c-admissibility of lattice regions is a very mild requirement.

Lemma [3]. IfDγ and D2 are two subsets of A such that D1^>D2 and

dist(D2,D
c

ίnΛ)^30dk, (2.11)

then there is a k-admissible region A with

The idea behind the proof is to deform the boundary of D2 so as to avoid singular
components Cf, i^ k, in such a way that the resulting set remains within Dx but
contains D2. Since diam(Q) ^ 20df < 30dk, for all i = k, and by (2.10), this can be
achieved. For details of the proof, see Appendix D of [3].

Next, we recall the basic decay estimates for the Green's function of the tight
binding Hamiltonian.

Theorem 2.1. [3]. If the constant β in the Definition (2.7) of{dk] is chosen sufficiently
large, then there is a positive constant m ^ \ m 0 such that if Sk(E,v,A) = φ, then

for all j and I in A satisfying \j — l\ = \dk.
This result is proven by induction in k. Singular components, Cf, are inductively

incorporated into the system in A by means of simple perturbation theory.
The next result, due to Wegner, is used in our probability estimates.

Theorem 2.2 [9]. For any finite region A a Zv and any K > 0,

Prob{v:dist(σ(HΛ(v)lE)^κ}^ε(κ,E,δ)\A |, (2.12)

where

ε(κ, £, δ) = min (2κδ ~ \ Jΐκp(E, δ))

with

δ-1 () ( £ 5 ) ^ 0 , as δ + |E|->oo.

Moreover, \ A \ denotes the number of sites in A.

(See Lemma 2.4 and Appendix C of [3] for this variant of Theorem 2.2; see also

[8].)

Corollary 2.3. If A and A' are two disjoint lattice regions, then

Prob {t dist lσ(HΛ(v)), σ(HAv)Ώ ^ *} ύ 2κδ~' \A \ \A'\. (2.13)

The proof of Corollary 2.3 follows easily from Theorem 2.2 by noticing the facts
that the eigenvalues of HΛ are statistically independent from the eigenvalues of HΛ>
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and that

#{eigenvalues of HΛ) = dim 12(Λ') = \Λ'\.

We conclude Sect. 2 with an outline of a coarse-grained, or renormalized version
of the inductive scheme of [3] which we use to prove localization in one dimension
for arbitrary energies and arbitrarily small disorder. We note, however, that our
renormalized inductive scheme should also be useful in higher dimensions as a
means to understand localization for energies close to a mobility edge. For another,
simple example of a coarse-grained version of the scheme in [3] see also [13].

The key idea on which our renormalized inductive scheme is based is to replace
singular sites by singular blocks of sites and to trade the decay estimate (2.2) for
GΛ(E;j, ΐ) on regions A for which S0(E, υ,Λ) = φ for an estimate on the decay of the
Green's function associated with large blocks of sites which one attempts to prove
e.g. by nonperturbative methods. One then expands in couplings between different
blocks. The expected effect of this renormalization procedure is to drive the system
towards a "large-disorder fixed point."

We now describe the basic hypothesis of our improved method in more detail.
Suppose that, for a sufficiently large block B, a cube centered at 0 with sites of length
2/ parallel to the lattice axes, and all energies, E, in an interval /

Fτob\v:Σ\GB(E;x,y)\<a, for \x-y\^ih
I yeδB

^l-β(v,/,/,α) (2.14)

for some a < 1 which may depend on / and δ, with e(v, /, /, a) -> 0, as / -> oo and | /1 -> 0.
We now cover Z v with translates of the cube B centered at the sites of the lattice

/Zv. The cube centered at the site jelZv is denoted by Bj. We define

GBj(E;x,y)\^a,

for some xeBj with \x-y\^\l,yedBΛ (2.15)

and -*

Sξ(E,v,Λ)= \J Bj. (2.16)
R

JGSQ (E,V,Λ )

By iterating the identity

GΛ(z;x,y) = GBj(z;x,y)+ ^ GBj(z;x,u)GΛ(z;u',y), (2.17)

with Bj chosen such that xeBj and dist(x, dBj)^-, we may easily show that if

Sξ(E, v,Λ) = φ, then | GΛ(E + iε; x, y) | decays exponentially with decay
rate oc /" 1 In a~\ for all ε Φ 0; (see Sect. 3 of [3] for a very similar argument). This
estimate replaces (2.2).

Sets of blocks, S* and Sf, which are singular on the kth scale can now be defined
in a way very similar to the definition of Sk, k = 1,2, 3,.... The analogue of Theorem
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2.1 can be proven by the methods of [3]. All arguments in [3] clearly extend to the
present situation with only minor changes in notation. This will permit us to
establish localization under the assumption that condition (2.14) holds.

The methods just sketched are particularly transparent in one dimension. In this
case the blocks Bj are intervals of length 2/ centered at the sites of /Z. In Sect. 5 we
shall derive condition (2.14) from the positivity of the Liapunov exponent. This will
prove localization for the one-dimensional tight binding Hamiltonian at arbitrary
energies and for arbitrarily weak disorder.

Some combinatorial techniques and estimates from [15,3] will be reviewed in
Sect. 4, where they are needed to prove various probability estimates.

3. Proof of Localization, Modulo a Technical Lemma

In this section we complete the proof of Theorem 1.3 (exponential decay of
generalized eigenfunctions corresponding to eigenvalues E(v), with \E(v)\ ̂  Eo, for
E o + δ large enough) by proving the exponential decay estimate (1.17) on the Green's
function GAk(E(v); i,j). Here

Ak = Λk + 1\λk9 (3.1)

where Λk and Λk are cubes centered at the origin with sides of length $dk and 4dk,
respectively, parallel to the lattice axes.

The Main Result stated in Sect. 1 (localization, i.e. completeness of point
spectrum, for energies outside [ — E0,EQ], for sufficiently large Eo + δ) follows from
Theorem 1.3, as explained in Sect. 1. The "disorder parameter" δ has been defined in
(1.6). The main result of this section is the following theorem.

Theorem 3.1. Ifδ + Eo is sufficiently large there is asetΩ' of potentials, v, of measure
one such that, for all veΩ' and every generalized eigenvalue E(v), with \E(ύ)\ > Eo,
there exists an integer H = H(E(v), v) < GO such that the events
(i) Sk^(E(v),v,Άk)Φφand

(ii) Sk. X(E(Ό)9 v, Ak) = φ, Ak = Λk+1\λh9 hold for all k>l.
Theorem 3.1 establishes the hypotheses of Theorem 2.1 for A = Ak, i.e.

I GAk{E(v) + ίε j , l)\ ̂  e~m^-\ m = m(E(υ)) > 0,

for all; and / in Ak with \j — l\^dk-1. This is precisely the required decay estimate

(1.17).
The proof of Theorem 3.1 is based on the following two lemmas.

Lemma 3.2. For every potential v, and given vjor every generalized eigenvalue E{v\

there is a finite integer % = H(v9E(υ)) such that, for all k^U,

Remark. The proof of this lemma is almost identical to the proof of Lemma 5.2 of
[7] and is included here for completeness.

Proof Suppose there is a sequence {k^fLi diverging to + oo such that

Ski-i(E(v\v>^k) = Φ> f° r aU *'• Then, by Theorem 2.1,

Gλk(E{Ό);j9ϊ)^e-mV-\ (3.2)
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for some m = m(E(v)) > 0 and all j and / in Άkι, with \j — l\ ̂  \dk._ 1. The generalized
eigenfunction ψ corresponding to E(v) is determined inside Λkι by its value on
Γk. = dΛk. via the formula

= Σ Gλk(E(υ);x,y)(Γk)yyψ(y% (3.3)

see (1.15). Since φ is polynomially bounded and by (3.2), we obtain from (3.3) the
bound

\φ(x)\S const £ e-m |*-%|p, (3.4)

for some finite p and all x, with |x| < dki. The right-hand-side of (3.4) tends to 0, as
i -> oo, for every fixed x. Hence ι/̂ (x) = 0, which contradicts our assumption that E(v)
is a generalized eigenvalue. This completes the proof of Lemma 3.2.

oo

To formulate our next lemma we need some more definitions. Let (£ = (J (£m

m = 0

denote the family of lattice cubes on all scales introduced after (2.8).

Definition 4. For a given set A a J_v and a finite interval /, we define

93k(Λ/) = {t;:Sk_ !(£,!?,>!) # 0, and for all ce£

dist(σ(HcnΛlE) ^ exp [ - ^ _ J , for some Eel}. (3.5)

Here 7 is some constant, with 0 < γ < 1.

«(Λ)

Remark. In (3.5) one may replace (£ by (J (£m, where n(Λ) is the smallest integer
m = 0

such that /I is entirely contained in some cube of Kw(/1).

Lemma 3.3. For sufficiently small y and arbitrary p < 00, ί/iere are constants δo(p)
and Eo = E0(p, δ) such that

provided δ>δo(p) and \I\ is sufficiently small, or / n [ — £ 0 , £ 0 ] = ψ, with £ 0 =
E0(p,δ).

Remark. Note that the probability estimate of Lemma 3.3 involves uncountably
many energies, namely all Eel, while in the probability estimates of [3] the energy
was fixed. The proof of Lemma 3.3 thus requires some work which we present in
Sect. 4.

Proof of Theorem 3.1. Since, for p large enough (p > v), the series

converges, if δ > δo(p), or In [ — Eo, £ 0 ] = φ9 with Eo = E0(p, δ), the Borel-Cantelli
lemma assures us that with probability one there exists some£= k(υ) < 00 such that,
for k > £, the event
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implies that

^),£)<exp[-^_1], (3.6)

for some ced.

Exactly the same statement holds, with Ak = Λk + ί\λk replacing λk.

Definition 5. We define events Sk by

δk = {υ:ά\sl[_σ(Hcr,λ)nI9 σ(Hc,nAkK g 2 e x p [ - d j ; _ 1 ] ,

for some c and d in (£}. (3.7)

By Corollary 2.3,

Prob(^) ^ const Σ k l k Ί e x p C - ^ . J , (3.8)
c,c'

where the sum on the right-hand-side of (3.8) ranges over cubes cedm and cΈdm>
intersecting λk and Ak, respectively, with m = 0,..., n(Λk) and m! = 0,... 9n(Λk+ί),
where n(Λk) and n(Λk + ί) are as in the remark following Definition 4, above, whence

m, m' ̂  2 log2 (diam Λk + J. (3.9)

Since the number of cubes ce(£m which intersect a fixed box A is bounded by
2~ ( m" 2 ) v |/i I and by (3.9), it follows that

00

Σ Prob (Cfc) converges,

for any y > 0. By applying the Borel-Cantelli lemma once more we conclude that,
with probability one, there exists a constant k! = k'(v) such that for all k > k\

dist lσ(Hcnλ)nI9 σ{Hc.nAkn ^ 2exp [ - dj_ J , (3.10)

for all c and d in (£.
By combining (3.6) and (3.10) we conclude that, for k > max(k,/c') and all Eel,

Sk-1(E,υ,λk)Φφ=>Sk-1(E,υ9Ak) = φ. (3.11)

By Lemma 3.2, we know that if δ + Eo is large enough and E(v) is a generalized
eigenvalue with |£(t ;) |>£ 0 , then S^^Eiv), υ, Λk)φφ, and hence Sk_ί(E(v\ v9 Ak) =
φ, by (3.11), for all k>Ίc9 with I = max(£,fc'). Hence the proof of Theorem 3.1 is
complete.

Our proof of localization is now complete, up to the proof of Lemma 3.3 which
forms the contents of the next section.

4. Proof of the Basic Probabilistic Estimate (Lemma 3.3)

We reduce the proof of Lemma 3.3 to two fairly simple, auxiliary lemmas, Lemma
4.3 and 4.4, which are stated below, after a brief review of some combinatorial
techniques and estimates from [15,3].

Let D be some finite subset of A ^ Zv, and let / be some interval of energies with
the property that In[ — E0,EQ] = φ. Our goal is to estimate the probability, P D > Λ ,
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of the event that

D = Qc:Sk(E9v,A) (4.1)

for some integers k and α, choosing δ + Eo sufficiently large. For this purpose we
need a bound on the "combinatorial entropy" of the set D. This notion is defined as
follows: Let (ίM(D) be a minimal family of cubes in (£„ (defined before (2.9)) which
cover D. Let n(D) be the smallest integer such that D is covered by a single cube
cedn{D). (Clearly 2n(D) ^ 2 diam D.) We define KW(D) to be the cardinality, |(£nφ)|, of
(£„(/)) and set

V(D)= Σ Vn(D). (4.2)
« = o

We call V(D) the combinatorial entropy of D.

Theorem 4.1 [3]. Let N(V) be the total number of subsets D c Z v swc/z ίΛαί F(D) = V
and DBO. Then

l (4.3)

where Kv is some finite constant which depends only on the dimension v.

Example. If D consists of two points separated by a distance /, then Vn{D) = 2 for all n
such that 2" < I Hence

More generally, since Vn(D) ̂  2, for all n < n(D\ and n(D) rg log2 diam D -f const, we
have

F(D) ^ 2 log2 diam (D) + const. (4.4)

We shall also need the notion of "isolated" cubes of &n(D). Let b be given, with
1 S b < 2. We define

c/Geπ(D), with c'Φc}9 (4.5)

and
n(D)

V'n(D) = \K(D)l Φ ) = Σ W (4.6)
n = 2

The following result has been shown in [15]; see also Sect. 4 of [3].

Theorem4.2. There is a constant K'v, only depending on the dimension v, such that

V(D)£K'vl\D\ + V'(D)l (4.7)

for all D.
Throughout the remainder of Sect. 4 we choose δ + Eo large enough and fix an

arbitrary interval, /, of energies such that / n [ - Eo, Eo~] = φ and | /1 is small enough.
Let PDΛ be the probability of the event that

D = σk^Sk(E,v,Λ),

for some k and α and some energy Eel. Let χD be the characteristic function of this
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event. We set

4D = #{W:K;(J>)=1}. (4.8)

Recall that dk = exp [β(5/4)fc], fc = 0,1,2,... (see (1.16)). Our principal results in this
section are the following two lemmas.

Lemma 4.3. For any fixed β and b = 5/3 in (4.5)

PD,Λ ^ exp [ - ko(\D\ + V'(D) - qD)l (4.9)

provided δ + Eo is large enough and \I\ is small enough. The constant fc0 = ko(δ,Eo)
tends to + oo, as δ + Eo -> oo.

Lemma 4.4. // D = C" <Ξ S^E, v, A), /or some α αnίi some ί ̂  fc, απrf if £ satisfies

άist(E,σ(HcnΛ)) Z exp [ - dϊ_ J , (4.10)

00

for allce<ί= (J Km, ί/ẑ n
m = 0

« D g i { | D | + K'(D)}, (4.11)

and

)^!
(4.12)

provided y ^^ is sufficiently small.
We now first prove (4.12) and then show how Lemma 3.3 follows from Lemmas

4.3 and 4.4. Subsequently, we shall prove Lemmas 4.3 and 4.4.

Proof of (4.12). If £ satisfies (4.10) then

dist(σ(iίcα), E) ̂  e-V5^ » e~J\

for all i ^ fc, because, by (2.9), Cf e(E, and Ja\Γx ^ ^ _ x, for i ^ fc and γ g i Hence by
Condition fc, (a) and (c), Sect. 2,

d i a m ί C f ) ^ ^ . ! ^ ^ - ! . (4.13)

For, otherwise, C* would really belong to Sj\Sj+1, for some) < i, by the maximality
condition imposed on Sj\Sj+1. (See (2.3)-(2.6).) Clearly, (4.13) proves (4.12).

From these arguments we conclude that if £ satisfies (4.10) and Sk(E,v,Λ)Φ φ,
then there exists some singular component C) ^ Λ, j ^ fc, with

Proof of Lemma 3.3. By the definition of Sfc(/1, /), see Definition 4, in particular (3.5),
we thus have

Prob(93fc(Λ, /)) ̂  Prob {i;:3CJ £ Λ, with fc ̂  < oo, and diam(CJ) ̂  4-1}

^ Σ JW
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Using Lemmas 4.3 and 4.4, we obtain the bound

^ l (4.14)

To control the sum on the right-hand-side of (4.14) we make use of Theorems 4.1 and
4.2, thus obtaining

Λ,/))̂ |Λ| £ exp f^-^λv], (4.15)
v^vk L\ Λ J

where Ffc = min {V(D): diam(D) ̂  dΛ_ J . By (4.4),

(4.16)

Since k0 can be made arbitrarily large by choosing δ + Eo large and |/ | small, we
conclude from (4.15) and (4.16) that

, (4.17)

for δ > δo(p) and | /1 small enough, or / n [ — Eo, £ 0 ] = 0, for some Eo = E0(p, δ).
This completes the proof of Lemma 3.3.

Before starting the proof of Lemmas 4.3 and 4.4, we show that if D = Cf c
St{E,υ,Λ) and ceWJD), then

dist(σ(i/cnZ)n/1), E) ^ exp - y/d^), (4.18)

where j(m) is defined in such a way that

(4.19)

Moreover, c n D is the cube in K,,^^) containing c n ΰ and satisfying

dist (c n A δ ( ^ D ) \ δ Λ ) ^ 4dΛm);

see (2.8)-(2.10). A proof of (4.18), (4.19) was given in [3], but for the convenience of
the reader it is repeated here. Since ce&m(D),

Hence cnD satisfies Condition k, (a) at scale^m); (see (2.4)). We claim that cnD also
satisfies Condition /c, (b) (the distance condition), i.e. (2.5). This implies that (4.18)
holds, because otherwise cnD — cnCf would be regular at scale j(m) contradicting
the maximality of Sj\Sj+ x, for some j ^]{m).

Next, we verify our claim. By the definition of £'m(D), see (4.5), and since we have
chosen b = 5/3,

diam D ^ dist (c, D\(c n D))

(4.20)
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and we have used (4.19). Hence, by Condition fc, (a),

i^j{m)+l. (4.21)

By Condition fc, (b) (see (2.5)) and (4.21),

dist (c n D, Sf\0) ^ dist (D, S£\

> 2 d Λ m ) + 1 . (4.22)

Moreover, if Cf is a singular component different from D, then cnD c S^Cf', and
hence, by Condition fc, (b),

dist(cnZ),C?')^2d / + 1, (4.23)

in particular

d i s t ( c n A Q ' ) ^ 2 ^ (m) + 1 , (4.24)

for j(m) ^ / ̂  i. Equations (4.20) and (4.22)-(4.24) establish our claim.

Proof of Lemma 4.3. Suppose that

D = Ca

ka Sk{E, v, A), for some Eel, (4.25)

and

V'm(D)^2,

for some m. Then (4.18) holds for two disjoint cubes, cγ and c 2, in ^SJJJ>\ Therefore

dist(σ(iίβ l)n/, σ(HB2))^2e-^ (4.26)

where Bt = (c i nD)nΛ, Ϊ = 1, 2. Let χm>cl>C2(u) be the characteristic function of the
event described in (4.26). If m = 0, c can be identified with a lattice site, and, since
Eel, the event

\υ(c)-E\g>2v + m0, for some Eel, (4.27)

holds; see (2.1). Let χOtC be the characteristic function of the event described in (4.27),
and let χD be the characteristic function of the event described in (4.25). Then

XMU Π X o » Π IT XmfCl,c». (4.28)

The product Y\ extends over disjoint pairs of cubes in &'m(D). If K^(D) contains only
one cube the product is empty. For fixed m, the events in the supports of χm Cl C2 are
independent, as cu c2 ranges over disjoint pairs of distinct cubes, because

(cnD)n(c'nD) = φ,

for c and d in VJD\ with c Φ d. We note that there are at least {V'JD) - 1 )/2 factors

in the product, [}', on the right-hand-side of (4.28). Using Corollary 2.3 we see that

χ ^ = J dP(υ)χm,CuC2(υ) £ exp [ - (i v ^ + fc^)], (4.29)

where k'o = k'0(δ, Eo) -> oo, as δ + Eo -• oo.
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As in Sect. 5 of [3] we now iterate Holder's inequality, using that χ(v)p = χ(υ), for
all p > 0, and obtain

* π z ό r T ί π o r r χm,cι,C2dP(v)~\
ceCo(D) L ™ > ° C l ) C 2 e ( ς ( D ) J

* π jfoT'Π U'Tn,,::!^ (4.30)
ce(E0(β) m>0cι,c2

Choosing r = 0.8 > 2~ 1 / 2 we obtain from (4.29) and (4.30),

for some fc0 = ko(δ, EQ\ which tends to -f oo, as δ + £ 0 ̂ > oo. Here we have used that
dj(m) ^ 2m; see (4.19). This completes the proof of Lemma 4.3.

Remark. Since E is not fixed, we do not get any small factors from cubes cefί'Jίfl) if
V'm(D) = 1. This yields the term qD on the right-hand-side of (4.9).

Proof of Lemma 4.4. Let D and E satisfy the hypotheses of Lemma 4.4. Inequality
(4.12), i.e.

diam D^dk^ι,

has already been proven, for γ ̂  1/2; see (4.13). Next, we prove (4.11), i.e.

qD^U\D\ + V'(D)}.

Let ceWJD). By (4.18)

dist(σ(//^n Λ), E) ̂  exp - j l ^ y

But by hypothesis,

dist(<7(tf^nyl), E) ̂  exp [ - dl- J ;

see (4.10). Therefore,

VJP) = φ,

if

9(5/8)m > Π > jy

and we have used (4.19). Hence, using (4.4) and (4.12),
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for y S l/(2CK'v). Here C and C are finite constants, and we have used Theorem 4.2.
This completes the proof of Lemma 4.4.

Completeness of point spectrum outside [ — £ 0 , £ 0 ] , for large δ + Eθ9 is thus
established.

5. Localization in One Dimension

In this section we briefly sketch how to extend our method to prove localization in
the one-dimensional Anderson model at arbitrary energies and for arbitrarily weak
disorder, δ. Although we do not prove any new results on one-dimensional models,
we feel that our method of proof is quite close to physical intuition about tunnelling
and that it will extend more easily to more general problems, such as localization in
a strip, than some pf the previous proofs. See [16,10,11,2,17], and references given
there, for earlier results.

To prove localization it suffices to show that, for any sufficiently short interval, /,
of energies,

Inσ(H) = σpp(H\ (5.1)

where H = — A + v is the one-dimensional tight binding Hamiltonian; see (1.2)-
(1.6). In Sect. 2, (2.14)—(2.17), we have outlined a strategy for proving (5.1) based on
establishing decay of the Green's function over a sufficiently large block Bx = [0,2/],
for arbitrary energies in /, with probability close to one. More precisely, we must
show that, for all Eel,

\^Ά^l-B(l9I9a)9 (5.2)

where y = 0, or = 2/, and ε(Z,/,α)->0, as /-• oo and |/ | ->0. See (2.14). In order to
prove (5.2), we must look for a way to control GBι(E\ x, y) non-perturbatively. This is
provided by the Fίirstenberg theorem [18] and simple density-of-states estimates;
(Theorem 2.2).

We start by expressing the Green's function GBι{E\ 0,21) in terms of the solution,
φE, of the initial value problem

(j) = 09 j ^ O , (5.3)

with

φE(-l) = 0 and φE(0)=l. (5.4)

Let Γ be defined as in (1.13), with A = J5Z. Equation (5.3) can be rewritten as

([// + Γ- E]ψE){J) = (ΓψE)(A and hence, for jeBl9

ΦEU)= Σ GBι(E;jJ)ψE(ί'). (5.5)

Setting j = 0 and noting that φE(if = — 1) = 0, we obtain the well-known identity

GBι(E; 0,21) = φE(0)/φE(2l + 1) = l/φE(2l + 1). (5.6)

Next we recall the Fϋrstenberg theorem [18].
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Theorem 5.1. Let E be an arbitrary energy and let φE(j),jeZ+, be the unique solution
of the initial value problem formulated in (5.3), (5.4). Suppose {v(j)},jeZv, are i.i.d.
random variables with distribution g(v(j))dv(j), where g is some bounded function. Then
there exists a set ΩE^Ω of potentials of full measure (i.e. Prob(ί2£) = 1) such that for
all vsΩE,

y(E)^ lim-\n\ψE(j)\, (5.7)

exists and is a positive constant, the Lίapunov exponent, which is independent of the
particular configuration veΩE.

Remark. One can also express y(E) with the help of the Thouless formula [19]

y(E) = \\n\E-E'\dN(E'), (5.8)

where dN(Ef) is the integrated density of states.
From (5.6) and (5.7) it is quite clear that GBι(E;0,2ί) is exponentially small in /

with high probability. This is made precise in the following corollary.

Corollary 5.2. For an arbitrary, but fixed energy E and any ε, with 0 <ε< y(E),

lim Prob {v: \ GBι(E; 0, 21) | = exp [ - (y(E) - ε)2/] } = 0.

Proof. Clearly

{i;: I GBι(E; 0,2/)| ^ exp [ - (y(E) - ε)2/]}

1

2/

By (5.6) and Theorem 5.1,

Un\GBι(E;0,2,l)\+y(E) (5.9)

tends to — y(E), as / -• oo, almost surely. Hence Prob(Ω(E, ε, /)) -• oo, for every fixed
ε > 0 and an arbitrary, fixed energy E. This completes the proof.

Our main technical result in this section is the following theorem.

Theorem 5.3. Choose an energy Eoeσ(H). Let {Δ^, I = 1 , 2 , 3 , . . . , b e a sequence of
numbers such that /Mj—•(), as l-^ oo. Then, for any λ, with 0 < λ < 1,

lim Prob j v: sup (\GBι(E;0,j)\ + \GBι(E;j, 2/)|) < λ, for every e -,- \\ = 1.

Proof. We choose some ε, with 0 < ε < y(E0), and define two subsets of potentials by

io,ε,/) = jt>: |G [ 0 J ](£ o;0,j) | + |G α 2 J ] (£ o ; j ,2/) |

2^ for a l l j e Γ ' i Π j (5 1
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and

Ω™(E0,1) = {v:άist(σ(HBι),E0) ^ 2Γ2}. (5.11)

It follows from Corollary 5.2 (with Bt replaced by [OJ], [/,2/], respectively, that

Prob(/2 ( 1 )(£0,ε,/))->l, as /->oo,

as one verifies easily.

Moreover, from Theorem 2.2 (Wegner's bound on the density of states) we infer
that

Prob(ί2 ( 2 )(£0,/))-»l, as l-*oo.

Hence

Frob(Ω{1)(E0,ε,l)nΩ{2)(E0J))^l as f->oo. (5.12)

By the second resolvent identity,

GBl(E0;0,j) = Gί0JEo;0,j) + {GΆΩ(Eo)Γ^GBι(Eo)}(0,j)

= GlΰS(E0; 0 J ) { 1 + GBl(E0;j + 1 ,j)}, (5.13)

where Γ$ = 1, if i — j and ϊ =j' + 1 = 0, otherwise. Similarly

GBι(E0;j, 21) = G02η(E0;j, 2l){ 1 + GB,(E0;;J - 1)}. (5.14)

Suppose now that veΩw(E0,ε, /)nί2 ( 2 ) (£ 0 , /). Then we derive from (5.13) and (5.14),
using (5.10) and (5.11) that

and

Thus, using the first resolvent identity

GBl(E; U ΐ) = GBι(E0; i, ϊ) + (E- E0)(GBι(E)GBι(E0))(i, ϊ\

and (5.10), (5.11), we obtain the bound

\GBl(E;0J)\ + \GBι(E;j92t)\ £l(l+ ^ V ^ o - e w i + 2Δf < χ (5.15)

for / large enough and veΩ(1)(E0,εJ)nΩ(2)(E0J). Since ε<y(£ 0 ) and zy 4->0, as
/-• oo, the proof of Theorem 5.3 is complete.

Remarks.
(1) Suitable choices for Λι are 4Z = exp[ — consty(E0)Γ\9 or ^ = const/"", with

n>4.
(2) Clearly, (5.12) and (5.15) prove our basic estimate (2.14). Hence localization can

be obtained by the techniques outlined in Sect. 2, (2.14)—(2.17). The details are
very similar to the arguments in Sects. 3 and 4. We note that, since y(E0) > 0, for
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all Eoeσ(H), and arbitrarily small disorder, it follows that

σ(H) = σpp(Hl σac(H) = σsc(H) = φ,

which is the expected result. See also [16, 10,11, 3, 12, 17], and for a review see
[8].

6. Some Comments, Extensions and Open Problems

In this section we sketch some further results and various further applications of our
techniques.

6.1. Connection Between σ(HΛ) and {E: Sk(E,v,Λ) φ φ). It is possible to modify the
inductive definition of Sk ~ Sk(E,v,Λ) as follows. We set

where (J Ck is a maximal union of components, Ck, which are regular at the kth scale,
α

in the sense of the following

Modified Condition k:
(a) C\ c Λ, and diam Ca

k^dk,

(b) dist(σk9Sk\CQ^2dk+i,

(c) There exists a subset Q , satisfying

Cl^Λ, 4dk^ dist(Q,dCl\dΛ)^ Uk, (6.1)

such that

E)^e-^. (6.2)

Note that the subset Cl of A for which (6.2) holds may be (fe — l)-admissible. More
precisely, if D is a subset of A satisfying (a) and (b) of our modified condition fc, but
DΦQ, for all / = l,...,fc, and all α, then there exists a (fe—Inadmissible set D
satisfying (6.1) such that

Moreover,

dist(σ(HD)9E)<e->/\

where

All arguments and results of [3] go through for this modified definition of {Sk},
fe = 0,1,2,.... The advantage of the modified definition of Sk is that it typically yields
smaller sets, 5fc, of singular sites than the definition used in this paper and in [3] and
that the set of "resonant energies"

is statistically highly correlated with σ(HΛ), as one might expect. More precisely, the
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following result holds. Let

Wk(Λ9l) = {v:Sk-1(E,v9Λ)Φφ9 and

dist(σ(iϊΛ),E)^exp[--dίL1], for some Eel}.

Proposition. Let Eo + δbe large enough. Then for sufficiently small y and any compact
interval I with 7 n [ — Eo,EQ] = φ and \I\ small enough,

where p^oo, as Eo + <5 -• oo.
This proposition could be used as an alternative to Lemma 3.3 in our analysis of

localization. However, while this proposition makes a simpler and more intuitive
statement than Lemma 3.3, its proof is considerably harder. (Since it may be of some
interest in its own right, we state it here without proof.)

6.2. Other Physical Systems Exhibiting Localization. In [3,5] and in this paper we
have analyzed a system with diagonal disorder, namely a quantum mechanical
particle in a random potential. There are, however, plenty of disordered, linear
dynamical systems with off-diagonal disorder. It is therefore interesting to note that
our techniques extend to such systems in a straightforward manner, under suitable
assumptions on the distribution of the off-diagonal disorder.

A typical example is an infinite array of coupled harmonic oscillators: a classical
oscillator with coordinates ~XjeUn is attached at every sitejeZ". The equations of
motion of these oscillators are given by

% = - ώ**j + Σffj&r ~ *j)> ( 6 3 )
ϊ

where frj = 09 unless \f -j\ = 1, for example. The variables ώj and fjΊ may be
random variables with distributions dλ{ώj) and dp(fJΊ), where

with h a bounded function supported in [0, oo). For example

dλ(ώ) = δ(ώ)dώ, or (6.4)

dλ(ώ) = ( jϊ^zδ) -ι exp [ - (ώ - ώfβδ2'] dώ, (6.5)

and

(fl or

The model specified in (6.3), (6.4) describes harmonic vibrations of a crystal lattice. In
order to solve the equations of motion (6.3), we must analyze the Jacobi matrix Ω2

defined by

if i=j (6.6)

0, otherwise.
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— I ώf +

This is a "tight binding Hamiltonian" with diagonal disorder given by

£ fij ) \J *e^v> and off-diagonal disorder given by {/ι7}. The spectrum

of ί2 corresponds to the normal frequencies and the generalized eigenfunctions of ί2
are the normal modes of (6.3). (We define Ω to be the positive root of Ω2) lϊdλ is given
by (6.4), i.e. ώj = 0, one may prove that, for ω 0 + N large enough,

cra c(ί2)n(ω0, GO) = σ s c(ί2)n(ω 0, oo) = φ.

However, there is always an extended generalized eigenstate of Ω, 3c\ω = °) = const,
corresponding to a generalized eigenvalue ω = 0, and one expects that the
localization length diverges to + o o , as CUNOJ0, with ω o = 0 in one dimension.
(For dλ(ώ) as in (6.5) the entire spectrum of Ω may be pure point if δ is large enough.)
If ω 0 + N is sufficiently large and ω is a discrete eigenvalue of Ω, with ω > ω 0 , then
the corresponding normal modes {x< ω ), 7< ω)}, {j} = Xj)JeZ\ decay exponentially in
\j\. It is convenient to complexify the phase space by setting ~?y =*;,• +ίjy.
Let {J°} be an initial condition localized near; = 0, with the property that

where EΩ( ) is the spectral resolution of Ω. L e t ^ (ί) = (eiΩfl°)j be a solution of (6.3)
with initial conditions ~l°. Then

Σl7l2l1/0l2^ const,
;eZ v

uniformly in t. In the one-dimensional case these results have been established in
[12]. For v > 1, one could, in principle, use the techniques of this paper and of
[3,5,9] to give proofs.

Another interesting application of localization theory concerns the propagation
of electromagnetic waves in a medium with randomly distributed dielectric
constant. (For simplicity we suppose that the magnetic permeability μ= 1.) This
problem is basically just the continuum limit of the problem formulated in (6.3).
However, in this case, the continuum problem is not a simple extension of the lattice
problem, as one may easily understand. We believe that the mathematical methods
of this paper and of [3,5,9] are relevant for the analysis of Maxwell's equations if the
dielectric constant ε is of the form

ε(x) = εp(x) + εs(x) > 0, xe[R3,

where εp is a smooth periodic function, and εs is a smooth stochastic perturbation
with the properties that εs(x) and εs(x') are statistically independent for | x" - 3c'| >

r > 0 and that ε"(x) is small. However, we have not looked into any details. There are
certain limiting cases of the problem described here which can be analyzed quite
easily. We consider an optical medium with a frequency-independent random index
of refraction, n(x). We suppose that sup | grad n(x) | is small. We study the

propagation of light of fairly high frequency. In the absence of external currents the
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electric field then satisfies approximately the equation

or, after Fourier transformation in t,

) ^ ( 6 7 )

The analysis of this equation is still quite difficult, in general. There are, however,
special cases which appear to be accessible.

(a) n(x) = np(x) + ns(x) > 0,

where np is a smooth periodic function, and ns is a small stochastic
perturbation of large disorder; (same properties as εs). If ns = 0, then there are
intervals of forbidden frequencies, ω, for which (6.7) has no solution. If ns is
now turned on one expects that there are discrete sets of frequencies inside a
forbidden band of the periodic problem for which (6.7) has localized solutions
(standing waves).

(b) Let n(x) = n(x, y) be independent of z. Let φ be a component of E and define
Δ± to be given by (d2/dx2) + (d2/dy2). Then Eq. (6.7) becomes, after Fourier
transformation in z,

[(-ΔL-[- ) n(x,y)2 )φ \(x,y,;k,ω)=-k2φ(x,y,;k,ω). (6.8)

This is a problem to which our methods can, in principle, be applied directly.
We predict that if n(x, y) is random, with correlations of finite range and
"smooth" distribution, and ω is sufficiently large, the spectrum of (wave
vectors, k, of)

is pure point, and the eigenmodes of (6.8) are exponentially well localized in
the (x, y) plane. Hence electromagnetic waves of high frequency propagating
in the z-direction do not spread in the x and y directions.

Interesting problems in one-dimensional localization theory concern, for
example, random Schrόdinger operators with a potential whose distribution is not
absolutely continuous, or the theory of wave guides with stochastic boundaries.
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