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Abstract. The classical 0(3) non-linear cr-model is generalised to a theory of
fields defined on a compact Riemann surface M with values in a compact Kahler
manifold V. The dimension of the space of self-dual fields from M to the complex
projective space PN is calculated and the classifying space for the inequivalent
quantisations of the theory is also calculated.

1. Introduction

The main reason for studying the classical 0(3) non-linear σ-model in two
dimensions is its similarities with pure Yang-Mills theory in four dimensions. The
0(3) model [1] is a theory of a smooth three component real field φ = (φa)
(a = 1,2,3) defined on U2, i.e. φ'M2 -> U3 is a smooth map. The action of the theory is

%5 dμφ-d»φd2x = ̂  δ^dμφ
advφ

ad2x, (1.1)
R2 U2

where δμv is the Euclidean metric on U2. The field φ is subject to the constraint

φ2 = φ°φ°=ί. (1.2)

The action (1.1) is invariant under a conformal change in the metric

Qμv = Ω2δμv (1.3)

for Ω a smooth real-valued function on U2. Taking

Ω = 2/(l+x2) (1.4)

for x = (xu x2)eU2, a n d assuming that the field φ obeys the boundary condition

φ(x)^φo0 as |x|->oo, (1.5)
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where φ^ is a constant, shows that the field defines a smooth map φ:S2 ->S2, from
the conformally compactified Euclidean 2-space to the unit 2-sphere in U3. The
maps from S2 to S2 are partitioned into homotopy classes which form a group
π2(S2) ~ Z; this isomorphism is given by the degree of the map. Associated with each
homotopy class of maps is a topological charge

ίΦ(dφdφ)d2, (1.6)

and it follows from the inequality

J (daφ ± εabφ x dbφ) (daφ ± εacφ x dcφ)d2x ^ 0 (1.7)

that

| (1.8)

The equality in (1.8) will hold if and only if

daφ±eabφxdbφ = 0, (1.9)

and such a field is said to be (anti-) self-dual. In discussing the solutions of (1.9) it is
important to remember that the 2-sphere S2 has a unique complex structure. This
arises when it is regarded as the complex projective line IP1. Under this identification
the (anti-) self-dual fields correspond to (anti-) holomorphic maps from P1 to IP1.

In this paper a generalisation of the 0(3) model is considered in which the field φ
is a smooth map from a compact Riemann surface M into a compact Kahler
manifold V. Using techniques from the theory of harmonic maps it is shown in Sect. 2
that the action of this theory is bounded below by a topological charge and that the
fields which realise this absolute lower bound are the (anti-) holomorphic maps from
M to V. For suitable choices of M and V this model coincides with the classical 0(3),
CPN and complex Grassmannian models (see, for example, [1,2, 3 and 4]). In Sect. 3
the case when V = PN (the N dimensional complex projective space) is discussed. In
particular, the dimension of the space of self-dual fields from M to PN of degree n is
calculated in terms of N, n and the genus g of M. This result gives, for example, the
number of independent instanton solutions (of a given degree) of the 0(3) or CPN

model. The existence of holomorphic maps from a compact Riemann surface to the
complex Grassmannian Gk(Cn) is also briefly discussed. The topology of the
configuration space & of maps from M to V is considered in Sect. 4. The homotopy
groups of the configuration space are calculated in terms of the homotopy groups of
V and the genus g of M. The first homotopy group of Ά is related to the existence of
inequivalent quantisations of the theory and the classifying space for these
quantisations is calculated. Finally, the relationship between the topology of the
space of self-dual fields and the topology of the space of all fields is considered. It is
shown, for example, that the space of self-dual fields, of degree greater than one, in
the 0(3) model is not simply connected.
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2. Generalised Non-Linear σ-Model

Let M be a compact Riemann surface with metric g and V a compact simply
connected n-dimensional Riemannian manifold with metric h. Given the Rieman-
nian metric geΓ(TM®TM)*, we write <u,v} for gx(u,v), x e M , u,veTxM, \\u\\2

= (u,v}, and similarly for heΓ{TV® TV)*. If φ:M-» V is a smooth map, then the
differential of φ at xeM is a linear map

# ( x ) : T Λ M - + Γ , ( x ) 7 , (2.1)

and hence dφ(x)eT*M®Tφ{x)V. The norm \\dφ(x)\\ is defined using the metric
induced on T*M®Tφ{x)V from the Riemannian structures on M and V. The
generalisation of the 0(3) model is a theory of smooth fields φ:M -> F with the
action given by the "energy" of the field. The Lagrangian density $£{φ)\M-+ M~° is
defined (see [5]) to be

\\2, (2.2)

and the action is

Slφ-]=iϊ\\dφ(x)\\2dμ{g)9 (2.3)
M

where dμ(g) is the canonical volume measure associated with g. In local coordinates

and the correspondence between (2.3) and (1.1) is clearly seen.
An important feature of the 0(3) model is that the range S2 has a complex

structure, S2 ~ P 1 . To incorporate this aspect of the 0(3) model into this
generalisation it will be assumed that V has a complex structure.

An (almost) complex structure on the manifold V is a section Jve Γ End TV such
that Jy=— id, similarly JMeΓ End TM such that J2

M = — id is an (almost) complex
structure on M (see [6] for further details). It will be assumed here that these almost
complex structures are integrable and hence define complex structures. A map
φ: M -> V is holomorphic if its differential dφ commutes with the complex structures
on M and V, i.e.

dφ JM = Jydφ. (2.5)

A Hermitian metric on V is a Riemannian metric h such that

(u,v) = (Jvu,Jvυ) (2.6)

for all u,veTPV,peV. The Kahler from ωeΓ(Λ 2 T*K) is defined by

ω(u,v) = (u,Jvv). (2.7)

If ω is closed then V is a Kahler manifold. The complexification of TM is
T C M = TM®UC, and J M may be extended by complex linearity to Jc

MeΓ
End TCM. Since [Jc

M)2=—id, there is a direct sum decomposition TCM =
TU0M(g)T0ΛM, where Γ ^ M and T0ΛM are the eigenbundles corresponding to
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the eigenvalues +i and —i of J ^ , respectively. The differential of any map
φ: M-+V can be extended by complex linearity to dcφ: TCM-+TCV, with the
canonical decomposition dcφ = dφ + dφ, where

dφ:T^°M^T^°V9

dφ:TU0M->T0ΛV,

are defined to be the composition of dc followed by projection in Tc V. A map
φ\M -±V is (anti-) holomorphic if and only if (dφ = 0)dφ = 0.

Using the derivatives given in (2.8) we can define the (1,0) and (0,1) Lagrangian
densities by

<?™(φ){x)=\\dφ(x)\\2,

with the corresponding actions

SiUO)ίφ-]=ί\\dφ{x)\\2dμ(g)9
M

(2.10)

s(0 1 )w] = jn^(χ)iι 2Φte)

M

The natural decomposition of the Lagrangian density

&(φ) = £e{U0){φ) + JSf ( 0 α ) (φ) (2.11)
induces the decomposition

S[0] = 5 ( 1 'O )[0] + Si0Λ)lφ] (2.12)

of the action.
To obtain a lower bound on the action we introduce the topological charge

Q[φ~] of the field φ:M->V given by

i l , (2.13)
M

where ω is the Kahler form of V. Then a direct calculation (see [7]) shows that

J φ*ω = f C || 5φ(x) | | 2 - || 3"0(x) || 2]dμ(fif) = S^ ^Cφ] - S^ ^Cφ]. (2.14)
M M

Thus the inequality

S(1 0 ) [ φ ] 4- S ( O i l ) M ^ |S ( 1 0 ) [ φ ] - S ( 0 ) 1 ) M | (2.15)

is the equivalent to the inequality

(2.16)

and we see that the action is bounded below by a multiple of the absolute value of the
topological charge, just as in the 0(3) model. In general, the topological charge
defined by (2.13) is not invariant under continuous deformations of the field φ, and
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thus does not define an absolute lower bound on the action in each homotopy class
of maps from M to V. This defect can be remedied by requiring V to be a Kahler
manifold. Let φί9 φ2:M-+V be homotopic (denoted by φ1~φ2) and let
Φ\M x [0,1] -> V be a homotopy of φγ and φ2. Then

\φ\ω-\φ\ω= j Φ * ω - \ Φ * ω = \ Φ*ω= J Φ*(dω). (2.17)
M M Mx{0} Mx[l) o(Mx[0,l]) Mx[0,l]

and thus

= ί *W- (2.18)
Mx[0,[]

If F is a Kahler manifold, then dω = 0 and the topological charge Q defined by (2.13)
is a homotopy invariant. Henceforth it will be assumed that V has a Kahler
structure. Note that the topological lower bound on the action of the theory is
exactly analogous to the topological lower bound on the Yang-Mills action which
leads to instanton phenomena.

The space of maps φ:M->V (which will be assumed to be basepoint preserving)
are partitioned into homotopy classes, the set of which is denoted by [M; F]^ . The
manifold F is simply connected, and thus by the Hopf classification theorem [8],

[M; F ] * - //2(M; π2(F)) ~ π2(F). (2.19)

Thus non-trivial topological classes of maps will exist for those spaces F which have
a non-trivial second homotopy group. In each of these homotopy classes the action
of the model will be bounded below by twice the absolute value of the topological
charge Q. Those fields which realise this absolute lower bound are called instanton
solutions of the model. It is clear from (2.15) that an instanton field satisfies either

dφ = O or dφ = O, (2.20)

and hence is either holomorphic (self-dual) or anti-holomorphic (anti-self-dual). For
certain choices of F such maps exist. The case when F = PN, the JV-dimensional
complex projective space, is discussed in the next section.

3. The Space of Self-Dual Maps from M to PN

The complex projective space PN with the Fubini-Study metric is a compact simply
connected Kahler manifold with π2(PN) ~ Z, for all TV ̂  1. Thus, by (2.19) there exist
non-trivial topological classes of maps from any compact Riemann surface M to PN.
For V— PN it is possible to write the topological charge (2.13) in terms of deg φ, the
degree of the map φ:M -+PN, and Q is given by [9]

β [ 0 ] = 2πdeg0. (3.1)

There is a bijective correspondence between degφ and the elements of π2(PN) ~ Z,
and thus within each homotopy class of maps of a given degree the action is
minimised by the (anti-) holomorphic maps. If we denote the space of all maps from
M to F by Map(M; V) and the space of all holomorphic maps by Hol(M; F), then
M a p ( M ; P \ and Hol(M;fP\ denote the component of Map(M;PN) and
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Hol(M; PN) of degree n, respectively. In this section we calculate the dimension of
Hol(M; PN)n which is the number of independent self-dual fields from M to PN of
degree n.

To calculate the dimension of Hoi (M; PN)n it is necessary to introduce a
correspondence between holomorphic maps from M to PN and holomorphic line
bundles over M. Before explaining this correspondence we will first recall some
notions from algebraic geometry (see [10]).

A divisor D o n a compact Riemann surface is a finite sum D = ΣΐiiXi of points
xteM with multiplicities nt. The set of divisors on M forms an additive group,
denoted Div M. If ni ^ 0, for all i, then D is called effective. In terms of sheaves, a
divisor D on M is a global section of the quotient sheaf 90?*/$*, where $01* denotes
the multiplicative sheaf of non-zero meromorphic functions on M and $* the
subsheaf of non-zero holomorphic functions on M. Thus we have the identification

Div M = H°(M; Wl*/Θ*). (3.3)

Let π: L -> M be a holomorphic line bundle over M. For an open cover {Ua} of M
there are trivialisations

of L\v =π~1(Ua) and transition functions gaβ:U(XnUβ->C* for L given by

The transition functions gaβ are holomorphic, non-vanishing and satisfy the
standard cocycle condition. Given a holomorphic line bundle L—• M with trivialis-
ation {φa} and transition functions {gaβ}, then for any collection of non-zero
holomorphic functions on Ua9 faeΘ*(Ua), we can define a new trivialisation over
{I/.} by

and new transition functions

Q'^Y'Q^ (3.4)
Jp

As any trivialisation of L over {Ua} can be obtained in this way, the collections {gaβ}
and {g'aβ} of transition functions define the same holomorphic line bundle if and only
if there exist functions /αe$*(£/α) satisfying (3.4). In terms of sheaves the transition
functions {g(xβeΘ*(Uan Uβ)} represent a Cech cocycle and two cocycles {gaβ} and
{g'aβ} define the same line bundle if and only if their difference {gaβ-g'aβ~

1} is a Cech
coboundary. Thus, the set of all line bundles L over M is Hι{M\ Θ*). The set of all
line bundles over M has a group structure with multiplication given by tensor
product and inverses given by dual bundles. This group structure coincides with the
group structure oϊH1(M; Θ*) and is called the Picard group of M, denoted by Pic M.

The exact exponential sequence of sheaves

O-+Z-+Θ ^+Θ*->0 (3.5)
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induces in cohomology the boundary map

/j i (M;0*)Λ# 2 (M;Z). (3.6)

For a line bundle LePic M = H1(M; &*) the first Chern class cί (L) is defined to be
δ(L)eH2(Mι Z). The degree deg L of the line bundle L is defined to be c^L). The set
of all holomorphic line bundles LePicM of degree n is denoted by Pic"M.

Let L-»M be a holomorphic line bundle with trivialisation ψa: L\Ua-^ ί / α x C
over {Ua} and with transition functions {g^} relative to {φa}. The trivialisations φa

induce isomorphisms

and from the correspondence

it is clear that a holomorphic section 5 of L over U a Mis equivalent to a collection
of functions saeΘ(Un Ua) satisfying

in UΓΛUarλUβ. Similarly, a meromorphic section s of L over U is given by a
collection of meromorphic functions sae$R(l/n£/a) which satisfy sa = gaβ'Sβ in
UΓ\UanUβ. If s is a global meromorphic section of L then the order of s is
independent of {φa} and we may define the divisor (s) of s to be

The section s is holomorphic if and only if (5) is effective and the space of
holomorphic sections of L over M is Γ(L) = H°(M;Θ(L)).

We now describe the correspondence between holomorphic maps from M to PN

and holomorphic line bundles L over M. Associated to any subspace E of the vector
space Γ(L) is the linear system \E\ of effective divisors corresponding to the sections
in £, i.e.

\E\= {(5)}se£c=DivM.

As M is compact (s) = (sf) only if s = λs'9 for ΛeC*, thus | £ | is parametrised by
P(E), the projectivisation of E. The linear system \E\ is said to have no base points
if not all the sections seE vanish at any xeM. In this case the set of sections seE
which vanish at xeM define a hyperplane Hx a E. Equivalently, the set of divisors
De\E\ which contain x forms a hyperplane HxcP(E). Thus, one can define a
map from M to the dual projective space P(E)* (P(E)* is the set of hyperplanes in
P(E)) as

fE:M-+P{E)*

by sending a point xeM to the hyperplane H x eP(£)* .
This map can be described more explicitly by letting E c Γ(L) be N + 1

dimensional with a basis s0,..., sN. For any trivialisation {^α}of L over U c M let
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si^ = ψ%(si)eΘ(U), then the point [_sOja(x),...,sNi(X(x)']ePN is independent of the
trivialisation {φa} and can be written as [so(x),...,s^(x)]. The map / £ :M->
P(E)* = PN is then defined by

for xeM, a n d / £ is seen to be holomorphic. Thus a subspace E of the space of
holomorphic sections of a line bundle L-> M determines a holomorphic map to PN.
Conversely, let fE: M - ^ P ^ be a holomorphic map and let H be the hyperplane
bundle on PN, then L =f% H and any section seE is the pull-back of a section of H
on IPN, i.e.,

E=f%H0(PN;Θ(H))aH°M;Θ(L))

Thus, the map fE: M -+PN determines both the line bundle L and the subspace
E c Γ(L). This results in the following:

Correspondence Holomorphic maps /: M->PN, modulo projective auto-
morphisms <-» holomorphic line hundles L->M with E c Γ(L) such that | E \
has no base points.

Note that the maps / are only determined up to automorphisms of PN because a
different choice of basis sθ9..., sN for E gives different homogeneous coordinates on
PN. Also note that maps / : M -» PN of degree n correspond to E a Γ(L) for line
bundles L of degree n.

To obtain the dimension of Hoi (M; P\, we need the following result:

Lemma 3.1. Let Lbea holomorphic line bundle of degree n over a compact Riemann
surface of genus g. Then for n^2g the complete linear system \Γ(L)\ has no base
points.
Proof For any xeM, we have the short exact sequence of sheaves

0 -> Θ(L - x) -• Θ(L) -> Lx -> 0 (3.7)

which gives rise in cohomology to the sequence

. . . ^ H 0 ( M ; ^ ( L ) ) ^ H 0 ( M ; L J C ) - ^ H 1 ( M ; ^ ( L - x ) ) - ^ . . . , (3.8)

where rx is evaluation at x. Let KM be the canonical bundle of M and Lγ any
line bundle over M. Then it follows from the Kodaira vanishing theorem that if
deg L > deg iCM, then Hι{M\ Θ{L)) = 0. On a Riemann surface of genus g the degree
of KM is given by the Riemann-Hurwitz formula to be deg KM = 2g-2. Applying
this to the line bundle L — x we obtain that if deg (L — x) = deg L — 1 > 2g — 2
then H1(M; Θ(L — x)) = 0. Thus, for deg L^t2g the exact sequence (3.8) reduces to

...->H°(M;Θ(L))r-$Lx-+0.

Hence, the evaluation map rx is surjective and not all the section seΓ(L) can vanish
at x.

We now calculate the dimension of Hol(M; PN)n.
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Theorem 3.2. Let M be a compact Riemann surface of genus g, then for n^2g the
dimension o/Hol(M; PN)n is given by

dim Hol(M; P\ = {N+ \)n - N(g - 1).

Remarks, (i) If L is a line bundle of negative degree over M then H°(M; (9{L)) = 0.
Thus, by the correspondence introduced above there are no holomorphic maps from
M to PN of negative degree.

(ii) If L is a line bundle of degree n over a compact Riemann surface M of genus g,
then for n ^ 2g — 1 the dimension of Γ(L) = H°(M; Θ(L)) is given by the Riemann-
Roch theorem to be n — g + 1. Thus, the dimension of | Γ(L) | = dim P(Γ(L)) = n — g.

Proof Consider the short exact sequence (which follows from Lemma 3.1)

where K x = ker rx and thus dim Kx = n — g. The point x e M is a base point of | E | if
and only if all the sections seE vanish at x. Thus, if x is a base point, the map

obtaining by restricting rx to £, which takes a section seE to s(x)eC, is zero,
i.e. E = ker rx \E c ker rx. Thus, x is a base point of |E | if and only if E a Kx, and con-
versely, | £ | has no base points if any only if £ φ X x , for all xeM. For a given
xeM, Kx = kerrx gives a hyperplane in the projective space P(Γ(L)) parametrising
Γ(L\ and thus KxeP(Γ(L))*, the dual projective space. For a fixed KxeP{Γ(L))*
we have the Grassmannian GN + 1(KX) of JV + 1 dimensional spaces E in the n — g
dimensional space Kx. This Grassmanian is the fibre over Kx of the fibre bundle

GN+1(K) >&

P(Γ(Lψ

where #" is the flag manifold consisting of pairs (X, E) with E c K c 7"(L) and
dim is = JV + 1, dim K = n — g. The total space #" has two canonical projections
pr1(X,£) = KGP(Γ(L))* and pr2{K,E) = EeGN+1(Γ{L)). By Lemma 3.1, if
degL^2g then |Γ{L)\ has no base points and there is a well defined map /: M->
P(.Γ(L))* given by the correspondence introduced earlier. Thus we have the diagram

GN+1(K) GN+ί(K)

1 ^ Gf l r ^ G N

I I -
M > P(Γ(L))*

E a Kxi for some xeM, if and only if Eeim pr2

υfc thus there is no xeM such that
EczKx if and only if Eφ\mpr2°f. Hence, impr2

of consists of exactly those E for
which | £ | has a base point. The dimension of GN + 1(Γ(L)) is (N + l)[π — g + 1 —

0θ + ( N + l ) - ( J V + l ) 2 and dim(impr2o/) g
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1 + (N + ί)(n -g)-(N+ I)2. Thus, dim (im pr°?) < dim GN+ι(Γ(L)) if JV ̂  1 and
hence p r 2 ° / is not surjective. I m p r 2 ° / is a closed subvariety in GN f 1 (Γ(L)). The
complement GN+ί(Γ(L))\im pr2

of is open and consists of those F s with no base
points. The Grassmannian GN + 1(Γ(L)) can be considered as the fibre over
LePic"(M) of the fibre bundle

Pic"(M)

where the total space ^ N + 1 ( M ) consists of pairs (L,£) E c= Γ(L\ and /(L,£) =
LePic"(M). From the above argument those E's for which | £ | has no base points
from a Zariski open set in &N+1(M) which is the complement of a sub-
variety in &N + 1(M). Thus the dimension of the space of holomorphic maps from
M to PN, modulo projective automorphism, is equal to d im^ N + 1(M) =
g + (N -f l)(w - #) - N(7V + 1). Finally, the dimension of Hol(M; PN)n is equal to
dim&N+1(M) plus the dimension of PGLN + ί(C), the group of automorphisms
of P N . Hence

dim Hol(M; P \ = dim$N + 1(M) + dim PGLN+1(C)

- gf) - N(N + 1) + (N + I) 2 -

An application of this result is to calculate the number of independent self-dual
solutions, of degree n, of the classical CPN model. This corresponds to calculating the
dimension of Hol(S2; PN)n. Recall from the remark made earlier that there are no
holomorphic maps from S2 to PN of negative degree and therefore there are no self-
dual fields of negative topological charge. As S2 has g = 0 we have for all n ̂  0 that

dim Hoi (S2; P\ = (N+l)n + N. (3.9)

The classical 0(3) model corresponds to the CP1 model and hence, for all n ̂  0,

dim Hoi (S2; PN)n = 2« + 1, (3.10)

which agrees with the number of independent parameters in the general, explicitly
known, self-dual solution of degree n.

To conclude this section we note that a theory of maps from M to the complex
Grassmannian Gκ(Cm) generalises the complex Grassmannian model (see [4]). The
Grassmannian Gκ(Cm) is a simply connected Kahler manifold, and thus the self-dual
fields from M to Gκ{Cm) are given by the holomorphic maps Hol(M;Gκ(Cm)).
Although the analogoue of Theorem 3.2 for the dimension of Hoi (M; Gκ(£m)) is not
known, certain holomorphic maps from M to Gκ(Cm) do exist. For example, if M is
holomorphically immersed in PN, then the Gauss map (see [10])

is holomorphic (see [5], for example).
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4. Topology of the Configurations Space

An interesting feature of field theories with non-simply connected configuration
spaces is that they can possess inequivalent quantisations. If Ά is the configuration
space of the theory in question then the the inequivalent quantisations are classified
by (see [11 and 12])

0 = Horn (T^ (.2), 1/(1)). (4.1)

In fact, the arguments leading to this result are not quite complete as they ignore
the possibility of the theory possessing a Wess-Zumino type term. This problem can
be seen most clearly from the canonical viewpoint. Let J be the configuration space
of the theory and the cotangent bundle π:T*& —• J is the phase space; this carries a
canonical non-degenerate symplectic 2-form Ωo, defining the natural Hamiltonian
structure. In canonical quantisation we choose a complex line bundle ££ —> i2; the
Hubert space Jf7 of states of the quantised theory is the space of sections of ££ and the
equations of motion of he theory are implemented as operator equations on ffl. If
the canonical symplectic structure on T* J defined by Ωo can be changed by adding
a curvature term pulled-back from J , then the equations of motion defined by this
new symplectic structure will differ from those defined by Ωo. An example of such a
change in the symplectic structure occurs when one considers the motion of a
charged particle in the field of a magnetic monopole. The quantisation of the
magnetic charge of the monopole is a consequence of the modification in the
symplectic structure. A second important example of such a modification in the
equation of motion of a physical system is the addition of the Wess-Zumino term in
the SU(3) non-linear σ-model. It is the presence of this term in the model that is
responsible for the important consequences discovered by Witten [13]. The way in
which the Wess-Zumino term arises in the SU(3) σ-model by changing the
symplectic structure has been investigated by Ramadas [14]. If, however, we
consider a theory which has no Wess-Zumino typer term then to eliminate the
possibility of altering the canonical symplectic structure we can require that the
complex line bundle if -> £ must be flat. Then it is well known that the flat complex
line bundles over J are classified by Horn (πx(^), U(\)\ which gives (4.1). As there are
no Wess-Zumino type terms in the non-linear σ-models being considered here the
classification (4.1) is valid.

For a non-linear σ-model in 1 + 1 dimensions J = Ω(V). Thus, for V = PN,

For a non-linear σ-model in 2 + 1 dimensions the spatial topology may be
represented by a compact Riemann surface M. The configuration space is Ά
= Map^ (M; V) and the homotopy groups nq(Ά) are given by the following theorem
(the space M a p ^ M ; V) is assumed to have the compact-open topology (see [18])).

Theorem 4.1. Let M be a compact Riemann surface of genus g and V a compact
topological space. The homotopy groups o / M a p J M ; V) are given by
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f o r q ^ l .

Proof. Recall that π1(M) = free group on aίb1a2b2.. .agbg subject to the relation
albla^lb^i...agbga~ιb~ι = 1. M can be obtained from the wedge product oilg
circles by attaching a cell in dimension two via the map a = a1b1a^ιbϊι

...agbgag

ιbg\ i.e.

M~ VS1^2-
2g a

Now

aeπ^V Sι).
2g

and its suspension

Saeπ2(V S2)
2g

is null-homotopic (Sa ~ 0) because π 2 is Abelian. Thus, the suspension of M is

SM~ V S2{Je3~ V S2 vS 3 .
2g Sa 2g

Suspending this q — 1 times gives

SqM~ V Sq+1 v Sq + 2.
2g

and the homotopy groups of Map^M; V) are given by

We also have the following consequences:

Corollary 4.2.
, for N =

Proo/. This follows from the homotopy groups of PN which are obtained from the
exact homotopy sequence of the Hopf fibration

Corollary 4.3. For m ̂  k + 2,

Proof. This follows from the homotopy result (see Appendix)

for q<2(m-/c).
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Thus, the classifying space for inequivalent quantisations for V= PN is

( for N=l

[Hom(Z2*, 1/(1)), for N ^ 2

and for V = Gk(Cm) is

for m>k+L

Note that for M = S2 (i.e., g = 0) both the complex Grassmannian model and the
CPN(N Ξ> 2) model have a unique quantisation. Only the 0(3) model has a non-
trivial Θ for g = 0.

To conclude, we briefly consider the relationship between the topology of the
space of self-dual fields HolJM; V) and the topology of the space of all fields
Map^M; V). For M = S2 and V =PN this problem has been solved by a theorem of
Segal's [15]. This theorem states that the inclusion H o l J S 2 ; PN)n c> M a p J S 2 ; PN)n

is a homotopy equivalence up to dimension rc(2Λf — 1). For example, when N = 1,

πq Hoi*(S2; S\ ~ πq Map*(S2; S\ ~ π, + 2(S2)

for q < n. For g = 1, we obtain

for n > 1, and hence the space of self-dual fields of degree greater than 1 in the 0(3)
model is not simply connected.

Appendix

We prove here the formula for the stable homotopy of Gk(Cm) used in Corollary 4.3,

namely

πq(Gk(Cm))^πq^(U(k)). (Al)

for q <2(m — k).
First recall that as a homogeneous space

We know that U{m H- \)/U(m) = S2m+1 and from the homotopy exact sequence of
the fibration

we see that the inclusion ί/(m)c;[/(m+l) is a homotopy equivalence up to
dimension 2m, i.e., πq(U(m)) ~ πq(U{m + 1)), for g < 2m. Applying this result to the
inclusion Ό{m — k)<^ U(m) gives

π,(ί/(m-fc))-π f l(l/(m)), (A3)
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for q < 2(m — k). The homotopy exact sequence of the fibration

U(m-k)-+U(m)

U{m)/U(m-k)

together with (A3) result in

πq(U(m)/U(m-k)) = 0, (A4)

for q < 2(m — fc). Finally, from the expression (A2) for Gk(Cm) as a homogeneous
space it is clear that we have a fibration

U{k)-+U(m)/U(m-k)

and the homotopy exact sequence of this together with (A4) results in the desired
formula (Al).
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