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Abstract. Witten's equation pφ = 0 can be interpreted as a gauge fixing
condition for classical supergravity. We rigorously prove the existence of
asymptotically constant solutions of the more general gauge condition pφ = Aφ
for almost all endomorphisms A of the spin bundle. Each gives an expression for
the gravitational energy similar to Witten's. These include the choice A = y/&ϊ,
which yields the particularly elegant energy expression first noticed by Deser.

1. Introduction

Several years ago R. Schoen and S. T. Yau [12] succeeded in proving the Positive
Energy Theorem in General Relativity. Shortly thereafter, E. Witten [14] discovered
a second proof based on an integration-by-parts formula for the gravitational
energy. These breakthroughs stimulated considerable recent work in relativity and
have led to a much better understanding of the total mass and energy of isolated
gravitational systems in General Relativity.

Witten's proof was to some extent inspired by supergravity, although supergrav-
ity plays no direct role in his argument. The exact manner in which Witten's energy
expression emerges from supergravity has recently been clarified by Horowitz and
Strominger, Deser, Teitelboim, and others (see [13] for references). In this context,
the energy formula emerges from the underlying gauge theory of supergravity, and is
seen to involve a gauge choice. Specifically, Witten used the Dirac equation pφ = 0
as a gauge-fixing condition. Many other choices are possible, and each yields an
expression for the gravitational energy. These energy expressions display the gauge
aspects of supergravity, yet do not involve the anticommuting fields nor supersym-
metry which characterize the full supergravity theory.

This paper establishes several specific theorems about partial differential
equations. These are intended to emphasize and clarify the gauge aspects of Witten's
energy formula. Theorem 1 is a precise statement showing that an appropriate form
of Witten's energy expression is valid even when Einstein's equations are not
satisfied and when the spinor field does not satisfy the Dirac equation. Our main
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result (Theorem 2) is a P.D.E. existence theorem which allows one to make use of a
very large class of gauge-fixing conditions. We give several applications,
including the very natural gauge condition of Deser. The main results are stated in
Sect. 2, and their rather technical proofs appear in Sect. 3.

The results of this paper simplify and generalize the analytic arguments of [10].

2. The Main Results

Let M be an asymptotically flat spacelike hypersurface in a four-dimensional
spacetime N. The Positive Energy Theorem asserts that the A.D.M. energy-
momentum (E-pk) of M—which is defined as an integral over the 2-sphere at infinity
in M—is positive in the sense that E — \p\^.0. Witten's proof of this theorem
([14,10]) involves considering the "hypersurface Dirac operator p;" this is the
composition

Γ(S) Λ Γ(T*M@S) A Γ(S),

where S = S + ® S _ is the (four component) spin bundle of N along M, V is the metric
connection of N and c is Clifford multiplication. (If we choose a local orthonormal
basis of 1-forms of M and let {/} be the corresponding ^-matrices, then locally

PΦ= Σ y%Ψ

for φeΓ(S).) The key ingredient of Witten's proof is an integration by parts formula
which can be cast in the following general form:

Theorem 1. Let M be an asymptotically flat (as defined in [W]) spacelike
hypersurface in a four-dimensional Lorentz manifold N whose Ricci curvature along M
satisfies Riiel}(M). Let φ be any spinor φeΓ(S) which approaches a constant spinor
φ0 at infinity at a rate such that

(i) \V(φ-φo)\eL\
(ii) σ x(φ — φo)eL2 for some bounded function σ with σ = \x\ on the asymptotic

ends.
Then

j vg. (1)
M

Here G is the gravitational constant, y° is the y matrix of the 1-form normal to
T*M and dvg is the Riemannian volume form of M. The inner product < φ, φ > is the
positive definite hermitian inner product described in [10] and usually denoted φ^φ
by physicists. Finally, ^t = ^{R-\-2R00 + 2R0iy

oyi) is an endomorphism of S
constructed from the scalar curvature R and the Ricci tensor Rtj of N.

Theorem 1 was essentially proved in [10]; it follows from a careful examination
of the proof of Theorem 4.1 (iii) of that paper. It should be emphasized that Theorem
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1 does not require Einstein's equations, and holds for any spinor satisfying (i) and (ii):
φ need not satisfy any equation.

We note in passing that if N satisfies Einstein's equations and the Dominant
Energy Condition then 01 is non-negative. We can then use the Monotone—
rather than the Dominated-Convergence Theorem to prove Theorem 1 without
the hypothesis that R^eL1.

Witten's argument applies (1) by finding asymptotically constant spinors with
pφ = 0; the righthand side of (1) is then manifestly non-negative and the Positive
Energy Theorem follows by taking φ0 to be the eigenvector of pky°yk with eigenvalue
|p|. Now in the context of supergravity (cf. [3,13]) the equation

Pφ = 0 (2)

should be regarded as a gauge-fixing condition which provides a canonical way of
extending φ0 across M. It is then natural to consider alternative gauge conditions of
the form

PΦ = Aφ, (3)

where A is any endomorphism of the spin bundle S. The main purpose of this note is
to establish the existence of asymptotically constant solutions of (3). We will do this
for large collections of endomorphisms A—the "admissible families" of Definition
3.6. For example, one such admissible family is the set of all C 1 endomorphisms A
with \A\EL2 and A = O(r~312) at infinity. Our main result—proven later—asserts
the existence of solutions of (3) for almost all A in such a family:

Theorem 2. Let M be an asymptotically flat spacelike hypersurface in a spacetime N
and suppose that Einstein's equations and the dominant energy condition hold along M.
Let & be an admissible family of endomorphisms in the sense of Definition 3.6 below.
Then for each A in a open dense set J> offfl, and for each constant spinor φ0, there
exists a unique spinor φeΓ(S) satisfying conditions (i) and (ii) of Theorem 1 and

pAφ = (P + A)φ = 0. (4)

Our proofs of this and the next theorem will also give precise statements about
the uniform decay of φ at infinity (Eq. 17 below).

Remarks. (1) In a completely analogous way, we could consider the Dirac operators
pg associated to different asymptotically flat metrics g for N along M, and show that
one can solve Pgφ = 0 for almost all such g, and in particular for all g whose
curvature endomorphism M is non-negative.

(2) The fact that (4) can be solved for almost all—but not all—A is a typical
feature of gauge theories. The exceptional values of A are analogous to the reducible
connections in Yang-Mills theory, and to the metrics with Killing fields in classical
relativity (regarded as a gauge theory with the diffeomorphism group as the gauge
group).

For each endomorphism A Eq. (4) breaks the gauge freedom in the general
energy expression (1) by specifying φ. In particular it is clear that φ, being a gauge
dependent field, has no physical meaning.
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Deser ([13]) has pointed out that there is a particularly natural choice for the

endomorphism A. Because 01 is a non-negative endomorphism, yj0ί exists. Taking

A — t y/^9 ίeR, we can then prove:

Theorem 3. Let M be as in Theorem 2, and assume that the stress-energy tensor
satisfies T^ eL^M). Then for each constant spinor φ0, and for each ίe[— 1 — δ,
1-1-5] for some δ > 0, there isaC"° spinor φ satisfying conditions (i), (ii) of Theorem 1
and

PΦ = t Jaψ. (5)
Hence when φ0 is an eigenvector ofpky°yk with eigenvalue \p\ and \φo\

2 = 1,(1) gives

j β. (6)
M

When t = 0 this is Witten's energy expression. However, for any ί e [— 1,1] the
righthand side is manifestly non-negative, so E — \p\ ̂  0, and (as in [10]) equality
holds if and only if M = U3 with the standard metric. In particular, the choice t = 1,
corresponding to Deser's gauge condition

is possible, and yields a proof of the Positive Energy Theorem and an energy
expression

dυg (8)

every bit as natural and elegant as Witten's original choice.
Equation (6) clearly shows that the two terms in Witten's energy expression (the

case t = 0) cannot be interpreted as the energies of the gravitational and matter fields
respectively; the separation of the two terms is purely an artifact of the gauge choice
(2). (Horowitz and Strominger [5] have previously shown that in the Newtonian
limit these two terms do not reduce to the usual expressions for the
Newtonian gravitational and rest mass energies.)

Theorem 2 has other applications. For example, Moreshi and Sparling [8],
following Gibbons, Hawking, Horowitz, and Perry [4], give a version of Witten's
energy expression which includes electromagnetic charges. Their derivation as-
sumes the existence of a certain P.D.E. (Eq. 3.6 of [8]). Under the hypotheses of their
main theorem this existence follows from Theorem 2.

3. Proofs of the Main Theorems

We shall prove Theorem 2 using weighted Sobolev spaces. Specifically, we will work
with the spaces Hζiδ, obtained by completing the space of smooth compactly
supported sections of S in the norm

l /Ίp,«=ί> a + iv1>/'U (9)
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where | \p is the U norm on M, σ is a fixed smooth function with σ ^ 1 and

σ(x) = I x I for x in the asymptotic ends of M, and ψ is the /-fold composition V... V of
the Riemannian spin connection of M. (It is appropriate to use the connection V in
(9) because it is compatible with the inner product < , ) onS, whereas V is not.)

A useful observation, proven in the appendix, is that the norm (9) is equivalent to
its top order term, that is

\Φ\pM^cι\σδ + kVkφ\p (10)

for some constant cί. Now the metric connections of M and N are related by
V = V; + ̂ hijy°yj

9 where htj is the second fundamental form of M cz N, and \hu\ ̂
C2G~1 as a consequence of asymptotic flatness. Hence (10) gives

\Ψ\PΛ.6^c3\σ1+*Vψ\p. (11)

The main reason for introducing the spaces H{δ for p φ 2 is that when p > 1 and
3 <pk the elements φeHp

kiδ have uniform decay: for each α < δ + 3/p there is a
constant c such that 11//1 ^ cσ~α pointwise (cf. Cantor [2]). One consequence of this is
that

HfacHl-t (12)

whenever fc> 1 + 3/p and ̂  > \ — 3/p.
The theory of elliptic operators on these weighted spaces was initiated by

Nirenberg and Walker, and has been developed in recent years by M. Cantor,
Choquet-Bruhat and Christodoulou, R. Lockhart, and R. McOwen (see [2] for
references). Using their results we shall prove:

Theorem 4. Suppose AeEnd (S) is measurable and \ σ1 +εA | is bounded for some ε>0.
Then for — 3/p < δ < 2 — 3/p,

pA=p + A:Hlδ-+Hlδ+1 (13)

is Fredholm and there is a constant c such that VφeH^δ,

-ίtδ+1 + \ψ\Pfk_ltό+ί). (14)

For p^2 and \- 3/p ̂  δ < f - 3/p, pA has index 0 and (13) is an isomorphism
whenever pA\H\ _ X -^L 2 is injectiυe.

Proof Standard results ([2,7]) imply that p:Hp

Uδ->Hp

oδ+1 is Fredholm for - 3/p
< δ < 2 — 3/p, and that (14) holds for p. If σ1 +εA is bounded and measurable for
some ε > 0 then A:Hp

ltδ-*H%tδ + 1is2i compact operator ([7] Theorem 5.2). Hence by
general Fredholm theory ([6]) p + A is Fredholm with index pA = index p.
Equation (14) then follows immediately from the corresponding inequality for p.

For p §: 2 and δ ̂  \ — 3/p we have H\ δ c H\ _ x by Holder's inequality. Thus the
injectivity of pA'.H\ ^ - ^ L 2 implies that (13) is injective. To prove that it is an
isomorphism we need only show that p—and therefore pA—has index 0.

Lemma 5 below shows that p is injective on H\ _ 1, and hence on H{ δ. To estab-
lish surjectivity, suppose that φ is in the kernel of the dual map p*:Hl^-δ-1-+
(Hp

ltδ)*, q~ι = 1 -p~1. Then pφ = 0 weakly because P is formally self-adjoint
(Eq. 3.6 of [10]). Standard elliptic estimates imply that φ is smooth. Let βR be a
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smooth cutoff function with support in Un - B(R\ with βR = 1 on Un - B{2R\ and
\dβR\ ^ cσ~ι pointwise. Repeatedly applying (14) to (1 — βR)φ and letting JR-> oo
shows that φeHζ^δ_1Vk. But when δ < f — 3/p, we then have I / Έ / / 2 _x by (12), and
hence φ = 0 by Lemma5. Thus p:Hp

lδ-^Hp

0J)+ι has index0.

Lemma 5. There are constants c, δ > 0 such that^lte\_ — 1 — δ, 1 + <5] and

| ^ | 2 , 1 - 1 S c 4 | φ +

Prao/. By Theorem 1 with ι|»o = 0we have

VφeC™. But R is continuous and O(r 3) by hypothesis, so \y/3t\
Taking limits establishes (15) ^φeH\^x. The inequality 2ab^(l+i
(1 + ε)b2 then gives, for each ε > 0,

where εf = (l -f ε)ί2 - 1. Using (11) and | JΊ%φ\2 ^ c 5 | ^ | 2 , i , - i , we have

Now take ε = c3/4c2

5 and δ small enough that εt g c3/2cj Vίe[ - 1 - δ, 1 + δ]. •

Together, the last two results show that (13) is an isomorphism for at least some
A. We are going to show that this is the case for almost all A. To this end we
introduce some spaces of endomorphisms A.

Definition 6. (i) For each ε > 0 set

Each AeAε is a bounded linear operator A\H\ _ x _ε -» L2; the operator norm makes
Aε a Banach space and Aε ĉ  Ao continuously.

(ii) A linear subspace & a Aε is admissible if for each Be& for which
pB:Hl __! ->L2 has a non-zero kernel there exist LeJ*, ι//eker | ) β and φeker p£
such that

J 0 . (16)

This criterion for admissibility is very weak; it would appear that almost any
choice of L should satisfy (16). Nevertheless to prove (16) in specific cases is not
entirely trivial, and becomes increasingly more difficult as & is made smaller. As an
example of such a proof we have:

Lemma 7. Let Aε be a family of differentiable endomorphisms which contains the set
CC°°(S,S) of smooth compactly supported endomorphisms. Then J* is admissible.

Proof. Suppose that pB has a non-zero kernel. Then the adjoint |)^also has a non-
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zero kernel because pB has index 0. Fix φeker pB and φeker p\ Standard elliptic
estimates ([9], Theorem 6.4.3) imply that φ and φ are continuous and lie in the
Sobolev space HlΛoc. The zero set Z(φ) = {x\φ(x) — 0} is then closed, and by the
unique continuation theorem of Aronszajn ([1]) it has no interior. Thus the
complement Zc(ψ) (and similarly Zc(φ)) is open and dense. Choose a smooth positive
function ζ(x) with compact support in Zc(φ) and set L(ξ) = (ζ,φ}φ. Then

M M

Finally, if L is not smooth we can replace it by an LEC™(S, S) which is close enough
to L that (16) still holds. •

Proposition 8. // £% is an admissible family then J> = {Be\ pB is invertible] is open
and dense in $.

Proof. For each Be&aAε, B\H\^1->1} is compact, p~ιpB = 1 + p~ιB is
Fredholm, and

^B — KV vB) \V VB) — VBV VB

is an analytic family of self-adjoint Fredholm operators on H\ _ x . Each PB gives a
spectral decomposition of H\ _ 1 ? and the spectrum and the eigenfunctions depend
analytically on B ([11] Theorem XII.13). In particular, dimker pB is upper
semicontinuous and J> = {Be&/PB has no zero eigenvalue} is open in J*.

To show that J is dense w e f i x ΰ ^ / and ψ, φ and L as in (16), and consider the
perturbations Pt = PB + tL of PB. There are then L2 orthonormal eigenfunctions xjj^t)
and numbers A£(ί), i = 1,..., N = dim ker pBi which depend analytically on t for 11 \
small such that (a) λ^O) = 0, (b) the φι(0) are an L2 orthonormal basis of ker pB with
Ψι(0) = ψ, and (c) Ptφi(l) = λ^ήφ^t). Taking the L2 inner product with φ^t) yields

Differentiating,

λ'(t) = <φ,Pφ> + <Φ,P'Φ>

A t ί - O w e have Poφ = 0, P'o = L!P~2Po+ PlPί\ and poψ = 0, so /lr(0) =
Differentiating again,

Since p is self-adjoint and P"(0) = 2llp'2L,

Thus λ'[(0) ̂  0 with equality if and only if poφ = - Lφ. But then

0 = < Plφ,φ) = <</>, poφ) = <<

contradicting (16). Thus A'{(0)>0 and dim ker pt ^ dim ker p0 - 1 for all suffi-
ciently small t. Repeating this process a finite number of times yields invertible
endomorphisms B'eJ arbitrarily close to B. •
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Proof of Theorem 2. Fix AeJ c J> as in Proposition 8. Let φ1 be a spinor such that
Ψι(x) = IAOW f° r a ^ x *n t n e asymptotic end with |x| > some R. The conditions of
asymptotic flatness (cf. [8]) insure that pφ1 = O(r~2\ and AeL2 by Definition 6.
Hence ψAφ 1EL2. NOW pA:Hj _1-^L2 is injective by Proposition 8, so by Theorem 4

is an isomorphism for p ^ 2 and ^ — 3//? ^ ^ < f — 3//?. Hence there is a unique
ξeHj^1 such that |)^ξ = PΛΆI The spinor φ = φx — ξ then satisfies conditions (i)
and (ii) of Theorem 1, and pAφ = 0.

If we assume a stronger decay on A we obtain a uniform decay rate for φ.
Specifically, if AeAε for some ε > | (i.e. A = O(r~1~ε)), then PAΦie^o,i+δ f° r

Ί ^ (5 + 3/p < ε ^ 1. Inverting p ^ on Hg ; 1 + δ as above and using the facts mentioned
before (12), we find that

\Φ\ύcσ~« (17)

for some constant c and α < ε ^ 1. Π

Proof of Theorem 3. We have A = t^J@y°EL2, since TueL\ and A = O(r~3/2) by

asymptotic flatness. For te[—l—δ, 1 + δ] Lemma 5 shows that £) -f

t ^JΊ%\H\^1 -+L2 is injective. The theorem follows as in the preceding proof.
If I Tij I = O (r ~ 2 ~2ε) for some ^ < ε ^ 1, we again obtain the uniform decay (17). In

particular in many physically interesting situations (e.g. electromagnetic fields with
compactly supported sources) we have To = O(r~% and hence φ = O(r~α)Vα < 1.

•
Appendix

The inequality (10) is an elementary fact about weighted Sobolev spaces which
unfortunately does not appear in the literature. We will give a general proof here.

Let M be an n-dimensional Riemannian manifold that is asymptotically flat in
the following weak sense. There is a compact set K a M such that M — K is the
disjoint union of a finite number of asymptotic ends Mh each diffeomorphic to the
complement of a ball in Un. Under this diffeomorphism the metric on Mh written in
standard coordinates on IRW, should satisfy |gr£j- — ̂ £_y| —>0 as r->oo. Let £ be a
hermitian vector bundle over M with connection V compatible with the metric. We
then have

Proposition. For δ > — n/p, there is a constant c such that

k δ k (17)

Note that if δ < — n/p and £ is a trivial bundle then H%tδ contains the constant
functions and the inequality fails.

Proof By continuity it suffices to verify (17) for smooth compactly supported
sections φ. For notational simplicity we shall assume that M has only one end, so
M — K = Un — B for some ball B = B(R). Since σ is bounded above and below on
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X, a standard estimate gives

\\σδφ\p ^Cϊl\φ\p ^c2\\S/φ\p + c2\\φ\p

K K K S ( 1 8 )

where S = dK (see Theorem 3.6.4 of [9]—the proofgiven there applies on manifolds).
On the end Bc = IR" — B we have σ = r and the Riemannian volume form dvg is

related to the Euclidean volume form (in spherical coordinates) by

Hence

Bc Bc

where c6 = c1(pδ + ή)'1 > 0. By Stokes' theorem this is

= -cβ\σ\σδφ\p'σn-1dΩ-cβ\d{\φ\p)'σpδ+ndΩ.

^ - c6c5'^σ\σδφ\p + pc6c5 l\σδφ\{p-^\σι

S Bc

For any ε > 0 we can now apply Young's inequality ab^εaq 4- ε1"pbp, where
p~ι + q~1 = 1, to obtain

Bc s

Taking ε = jCy 1 and subtracting,

g $ p δ + 1. (19)
Be S

Combining (18) and (19) gives

P § δ + 1 . (20)

This completes the proof of the case k = 1.
Now suppose that (17) holds for some k. Replacing £ by £®(® Λ Γ.M) and φ by

Vλ</) in (20) then gives

Hence

and the proposition follows by induction. •

Remark. The tensor Vfc0 = V° • °Vφ is not symmetric in its indices; it differs from
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its symmetrization Vkφ by an operator A of the form

where |α| = ^ α t + 2 and R represents the curvatures of M and E. The norms (9)
based on Vfc and Vk are equivalent if S7ιR = Oir'2'1) for 0 g / g k - 2.
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