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Abstract. Let HN be the 2N particle Hamiltonian

2N N N

HN=Σ(-Aί) + Σ \Xt-Xj\~ * + Σ IXί + w-X +jvΓ 1

i = l i < 7 = l i < j = l

N
— — "1

where A t is the Laplacian in the variable xt e IR3, 1 ̂  i ̂  2N. The operator HN is
assumed to act on wave functions ψ(x1, ...,XN; xN+1, ...,x2N) which are
symmetric in the variables (xl9...9xN) and (xN+ί,...,x2N). Suppose \p is
supported in a set Λ2N, where A is a cube in R3. It is shown that if a normalized
wave function ψ can be written as a product of two wave functions

and the density of particles in A is constant, then (ιp\HN\ιpy ^ — CNΊ/5 for some
universal constant C.

1. Introduction

In this paper we study the ground state energy of a Bose gas consisting of equal
numbers of positive and negative particles interacting via a Coulomb potential.
Thus, if the gas contains 2N particles with the N negative particles being located at
positions xl,...,xNe'R3, and the positive particles at xN+ί, ...ίx2N^^3, its
Hamiltonian HN is given by

2JV N N N

HN=Σ(-^t)+ Σ IXi-^r'H- Σ IXi+N-xj+jvΓ 1 - Σ Ixj-
i = l ί<j=l « < J = 1 i , J = l

Here Ai denotes the Laplacian in the variable xί5 l^ί^
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We consider HN acting on wave functions ψ(xl9 . . ., x2]v) i*1 tf(IR6N) which are
in the domain of the unique self-adjoint operator corresponding to HN. We assume
ψ satisfies Bose statistics. Thus we take ψ to be invariant under all permutations of
the variables (xl9 . . ., XN) and (XN + 19 . . ., x2N). Let ρ(x) be the one point function for
ψ9 so

2N

Q(x)= Σ $\ψ\2(xi9...,xi-i,x,xi+l9...,x2N)dxi. (1-2)
ί=l

We define a function /(x) as /(x) is the largest value λ, such that

ί ρOO^l (1-3)
\x-y\<l/λ

The function /(x) was introduced in [2]. It is an average value of the one third
power of the density at x.

We may now state our main result as follows:

Theorem 1.1. Let Abe a cube in R3, and suppose that ψ(xi9 . . ., x2#) ̂  supported in
Λ2N. Define the density ρ by ρ = N/vo\A. Assume that there is a universal constant b
such that f(x)^bρ1/3 for all xeΛ. Then if \p factors into a product of two wave
functions,

V + 1,...,x 2 N) ? (1.4)

there is a constant C(b) depending only on b such that
5. (1.5)

At the end of Sect. 4 we estimate the value of the constant C(b) in the
asymptotic sense N-κx>. We obtain the value C(b) = 6.5.

Theorem 1.1 was motivated by the work of Dyson and Lenard [3, 4]. In
particular Dyson and Lenard [4] obtained the result:

Theorem 1.2. There is a universal constant C such that for all ψ in the domain of HN

(ψ,HNψy^-CN513. (1.6)

Dyson [3] proved the following:

Theorem 1.3. There is a universal constant C and wave functions ιpN such that

(1.7)

Dyson used Bogoliubov's method [1, 10] to construct the wave functions ιpN of
Theorem 1.3. Bogoliubov's method will also be the key ingredient in our proof of
Theorem 1.1. Theorem 1.1 is a converse result to Theorem 1.3 but with two
restrictions. These are (a) the assumption that there is no correlation between
positive and negative particles, (b) that the density of the gas is constant.

Consider a wave function ψ(xί9 ...,x#) and let KN be the kinetic energy
operator on ip. Thus

**=Σ(-4), 0.8)
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where At is the Laplacian in the xt variable. The one and two point functions ρ(x),
ρ(x, y) for ψ are given by

N

e(χ)= Σ $\v\2(xi,.-.,Xi-i,x,Xi+i,.-;XN)dxi9 (1-9)

χι> ,χi-ι>χ,χi+ι> ,χj-ι>y>χj+ι> '>χN)dχij. (i.io)
t*j

We define the exchange energy <$(\ψ\2) by

Now observe that for a wave function φ of the form (1.4) the attractive
Coulomb energy in <φ, HNip} occurs as

(1.12)

where £ι(x) and Q2(y) are the one point functions for ψ1 and t/?2 respectively as
defined by (1.9). The expression (1.12) is evidently bounded below by

n ιri(1.13)

It therefore follows that it is sufficient to prove Theorem 1.1 in the case ψ1 =ψ2 If
φ1 — ψ2 = ψ(χl9 ...5 χN)9 then the left side of (1.5) is twice the expression

(ψ9KNιpy + g(\ψ\2). (1.14)

Observe that kinetic energy scales as length squared while Coulomb energy
scales as length. We state now a scale invariant theorem which is equivalent to
Theorem 1.1:

Theorem 1.4. Let Abe a cube in R3 and suppose that φ(x l5 . . . ,Xjv) is a function
supported in AN, symmetric in the variables (xl5 ...,%)• Let ρ = N/VolΛ be the
density, and assume that there is a universal constant b such that f ( x ) ^bρ1/3 for all
xeΛ. Then there is a constant C(b) depending only on b such that for any α, — oo < α
<oo,

(1.15)

It is evident that Theorem 1.4 implies Theorem 1.1 since for any density ρ we
may always choose α with ρ1/3 = JVα. On the other hand for any α, Theorem 1.1
implies that (1.15) holds when ρ1/3 = Na. It then follows by scaling that (1.15) holds
for all values of ρ. Thus Theorems 1.1 and 1.4 are equivalent.

It is interesting to compare (1.15) with Foldy's ρ1/4 law [6] for Bose gases with
Coulomb interaction. Foldy suggests that for a gas of constant density ρ in a box A

(1.16)
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at high density, where the lower bound on the right is actually achieved by a
Bogoliubov wave function. For (1.15) and (1.16) to be consistent we take ρ1/3 = JVα,
which implies

jV7/5 = JVρ1/4 ^> ρ1/4 = ΛΓ2/5 => α=£. (1.17)

When α> 8/15, the effect of the Dirichlet boundary conditions on A are dominant
in the energy, and so the energy is nonnegative. For α < 8/15 we construct in Sect. 5
a wave function achieving the lower bound in (1.15). It is clear that this wave
function has no longer constant density in Λ. It is likely that it corresponds to a
constant density wave function supported on a subbox of A with density ρ' given

Our aim here is first to discuss Bogoliubov's method at a heuristic level and
then proceed from there to a rigorous proof of Theorem 1.4.

2. Bogoliubov's Method

We consider N Bosons in a box Q with side of length L which interact via a
potential φ(x) which is periodic on Q. Thus φ(x) may be written as a Fourier series

φ(x) = Σ v(k)e2πίk'x/L. (2.1)
keZ 3

We shall assume from here on that ^(x) is positive definite so v(fc) ̂  0 for all k e Z3.
The essence of Bogoliubov's method is to write the Hamiltonian for the N

Bosons in second quantised form. Thus for each fceZ3 we introduce the
annihilation operator ak, which satisfies the commutation relations

[a»fla=A«, fc,meZ3. (2.2)

If the kinetic energy operator KN of (1.8) acts on wave functions ψ(xί, ...,XN)
periodic on QN, then KN may be written in the second quantised form as

4π2

KN=-jτΣ k2a?ak. (2.3)
L fceZ3

The number operator n is defined by

* = Σ aίak. (2.4)
fceZ3

Evidently ψ is an eigenfunction of n with eigenvalue JV.
Next we turn to the potential energy. We wish to express the exchange energy

(1.11) corresponding to the potential φ in second quantised form. The first term is
given by

Nρ(x,y)φ(x-y)dxdy = <kιp\ Σ v(k)a*+ka*.kanar\ψy . (2.5)
k,n,r

We may write the expression (2.5) more simply by defining the operator Ak as

Λ = Σ ai+k<*n (2-6)
neZ 3
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Then, on using the commutation relations (2.2), we have

ί| ρ(x, y)φ(x - y)dxdy = Σ v(k) [<φ| AξAk |φ> - ΛΓ| . (2.7)
k

The second term in the exchange energy (1.11) may be written as

(2.8)
k

Hence we have in all

} . (2.9).
k

Now let us write

Jk(ψ) = <Ψ\AΪAk\Ψy-\(ψ\Ak\Ψy\2-N. (2.10)

It is evident by the Schwarz inequality that

and thus we obtain a lower bound on the exchange energy

/c). (2.12)

The bound (2.12) has already been obtained by Lieb [9].
We observe here that the estimate (2.11) is not necessarily a good one. We can

easily see that the v(/c) term in (2.5) is nonzero only if there are particles with
momentum m, where \m\ > |fc|/2. The same is true of the v(fc) term in (2.8). Hence if
the estimate (2.11) is to be good there must exist particles with kinetic energy at
least |fc|2/4. Bogoliubov's method shows us how to construct wave functions ψ for
which (2.11) is a good estimate but at the least cost of kinetic energy.

In Bogoliubov's method we assume that most particles are in the zero
momentum state. Thus we may approximate Ak by

(2-13)

which in turn yields

. (2.14)

Now it turns out that we are not justified in assuming most particles are in the zero
momentum state. However we may assume that most particles are in states αm with
|m|^y. Thus we approximate Ak by

Λ- Σ 4»[βί+fc + β*-fcL (2-15)
|m|Sy

where λ^ is the number of particles in the am state, |w|^y. Hence we take

Σ % = N. (2.16)
H^y

Our first goal here is to find out, assuming the approximation (2.15), the least
cost in terms of kinetic energy of constructing a state ψ for which (2.11) is a good
estimate. Our situation is the following: We have two sets of Boson operators αί? bί9
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i=l , ...,rc, corresponding to the αm+k, αm_ f e with |ra|^y in(2.15). Let/I1? . . .,/lπbea
set of real parameters satisfying the equality

Σtf = N. (2.17)
ί= 1

We define operators S and T by

and J(ψ) by

We wish to find a lower bound to the expression

n

J(ψ) + (ψ\ε Σ λf^afcii + bfb^] |tp) (2.20)

for various values of the parameters λt and ε > 0. The second term in (2.20) will
come in the rigorous theory from the kinetic energy.

It is possible to come up with a precise lower bound for (2.20) since we may
diagonalise it by using Bogoliubov transformations. Let a = (αl5 ...,αn) and b
= (b!,..., bn} be the n dimensional vectors made out of the αt and bj. For 2n x 2n
matrices M we define transformations

Γ~Ί
(2.21)

Here fl = Oh, ...,*/„) and C = (Cι» •••,£«) are vectors made out of operators. The
matrix M is a Bogoliubov transformation if M satisfies the identity

(2.22)

where / is the identity n x n matrix. If the α, and bj satisfy canonical commutation
relations and M is a Bogoliubov transformation, then so also do the ηi9 ζj.

The first term in J(ψ) and the second term in (2.20) are the expected value of
operators quadratic in αί5 bj. We write the sum of these two terms in matrix form.
Let C = (ctj) and D = (dfj ) be n x n matrices defined by

1 0 . A "} 2 % /Ό O'JΛ

Then the sum of these two terms is given by

b

Observe that since ε > 0, the matrix

ΓC + D C

c c+0|
 <2 25)
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is positive definite provided all the λt are nonzero. If one of the λt is zero then we
may take a smaller value of n for our problem so there is no loss of generality in
assuming all the λi nonzero. It follows then, on making this assumption, that there
is a matrix M which satisfies (2.22) and also diagonalises (2.25), so

« T
βn

(2.26)

The matrix term in (2.24) is therefore given by

| Σ <¥/?»/,+ Σ jTOΊv> = <φl Σ <wtntί=l ί=l i=l

(2.27)
Next we wish to compute the eigenvalues αί5 βt in terms of the λt and ε. These are

given as the solutions μ to the eigenvalue equation

C

C C + D CH-'J
where v = (ι?ι, ...,0 and w = (w l5 ..., ww) are n dimensional vectors. In order for
(2.22) to hold, the v and w must satisfy the normalisation condition

|v|2-|w|2=±l. (2.29)

Now let λ = (λί9 . . ., λn) be the n dimensional vector corresponding to the λt. Then
Eqs. (2.28) may be written as

It follows that there are constants x and y such that

(D-μ)\ = xλ; (D + μ)w = yλ. (2.31)

Thus, if we assume that (D±μ) are invertible, it follows from (2.30) and (2.31) that

0,

(2.33)

(2.34)

(2.35)

For (2.32) to have a nonzero solution (x, y) we must have

We may write (2.33) in terms of the λίt ε as

i=ιε-μ

Suppose the λf are all different with

— + 1=0.
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Then it is clear that there are zeros βί9 ...,βn of (2.34) with

Sλ2

1<β1<ελ2

2<β2<ελ2

3<...<ελϊ<βn. (2.36)

These are the βt which occur in (2.27). We may take the αf in (2.27) as α^jδj,
/=!,...,«, and hence we have defined the αf and βt in terms of the Aί5 β. In the case
where λf = λ f + l 9 then βι = ελf.

We wish now to show that

Σ «Λ?>?i + Σ ACf
ί=l

It will follow then from (2.37) that (2.20) is bounded below by

(2.37)

(2.38)

(2.39)

It is evident from (2.28) that the matrix M, which is made up of the 2n linearly
independent solution of (2.28), has the form

To prove (2.37) we first observe from (2.21) that

}v
where V and W are n x n matrices. Hence (2.39) yields

It follows then from the Schwarz inequality that

(2.40)

(2.41)

. (2.42)

It is clear that in terms of quadratic forms we have the inequality

~C C~\ ΓΓ*-4-D CV_/ V_/ I ^ I v_/ | ^ L/ V^/

On applying the transformation M to the matrices in (2.43) this becomes

where A is the matrix

= (V+W)*C(V+W).

(2-44)

(2.45)
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By applying (2.44) to vectors of the form [u, u] where u is n dimensional, and noting
that oCj^βp ί= 1, ..., ft, we conclude from (2.44) that

2A< Γ1 . (2.46)

The result (2.37) follows from (2.42) and (2.46).
We turn now to the expression (2.38). It is clear from (2.36) that we have

J(ψ)^-N, (2.47)

which corresponds to (2.11). We improve (2.47) by making better estimates on the
βt than in (2.36). We have the following:

Lemma 2.1. For fixed ft, N, ε, there is the inequality

Σ βί~ Σ Λ?(l+ε)^IV[ft-V + 2εft)1/2--ε/ft-l], (2.48)
i=l i=l

and equality is obtained if all the λf are equal.

Proof. We define g(μ) by n 2

= Σί=ι ε - μ

and it is evident that g'(μ)>Q, so g(μ) is an increasing function. Equation (2.34) is
the same as

(-μ)+l=Q. (2.50)

For μ>0 it is easy to see that g( — μ) is bounded above by

where equality holds if all the λf are equal. Hence the sum of the positive roots of
(2.50) are bounded below by the sum of the positive roots of

1=° (2 52)

Equation (2.52) has n positive roots which we write γl9..., yw and one negative
root which we denote by — δ. By examining the coefficients of (2.52) we have the
identity

Σy.-δ-εiV-εiV/ft. (2.53)
ί=l

Next we change μ to —μ so that δ becomes the unique positive root of

N

Using (2.51) again we conclude that δ is bounded below by the positive root of

εN/n-μ εN/n + μ ~ ' ^ ' '
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It is easy to calculate the roots of (2.55), and so we obtain

. (2.56)

Thus from (2.53) we have

Σ βi~ Σ Λ2

i=ί ί=l

(2.57)

which is the inequality we wished to prove.
In the case when all the λf are equal, n — 1 of the positive roots of (2.50) are given

by εJV/rc, while the nth root is the positive root of (2.55). Thus we get equality in
(2.48). Q.E.D.

From (2.20) and (2.48) we have the inequality

J(φ)^-ε Σ λ2Ni + N[_n-1(ε2 + 2εnY/2-ε/n-l~], (2.58)
;=ι

where Nt is the number of particles in the momentum states αt , bi9 so

N^ζψWat + b f b A ψ y . (2.59)

Let us suppose that ε is large, so we may expand the square root in (2.58) as

n~l(ε2 + 2εnY/2 = l + --"-+.... (2.60)
n 2ε

Further let us suppose all the Nt are identical, Nt — /c, ί = 1, . . ., n, and all the λf are
the same. Thus from (2.58) and (2.60) we have for large ε,

J(ιp)^-εNκ-Nn/2ε. (2.61)

We can minimize the right side of (2.61) with respect to ε. The minimum occurs for
ε2 = n/2κ, which yields

(2.62)

Hence it seems from (2.62) that we need K of the order of l/n to achieve the lower
bound in (2.47).

We wish next to state our conclusions from the previous calculations as a kind
of principle and apply this principle to the Coulomb gas.

Bogoliubov's Principle. Let N and n be fixed. Then, to construct a wave function ψ at
least cost of kinetic energy with J(ψ) of order —N, one should take all the λf equal
and all the Nt of order l/n.

We consider a Coulombic gas in the cube Q. Thus we may take v(k) to be

v(k) = l/L\k\2. (2.63)

We put most of the Bosons in the states am with \m\ ^y, with an equal number η in
each state. Thus we have

N~y3η. (2.64)
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For γ<\k\<T, we put 1/y3 Bosons in each state ak. Hence for such k we have,
according to our principle,

jk(ψ)~-N. (2.65)

Next we compute the energy for such a wave function. The kinetic energy is
about

fnlΰ + T5/73I? . (2.66)

For potential energy note that with \k\ < T we have the approximation (2.65), while
for |fc| > T we may take Jfe(φ)~0. Hence potential energy is about

-N Σ γL^-γN. (2.67)
r™ Λ \k\<τL\k\ L
Thus we have

^ <φ, KNψ) + ̂ (|φ|2) - {JVα[JV1/3y2 + T5/73N2/3] - 7W2'3}ρ1/3. (2.68)ρi/6

If for fixed T we minimize the right side of (2.68) with respect to y we obtain

{CAΓα-1/15T2-TIV2/3}ρ1/3, (2.69)

where C is a universal constant. On minimizing (2.69) for T>0 we get

-CW 7 / 5~V / 3, (2.70)
for some constant C>0.

In the next two sections we shall be concerned with making the above
heuristics rigorous and so prove Theorem 1.4. There are two things to be done.
First we must approximate the Coulomb potential by a potential which is periodic
on Q. Second we need to deal with the quartic nature of Jk(ψ). In Bogoliubov's
method Jk(ψ) was reduced to an expression quadratic in the operators ak. In the
rigorous theory we shall make the kinetic energy quartic by using the fact that ψ is
an eigenfunction of the number operator.

3. Approximating the Coulomb Potential by a Periodic Potential

Our first purpose here is to show that we may restrict the range of α to the region
2/5 ̂  α ̂  2/3. To show this we need two lemmas, the first of which is well known.

Lemma 3.1. Let φ, KN, A be as in Theorem 1.4. Then there is a universal constant C
such that

3 (3-1)

Proof. On using the inequality of Hoffman-Ostenhoff [7] and the uncertainty
principle [11] we have

J ρ(x)dx = CNί/3ρ2'3 . (3.2)
A
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Lemma 3.1 gives a lower bound on the kinetic energy. Our next lemma gives a
lower bound on the exchange energy.

Lemma 3.2. Let \p, A, b, be as in Theorem 1.4. Then there is a constant C(b)
depending only on b such that

(3.3)
L

Proof. Let /φ denote the exchange energy corresponding to the potential φ(x).
Then it is known [2] that

(3.4)

provided φ(x) is a positive definite function. We write the Coulomb potential 1/r as

and take φ(x) as

l/r= f e~urdu, (3.5)
o

<Kx)="l e-'du, (3.6)
0

whence we have from (3.4) that

It follows then that the Coulomb exchange energy <?(|φ|2) satisfies the inequality

(3.8)
Δ Δ |Λ — y\

We need to bound the second term on the right in (3.8) appropriately. First
observe that

j j g(*)e(y) dχdy^C\bNρ1/3+ f ]/ρ(-A)ll2]/ρ(x)dx], (3.9)
| j c - y | < l / f t ρ i / 3 |X~y| |_ A J

for some universal constant C. This follows from the fact that /(x) ̂  ftρ1/3 for x e Λ
and the Fefferman-Phong technique [5]. The argument is presented in full in [2],
Next we have

ίί β-
ff ρ(x)ρ(y)dxdy . (3.10)

Again using the fact that /(x)^b^1/3, we see that

f eOO^Cr3, (3.11)

for some universal constant C.
The result (3.3) follows now from (3.8), (3.9), (3.10), and (3.11). Q.E.D.
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Theorem 3.3. Theorem 1.4 holds if α^2/5 or oc>2/3.

Proof. We observe that

. (3.12)

Thus from (3.3) and (3.1) we have that

^ (3.13)

It is evident that for α ̂  2/5 the above is bounded below by the right side of (1.15). If
α > 2/3 then for large N it is positive, in which case it is also bounded below by the
right side of (1.15). We have proved the theorem. Q.E.D.

Theorem 3.3 shows us that we need only prove Theorem 1.4 for α in the region
2/5 ̂  α ̂  2/3 + η for some η > 0. From now on we shall restrict ourselves to such α.
There is a particular value of α in this region, namely α = 8/15, which has
significance for us. The reason is that this value of α solves the equation

JV 1 / 3 + α = JV 7 / 5 - α . (3.14)

Since the kinetic energy term in (1.15) is bounded below by a positive constant
times N1/3 +αρ1/3, we should for α > 8/15 bound the potential energy terms in (1.15)
by a negative constant times ΛΓ1/3 +αρ1/3, while for α < 8/15 by a negative constant
times JV7 / 5~y / 3.

Equation (3.5) represents the Coulomb potential as an integral. Next we
subtract off parts of this integral and bound the corresponding exchange energies
in a similar spirit to that used in Theorem 3.3.

Lemma 3.4. For 2/5 ̂ α^ 8/15, let φΛ(x) be the potential defined by

ρ l /3JV2/5-« 00

φΛ(x)= ί e~uWdu+ ί £Γ"wdtt. (3.15)
0 el/3jyα/2- 1/5

Then there is a constant C(b) depending only on b such that

(|φ|2) £ - C(b)N7'5 -y '3 . (3.16)

Proof. The potential φΛ(x) has been written as a sum of two terms,

φx(x) = Φ1(x) + Φ2(x), (3.17)

with Φi(x) given by βl/3NW-.
Φ1(x)= I e-'Mdu. (3.18)

0

From (3.4) we see that

^Φl(M2)^-iN7/5-y/3. (3.19)

We therefore have only to deal with Φ2
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It will be sufficient for us to show that

x-y)dxdy^ ~C(b}NΊ^-^3 . (3.20)

We proceed similarly to (3.9) and (3.10). Putting y = AΓα/2 ~ 1/5, we see as in (3,9) that
there is a constant C(b) such that

ff g,(x)g? dxdy
ι *-y i<ι/ve ι / 3 \χ—y\

£C(b)\γρW f j e(x)e(y)dxdy+S]fa(-A)V2]fi)(x)dx-], (3.21)
L |x-y |<c/yρi/3 vΓ J

where c> 1 is a universal constant. Arguing then as in (3.10) and Theorem 3.3, it is
clear that we need only prove that for any r>l and constant C±(b) there is a
constant C2(b) such that

Q Λ

3/r3 ίί e(x)g(y)dx^^ -C2(fe)ΛΓ7/5-βρ1/3 . (3.22)

The inequality (3.22) is evident if r > y/fr, since we know f(x) ^ £ρ1/3 all xeΛ. For
r < y/fc the result follows from the next lemma, and we are done. Q.E.D.

Lemma 3.5. Let Q be a cube in R3, and for some integer m > 0 suppose Q is divided
into 23m = n dyadic subcubes Ql9 . . ., Qn. Let ψ(x) be a function defined for xε Q, and
define σb ί= 1, ...,n, by

σ.= $ψ

2(χ)dx. (3.23)
Qι

Then, if L is the length of a side of Q, for any ε > 0 there is a constant C(e) > 0 such
that

n

ιp2(x}dx\2 . (3.24)
i=i n Q

(x}dx\2 .
J

Proof. We first obtain a lower bound on the gradient term in terms of the σi9

i = 1 , . . . , n. To do this let (x, y , z) be coordinates in 1R3 and suppose that Q 1 and Q2

are adjacent with a common face in the (y, z) plane. Then we have

|σ1-σ2|
L/π1/3 L/ni/3 L/Mι/3

ί ί ί [ιp2(x+L/ni/\yίz)-ιp2(x,y,z)dxdydz
0 0 0

£ [ί I V(x + L/n1/3, 3;, z) - ψ(x, y, z)\2dxdydz] 1/2

1/2 . (3.25)
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The second integral in the last expression is evidently bounded above by 2(σ1 -f σ2).
The first integral is equal to

[x + L/n1/^ Π2 T jc + L / n i / s Γ s Π2

/ ^(t,y,

. (3.26)
n Qιυβ2

We conclude therefore that

LV/3 f (Vφ)2(xMx^π^72)2 (3.27)
<2ιu<22 Aσl+σ2J

From (3.27) and (3.24) we see that it is sufficient for us to prove that

To do this note that for t < r we have

•-1

Σ (σί~σi-{

[«-i(σ._σ. ) 2Ί 1/ 2Γ » Ί1/2

.Σ 2^. + ̂ ^)] [ Σj σi\ '
(3.29)

Since ί and r are arbitrary it follows from (3.29) that the left side of (3.28) is bounded
below by

εrc/^maxσ -minσ;)2- Σ of. (3.30)
i = l

It is now clear that (3.30) is bounded below by the right side of (3.28) Q.E.D.

Next we deal with the case where α>8/15. We have the following lemma:

Lemma 3.6. For α>8/15, let φa(x) be the potential defined by

ψΛ(x)= f e~u^du+ j e~u^du, (3.31)
0 c(Z>)ρ1/3]V1/3-α/2

where c is a universal constant and c(b) is a constant depending only on b. The
constants c and c(b) may be chosen to be positive numbers such that for all φ and α,

(|tp|2) ̂  0 . (3.32)

Proof. We argue similarly to Lemma 3.4. The potential </>Λ(x) has been written as a
sum

x), (3.33)

with Φ^x) given by
c ρ l/3jγα-2/3

Φ1(x)= J e-"Mdu. (3.34)
o
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From (3.4) we have that

(3.35)

From Lemma 3.1 it is clear we may choose the constant c in (3.35) such that

(3.36)
4ρ^3 xs

To deal with Φ2 we argue exactly as in Lemma 3.4, proving inequalities similar
to (3.21), (3.22) and making use of Lemma 3.5. We conclude that for c(b) sufficiently
large, depending only on fc, we have

(3.37)

This completes the proof. Q.E.D.

Remark. Note that Lemmas 3.4 and 3.6 are very easy if the one point function ρ(x)
is identically constant in A. The condition f ( x ) ^ ί?ρ1/3 in A means that ρ(x) is on
average constant in A. The purpose of Lemma 3.5 is to show that because of the
kinetic energy the estimates for ρ(x) constant continue to hold when ρ(x) is allowed
to vary slightly.

We have shown so far that if we replace the Coulomb potential by the potential
φΛ(x) then the conclusion of Theorem 1.4 holds. This leaves us to deal with the
potential l/\x\ — φ^x). We claim that this potential may be well approximated by a
periodic potential. One can see easily why this should be so. For α^ 8/15 it is an
integral in e~u|x | with ι/^ρ1/3JV2/5~α. We may assume without loss of generality
that A is a box with center at the origin. As x varies in Λ9 \x\ varies from 0 to
(VoU)1/3-]V1/3ρ~1/3. Thus for w^ρ1 / 3N2 / 5~α, u\x\ varies from 0 to something
larger than ]γ11/15~α, which goes to oo with N. Hence we expect to be able to
approximate e""1*1 by something periodic. A similar argument applies in the case
when α>8/15.

To implement this scheme let QΛ be a cube concentric with A but with side which
has 4 times the length of a side of Λ. It is clear that if x, y e A then x — y e QΛ. Since
the wave function ψ in Theorem 1.4 is supported in ΛN

9 the potential enters in (1.15)
with argument x —y where x, yeΛ. Hence we may expand l/|x| — φΛ(x) in a
Fourier series on QΛ and this will give a good representation for the potential in the
situation of Theorem 1.4. The problem is that this new periodic potential is no
longer positive definite. However, because of the considerations of the previous
paragraph, the Fourier coefficients v(fc) can only be negative for very large values
of k depending on N.

In the following lemma we shall make use of the fact that for λ > 0,

f e~{xleix'ξdx
\x\<λ

8π — 4πλe~λ Γsinλ\ξ\ Ί
= ' -ĵ p + cosλ|f |J

(3.38)
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Let us define Iλ(ξ) by

Iλ(ξ)= J<λe-^e-ix'ξdx. (3.39)

From (3.38) it is easy to see that we may find universal constants C1 and C2 such

~ - 16π

te _ -,„ P.*-)

Lemma 3.7. Let QΛ have side of length L. Then for xeQΛ with \x\ < L/2 the potential
\f\x\ — φΛ(x) may be expanded in a Fourier series

l/|x|-^(x) = Σ ve(fc)e2«tt""L. (3.41)
feeZ3

There is a universal constant C such that for \k\ satisfying

|k|^Cexp[JV1/6], (3.42)

then the vα(/c) obey the inequalities

^/τyα-l/15 1/3

if αS8/15, (3.43)

ι/ α>8/15, w/zerβ C is α universal constant and C(b), C'(ί?) depend only on b.
If k does not satisfy (3.42) then there are constants C' and C"(b) such that

, if αg8/15, (3.45)

!2, if α>8/15. (3.46)

Proof. We shall deal only with the case α ̂  8/15, since α > 8/15 is similar. Then it is
evident from (3.15) that we may take vα(/c) to be

- <3 47)

Now it is clear that there is a universal constant C such that if

|/c|^CexppV1/6], (3.48)

then we have for all u^ρ1/3N2/5'a,

2πk

Lu

Thus for /c satisfying (3.48) we have from (3.40) the inequality

k)£'l"7

(3.49)
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It is evident that (3.50) implies there is a universal constant Cx such that for k
satisfying (3.48) we have

1/3

Next we consider k which do not satisfy (3.48). If we use the second inequality in
(3.40) it is easy to see that for such k there is a universal constant C" such that

/ | fe | 2 . (3.52)

Since (3.51) is the same as (3.43) and (3.52) as (3.45) we are finished. Q.E.D.

Lemma 3.7 divides the vα(fc) into two kinds depending on the value of k. We
define potentials VΆ(x) and (7α(x) by

Vu(x)= Σ v«(k)e2πik χ/L, (3.53)
I f c l ^ C e x p t i V 1 / 6 ]

UΛ(x)=l/\x\-φa(x)-Va(x). (3.54)

Observe that all the Fourier coefficients of Va(x) are non-negative. The potential
UΛ(x) is a remainder term which we shall now bound.

Lemma 3.8. Let ψ be supported in ΛN. Then for all N sufficiently large,

Na , ,
4ρ 1/3 (3.55)

Proof. For x, yeΛ, x — y satisfies the inequality \x — y\<L/2. Hence in our
situation Ua is well represented by the Fourier series,

VΛ(x)= Σ v«(k)e2πίk χlL. (3.56)
1/c^CexptW 1/ 6]

Also since A C QΛ, we may take ψ to be periodic on QΛ. We are therefore justified in
writing the expression (3.55) in second quantised form as was already done in
Sect. 2.

The expression in (3.55) is given in second quantised form as

/Vα 4π

2 1
^-TΪ3<Ψ\-r2- Σ k2a%ak\ipy+- Σ vΛ(K)Jk(ψ)9 (3.57)
4ρ / L fceZ3 2 | fc |>Cexp[JV 1 /6 ]

with Jk(ψ) defined in (2.10). Now we have

A+Jφ>1/2<φ|αX|φ>1/2, (3.58)

by the Schwarz inequality. On the other hand from (2.5) we have

^ Σn,r

(3.59)
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where n is the number operator (2.4). If we commute n with the operators αn + f e and
an in the above inequality and use the fact that ip is an eigenfunction of n with
eigenvalue N, we see that the last expression is bounded above by

Σ(N- 1) (Ψ\aϊ+kan+k\Ψyi2 <ψ\a*an\Ψy1i2 . (3.60)
n

If we put Nm = (ψ\a%lam\ψy for meZ 3, then from (3.58) and (3.60) we have

Next we turn to the kinetic energy. We write

= Σ k2NkNm = Σ (m + k)2Nm+kNm
ft k,m N fc,m

^i Σ /c2JVm+Λ
4JV Mg|k|/2

k2Nm+kNm, (3.62)

the last inequality being obtained by adding the k and — fc terms.
Next, if we use the elementary inequality

a2, (3.63)

we have from (3.62), (3.52), for any ε>0,

where C(ε) is a constant depending only on ε.
Next let us define N(u) by

1/c^CexptN1/6]

where ^4 and B are constants.

(3.64)

N(u)= Σ Nm, w > 0 . (3.65)

Then we have

J N(ul-*/2)du, (3.66)
CexpfiV 1 / 6 ]
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We may bound kinetic energy below by an integral in N(u) as follows:

N"

j=0

= 4'ρ1/3 Σ (2j+l)N(/+l)^'e1/3 uN(u)du, (3.67)
7 = 0 2

where A! is a constant times a power of N.
The inequality (3.55) follows from (3.61), (3.64), (3.66), (3.67) and

Lemma 3.1. Q.E.D.

It is clear now that it is sufficient for us to prove Theorem 1.4 with the Coulomb
potential replaced by the periodic potential Fα(x). In the next section we shall
achieve this by making use of Bogoliubov's method.

4. Rigorous Version of Bogoliubov's Method

We shall first assume that α^8/15. At the end of Sect. 2, in the discussion of the
Coulomb gas, it was stated that one should put most Bosons in states m e Z3 with
|w|5^y. Here we wish to fix an appropriate value for γ.

To do this we define operators Skjm and TkfVn for |m|^y by

k, M^y, (4.1)

_ f c , 0<|m|^,

Σ 0?+A.
{«: |« |>y, |n + /c |>y}

It is evident then from (2.6) that

Ak= Σ [S*%+3ίfJ. (4.2)
N^y

From (2.10) we see on using the commutation relations that Jk(ιp) is given by the
formula

+ <Ψ\ Σ [.a*am-a*+kam+k]\ψy-N, (4.3)
MS?
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where Sk and Tk are given by

Sk= Σ Sk.m, (4.4)
M^y

Tk= Σ T f c p W . (4.5)
M^y

Notice that (4.3) looks the same as (2.19) except for the last two terms. It is easy to
bound these terms, and we have if |/c|^2y, then

Σ ίNm-Nm+k]-N^-2N(y), (4.6)
M^y

where N(u) is defined as in (3.65).
We choose y such that

N(y) Σ vα(fc)^C]V7/5-y/3

? (4.7)
feeZ3

N Σ vα(fc)^CiV7 / 5-y/ 3, (4.8)
\k\i2y

for some constant C. From (4.6) and (4.7) it follow that we may drop the last 2 terms
in (4.3) from our future consideration. From (4.8) and (2.11) we may restrict
ourselves to values of k with |fc|>2y.

From (3.43) we see that

-1/5ρ1/3, (4.9)
k

Σ vα(/c)^CyΛΓ2/3ρ1/3, (4.10)

where C is a universal constant. Now we may assume that the wave function ψ
satisfies

ΐ<<
Q

Otherwise there is nothing to prove in Theorem 1.4. From (3.3) and (4.11) it follows
that for some constant A we have

-^^(ipτKxipy — ANρ1/3^®. (4.12)

It is now easy to see from the representation (2.3) for KN that N(y) satisfies an
inequality

N(y)<AN5/?>~Cίy~2, (4-13)

for some universal constant A. From (4.9), (4.10), and (4.13) it is evident that for α
satisfying α 5̂  14/25 we may choose y such that (4.7) and (4.8) hold. In fact we may
take y to be given by
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Our next aim is to write the kinetic energy in such a way that it is in a form
suitable for applying Bogoliubov transformations. To do this we observe that

4π2 1
Σ ~ < V > I Σ a*am(m+k)2a*+kam+k

Σ a*an(n-k)2a*-kan-k\ψy
0<M^y

Σ k2(ψ\ Σ a*ama*+kam+k
\k\>2y |m|^y

Σ
|ίc|>2y

Σ fc2<φ| Σ Sf.mS»,m
| f c | > 2 y | m | g y

+ Σ ^nΓs>Π|φ>-^<φ|KN|φ>, (4.15)
0 < | n | ^ y ^ίV

for some universal constant C. From (4.14) we see that if α ̂  8/15, then y3 <| N for
large JV5 and so we conclude that if JV is large then

Σ fe2<ψl Σ Sf fmSk f m

+ Σ τk*nτk,n\Ψy. (4.16)
0<M^y

Now for ε > 0 let us put

Σ Sί9j5k9m+ Σ τk*nτktn\ψy
m\^y 0<|« |^y

k + SfeTk + ̂ Γfc*|φ>-|<φ|S? + TJφ>|^ (4.17)

Thus Ik(ε) is just like the expression (2.20).

Lemma 4.1. Suppose \k\ > 2y and N0 ̂  Nk for all k with \k\^y. Let βm, \m\ ̂ ybe the
absolute values of the negative roots of the polynomial equation

ΛΓ0 Nm N0
' ~r A T; -- r -

— μ

+ Σ Λ, ̂  , +1-0. (4.18)
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Then Ik(ε) satisfies the inequality

/*(e)£ Σ βm-(l + ε)N0- Σ L(l+ε)Nm+εN0-]-N(y). (4.19)

Proof. Let λm, Mrgy, be positive numbers such that λQ^λm if mφO. We define
^y by

Ak,m = λ~ίTk^m, B^m = λm

lSkίtn. (4.20)

It is easy to see that

Σ %AίtnAk9n + λtBt0Bkt0
0<\n\^y

Σ (λ2

0+λ2

n)BtnBkιn\Ψy

Now let C be the matrix λ*λ, where λ is the vector λ = (A0, ...), and D be the
diagonal matrix with 0 in the first entry and ελ% with 0<|rc|^y in the other
positions. From (4.21) and the commutation relations we see that

~<Ψ\ Σ [(l+ε) + εA^][α*αm-α*+itαm+fc]|φ>, (4.22)
0 < | m | ^ y

where Ak and Bk are the vectors, Ak = (AkjQ, ...), Bfe = (£k?0, ...).
Next we choose a Bogoliubov matrix M such that

M* I _, _ 1 2 T M= υ

 0 . (4.23)

It is certainly possible to do this since the matrix diagonalised in (4.23) is positive
definite. The columns of M are made up of vectors (v, w), where

μv,
(424)

w=-μw.

Evidently if (v, w) is a solution of (4.24) with eigenvalue μ then (w, v) is also a solu-
tion with eigenvalue —μ — ελQ. Thus on taking βm = ttm + ελQ, |m|^y, we see that
the matrix M has the block form

V WΊ
w v\ <425>

From (2.22) it follows that V and W satisfy the relations

V*V-W*W=I:V*W=W*V. (4.26)
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It is then easy to see that

[ y* _ w*Ί

Λ v \ (427)

We define a change of variables as in (2.21) by

where ηk^(^k,0? •••) and ζk = (Cfc,0? •••)• In γiew of (4.23) we have from (4.22) the
inequality

/*(e)^<Vl Σ ow/?,m>/*,« + Σ j8«ί?,mf*.«IV>

-<Vl Σ [(l+β) + ε^/^][α*αm-α*+fcαm+k]|φ>. (4.29)
0< |m |^y

We shall show that

<vl Σ «m%*Λ,m+ Σ βmζtm^,m\ψy-\<ψ\sϊ + τk\Ψy\2^. (4.30)
|m|^y |w |^y

To do this note that

SΪ + Tk = λ (V+W)r\k + λ.(V+WKΪ = v nk + v ζϊ, (4.31)

where v = (V+ W)*λ. Thus

(4.32)

for any δ>0. Let ^4 be the matrix defined by A = \*\. Then it is clear that (4.30)
holds provided there is a δ > 0 such that

Σ *mζ2

m,
\m\iy

(4.33)

(l + l/«5)ξ^ξ^mΣ j8«S,
for all real vectors ξ = (ξ0, ...). ™ =y

Observe next that (4.33) holds provided

Γ v2T v2

(1 + 5) Σ - ^ Σ -,
L|ml^γ(X m J |m|^ yαm

Γ v2 Ί2 v2

|_ |mΣyβJ = |mΣ^'

where v = (v0,...). A necessary and sufficient condition for there to exist a δ
satisfying (4.34) is

V2 V2

* Wl •* 1 y Ί

Σ — + Σ TΓ^i (4 35)



Ground State Energy of Bose Gas with Coulomb Interaction 379

We prove (4.35) in a similar fashion to how we proceeded in Sect. 2. Applying the
transformation M to the inequality

ΓC C Ί Γ C + D C Ί

we have

P ^"UK Ί. (4.37)

Now apply the matrices in (4.37) to the vector ( —, ...,-~^... ), where t is a real
\αo Po /

parameter. Then we obtain

Γ v2Ί2 Γ v 2T Γ v 2 Ί Γ v 2 Ί

|_ |wΣyfJ +ί2[|mΣ^J +2ίL |mΣ^j|_ |mΣy^J

^ Σ r^+ί2 Σ ί5-. (4.38)

Hence we have

ί v2 Γ v 2Ί 2} , Γ v 2 Ί Γ v 2 Ί
1 Σ /- Σ 7τ ^2-2ί Σ — Σ 7r
i N ^ y P m L N ^ y P m J J LN^y α mJ LM^vPmJ

v2 Γ v2 Ί2

+ ,Σ -=- .Σ ^ ^0 (4.39)

for all real values of ί. The inequality (4.35) now easily follows on completing the
square in (4.39).

Next we wish to compute the commutators [Cfc m? C* m] in (4.29). In view of
(4.27), (4.28) we have

. (4.40)

Hence

K f* 1ίt,m? <5k,mJ

= Σ ί-W^Atn + V^B^-WJjA^+VJjBij]

= Σ {^%^%[Λ%,Λ,n] + Fm%

N^y

= Σ {^n%Wς*Λ"2K*_A_fc-
0< |n |^y

+ V*t n V*t nλ~ 2 [α*αn - α*+ kan + k] }

(4.41)
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Now let us define Jk(s) by

and Hk(ε) by

'm, n * m , n^n + k^n + k J ' ^m, 0 ^m, 0^0

Σ [(l+β) + βλg/^]flί+A+k|V>. (4-43)
0 < ) m | ^ y

It is clear from (4.29) and (4.41) that

. (4.44)

We may simplify the expression for Hk(ε) a little by noting that

Σ [α*απ-α*+fcαw+fc]= Σ [a*+kan+k-a*-kan-k']. (4.45)
{n: |n|>y,|« + k |>y} |»|^y

Thus we have

Hk(ε)= Σ <vlα?-A-klv> Γ Σ ^U;

Σ <φ|β?+ι
<|π|^y

Σ ^Uo2(^o,J2-t2(K,J2

|m|^y

Σ j8MU0" Wo, J2-A0"
 2(Ko im)2}l. (4.46)

We shall bound Hk(ε) from below. To do this first note that, in view of the
formula (4.27) for M"1, we have from the identity MM~i=I the equalities

VV*-WW*=I; VW* = WV*. (4.47)

From (4.47) we see that

Σ [(^0,m)2-(Wθ,m)2] = l (4.48)

It follows therefore that

MS?
2 Σ αΛJ2 (4-49)
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If we multiply (4.23) on the left and the right by (M*)~ 1, M~ 1 respectively and use
the formula (4.27), we obtain the identity

(4.50)γ α°. \γ* + W r° . Lp* =

On evaluating the first entry in the matrix (4.50) we easily obtain the inequality

Σ αm(F0,m)2^. (4.51)
M^y

It follows then from (4.49) that the coefficient of <v>l <**<** I ψ> in (4.46) is non-
negative.

By an exactly similar argument we see that for 0<|w|;gy the coefficient of
<ιp|α*+fc0n+fc|φ> in (4.46) is bounded below by

β«+ Σ ^l{λ^(w^mγ-λ-\vn^
2}

|m |£y

£ Σ ^Uo2(^o,J2-4"2(W;,J2}. (4.52)
MSy

Observe next that WQ^m and Wn^m with 0<\n\^y satisfy according to (4.24) the
equations

vmλ0=-βmWQιm; vmλn=-(βm + ελ2

n)Wn,m. (4.53)

Hence the last expression in (4.52) is non-negative. Thus the coefficient of
<φ|α*+fcαn+fc|φ> in (4.46) is non-negative for 0<\n\^y.

The coefficient of (ψ\a*.kan-k\ψy in (4.46) is bounded below by

-Λo 2 Σ βm(W0.J
2^- Σγ-Z-1, (4.54)

MSy |m|gy/5 m

from (4.35). We conclude therefore that Hk(ε) satisfies the inequality

Hk(B)Z-N(γ). (4.55)

To conclude the lemma we let ^-><φ|<z*αjy)> for \n\^γ. In view of the fact
that

Σ C(K,J2-W,J2] = 1, (4.56)
W ^ y

we see that Jk(ε) is bounded below by the expression on the right-hand side of
(4.19). Q.E.D.

Next we wish to estimate from below the quantity on the right of (4.19). To do
this we prove a lemma similar to Lemma 2.1.

Lemma 4.2. Let λn, n = Q, 1, 2, ... be real numbers and p be a positive number with
p<l. Suppose cn are non-negative numbers such that

p, n = 0,l,2,..., (4.57)
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for some positive constants Mί and M2. Define N, K, n0 by

N=Σλ2

n; K=Σcnλ
2

n, (4.58)
n = 0 n = 0

"o = [(*W/P] + l . (4.59)

Thus n0 is an integer and rc0 = 1
Suppose now that only a finite number of the λn are non-zero and that λm is the

smallest of these in absolute value. Let αn, n = 0, 1 , 2, . . . , be the non-negative zeros of
the equation

r— + -Ί^-+ Σ 32/L +1=0, (4.60)-— μ n*m£n-μ ελ +

and J(ε) be defined for ε > 0 by

(4.61)
n= 0 n φ m

Then /(ε) satisfies the inequalities

-N, (4.62)

ε)p if ε>n 0, (4.63)

where C is a constant depending only on p, M1? M2.

Proof. The inequality (4.62) follows since we can find zeros απ with αw ̂  ε/l^ for
nή=m.

We turn to (4.63). Let a(

n

i} be the non-negative zeros of the equation
;2 ;2 ;2 τ 2

— + Σ -τί̂  + -ιττ-+ Σ -ι̂ - + l = 0 . (4.64)
-μ κΦmε/ς-μ ε/l^ + μ ί Z Φ m εA«+μ

Arguing just as in Sect. 2 we see that

00 00

n = 0 n=0

If we let —β£\ n = 0, 1, ..., be the negative roots of (4.64) then we have

-ε%, (4-66)
and hence that "=0 "=0

ΣW- Σ(l+eμπ

2. (4.67)
n = 0 n=0

Now the β(

n

1} are the positive zeros of the equation

oo ;2 oo ;2 Γ;2 02 η

Σ^-+ Σ-ι^-+ ---ift- +1=0. (4.68)
n=oελ;-μ n=0ε/l^ + μ |_ μ ελ^ + μj

The expression in square brackets in (4.68) is

(4.69)
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In view of our definition of λm, it follows that all the positive zeros μ of (4.68) satisfy
μ^ε/ί2. Furthermore, if μ^ε/12, then the expression (4.69) is bounded above by
l/2ε. Thus if we let αj,2) be the positive zeros of the equation

oo ;2 oo 32 1

^ ». .. _L ^ .__»—-L-I + — =0, (4.70)
2ε

then we have

00 00

)^ Σ α<2)- Σ (l+εμ2. (4.71)
«=0

Next we define for fc = 0,1,2,...,

(2 k + 1 -l)«o~l

Nk= Σ #• (4.72)
(2"-l)n0

It is clear from (4.57) and (4.58) that we may find a constant C such that

Nk^CN/2kp, fc^O. (4.73)

Let αj,3) be the positive zeros of the equation

oo ;2 oo Λ7 1

Σ^-+ Σ '? ^ +ι + j-=o. (4.74)
n = o ε X π — μ k = oεNk/2κn0 + μ 2ε

Then we have

V α(2)> y α(3) (475ΪZ-, ^n = Z-i ^n ' \* ' JJ
n=0 n=0

Letting — /?£3) be the negative zeros of (4.74) we see that

00 00

00 42- Σ [(l + l^^+ε^olAΓ,. (4.76)
11 = 0

From (4.71) it then follows that

ί(β)S| Σ β?}~ Σ Kl + lβsΓ^εβ^N.-Nβs. (4.77)
fc=0 fc=0

Arguing as before we see that if αj<4) are the positive zeros of the equation

then /(ε) satisfies the inequality

00 00

KF}> V αί4)— V ΓΠ -1- 1 /?/Λ~ 14-p/? f cw Ί/V — / V / ? p Γ4 7QΪv"/ :~- / . ^/f / J LV " ^ / ^-'^-') i^"/ •" ' Ό J k / " \ /
fc=0 k=0

It is easy to argue further that the right side of (4.79) is minimized when the Nk

take on their maximum values as given by (4.73). Hence we are in the following
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situation: Let ηk = C/2kp, k ̂  0, where C is the constant in (4.73) and δ = ε/n0. Then
/(ε) satisfies the inequality

GO oo

~^~j~= Σ Jk~ Σ [(l + l/2ε) 1 + ̂ /2k]^— l/2ε, (4.80)

where the yk are the positive zeros of the equation

oo n. oo n 1

-+ Σ '*». +1 + ̂ 7=0. (4.81)

Let 7Λ be the unique zero of (4.81) such that δηk_1/2k' l>yk> δηk/2k. We bound
the zeros γt below as follows: If δ^2k bound γk below by

k. (4.82)

If <5 > 2k we proceed differently. In that case we have

Σ , !ϊ" = Σ + Σ (4.83)
m<k m^k

Since we have 9m 2fc

Σ ^ Σ T < T , (4.84)
m < f e m < k 0 O

Σ ^ Σ^^^<^!9 (485)
w^λ w^*^ 7Λ 0

for some constant CL depending on C and p, it follows that there is constant C2

such that 7fe

<4 86>
We may also see that

^m _ ί?m _ < C^l ,. .
δη^/2k-1= δ ' ^ ]

for some constant C3. Hence there is a constant C4 such that

^0, (4.88)Λ - Ί l - ^̂  - 4<&>/*- 1/2* -7/c δηk/2k-yk δ

in view of the fact that n0 ̂  1 . Then yfc ̂  γ'k, where y^ is the unique zero of the
equation .

^0, (4.89)4

k ~ μ δ

which has δηk _ 1/27c ~ x > μ > δηk/2k. It is not difficult to see from (4.89) that there is a
constant C5 with

(4.90)

We bound yk below by the right side of (4.90) in the case when δ > 2k.



Ground State Energy of Bose Gas with Coulomb Interaction 385

We are now in a position to estimate the right side of (4.80). We write it as

Σlyk-(l + V2εΓlηk-δηk/2k~}-l/2s = Σ + Σ -l/2fi. (4.91)
k = 0 δ^2k δ>2k

From (4.82) we have

Σ ^-(l + l/fc)-1 Σ ηk^~C6/δ^ (4.92)
δ^2k δ^2k

for some constant C6 if we assume ε > n0 and hence ε > 1. From (4.90) we see that

Σ ^~CΊ/δp, (4.93)
δ>2*

in a similar fashion. Hence since δ = ε/nQ we have from (4.80) that

T(ρ}
•^^-C(n0/ey, (4.94)

provided ε>n0. We are finished. Q.E.D

We wish now to apply the previous two lemmas to our problem. Let JVk, |fc| ̂  y
be the same as in Lemma 4.1 and put

N'= Σ Nk; K'= Σ k2Nk. (4.95)

If we define nQ as in (4.59) with N replaced by N' and K by Kf we see from
Lemmas 4.1 and 4.2 that 7fc(ε) satisfies the inequalities

Ik(ε)^-N'-N(γ), (4.96)

Ik(ε) ^ - CN\n0/s)2^ - N(y) , ε > n0 , (4.97)

where C is a universal constant.
To finish our proof we need to prove (1.15) with the Coulomb potential

replaced by the periodic potential V^x). From the estimates (4.7) and (4.8) we have

N- 1/3 1/3

-C2 Σ V i / t(JV"-*'3feVC3JV7'5-V/3. (4.98)
| fc |>2y K Z +1

where C l s C2, and C3 are universal constants. We can estimate the sum in (4.98) by
using (4.96) and (4.97). Thus we have

' /3
(4.99)

Observe next that provided n0 ̂  2, we have

CιJV«

It is easy to see that

,(4.101)
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for some universal constant C6. In view of the fact that N'^N we are done in the
case n0 = 2. If n0= 1 we use Lemma 3.1. Hence we have

J (V]/ρ)2dx^ CΊN«+ 1/3ρ1/3 ̂  C7ΛΠVα~2/3^/3ρ1/3 . (4.102)1/32ρ

Therefore we can apply (4.101) again. Hence we have proved Theorem 1.4 in the
case when α^8/15.

For α>8/15 we choose γ such that
1/3, (4.103)

fceZ3

N Σ vα(fc)^CJV1 / 3 + αρ1 / 3, (4.104)
\k\^2γ

where C is a suitably small universal constant. From (3.44) we have that

Σv^fc^CiiV^-'/Y'3, (4.105)
k

N Σ v^fc^QJV^yρ1/3, (4.106)

for some constant C1 independent of N. Arguing as before we may assume that
N(γ) satisfies the inequality (4.13). Hence we need γ such that y = Nr with

^-^<r<α-l/3. (4.107)
6 4

Such a choice for y is clearly possible when α ̂  8/15. The rest of the argument in the
proof of Theorem 1.4 then follows in exactly the same way as in the case α < 8/15.

Hence the proof of Theorem 1.4 is complete.

Remark. Observe that there is no loss of generality in the restriction N0 ^ Nk for all
k with |fc|^y in Lemma 4.1. It is simply related to the fact that we defined Tfc 0

differently to the T fc>m with mφO.

We complete this section by estimating an asymptotic value for the constant
C(b) of Theorem 1.1 as JV-κxx In Lemma 4.2 we take p — 2/3 and the cn as the k2

from (4.95). We obtain the value C = 75 in the inequality (4.63). Using this value of
C we may estimate the constant C4 in (4.101) as C4 = 8.8. The constant C5 in (4.101)
turns out to be C5 = 2.47. When we minimize (4.101) with respect to n0 we obtain
C6= —6.5. Since the correction terms estimated in Sect. 3 are of lower order in N
than JV7 / 5 we may take C(b) to be 6.5 asymptotically in N.

5. Achieving the Lower Bound

In this section we show that the lower bound obtained in Theorem 1.4 is sharp
provided α<8/15. It is also sharp when α = 8/15 provided one replaces the
coefficient ]Vα/ρ1/3 of the kinetic energy in (1.15) by a suitably small constant times
7Vα/ρ1/3. Dyson's construction [3] corresponds to the case α = 8/15.
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Theorem 5.1. Let δ>0 and α<8/15 — δ. Suppose AN are a sequence of cubes
N = 1 , 2, . . . such that N/volΛN = ρis fixed asN-^oo. Then there exist constants Cδ,
bδ and wave functions ψa^(xι, •••,;%) such that the following hold:

(a) ψ^N is supported in (ΛN)N and takes on the value zero on the boundary.
(b) ψχ>N satisfies the inequality

5-'Q1i3. (5.1)

To prove Theorem 5.1 we rigorise the heuristics discussed in Sect. 2. First we
need to construct the wave function ψ mentioned in Bogoliubov's principle which
minimizes J(ψ) at least cost of kinetic energy. In (2.20) we take λ] = N/n and ε = βn.
Thus we can construct a wave function ψ such that

2- 1-)?], (5.2)

and this |φ> is just the vacuum state for the Boson operators ηi9 ζi9 1 ̂ i rgw. We
wish to evaluate (\p\af α^ip), ^φ\bf bt |φ> and to express |φ> in terms of the vacuum
|0> for the ai? bi9 l^z^n.

In order to accomplish this we need to calculate the matrix M defined in (2.21).
Let us suppose in Eq. (2.34) that λf = λ2, i = 1, 2, . . ., n. Then (2.34) has n— 1 positive
zeros μ = ελ2 and an nth zero larger than sλ2. When μ = ελ2 the corresponding
solutions v, w of (2.30) have w = 0 and v = [1, 1, . . ., 1]. We may take the n — 1 vectors
[YJ,WJ], Irg ^n — 1, corresponding to the n—l fold zero μ = ελ2 as

w, = 0; v~U2+j)" 1/2[1, 1, ..., 1, -ΛO, ...,0] . (5.3)

The entries in the vector v,- are 1 in the first; positions, —j in the (/+ l)st position
and 0 otherwise. It is easy to see that the v7 1 ̂ j ^ n — 1 , form an orthonormal set of
vectors at right angles to [1, !,...,!].

Let μn be the nih positive solution of (2.34) with corresponding vectors vn, ww. It
is evident that vπ and wn must be parallel to the vector [1,1,...,!]. Hence we may
write

wΛ=-n-1 / 2sinhθ[l, !,...,!]; vw = n~1 / 2coshθ[l, 1,..., 1], (5.4)

where θ depends on ε = βn. Thus [vw, wj satisfy the normalization condition (2.29).
From (2.30) one can see that θ is given in terms of β by the equation

tanh2θ=l/(l+jB). (5.5)

Since we may now construct the matrix M we can see that

. (5.6)

Thus for fixed β the number of particles in the at and bt states is proportional to 1/n.
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Next we construct |
observe that the ηj9 ζp

in terms of the vacuum |0> for the ah

^n—\ are given by

Σ at-jaj
ί= 1

-1/2

^ To do this

(5.7)

Furthermore, if we define operators a and b by

ί = l
bi9

then one can see that α, b are related to ηn9 ζn by the equations

a — cosh θηn — sinh θζ * ,

b* - - sinh 0fyw + cosh θζ* ,

(5.8)

(5.9)

Equations (5.9) represent a one dimensional Bogoliubov transformation and it is
well known [10] that a vacuum state for ηn9 ζn is given by |φ> where

|φ> = exp[(α6-a*&*)0]|0>. (5.10)

Now one can easily see from (5.7), (5.8) that ηj9 ζj9 1 g j r g n — 1, commute with α, b,
a*, b*. Hence |φ> as defined in (5.10) is also a vacuum for ηj9 ζj9 1 rg jrgrc— 1. Thus
|φ> is the state we are looking for.

We wish to construct the wave functions for Theorem 5.1 out of the states |φ>
of (5.10). There are however two problems to be solved. The first is that if we take
the βί? bf to be operators ak9 α_ k with feeZ3 then |φ> in (5.10) satisfies periodic
boundary conditions on ΛN instead of Dirichlet. This problem may be rectified by
taking the ai9 bt to be annihilation operators corresponding to products of sine
functions. The second problem is that |φ> does not have a fixed particle number.
We solve this by employing a trick which goes back to [8].

We turn to the first problem. Let d be a Boson operator so [d, d*~] = 1 and
consider the quadratic expression

2(l+β)d*d-M2 + d*2. (5.11)

We can calculate the ground state energy of (5.11) by making a Bogoliubov
transformation

d = cosh θη- sinh θη* .

The expression (5.11) is given in terms of η by

(5.12)

(5.13)

If we take θ to be given by (5.5) then it is evident that the ground state of (5.11) is a
vacuum of η and the value of (5.11) on the ground state is (β2 + 2β)1/2 — l—β.
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We calculate the vacuum of η in terms of the vacuum |0> of d by following the
well known method. We write η in (5.12) as a function of 0, η = η(θ\ and look for a
unitary operator 17(0) such that

η(θ)=U(θ)dU(θ)*9 (5.14)

in which case it follows that the vacuum |φ> for η(θ) is given by

\ψy = u(θ)\oy. (5.15)
It is clear from (5.12) that the [7(0) form a group and hence

I7(θ) = exp[LΘ], (5.16)

for some anti-symmetric operator L. On differentiating (5.14) with respect to θ and
using (5.12), (5.16) we find that L and d are related by

d* = [L,d], (5.17)

and so we may take L=i[d2-d*2] . (5.18)

It follows then that
(5.19)

with θ given by (5.5).
For k = (kί,k29k3) in Z3 let ||fc|| and sgnk be defined by

llfcilKNJUiy); sgnfe= Πsgnfc;. (5.20)
1=1

We shall denote by fe > 0 if each k{ > 0, i = 1, 2, 3. If k e Z3 with fc> 0, let #k be the
annihilation operator corresponding to the wave function

(2/L)3/2 sin(2πfc1x1/L) sin(2π/c2x2/^) sin(2π/c3x3/L)

on the box ΛL with side of length L. We shall construct the wave function for
Theorem 5.1 out of the operators gk.

Let By be the set of k 6 Z3 with fc> 0 and |fc| ̂  γ . For γ ̂  j/3, J3y is nonempty with
say n(γ) elements. We define h0 by

Let ^y = [4γ] + 1, where [ ] denotes integer part, and Lγ be the lattice of vectors in
Z3 of the form ((2m! + l)<5y, (2w2 + l)δγ, (2m3 + l)δy), where the mi9 i- 1, 2, 3 are
integers. For k e Ly with k> 0 we define Λ fe to be

= Σ (sgnm)^m +Λ2|2n(y) 1 / 2, (5.22)
V

where Wy is the set of meZ 3 with ||m|| eBr

Let u = (h0h$)~i/2h0. It is evident that uu* = l but w * w = l only on wave
functions which have zero projection on the 0 eigenspace ofh$h0. For fc e Ly we put
ck = M*ftfc, and it is clear that the ck almost satisfy canonical commutation relations
when there are a large number of h0 particles.
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Let dk, k e Lr be a set of Boson operators satisfying canonical commutation
relations. For T^ δy let Ly τ be the set of k = (fe l 9 fc2, fe3) 6 Ly with fc> 0 and |fc;| ̂  T,
f = 1, 2, 3. If |0> is the vacuum of the dk, k e LΓ we write \ψy as

|ϊ"> = expΓ Σ M-d?2)0]|0>. (5.23)
[fcel^T J

Now (5.23) may be rewritten as

|f > = lim Pj(θ; 4*, k e Ly> τ) |0> , (5.24)
7-* oo

where the P7 is a polynomial of degree j in the d%, k e Ly Γ, corresponding to the
projection of Ψ onto the space

dk^j. (5.25)
/ceL V ) T

We can clearly write Ψ=Ψ1-\- Ψ2, where

(5.26)

and Ψ2 is orthogonal to Ψ ί t

We may now define the wave functions for Theorem 5.1. Let ψyίT,β be the
normalized state parallel to

//Λ*^|0>, (5.27)

where |0> is the vacuum of the operators gk, k e Z3, k> 0. Observe that (5.27) is an
JV particle state. The key fact which we shall use to estimate the kinetic and
potential energy of (5.27) is the following: let q(ck, c%; keLJtT) be a polynomial in
ck, cjf of degree less than 5. Then

Lemma 5.2. Let KN be given by (1.8). Suppose 0 < /? 5Π, y > j/3 and y, T, β, N satisfy
the inequality

T3<sy*βll2N, (5.29)

for sufficiently small universal constant ε>0. Then there is a universal constant C
such that

\~Ny2 T 1
(ψy,T,β\KN\Ψγ,T,βy = C\ —2 ' 3 2/91/2 ' (5.30)

Proof. First observe that

4τr2 4τι2

" " ' ~\k9m+k\Ψ> (5-31)

Since ψ = ψy,τ,β is an eigenfunction of the number operator

/M — h^h^ -4- ^y"1 h^h, (^ ^^^n — "OrίO ' Zj nk nk \J.J^)
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with eigenvalue N, it follows that

<vWolV>>^ΛΓ, (5.33)

from whence we have

, keβy. (5.34)

Thus the first sum on the right in (5.31) is bounded above by the first term on the
right in (5.30).

To estimate the second sum on the right in (5.31) we use (5.28). It is clear that
this sum is bounded above by

CT2

2 Σ (ψ\c*ck\ψy> (5.35)
L kf=LγjT

and we have from (5.28) the identity

It is a simple calculation to see that

AT3

(5.37)
/ceL V ) T y P

for some constant A, and hence by the Chebyshev inequality we conclude

(Ψ2\Ψ2y£AT3/y*βV2(N-5). (5.38)

This if ε in (5.29) is sufficiently small we have (Ψ^Ψ^y^ 1/2. Furthermore

Σ dfdk\Ψ,y (5.39)

is bounded above by the left side of (5.37). Hence, on using this inequality we have
that the second sum on the right in (5.31) is bounded above by the second sum in
(5.30) for suitable universal constant C.

Next we turn to estimating the potential energy.

Lemma 5.3. Let Sy be the set of k in Z3 such that there exists n$Z3 with n,
Suppose Ak is defined by (2.6) and ψ = ψy,τ,β' Then the expression (ψ\Ak\ψy is
nonzero in 3 cases: (a) // k e Sy; (b) Ifk = k1 + k2 with kί e Sy and k2 e Ly; (c) Ifk = kί

+ k2 with k^eSy and k2 + (δγ, δr δy)eLr

In (a) <φ|v4fe|φ> is given by

(5.40)

where the sum with respect to m is over all meZ 3 with m, m + fee Wr

In (b) (ιp\Ak\ψy is given by

<yl^ι|fc2 | i+Mp2 | | ly>

||fe2 | |], (5.41)
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where the sum with respect to m is over all weZ 3 with m, m + fex e Wτ

In (c) (\p\Ak\ψy is given by

py= Σ λw<φ|fc|w + f c 2 | |Λ | | w | | |φ>, (5.42)

where the λm are real numbers satisfying \λm\^ 1/8.

Proof. If <φ|α*+kαΛ |φ>φO, we need to have n-t e Wr n + k — t'e Wr where ί, ί'lie
in the union of 0 and Lr If t = tf we are in case (a). Otherwise t' = t + k2 with fc2 φ 0. If
either ί or ί' is zero then fc2 must be in Lr This is case (b). Finally, if both t, t' are in
Lγ then we must have k2 + (δy, δr (5y)eLr This is case (c).

To get the expressions (5.40), (5.41), (5.42) observe that if m e Wy then

αmlψ> = ̂ (sgnm) °1/2|y> (5.43)

If m is such that m G ί + Wr where ί e Ly, then

*JV>= 25/2 (sgnm) [sgn(||m|| - IIΦ]23/2^)1/2 |φ> - (5.44)

Now suppose k e Sγ and n = nj9j=l9...9p, are the elements n with n,
Then if <ι/;|α*+feαM|ιp> φO, n is of the form n = nj

jrm with m e Lr In view of the fact
that for m 6 Lr

sgn[||nJ + m||-| |m||]sgn[| |n JH-fc + m||-||m||] = (sgnn7)(sgnn;^ (5.45)

we have

<vMfclV> = ̂ ryτ<Vl Σ Λ J Λ m l φ ) - Σ (sgn^)(sgn^ + fc), (5.46)
2 n(y) me{0}uLy,τ 7=1

which gives (5.40).
Next we take case (b). Let n = nj9 j — 1 , . . . , p be the set of elements n such that n,

n + k1e Wr Then <φ| α*+feαn|ιp> φ 0 only if n = n^ or n + fe = - «_,-. Summing up these
terms yields (5.41).

For the final case (c) let n = nj9 j = 1 , . . . , p, be again the set of elements n with n,
n + k1 e Wr Then for <ψ| a*+kan |ψ> φ 0 we need n = Hj + m with m e Ly. The result
(5.42) follows from (5.43), (5.44) and the fact that p^8n(y). Q.E.D.

Lemma 5.4. Let Jk(ψ) be defined by (2.10) . Then for ψ = ψy> Tίβ we have in case (a)

Λ(^) + K^IΛIψ>l2-(^2-^)[^Σ(sgnm)sgn(m + k)J. (5.47)

In case (b) there is

(5.48)
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In case (c) we have

Q>m |φ>, (5.49)
meL

where
Bk= Σ Λ » Λ J U + * 2 l l f t l l m | | > (5.50)

| | m | | , | | m + k 2 | | eL v ,τ

Σ V * i | n + k 2 | l > m e L y > τ . (5.51)

Proo/. Similar to Lemma 5.3.

Lemma 5.5. Suppose y, T, β, N satisfy the conditions of Lemma 5.2. Then for

(5.52)

for sufficiently large N, and for sufficiently large N depending only on β there is a
universal constant C such that

(5.53)

for keLytT.

Proof. The proof of (5.52) follows by an argument similar to that given in Lemma
5.2. We have

<vWolv>=tf-<vl Σ h*hk\Ψy=N-(ψ1\ Σ didjv^Kw^y.Q.s*)
keL y ,τ keLVjτ

If we choose ε in (5.29) sufficiently small, then (5.52) follows from (5.37).
We turn to the proof of (5.53). It is easy to see that

, (5.55)

and hence

<^J(4 + 4*)2|^i> + 2Re<^1|(4 + 4*)2|^2>^JS
1/2. (5.56)

It is clear that

<f1l(4 + d*)2|'P2> = <'P1|4
2 + 4*2lf2> = 2Re<Ψ 1 ldf |f 2>. (5.57)

Now we have

(5.58)

where C is a universal constant. Hence if we choose ε in (5.29) to be a small constant
times β2 then we may conclude that

, (5.59)

and hence from (5.28) that

(5.60)
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It follows therefore that

(ψ\κ(ck + cϊ)2\ιpy^4Nβ112, (5.61)

and hence that

<φ| (ΛJ fto + W (c* + tf )2 |Ψ> ̂  4NJ8
1/2 . (5.62)

We wish to compare the expression on the left in (5.62) with the expression on
the left in (5.53). First observe that the left of (5.62) may be written as

(5-63)

We estimate the difference between the last term in (5.63) and
. Suppose we have

hϊ\Ψ>=Σ*j\N-jy, (5.64)
j = o

where \N-jy denotes a normalized eigenvector of hξh0 with eigenvalue iV— j.
Thus

V«j2 = < V | f e f 2 Λ 2 l V > = ̂ ^^^ (5.65)
j = o

for some universal constant C. It is easy to see that

N~5

= .Σ « 7 1 - /i ^o*2l^-;> (5.66)

Hence we have

211/2

from(5.65). (5.67)

The inequality (5.53) follows from (5.62), (5.63), and (5.67) Q.E.D.

Lemma 5.6. For k in case (c) let Bk be defined by (5.50). Suppose T=Nl/5γ. Then
there is a universal constant C such that

. (5.68)

Proof. It is clear that (ψ\B%Bk\ψy is a sum of terms of the form

<ιp|c*cπc*C(!|φ> (5.69)

with m, n, p, q e Ly< τ, which is the same as

<ψ1\d^ί^pd9\ψ1yκψ1\ψ1y. (5.70)
Now suppose that all the m, n, p, q are different. Then one can see that

(Ψ\d*dnd*pdq\ψy = 0, (5.71)
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from which it follows that

Hence we have

Σ
m, n

Σ d*dn]
3

neLγtτ J

\Ψ)/(N-5), (5.73)

where the sum with respect to m, n is over m, n with || w + k2 1| , || w || , || m + fc2 1| , || w H a"
distinct. The last expression in (5.73) is bounded by a constant times
(T3/y3/?1/2)3/iV, which in turn is bounded by the right side of (5.68).

The terms in B%Bk, where ||n + k2||, ||n||, ||w + k2||, ||m|| are not all distinct are
still bounded by the last expression in (5.73), and hence we are finished. Q.E.D.

Next we obtain a Fourier representation for \x — y\~l as x, y vary in ΛL.

Lemma 5.7. For x, yεΛL, |x — y\~l has the representation

\x-y\-ί= Σ v(k)e2πίk'(x~y)/L, (5.74)
4k e Z3

and v(k) is given by the formula

Proof. The maximum value of |x — y\ as x, y vary in ΛL is |/3L. Now let /(x) be the
cut off Coulomb potential

/(x) = M" 1, |x|<2L, /(x) = 0, |x|>2L. (5.76)

The function /(x) can be represented in a cube with side of length 4L by a Fourier
series

/(*)= Σ v(fc)έ?2π* */L, (5.77)
4feeZ3

where v(k) is given by

(4L)3v(k) - J |x|~1 e2πίk'x/Ldx. (5.78)
|x |<2L

If we evaluate the integral in (5.78), we obtain (5.75) and so (5.74) Q.E.D.

Let Jk(ψ) be the potential energy of ψ = ψy,τ,β corresponding to exp[2τπ'k
• (x —y)/L]. If k is in Z3, then Jk(ψ) is defined just as in (2.10). We shall show that.

Lemma 5.8. Suppose k = (k 1 ?fc 2 5k 3) is such that ktφZ, i= 1,2,3, but 4/ceZ3. Let
Ψ = lPy,τ,β with T=N1/5y. The β can be chosen sufficiently small independent of k
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and N sufficiently large depending only on β such that Jk(ψ) < — CkN for some
ct>o.
Proof. Jk(ψ) can be written in the form

-Σβn Σ <ψ|C* C.M |v>>, (5.79)

where

n, (5-80)

and Bnί CM>m are defined as in (5.50), (5.51). This follows by expanding exp[2τπfc
• x/L] as a Fourier series in exp[2τπm x/L] with m e Z3. If we let £ = A — an, it is
clear that

n e Ly t T

The result follows from the previous lemmas by observing that the απ are about the
same size as the βn. Q.E.D.

The potential energy of ψ = ψy ίT >β is given by

Σ v(k)Jk(ψ). (5.82)
4/ceZ3

It is easy to see from the previous lemmas that by choosing T=N1/5/y and β
sufficiently small we have

— CT
Σ v(k)Jk(ψ)^~~-N, (5.83)

4fceZ3 L

for some constant C > 0. Theorem 5.1 now follows by using (5.83), Lemma 5.2, and
arguing as at the end of Sect. 2.
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