
Communications in
Commun. Math. Phys. 100, 57-81 (1985) Mathematical

Physics
© Springer-Verlag 1985

The Double-Wedge Algebra for Quantum Fields
on Schwarzschild and Minkowski Spacetimes*

Bernard S. Kay

Institut fur Theoretische Physik, Universitat Zurich, Schόnberggasse 9, CH-8001 Zurich,
Switzerland

Abstract. We consider the Klein-Gordon equation (m^O) on the double
Schwarzschild wedge of the Kruskal spacetime, and construct the Hartle-
Hawking state ωH as a thermal state relative to the Boulware quantization. We
prove that, on the double wedge, ωH is a pure state, and in the corresponding
representation, the left- and right-wedge C* algebras each have the Reeh-
Schlieder property, while the corresponding von-Neumann algebras are type
Πlγ factors which are dual to (i.e. commutants of) each other. We discuss the
extent to which these properties may generalize to non-quasi-free field theories.

Pursuing the Rindler-Fulling-Unruh analogy with the Klein-Gordon
equation (m>0) in (d-dimensional) flat spacetime, we establish an explicit
formula for the Minkowski vacuum on a spacelike double wedge as a thermal
state relative to the Fulling quantization. We also treat the case d = 2, m = 0 of
this formula since this is essential input for a paper with Dimock on scattering
theory for the quantum Klein-Gordon equation on the Schwarzschild metric.
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0. Introduction

After Hawking's prediction of black hole evaporation in 1974 [1], a big effort was
devoted to further clarifying the nature of the effect through a systematic study of
quantum field theory on background black hole metrics. A picture was built up of
the various natural quantum states admitted by ideal black hole metrics and of the
relationships between them, and an important analogy emerged (thanks to the
work of Fulling [2, 3], Davies [4], Hartle and Hawking [5], Hawking [6], Unruh
[7], Israel [8], and others) between quantum field theory on (say) the Schwarz-
schild metric and quantum field theory in flat spacetime according to the now
familiar schema:

Kruskal spacetime <-> Minkowski space

exterior Schwarzschild spacetime <-• Rindler wedge
(*)

Hartle-Hawking state <-> Minkowski vacuum

Boulware state <-• Fulling vacuum.

We recall the basic facts about this schema:
(1) The Boulware state [9] is a ground state for the Schwarzschild time

evolution on the exterior Schwarzschild spacetime and is analogous to the Fulling
state which is a ground state for wedge-preserving Lorentz boosts on the Rindler
wedge of Minkowski space. It is not thought to be a physically realizable state.

(2) The Hartle-Hawking state (which is believed to be the fundamental
equilibrium state on the Kruskal spacetime) appears - on the exterior Schwarz-
schild spacetime of mass1 M and relative to the Schwarzschild time evolution - to
be a state of thermal equilibrium at the Hawking temperature 7]ϊ = (8πM)~1.
Correspondingly, the usual Minkowski vacuum on flat spacetime adopts - when
restricted to the Rindler wedge, and relative to wedge-preserving Lorentz boosts -
the mathematical form of a thermal equilibrium state [with "temperature"
Γ=(2πΓ 1 ] .

Derivations of these properties - for linear fields, and at a heuristic level - may
be found in the above quoted literature. (See especially [7]. A comprehensive list of
references may be found in the recent monograph [10].) More recently, Sewell [11]
has pointed out that the thermal property of the Minkowski vacuum is an
immediate consequence of the Bisognano-Wichmann theorem [12]. Sewell went
on to exploit the analogy (*) in motivating a set of axioms which are claimed to
characterize the Hartle-Hawking state for a general quantum field theory.

The main purpose of the present paper is to explicitly construct the Hartle-
Hawking state in the case of a model linear field theory (the covariant Klein-
Gordon equation) and to establish some of its properties.

We begin at the other side of the analogy (*) by constructing, in Sect. 2, the
Fulling quantization on the C* algebra of the free Klein-Gordon field (m>0) on a
spacelike double wedge of Minkowski space. Assuming the existence of a "Fulling
regular ground one-particle structure" to be established in Sect. 4 we construct
both a ground state ωF and a related one-parameter family of states ώβ

F which are
KMS (for inverse temperature β) with respect to the one-parameter family of

1 We use units with # = c = G = fc=l
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wedge-preserving Lorentz boosts. (One may regard ώF as "heated up" Fulling
states.) Our main result here is to strengthen the Bisognano-Wichmann-Sewell
result in the case of our quasi-free system by showing (with the help of the "pre-
Reeh-Schlieder" and "pre-Bisognano-Wichmann" theorems of Sect. Al) that the
usual Minkowski vacuum ω0, when restricted to the double-wedge algebra,
coincides with ώF

π. [In Sect. A2, we point out that this theorem extends for m > 0 to
d-dimensional Minkowski space (d^.2) and also establish a modified version of
the theorem for the case m = 0, d = 2.~]

We then turn back, in Sect. 3, to the Kruskal spacetime. Following by now well-
known methods [13-15] we construct a C* algebra for the covariant Klein-
Gordon equation on this spacetime. Then, in exact analogy to the construction of
ωF and ώβ

F on a double wedge in Minkowski space, and again relying on Sect. 4 for
the existence of a "Boulware regular ground one-particle structure", we construct
the Boulware state ωβ, and a family ώβ

B of heated up Boulware states on the algebra
of the double (exterior-Schwarzschild) wedge of Kruskal. Still following the
schema (*), we then define the Hartle-Hawking state ωH on this region to be ώ| π M .
With this definition, we are able to show that ωH shares several mathematical
properties with the Minkowski vacuum ω0 on the flat double wedge. Thus we
show that, on the full double wedge, ωH is a pure state, and in the corresponding
(GNS) representation, the left- and right-wedge C* algebras each have the Reeh-
Schlieder property while the corresponding von Neumann algebras are type ΠIγ

factors which are dual to (i.e. commutants of) each other. (For the type ΠIX

property, we use in Sect. A3 a result from the classical scattering theory developed
for the co variant Klein-Gordon equation on the Schwarzschild metric by Dimock
and the author [16].)

The proof of our results, which is completed in Sects. 4 and A4, draws heavily
on two preparatory papers - one on quasi-free KMS states [17], the other on the
purification of (general) KMS states [18] - which will be published simultaneously
with this paper. We review the essential results from these papers in Parts 1.1-1.4 of
the preliminary Sect. 1.

The present paper is also closely interrelated with the scattering-theory work
by Dimock and the author already mentioned. Our result (in the case d = 2,m = 0
treated in Sect. A2), that ωo = ώjn will be essential input for [16], while [16]
contains in turn results on the behaviour of ωH on the horizon and at infinity as
well as a discussion of the Unruh state.

Further discussion of the significance of our results and the relation with other
work will be given in Sect. 5.

1. Preliminaries

In Sects. 1.1-1.4, we briefly review the essential results that we require concerning
quasi-free Bose systems and what we call double KMS states (quasi-free and
otherwise). Not all of these results may be found in the existing literature (even
allowing for changes in terminology etc.) and we refer to two companion papers
[17,18] for further details, references, and proofs. We shall refer here to [17] as I
and to [18] as II.
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1.1.

We say that a quantum dynamical system (9I,α(ί)) [91 a C* algebra, α(ί) an
automorphism group] is (Bose) quasi-free if 91 is generated by objects W(Φ), Φ
belonging to some symplectic space (D, σ), satisfying

W(Φί)W(Φ2) = exp( - wK*!, Φ2)β)W(Φί + Φ2),

(more precisely, 91 is the Weyl algebra over (D, σ) say in the sense of [19]) while α(ί)
arises from the action α(ί) W(Φ) = W(^(t)Φ), where ^(£) is a symplectic group on
(D,σ). In the case where (D,σ) takes the form (>f,2Im< | •» for some complex
Hubert space A and ^"(t) is a strongly continuous unitary group e~ίht on ^ with
strictly positive2 energy ft, then one may obtain a ground state ω0 on 91 by taking
the usual Fock representation Q^(W(χ)) = W*(χ) of 91 on Fock space 3F(β) over /I
and defining

where Ω^ is the usual Fock vacuum vector in £?(£). In this representation of 91, α(ί)
is implemented by T{e~iht\ where Γ is the second quantization map which for any
unitary (antiunitary) U on A yields a unitary (antiunitary) Γ(l/) on 3F{£) satisfying
Γ(l/)Ω^ = ί2^ and W(ϋχ) = Γ(l/)Wr(χ)Γ(ϋ)"1. To extend this construction for a
ground state coo to more general such quasi-free systems (91, α(ί)) one first seeks a
ground one-particle structure over the classical linear dynamical system (D, σ, ^{i)).

Definition. This consists of a complex Hubert space A\ a real-linear map K from D
to if with dense range satisfying (symplecticness) σ(ΦuΦ2) = 2lm{KΦί\KΦ2}
VΦi' Φ2eD; and a strongly continuous unitary group e~ίht on A with strictly
positive energy h such that K^{i) = e~ihtK. One then defines ω 0 by

i2

Theorem 1.1. For a given (D,σ,^(t)), (K,A9e~ίht) is determined uniquely up to
equivalence in the sense that any other candidate (K\A\e~iht) necessarily has
K'=UK, e~iWtV = Ue~iht for some unitary (i.e. isomorphism) U: A-*A' f[20], see
also I).

In Sect. A3, we shall use this theorem in conjunction with the following (related)
result (Theorem 1.2 of [21]):

Theorem 1.2. Let A be a real linear operator on a complex Hilbert space Jf, and
suppose [A, e~ιBr\ = 0 Vί e R for some strictly positive complex linear operator B.
Then A is also complex linear.

Finally, we shall call a ground one-particle structure (as above) regular if it
satisfies the condition KDc^(h~1/2). The significance of this condition will be
explained in Sect. 1.4.

1.2.

In addition to ground states on quantum dynamical systems (91, α(ί)), we shall be
particularly interested in double KMS states ώβ on double quantum dynamical
systems (9Ϊ, α(ί), 0

2 I.e. h is a positive self-adjoint operator with no zero eigenvalues
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Definition. A double quantum dynamical system (S, d(t), i) consists of a C*
algebra (with identity i ) 21 which in turn consists of the tensor product 2IL® 9lR of
two preferred commuting subalgebras; an automorphism group α(ί) of 91 such
that α(ί): 2tL-»2IL, 3l*->9l*; and an involutary3 antiautomorphism4 i of 91 which
commutes with α(ί) and which maps 2IL->21*, 9IR->2IL.

Definition. A double KMS state ώβ(0<β<oo) over a double quantum dynamical
system (21, d(i), i) is an α(ί)- and z-invariant state whose GNS triple (ρ, 3t, Ω) (has
Jf separable and) satisfies

(i) Ω is cyclic for ρ(SΆR) alone, and
(ii) the unique unitary implementor of α(ί) which preserves Ω is strongly

continuous and - writing it as e~i&t - satisfies ρ(SΆR)c2{e~β&12) with e~β&/2ρ(A)Ω
βR

(
Note that the restriction of such an ώβ to (9lκ, α(ί)) [we adopt the convention

α(ί) = α(ί) I^R] is a KMS state in the usual sense. Moreover, (as explained in II) any
dynamical system (SI, α(ί)) may be viewed as the (2tκ, α(ί)) of some (®, α(ί), ι) and
when so viewed, any KMS state on (9Ϊ, α(ί)) arises as the restriction to (9ί, α(ί)) of a
double KMS state on (§1, α(ί), ι) The associated modular group J f t is then β~ifi^,
and the modular involution arises as the unique complex conjugation J satisfying

= ρ(ιΛ),JΩ = Ω.

Theorem 1.3. For any double KMS state ώβ over a double dynamical system
(%6ί(t), i) (with GNS triple (ρ, Jf, Ω) and H as in the above definition),

(i)

If, in addition, the condition

(a) Vφe^(H), Hψ = 0 => ψ = λΩ

holds, then also

(ii) ρOtt^'nρOK*)'' = {λt} (and similarly for R->L) .

(iii) ρ(2t) is irreducible, i.e. ώβ is pure.

1.3.

We say a double quantum dynamical system is (Bose) quasi-free if it arises [with $
the Weyl algebra over (D,σ), a(t)W(Φ) = W(^(t)Φ), ι(W(Φ))=W(JΦ)l from a
double classical linear dynamical system (D, σ, ̂ {t), J).

Definition. This consists of a symplectic space (D, σ), a one-parameter symplectic
group #(ί) and an antisymplectic [i.e. σ(JΦ1,J>Φ2)= —σ(Φ1, Φ2)] involution «/
on (J5, σ) such that

(a) [f(0,^] = 0,
(b) D consists of the sum DL + DR of two preferred independent subspaces such

that
(i) σ(ΦL,ΦR) = 0 \IΦLeDL, ΦReDR,

(ii) r(t):DL-+DL, DR-+DR,

(iii) JDL = DR (and

3 Le./2 = id
4 Le. Ϊ(Λ ) = ( I ( A ) ) * , ι(AB) = ι(A)ι(B),
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One may obtain a double KMS state ώβ over such an (S, α(ί)? ι) by defining
ώβ(W(Φ))=exp(—Jj|JS?Φ||3), where (£ ' , J) belong to a double KMS one-particle
structure (Kβ,A,e~ihtJ) over (D, σ, # ( 0 , </)•

Definition. This consists of a complex Hubert space A\ a real-linear map Kβ: Z)->>l
satisfying 21m(KβΦ1\KβΦ2} = σ(ΦuΦ2) such that KβDR + iKβDR is dense in £
(and similarly for JR->L); a, strongly continuous one-parameter group e~ih on A
such that /Γhas no zero eigenvalues and Kβ^{t) = e~ιίίtKβ, and a complex conjuga-
tion j on I such that KβDR + iKβDRC@(e-βΐι12) and e~βiί/2x=-jx \lxeKβDR

(and similarly with R-»L and K-+ — K).

Note. By Theorem 2 in II, it is a consequence of this definition that ran Kβ is dense
in A. Finally, corresponding to Theorem 1.1, we have:

Theorem 1.4. Given α double linear dynamical system (Z), σ, ̂ (t), J) for which are
given two double KMS one-particle structures (Kf,Ai9Qxp( — ift^Ji), i=l ,2 , for
some given 0</?<oo, then there exists a unique unitary U:%1->A2 such that

(a) υK{=Kβ

2on6,
(b) U exp ( - ifίί t) = exp ( - iK2i) U on Au

(c) Ujί=j2U on Av

1.4.

Let (D, σ, ̂ (ί),«/) be a double classical linear dynamical system. Suppose
(DR,σ9^(t)) [where5 σ = σ \DR, 2Γ(ί) = ZΓ{t) \DR] admits a ground one particle
structure (K,A,e~ίftt) (see Sect. 1.1) which satisfies the regularity condition KDR

C@(h~1/2). Then, if C is any complex conjugation on A such that [C, K] =0, the
following construction gives a double KMS one-particle structure (Kβ,A,e~ι^\j)
(unique up to equivalence by Theorem 1.4) over (D, σ, 2Γ(f), J) (cf. especially
footnote 12 in II).

(1) Set>l = ;
(2) VΦeD, let Φ = ΦL + ΦR;ΦLeD\ ΦReDR, and set

~ _ ( coshZ^ sinhZ^Cλ / - CKJΦL\

VihZ^C hZ^ / \ KΦR ) '

where Zβ is defined implicitly by

[It is not difficult to see that the regularity condition KDRC@(h 1/2) suffices for
Z S^coshZ"), KDRC@(siΏhZβ) here. The details are given in Sect. A2 of I.]

(3) Set

exp(—iftt) =
,0 e

(4) Set

0 - C
J=\-C

5 In the sequel, we shall not always make such redefinitions explicit
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Note that the resulting double KMS state

on the quasi-free quantum dynamical system (91, α(ί), i) arising (see Sect. 1.3) from
(D, σ, ̂ (t), J) is given explicitly by the formula - splitting Φ as ΦL + ΦR; ΦL e DL,
ΦReDR-

ώβ(W(Φ)) = exp {-±(KJ?ΦL\coth(βh/2)KJΦL}

-%(KΦR\coth(βh/2)KΦR) + Re <KJΦL\cosech{βh/2)KΦR}}.

The expressions in the exponent here are to be interpreted in the sense of quadratic
forms, the condition KDR C 2{h~1/2) again sufficing for KDR C Q(coth(βh/2)\ KDR

Cβ(cosech(j8/ι/2)).
Note that in the corresponding (GNS) representation, W(Φ) ι-> W^(KβΦ) on

#\i)®$*{$), the modular automorphism group is given by

and the modular involution by

1.5.

Finally, we state a simple criterion for a von-Neumann algebra which is a factor to
be of type HI^ in the sense of Connes [22]. It constitutes a very special case of the
conditions stated in [22] but is adequate for our purpose.

Theorem 1.5. Let 21 (acting on a Hubert space ffl) be a factor. Let Ωbea cyclic and
separating vector for 91 and Διt the corresponding modular group. If

(i) Vtpe^f, Δitψ = ψ => ψ = λΩand
(ii) the spectrum sp(Zl) = [0, oo), then 91 is of type IIIV

2. The Minkowski Vacuum

We begin by constructing the algebra for the free Klein-Gordon equation in flat
spacetime (Jί^ΊR4^) (τ/ = diag(l, — 1, — 1, — 1))

(Π+m2)φ=0 (m>0) (2.1)

in a suitable notation. We shall use coordinates (T,X, ξ\ where ξ stands for
(Y,Z)eR2. [In Sect. A2 we shall consider generalizations without ξ {JίπiR}) or
with ξ standing for the last d—2 coordinates of an Jί & Rd or for an element of S 2

in the case JP&WL2 xS 2.]
Given a solution φ of (2.1) which is C00 and has compact support on Cauchy

surfaces, we define time-zero Cauchy data f — φ ϊr=o> P = Φ Γr=o We use the
abbreviation D for the space C%{<$) x C$($) of such data where by ^ (^R 3 ) we
denote the initial T=0 manifold. Denoting the right (X > 0) and left (X < 0) parts
of ^ by ^ Λ , ^ L , we also assign the symbols DR,DL to the subspaces C^(^R)
x C^R) and C^L) x C£(^L) of D and finally denote by D ( = DL®DR) the



64 B. S. Kay

subspace C g ^ u * * ) x C g ^ u * * ) of D. We shall often denote an element (/, p)
of one of these spaces by the single symbol Φ. Defining the symplectic form σ over
Dby

σ(Φu Φ2) = J (flP2-PlfJdXd2ζ (2.2)

(d2ξ: usual volume element on R2), we construct the Weyl algebra 91 generated
by elements W(Φ), ΦeD satisfying

W(Φί)W(Φ2) = exp ( - l-σ(Φu Φ2)J W{Φ, + Φ2). (2.3)

We may regard 91 as the C* algebra for a quantum solution φ of (2.1) by defining
exp fi J φFdTdXd2ξ\, F e Cξ{M) to be W(Φ% where Φ are the time-zero Cauchy

\ -* )
data of the solution A * F, where Δ is the usual (advanced minus retarded)
fundamental (distributional) solution of (2.1). By the causal support properties of
Δ, Φ will belong to DR whenever F is supported in the right wedge
M « {(Γ, I , ί ) e R 4 : I > | Γ|} of Minkowski space, and we therefore define the right
wedge subalgebra 21* of 91 to be that generated by {W(Φ)\ ΦeDR). Similarly, we
define the left wedge (if « {(Γ, Z, ξ) e R 4 : X < \T\}) subalgebra 9ΪL C 91 generated
by {W(Φ): ΦeDL} and the double-wedge (&v0t) subalgebra 9ΪC9Ϊ generated by
{W{Φ)\ ΦeD}.

Next, we define some symplectic (antisymplectic) operators on D. First, we
define the one-parameter symplectic group 3Γ(T') on D to be the maps on time-
zero Cauchy data which correspond to the time-translations φ i—• φτ, φτ>(T9 X, ξ)
= φ(T+T',X9ξ) on classical solutions. (D,σ,^"(T)) is then a classical linear
dynamical system in the sense of Sect. 1.1.

Similarly, we define the one-parameter (symplectic) group τΓ(ί) on D
corresponding to the Lorentz boosts:

where (2.4)

/coshί sinhΛ/TΛ

{ cosht){x)'

Using the notation f(X9ξ)=f(—X,ξ) etc. we also define the antisymplectic
involution «/(/,?) = (/, —p) corresponding to the wedge-reflection map φ^>φr,
ΦXT9 X, ξ) = φ{ - T, - X, ί). Note that r{i): D->D with DR->DR, DL-»DL, while ^
commutes with i^{t) and maps DR-*DL, DL-*DR. Thus (A σ, iΓ(ί), J) is a double
linear classical system in the sense of Sect. 1.3.

Turning to the quantum theory, we define the dynamical β(T) on 91 by
automorphisms

(2.5)

so that (91, β(T)) is the usual quantum dynamical system (see Sect. 1.1) representing
ordinary time evolution.
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We also define automorphisms α(ί) by

a(t)W(Φ) = W{r{t)Φ), (2.6)

and the involutary antiautomorphism i by

ι(W(Φ)) = W(JΦ). (2.7)

Clearly, α(ί) inherits the properties α(ί): ®-»®, with 51*->5ί*, 9IL->2IL, while i
commutes with ά(ί) and maps $~>$ with 5t*->2IL, 2lL->2l*, so that (®, α(t), 0 is a
double quantum dynamical system in the sense of Sect. 1.2.

We may now begin to discuss the relation between the usual ("Minkowski")
quantization and the Fulling quantization. The usual Minkowski vacuum state ω 0

may be specified by the generating functional

ω o (W(Φ))=exp(-4p o Φ||i 0 ), (2.8)

where we take as one-particle Hubert space /IO = L^(R3), and
ά0Φ = 2-ί/2{μί/2f + iμ-i/2p) with μ = (m2-V2)112. ω0 is designed to be a ground
state for (9l,/J(T)). From the point of view of Sect. 1, this follows because
(/0,*f0,exp( — ih0T)) (ho = μ) is a ground one-particle structure for the linear
dynamical system (D, σ, 3~(T)). In fact, in the corresponding (GNS) represent-
ation, ρo(W(Φ)) = W^(/(oΦ) on #"(4) and β{T) is implemented by the positive
energy unitary group Γ(exp(—ih0T)). More importantly for us here, α(ί) is
implemented in the representation ρ0 by the unitary group Γ(exp( — iκoή), where
exρ(—iκot) is the usual one-particle implementor of Lorentz boosts (given
explicitly in Sect. Al) characterized by exp(—iκot)do = £oi

r(i). Finally, i is
implemented by the antiunitary Γ(j0), where joχ — Coχ, and where Co (which
represents ordinary one-particle time-reversal) is the natural complex conjugation
on our LlQR3) realization of Λo and χ(X, ζ) = χ(-X, ξ).

We now consider the restriction of ω 0 to the double-wedge subalgebra 9t of 91.
By an argument which is also valid for non-linear field theories, it follows from the
Reeh-Schlieder theorem [specifically, from the fact that the Fock vacuum Ω^ is
cyclic for ρo(^ίR) - see Sect. Al] and the Bisognano-Wichmann theorem
[specifically ρo(9I*)ί2c^(exp(-πdΓ(/co))) and

*exp ( - πdΓ(κo))ρo(Λ)Ω = Γ(jo)ρo(A*)Ω

- see Sect. Al] that ω0 on (say) 91* is a KMS state for β = 2π with respect to the
evolution α(ί) [In fact, it follows immediately from the above parenthetical
remarks that, in the language of Sect. 1.2, ω 0 is a double KMS state for β = 2π on
the double quantum dynamical system (9Ϊ, α(ί), i).]

Our goal now is to give an alternative construction for ω 0 on 2Ϊ in terms of
objects which are intrinsic to the double wedge. For this purpose, we turn to the
Fulling quantization. In Sect. 4, we shall construct a regular ground one-particle
structure (/F,;fF,exp( — ihFt)) for the linear dynamical system (DR,σ,ir(t)) (cf.
Sects. 1.1, 1.4). Given this structure, we may construct for any β>0 the double
KMS state ώβ

F over (S,α(ί), ή by setting (cf. Sect. 1.4)

(2.9)
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where, writing Φ e D as ΦL + ΦR; ΦL e DL, ΦR e DR,

coshZ' sinhZ'CΛ / -

JF(fR,pR))

where

(2.11)

~ / coshZ' sinhZ'CΛ / - / F ( / L , ^ ) \

* ' UnhZ'C coshZ'Λ J(fRpR))' ( '

and for the complex conjugation CF we take (say) one-particle time reversal (i.e. the
natural complex conjugation on the L2 version of A given in Sect. 4) which satisfies

R R * , -PR) Explicitly,

P F \ ί> / sR ~R\\ \ /2 1 9)

(with expressions in the exponent interpreted in the sense of quadratic forms - cf.
Sect. 1.4).

Note that it is permissible to set /?=oo in (2.12) (corresponding to zero
temperature) and if one does so, one obtains a product state on 9IL®9IJ* whose
restriction to 9tΛ, say, is the Fulling vacuum state [2]

ωF{W{Φ)) = exp( - i \\iFΦ\\lF), (2.13)

which is a ground state for (9IΛ, α(ί))
Since, for linear systems, one does not expect phase transitions (apart from

"Bose condensation" which is clearly absent for the states considered here6) one
expects that (restricted to 9lΛ) ώF

π must equal ω 0 since both are KMS states over
(9ϊ*,α(ί)). [In fact, both are double KMS states over (%d(t), i) - see Sect. 1.2 -
for the same /?.] That this is indeed the case (and extends to 9Ϊ) is the
content of the following theorem.

Theorem 2.1. On % ωo = ώ|π.

Proof. Defining %F = dFφdF, KF = hF® -hF and jF(Xi®li) = - CFχ2® - CFχu

observe that (/0,yf0,exp(—iκot)Jo) and (Ijπ,4F,Qxp(—ifϊFt)JF) are each double
KMS one-particle structures (Sect. 1.3) over (D, σ, f ( ί ) , J) for β = 2π. For the case
of (IF

π, AF, exp( — ίκFt)JF) this is a special case of the construction given in Sect. 1.4.
For the case of (/0, >fo,exp( — iκQή,j0), this is the content of the pre-Reeh-

6 We refer to the possibility that two KMS states (at the same β)ωί,ω2 could be related by
ω2(W(Φ)) = ωt( W{Φ))eiχ(φ) for some non-zero ̂ (ί)-invariant linear functional χ on the Φ's. This is
irrelevant for the states considered here because the exponents in (2.8) and (2.13) are each purely
quadratic with no linear term in Φ
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Schlieder and pre-Bisognano-Wichmann theorems which are proved in Sect. A l -
together with the elementary fact that κ0 has no zero eigenvalues. The equality of
ω 0 and ώ | π on 91 then follows by Theorem 1.4. D

3. The Hartle-Hawking State

We now turn to the covariant Klein-Gordon equation

φ = 0 (3.1)

(now for any mass m ̂  0) on the Kruskal spacetime7 (M « R 2 x S2, g) (see Fig. 1) of
mass M with metric [23]

= 32M3r~1e-rl2M(dT2-dX2)-r2dΩ2

ξ, (3.2)

where the coordinates (T9X9ξ) (ξeS2) range over the region T2 — X2<\ of
R 2 x S2, dΩξ is the usual metric on S 2, and the Schwarzschild r is defined implicitly
in terms of T and X by

T2 _ χ 2 _ ^ _ rj2M)erl2M. (3.3)

We shall be particularly interested in the exterior Schwarzschild (r>2M) right
and left wedge regions M (X>\T\) and $£ (X<|Γ|) and in the double wedge

As in Sect. 2, we shall work with the T=0 Cauchy surface # (&TR2 x S2) and
the X > 0 and X<0 parts %R ( ^ R + xS 2 ) and ^ L ( « R " xS 2 ) of « which are
Cauchy surfaces, respectively for 3t and if. Defining the corresponding space of
Cauchy data D = Q?(^)x CQ{^) [and denoting, by DR and DL, the subspaces
Oft**) x C£C«ί*) and C?(^L) x C ^ L ) , and, by A DL + DR] we state the

7 We shall sometimes use the same symbol in Sects. 2 and 3, for quantities which are analogous

t=constant

r=constαnt

Fig. 1. The Kruskal extension of Schwarzschild spacetime
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Proposition 3.1 (Well-posedness of the Cauchy problem for (3.1),). Given Cauchy
data Φ = (/,p)eD there is a unique solution φeC°°(JΓ) of (3.1) such that8

rΦ I V = / J
 r~^p \v—P- Moreover, the support of φ is in the domain of dependence

[23] of the support of Φ.
One may prove this by standard energy-estimate methods using the fact that

Jί may be written (in the C00 sense) as a product manifold « R x ^ with each
{τ} x ^ Cauchy. Alternatively, note that this latter property implies [24] that Jί is
globally hyperbolic and thus the result follows by the general Leray theory [25,
26]. See [14] for further discussion.

We introduce a symplectic form σ on D by integrating the conserved current
= 0) for a pair of solutions φί7φ2

ΠΦu Φi) = (-det^)1'VV(<MA -Φx^Φx)

over <£ to obtain

σ(Φu Φ2) = J (flP2 -pJ2)dXd2ξ (3.4)

(here d2ξ denotes the volume element on S2).
We then construct the Weyl algebra 91 over (D, σ) as before [cf. (2.3)]. 31 may be

regarded as the C* algebra for a quantum solution φ of (3.1) by defining
i J $F(-άetg)ll2dTdXd2ξ\ FeC$(J() to be W(Φ\ where Φ are the time-

j )

zero Cauchy data of the solution EF, where E is the classical fundamental
(advanced minus retarded) solution of (3.1) viewed as an operator from
C%(Ji)-±C°{Jί) (see [13,14]). By the causal support properties of E, Φ will belong
to DR whenever F is supported in 0%, and we therefore define the right wedge
subalgebra 9lR of 91 to be that generated by { W(Φ): Φ e DR}. Similarly, we define
the left wedge subalgebras 9ίLc9ϊ generated by {W(Φ): ΦeDL} and the double
wedge subalgebra 9ΪC9Ϊ generated by {W(Φ): ΦeD}.

Next, we define analogues to the symplectic group f"(t) and the antisymplectic
involution J of Sect. 2. (There is no analogue on Kruskal to the time-translational
symmetry T-^T+ V) We define the one-parameter group f"(ί) on D correspond-
ing to the transformations φι-+φt; φt(T, X, ξ) = φ(Λ(i)(T, X), ξ), where Λ(i) is the
one-parameter group of isometries given in Kruskal coordinates by

Λ ( J Λ = /cosh(ί/4M) sinh(ί/4M)\ (T\
V ; \Xj Vsinh(ί/4M) cosh(ί/4M)/ \XJ' l ' }

(On ^ , this coincides with the usual Schwarzschild time translations - see Sect. 4.)
That ^(t) maps D^>D and preserves σ is guaranteed by Theorem 3.1 and the

8 There is some freedom in the association φ ι-» Φ of Cauchy data to solutions. Other
conventions are possible provided we consistently adjust σ(Φ l5 Φ2) [cf. (3.4) below] to correspond
to J jμ(ΦuΦ2)sμvλσdxvdxλdxσ [and correspondingly change lV(t) etc.]. The subsequent interpre-

y
tation of the Weyl algebra is then assured to correspond to the standard canonical quanti-
zation. The convention chosen here makes σ simple in Kruskal coordinates. We shall change
convention [for (DR, σ [#*)] in Sect. 4 when we choose different coordinates (on $)
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conservation oϊjμ(φu φ2). Using the notation fί(X, ξ) = h(—X, ξ), we also define the
antisymplectic involution«/(/, p) = (/, —p) corresponding to the wedge-reflection
map φ\-*φr\ φr(T,X,ξ) = φ( — T, —X9ξ). Just as in Sect. 2, we have (again by
Theorem 3.1) τT(ίj: D-+D with DR->DR, DL->D\ while J commutes with τT(ί)
and maps D-+D with DR-^DL, DL-+DR, so that (D, σ, iΓ(t)9 J) is a double classical
linear dynamical system in the sense of Sect. 1.3.

Turning to the quantum theory, we define the automorphisms α(ί) on 91 by

(3.6)

and the involutary antiautomorphism i by

ιW(Φ) = W(SΦ), (3.7)

which clearly inherit the properties α ( ί ) : S - > $ with 2I*->5I*, 2tL~»2tL while i
commutes with α(ί) and maps $->9t with 5l*-»2IL, 9lL->2l*, so that (2t, α(ί), 0 is a
double quantum dynamical system in the sense of Sect. 1.2.

We now construct a state (the Hartle-Hawking state) ωH on the double-wedge
algebra $ί of Kruskal which is in many ways analogous to the vacuum state ω 0 on
Minkowski space. Since there is no analogue of the time-translation group β(T) of
Minkowski space, we follow the strategy outlined in the introduction and
construct ωH as a double KMS state (for /J = 8πM) over (3Ϊ,α(ί), i). For this
purpose, we turn to the Boulware quantization. In Sect. 4, we shall construct a
regular ground one-particle structure (see Sects. 1.1 and 1.4) (/(B, AB, exp(—ihBή)
for the linear dynamical system (DR, σ, i^(t)). We may then construct for any β > 0
a state ώβ

B by replacing F (for Fulling) by B (for Boulware) in (2.9H2.12). We then
define the Hartle-Hawking state ωH to be ώ | π M . We may then immediately
conclude

Theorem 3.2. (A) ωH on §1 is a pure state [i.e. in the corresponding (GNS) Hilbert
space representation ρH, ρH(^ί) is irreducible].

(B) Ω (the GNS vacuum) is cyclic for ρH(2ϊΛ)? QH(ML) (Reeh-Schlieder
property).

Moreover, defining the von-Neumann algebras s$L = ρff(9lL)//, s$R = QH(^ίRY we
have

(C) stf'L = &ίκ (duality of wedge algebras).
(D) s/LCisf'L = {λί)9 <srfRnstf'R = {λt} (i.e. s/L and sίκ are factors).
(E) The factors <stfL,<s/R are of type IΠγ in the classification of Connes.

Proof. Since ωH arises from a double KMS one-particle structure {%%πM,$B,
exp(—iftBt)JB) (cf. the reference to Sect. 1.4 in the proof of Theorem 2.1) over
φ9 σ, τΓ(ί), J)9 it is automatically (see Sect. 1.3) a double KMS state over (9Ϊ, α(ί), 0
and hence (B) holds immediately. It also satisfies Condition (a) of Theorem 1.3
since, because hB and hence KB have no zero eigenvalues dΓ(KB)ψ = ψ => ψ = Ω.
(A), (C), (D) above then correspond to parts (iii), (i), (ii), respectively of Theorem 1.3.

For part (E), it suffices by Theorem 1.5 [we again use Condition (a)] to show
sp04) = [0,oo). By Sect. 1.4, Δ=e"β&

9 where jS = 8πM and H=-dΓ{hB)®±
+ i(g)dΓ(hB). It thus suffices to show that sp(/iβ) = [0, oo) [for then sp(dΓ(hB))
= [0, oo) and sp(iϊ) = (— oo, oo)]. This fact (which incidentally entails the absence
of a mass gap for the Boulware quantization) will be established in Sect. A3. D
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We briefly discuss the extent to which this theorem might continue to hold for
non-linear field theories. It seems reasonable to expect that one will continue to be
able to define a double-wedge quantum dynamical system (3ί, α(ί), i) in such
cases, and that the concept of Hartle-Hawking state will still make sense. Whatever
else it may be, ωH will presumably still be a double KMS state (with β = 8πM) over
(91, α(ί), 0 in the sense of Sect. 1.2 and therefore part (C) (duality) of Theorem 3.2
should remain true. If "uniqueness of the vacuum" [i.e. Condition (a) of Theorem
1.3] also holds then we shall also have parts (A) and (D). The situation for part (E) is
less clear, since for part (E), the present proof relies heavily on special features of the
quasi-free case.

4. Construction of (Regular) Fulling
and Boulware Ground One-Particle Structures

In this section, we show that the (DR, σ, i^{t)) of each of our equations [i.e. (2.1) for
m>0, and (3.1) for m^O] admit a regular ground one-particle structure (see Sects.
1.1 and 1.4) {£,A,e~iht). (We shall treat both cases together and thus drop the
suffices F and B.)

It will be convenient to work in (ί, x, ξ) coordinates for ffl. Here, t and x which
range over R 2 are defined by [23]

T=exl4M sinh(ί/4M), X = exf4M cosh(ί/4M). (4.1)

In the Schwarzschild case, x is the Regge-Wheeler radial coordinate - often called
r* - and t the Schwarzschild time. In the Minkowski case, we tacitly take AM =\.ξ
- which ranges over R 2 in the Minkowski, and S 2 in the Schwarzschild case - is
unchanged. The transformations A(t') of (2.4) and (3.5) then become (ί, x9 ξ)
-+(t + t\x,ξ) and our equations each acquire the special first-order form
(cf. Sect. 7 in [27])

Here, u stands for rφ in the case of (3.1) and for φ in the case of (2.1),

h=Y° ~M, (4.3)

where A is given for (2.1) by

A=- — + 2x( 2-A) (A4)

dx2 e (m ξ) l ' }

(with J^ = Laplacian on R2) and for (3.1) by

d2 / 2M\ί2M Δ>^ ( J ( J r 7 l J (4-5)
with /dξ = Laplacian on S 2 and r the Schwarzschild radial coordinate [see (3.3)]
which is given implicitly in terms of x by

x = r + 2M ln(r/2M -1) . (4.6)
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In Sect. 7 of [27], we constructed a ground one-particle structure for a class of
equations similar to (4.2). We will follow a similar route here. However, the
conditions assumed in [27] necessitated an A [corresponding to (4.4)/(4.5) here]
with a positive lower bound (i.e. </Ί4D^ε</|/> V/eL2(4 dxd2ξ)). This greatly
simplified the construction and also gave as a consequence a mass gap for the
quantum theory9 (i.e. <χ|/ιχ> ̂  ε'<χ|χ> Vχ e Λ). The A's of (4.4), (4.5) clearly have no
positive lower bound. (The consequent absence of a mass gap was briefly
mentioned by us in [28].) This will require us in what follows to deal with a number
of new technical issues. For convenience, we relegate some of the necessary
operator theory to Sect. A4.

The essential common feature of our A's [(4.4) and (4.5)] that we will use
is that they each satisfy an estimate of the form

^ f a\f\2dxd2ξ V / G C ? ( ^ ) (4.7)
R

for some strictly positive function α>0. One may take, for (4.4) α = e2*m2 and for
(4.5) α = (l —2M/r)(2M/r3). Notice that this is the point at which we require m>0
for (2.1) (cf. Sect. A2) and that such a restriction is unnecessary for (3.1).

Corresponding to our choice of coordinates, we shall work with an
equivalent (see footnote 6) version (Z), σ, iΓ(ί)) of (£>*, σ, iΓ(£)) by taking for D
a copy of DR [in the chosen coordinates « QftR x S2) x QftRxS2) for
(3.1) and C$(WL3) x Q ( R 3 ) for (2.1)]; identifying an old Φ = (f,p)eDR with
Φ = (fJ)eΰ, where p = ex/4 Mp, so that σ defined by σ(Φ1,Φ2) = σ(Φί,Φ2)
becomes

Kk) = ί {JίP2-kf2)dxd2ξ, (4.8)

and by defining i^{t) by

#( ί )Φ = (^(ί)Φ)<. (4.9)

We know from Sects. 2 and 3 that (4.1) is solved for initial data (w(0),w(0))
fΰby

Φ(t) = (u(t), ύ(ή) = f(t)(f, p), (4.10)

and in particular, we have by Proposition 3.1 for Schwarzschild (and an analogous
more elementary result for Minkowski)

Proposition 4.1. Such a solution Φ(t) (viewed as a pair of functions on 01) is C0 0 and
has compact support in any region of bounded t coordinate.

Next we note that, in addition to preserving σ, i^(t) also preserves the energy
norm [that this is a norm follows e.g. from (4.7)] defined by

\\Φ\\l=ϊ\{fAf+v2)dxd2ξ. (4.11)

We will now consider r ( t ) as extended in the usual way to a one-parameter
(orthogonal) group on the Hubert space completion si of ΰ in this norm. By Eqs.
(4.2), (4.10), and Proposition 4.1, we may conclude (on using the dominated
convergence theorem and the mean value theorem in the appropriate expressions)

9 Note also that, in consequence of this, the regularity condition of Sects. 1.1 and 1.4 was
automatically satisfied in the case of [27]
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that Ψ~(t) is strongly continuous on si with strong derivative — h on D. It follows
by Proposition A4.1 that h is essentially skew-adjoint o n ΰ c ^ with (using the
symbol h now for the corresponding self-adjoint closure)

-*t ( 4 1 2 )

Further, Proposition A4.2 assures us that

is essentially self-adjoint o n D c r f and thus, restricting to the subspace of si
generated by Cauchy data of form (0,p), we conclude (exactly as in [27], cf. [29])

Proposition 4.2. A (as in (4.4) or (4.5),) is essentially self-adjoint on CQ{ΉR)

By (4.7), A is positive on CQ(^R) and hence its closure (which we shall also
denote by A) is a positive operator. In fact, it follows from (4.7), using Proposition
A4.7 that

Proposition 4.3. A is strictly positive.

Now restrict e~ht from si to the dense invariant domain

%\ dxd2ξ) C J/ .

This is a genuine restriction since A (as already mentioned) has no positive lower
bound (cf. [30, Sect. XL 10]). On this domain, it is straightforward to show that e~ht

restricts to

cosO^ί) A-^2sm(Λll2t)\

(In [16], we shall require and use the extension of this formula to all of si as given
in [30, Sect. XI.10].) Also, the symplectic form defined by (4.8) clearly extends to
this domain and continues to be preserved by τ(t).

To construct a regular ground one-particle structure, we restrict further to the
invariant domain @){A1I2)®@){A~112) and define the map

I. (/, p) H-> 2" ίί2(All4f + iA~ ll4p) (4.15)

into the complex Hubert space L2

2(
(£R,dxd2ξ). On this domain, 1 clearly

intertwines e~ht with the strictly positive energy (Propositions 4.3 and A4.5)
unitary group exp(—iA1/2t) and is symplectic. In fact,

Proposition 4.4. (/$,L2

z(
(£R,dxd2ξ),e~ίht\ h = Aι/2, is a regular ground one-particle

structure over (2(All2)®@(A~ιl2\σ,e~~ht).

Proof. It only remains to show that ran/ is dense and to check regularity. The
former reduces to showing that A1/4@(A112) [and A~llAr@(A~112) - which by
A-1/4@(A-1/2) = Aί/4A-ίl23}(A-ίl2) = A1/4@(A112) is the same thing] is dense in
Ll^RJxd2ξ\ This follows by Propositions 4.3 and A4.3-A4.6. The regularity
condition easily reduces to showing l 2 l
which is obvious. D
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The above proposition will be relevant for the discussion of scattering theory in
[16] (see also Sects. A2 and A3). The result we require here is 1 0

Theorem 4.5. @(A1/2)@2(A-1/2)}Z> and the restriction of (I L%(^R, dxd2ξ), e'iht)
to (D, σ, f (£)) remains a regular ground one-particle structure.

Proof. To show 6c3>(Aί/2)®@(A~ί/2) clearly amounts to showing (i) C^{^R)
C3)(A112) and (ii) C^(^)C^(A'1/2). (i) is obvious. For (ii), use<again the estimate
(4.7) and Proposition A4.9. Finally, we need to show that ran/ remains dense, i.e.
that (i) A^C^tfβ*) and (ii) A'^C^9) each are dense in l2S$R,dxd2ξ).
(i) follows by Propositions 4.3 and A4.3-A4.6. For (ii) use A:C^(^R)-^C^(^R)
to argue ^~ 1 / 4 Cg ) (^ Λ )C^" 1 / 4 ^C^(^) = ̂ 3 / 4 Cg ) (^), which is dense by
Propositions 4.3 and A4.3-A4.6. D

5. Discussion

5.1. Further Notes on the Relation to Other Work

Our construction (Sect. 4) of (/F, dF, exp( — ihFt)) corresponds to the original non-
rigorous discussion (for the case d = 2, m>0) of Fulling [2] (see also [31]). Fulling
also gives an explicit spectral representation for hF.

Theorem 2.1 was discovered at a heuristic level shortly after Hawking's "black
hole evaporation" announcement (see [3, 4, 6-8] and also the review of Isham
[32]). Theorem 2.1 can actually be extracted, at least formally, from the original
work of Fulling [2] which gives an explicit form for the Bogolubov transformation
i^ίψ1 in terms of the spectral representation for hF. However, in order to settle
the domain questions which arise in making the argument rigorous, it appears that
one in any case requires a good portion of the results obtained here. The heuristic
analyticity argument given by Unruh et al. [7,8,3,6] presumably has something to
do with the analyticity arguments needed to prove Theorem 1.4 (see [17]) and the
pre-Bisognano-Wichmann theorem (Sect. Al). However, our method for Theorem
2.1 is new. It is not the same as that in [7,8,3,6] even at a formal level. An attempt
to make the Unruh et al. discussion rigorous might proceed as follows: Show that
{£F

π,ΛF,e~nτ) (£jπ,4F as in Sect. 2) is a ground one-particle structure over
(D, σ, &~(T)\ where &~(T) is ordinary time-evolution, and then invoke Theorem
1.1. The problem with making sense of such an argument is that if1 is a priori only
defined on D, whereas 2Γ(X) has to be defined on all of D. (It certainly does not map
D-+DI) Our present strategy (in terms of KMS rather than ground one-particle
structures) works because it is always possible to restrict (in our case / 0 from D to
D) but not necessarily to extend (i.e. A\π from D to D)!

For other relevant early literature, note the reference in [8] to [33] which
appears to be a non-rigorous forerunner of some of the "KMS-state aspects" of the
problem discussed here (see discussion in [18]). I thank C. J. Isham for a discussion
on this point [34].

10 To obtain a one-particle structure over the equivalent (DR, σ, ̂ (ή) of Sects. 2 and 3, one, of
course, simply replaces i here by A where / consists of £ composed with the map Φ ι—• Φ described
above
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5.2. More About the Significance of this Work

The main results of this paper are the construction given for ωH (strong
supporting evidence for the reasonableness of which is given by Theorem 2.1)
and Theorem 3.2. It should be noted that nothing in this article depends on the
value of the Hawking temperature and Theorem 3.2 is, of course, equally valid is
we replace ωH by ω% for any 0<β<oo. (For discussions of why j8 = 8πM is a
preferred value, see in addition to the already quoted literature, Dimock and
Kay's scattering-theory results [16] and Haag, Narnhofer, and Stein's discussion
in terms of their "principle of local definiteness" [35].)

Just as ωH is analogous (by the Rindler-Fulling-Unruh analogy discussed in
Sect. 0) to ω0, so Theorem 3.2 is analogous to familiar results for quantum fields
in Minkowski space. In proving the results in Theorem 3.2, we have isolated a
set of properties which are common to both (Minkowski and Schwarzschild)
situations and which suffice for both (Minkowski and Schwarzschild) sets of
results. In checking that these properties are actually possessed by the Klein-
Gordon equation on the Schwarzschild spacetime, we have developed several
tools which we hope will also be useful - in providing a constructive check for
the case of linear fields - for investigations into other aspects of the Hawking
effect.

Appendices

Al. One-Particle Equivalents
to the Reeh-Schlieder and Bisognano-Wichmann Theorems

We state and outline proofs for the one-particle versions of the Reeh-Schlieder and
Bisognano-Wichmann theorems which are quoted in Sect. 2. Basic references for
this section are the original papers [36] (see also [37]) and [12] for the full
theorems. We shall also briefly explain the link between our one-particle versions
and the full theorems.

Pre-Reeh-Schlieder Theorem. Let (/0,>f0,exp(—ih0T)) be the usual ground one-
particle structure over (D, σ, ̂ ~(T)) (see Sect. 2) and let DΦCD consists of Cauchy
data with support in an arbitrary open set ΘoflR3. Then i0DΘ-\-U0DΘ is dense in
AQ.

Proof. Assume given some χeA0 such that (λ\χ} = 0 ^λei0DΘ. Then it
remains to show χ=0. Realizing d0 as ί4(R3), then any λ e i0DG may be written as
2~1/2(μll2f + iμ-1/2p) with (f,p)eDΘ. For any such λ [i.e. for any such (/,p)],
define the (continuous, bounded11) function F of T,X by

F(T, X) = (μV2f + iμ~ ιl2p\e^τ+x^χ> (X = (X, 0)

One easily sees that

11 To see this, use the K-space realization of Λo to express F(T, X) as Jί/ 3Kl(K)χ(K> ί / ί ( K ) T- i κ x

(X,χ the Fourier transforms of λ,χ) and apply the Riemann-Lebesgue lemma
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where (/Γ }XJPΓ,X)
 a r e Cauchy data for the solution translated by (T, X). By finite

propagation speed and our assumption on χ, it follows that JF(T,X) = 0 for all
(T, X) in some neighbourhood of zero. On the other hand, one easily sees 1 2 that F
is the boundary value in the sense of distributions of a holomorphic function in
R 4 + iV+9 where V+ is the usual forward cone {(Γ, X) e R 4 : T> |X|}. One concludes
by the edge-of-the-wedge theorem (Theorem 2.17 of [37]) that F(Γ,X) van-
ishes for all Γ, X. Specializing to translations, we may conclude that
<μ1/2/o,x + *μ 1/2Po,xl#) = 0 f° r arbitrary translates of any (/,/?) eD^, and hence
(e.g. by using a partition of unity) for all (/, p) e D. Now use the fact that 40D is
dense to conclude χ=0. D

Comments. (1) In the present paper, we use this theorem in the special case
0 = R + x IRA (2) This theorem is so named since an immediate consequence is that
in the representation W(Φ) t-> W^(d0Φ) on ^(Λo) of the Weyl algebra over D, the
vacuum is cyclic for the algebra generated by { W(Φ): Φ e De). For this, use the fact
about W*( ) ([38] as quoted in the theorem in Sect. A4 of [17]) that Ω^ is cyclic
for {W^(χ):χsM} - M a real-linear subspace of ή - if and only if M + iM is
dense in A.

Pre-Bisognano-Wichmann Theorem. Let (/0,>f0,exp(—ih0T)) be the usual ground
one-particle structure over (D, σ, ^{T)) and let exp( — iκot) be the usual one-particle
representation of the Lorentz boosts i^iί) (see Sect. 2). Let j 0 be the complex
conjugation on i0 defined byjoχ = Co% (see Sect. 2). Then

and

e x p ( - π κ o ) χ * = - j o χ R V χ e / 0 D * , exp(πκ o )χ L = -joχ
L \tχLe£0D

L.

Proof. It is convenient to realize AQ as L^(R3) (i.e. functions in momentum space).
Thus

/ 0(/, p)(K) = 2-V2^2(K)f(K) + iμ- 1/2(K)p(K)).

Writing this as χ(K), it is not difficult to see that our Lorentz boosts act as

(exp( - fcot)JD(K) = μ- 1/2(K)(μll2χ)(Λ(t)K) (μ(K) = (K2 + mψ2),

where, in the expression Λ(t)K, one takes for granted the obvious correspondence
K «-> (μ(K), K) between three-vectors and on-mass-shell four vectors. Putting in the
details of our Λ(t), we have

{exp(-itκo)do(f,p)}(Kl9K2,K3)

^ , ^ ) ^ ^ (•)

We take the case of DR, (DL is similar). For any (f,p)eDR, f(-,K2,K3),
p( , K2, K3) are (for fixed K2, K3) boundary values of functions holomorphic in the
lower half Kt plane. Also (exclude for the moment the case K2 = K3 = m = 0)

12 To see this, use the previous footnote to express F - considered as a tempered distribution - as
the 4-dimensional Fourier transform of δ(K0—μ(K))£(K)χ(K). Since this has support in the
forward cone in momentum space, we may apply Theorem 2.9 of [37] to express its Fourier
transform as the boundary value in the stated sense of the Laplace transform. (Note that this part
of the proof goes through equally well in the case m = 0,d = 2; see Sect. A2)
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μ( , K2, K3) can be locally analytically continued away from the real axis [and has
branch points at ±i(K2

24-K3

2 + m2)1 / 2]. Relying on technical considerations
similar to those in [12], we may now calculate (exp( — πκo)χ)(K1, K2, K3) as the
result of analytically continuing along the image of the path t:0-> — iπ in the
expression (*) above. The result is easily seen to be

The first minus sign occurs because this analytic continuation (whether we start at
Kx>0 or Xi<0) clearly sends μ(KuK2,K3) to -μ(-KuK2,K3). [In the case
K2 = K3 = m = 0 or if d = 2 and m = 0- see Sect. A2-μ(Ku K2, K3) reduces to \Kt\.
We may still calculate in the same way (say excluding now the point Kί=0)
calculating separately for Kί>0 (where \KX\ analytically continues to K±) and
Kί <0 (where \Kt\ analytically continues to — KJ. Continuation along our path
clearly sends \Kt\ to — \Kt\ in each case, so we still end up with the same
expression.] One easily sees that this expression is just —jo£o(f,p)(Kί,K2,K3).
The full statement of the theorem easily follows by complex linearity of
exp( — πκ0). D

Comment. Under second quantization, the expression exp(—πκo)χ= — joχ
yields the expression A1

0'
2Ws"(40Φ) = J0W

s"(40Φf for ΦeDR, where Δ$2π

= Γ(exp(-iκot))y and J0 = Γ(j0). [Use W3F{χ)* = W3*{-χ\~\ This is what we
call the Bisognano-Wichmann theorem in Sect. 2.

A2. Notes on the Minkowski Cases ro = 0,
(Especially m = 0, d=2)

We discuss to what extent the results of Sect. 2 (and the relevant parts of Sects. 4
and Al) generalize to d-dimensional Minkowski space and to the case m = 0. First,
it is easy to see that, provided m>0, everything generalizes straightforwardly to all
d ̂  2. If m = 0, d ̂  3, then the construction of the ordinary Minkowski vacuum goes
through unmodified as do the results in Sect. Al. However, it is not clear whether
the construction of a regular ground one-particle structure of Sect. 4 (and in
consequence Theorem 2.1) will go through without modification because of the
failure of the estimate (4.7). We leave this question open13. We shall, however, now
explain how to treat the "most severe" case m = 0, d = 2, where modification is
certainly necessary.

This case, the wave equation

on R 2 u plays an important role (as the "inner free dynamics") in the scattering
theory of (3.1) (see [16] and also Sect. A3 here) and in [16] we will require the
modified version of Theorem 2.1 given below for this (2-dimensional!) equation in

13 Postscript: Fulling and Ruijsenaars [45] have since taken up this question and claim that no
modification is required in the cases m = 0, d ̂  3
14 Actually, on R 2 x S 2 - but with ξeS2 not entering in the equation. The only change this
makes is that we should replace # « R by # « R x S 2, dX by dXd2ξ, and dx by dxd2ξ in what
follows (where d2ξ is the usual measure on S2)
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calculating the behaviour on the horizon of the Hartle-Hawking and Unruh states
on (4-dimensional!) Schwarzschild spacetime. As is well known [39], there are
difficulties with defining the Minkowski vacuum in the 2-dimensional massless
case. (Essentially, one can only define vacuum expectation values of products of
derivatives oϊφ) From our point of view (see Sect. 2), the problem is that d0 cannot
be defined on all of D because C?(«)(«in X-coordinates C$(W>)(t@(μ-1/2). (Use:
in momentum space μ = \K\.) To overcome this, we borrow an idea from Streater
and Wilde [40] and replace D by the domain D = {(/, p) e C%(%) x £?(«)}, where

by C%($) we mean \peC$(<g): J p(X)dX = θ\.

Similarly, we replace DR by DR = DRnD, DL by DL = DLnD and D by
D~ =DnD. One now has that C$(<#)C@(μ~112). [In fact, one easily sees that

C^)C2(μ~ι) (A2.2)

so that d0 now makes sense on D and in fact, (/0,L^(IR,ίiX),exp( — ih0T)) (with
ho = μ- which is manifestly strictly positive) is a ground one-particle structure for
0,σ,«r(T)).] We define algebras M L , & * , 9 Γ generated by {W(Φ):
ΦeD,DL,DR,D~, respectively} and define ω 0 by (2.8) on 91.

Proofs of the pre-Bisognano-Wichmann and pre-Reeh-Schlieder theorems
(Sect. Al) still go through (when suitably modified by dXd2ξ = d3X->dX, D-+D).
For pre-Bisognano-Wichmann, this was already mentioned in Sect. Al. For pre-
Reeh-Schlieder, the only new feature (cf. the penultimate sentence of the proof)
reduces to showing that, given an arbitrary interval 0 of R, an arbitrary function
p e CQ(1R) can be written as a finite sum of translates of functions in C (̂1R) which
each have their support in Θ. It is not difficult to see that this is true.

Finally, although estimate (4.7) no longer holds, it is easy to see that - replacing
DR by DR - a construction of a regular ground one-particle structure (/F, dF, e~ihFt)
along the lines of Sect. 4 still goes through. In fact, under the change of coordinates

d2

(4.1), (4.4) becomes — -r-^ ( = μ2) while the map (Sect. 4) Φh-+Φ defined by

(/, p) h-> (/, exp) maps D into the subspace oϊb Dκ = <ΦsD\ J pdx — 0 >, so that

(D < , σ, f (0) is in fact just a copy2 5 [with (t, x) coordinates on 0ί replacing (Γ, X)
coordinates an Jί~\ oϊ{D,σ,3Γ(T)\ The (iF,>fF,exp( — ihFt)) of Sect. 4 also turns
out (as it must) to be a copy (with the same replacements) of the
(/0,*f0,exp(—ih0T)) already discussed above, and Proposition 4.4 and Theorem
4.5 remain true when modified by the replacements dxd2ξ-+dx and D -+D<. In
particular, Dκ C2{A1I2)®9{A~112) amounts to (A2.2).

Putting everything together as in Sect. 2, we can thus conclude

Theorem 2.1 (d = 2,m = 0 Version). On 91 ~, ωo = ώjn.

A3. A Proof that sp(ftB) = [0, oo)

By Sect. 4, we can take hB = AB

/2 on ΛB = L%(^R » R x S 2 , dxd2ξ\ where AB is as in
(4.5). Since AB is clearly positive, it suffices to show [0, oo) C sp(/zβ). We offer a proof

d2 d2\ id2 d2\
— \φ = 0 becomes, in (ί, x) coordinates, I 1

dT oXz) \dt2 dx2/

. d d\ id d\
15 The reason is that —— \φ = 0 becomes, in (ί, x) coordinates, I 1^ = 0!

\dT oXz) \dt2 d2/
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here (cf. Theorems VI.l and VI.2 in [41]) which exhibits this as a consequence of
the classical scattering theory developed by Dimock and Kay for (3.1) combined
with the one-particle-structure machinery of Sect. 1.1, and the results of Sect. 4.
(No doubt alternative proofs - in the form [0, oo) C sp(AB) - are possible by more
Schrόdinger-operator-style methods.)

Consider the multiplication operator k on the Hubert space
d+ =i4(]R+ x §2,dkd2ξ). k trivially has sp(/c) = [0, oo). We shall prove our result
by showing the existence of an invariant subspace16 AB oϊAB such that hB restricted
to AB is unitarily equivalent to k on d+. First, recall that hB figures in the one-
particle structure (lB, AB, exp( - ihBή) over (^(^ | / 2 )e^(^β 1 / 2), σ, exp(-hBή) (see
Proposition 4.4). We may view k as figuring in a one-particle structure in the
following parallel way: Let d be the usual skew-adjoint operator d/dx on
l£(R x S2, dxd2ξ). Defining V/l5/2 e 2{d\

σ(/ 1J 2) = </1 |3/2>-</2 |δ/1> (All)

one easily sees that {2(d\ σ,e~td) is a classical linear dynamical system. Moreover,
defining

dA+=L%{Έi+ x$2

9dkd2ξ)

by (4f)(Kξ) = 2^2k^2f(Kξ) (where /(/U) = (2πΓ1/2 J f{xA)e~ikxdx and
\ -oo

restriction to R + is understood ), one checks that (d,A+,e~~ikt) is a ground one-

particle structure over (3>(d),σ,e~td).

Dimock and Kay have proved17 the existence of an operator

Ω:

satisfying

and intertwining hB with d in the sense that

Ω exp( - hBή = exρ( - td)Ω.

Using these properties (and Proposition 4.4 as quoted above) one may check that

16 άβ will turn out (see footnote 17 below) on reading [16] to be interpretable as the part of AB

which "falls through the past horizon"

17 To make the link with [16], one must note that the map / H+ (f, — df) defines an equivalence
between (@(d),σ,e~~td) and the "right-going part" (in the sense of [16]) of the d=2, m = 0
Minkowski version (in the sense of footnote 14) of Sect. A2 of (^(All2)φ^(A'1/2),σ,Qxip(-ht)).
Also, under this same equivalence, (A, A*, e~ikt) is then equivalent to the "right-going part" [16] of
(the same d=2, m=0, Sect. A2 version of) the (/£F,/fF,exp( — ihFt)) of Proposition 4.4

Finally, the Ω here is then equivalent to the "right-going inner wave operator Ωΐ " of [16]. The
quoted properties of Ω then correspond to results stated for ΩjΓ in [16]. (Our full proof of these
statements is omitted from [16] but appears in the case m = 0 in [42]. The case m > 0 is similar.)
Note finally that we could, of course, have worked equally well with Ωl
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where

is an alternative one-particle structure over (2(d),σ,e~td) [ ^ i s clearly invariant
under exρ( — ihBtJ]. To see that it is complex-linear, apply Theorem 1.2 to the
corresponding projection.

We may thus apply Theorem 1.1 to conclude the existence of a unitary
U:d+->^ satisfying

This fulfills our promise. D

A4. Some Results on Self-Adjoint
and Positive-Self-Adjoint Operators Required for Sect. 4

In order to make the logic of the proofs in Sect. 4 clear, we explicitly state the facts
about self-adjointness, and about positive-self-adjoint operators to which we shall
need to appeal there. We adopt the convention below that S stands for a skew-
symmetric operator on some (separable, real) Hubert space, while T stands for a
self-adjoint, and P and Q for positive-self-adjoint operators on some (separable,
real or complex) Hubert space. Where no proofs or references are given, the results
are elementary consequences of results in e.g. [43].

Proposition A4.1. Suppose there exists a strongly continuous orthogonal group

0(t):2${S)-*3)(S) with strong derivative — (ί) f ί = 0 = -S on S)(S). Then S is

essentially skew-adjoint. (Proof by e.g. [43, Theorem VIII. 10] and
complexification.)

Proposition A4.2. Suppose that, in addition to the hypotheses of A4.1,
S: 9{S)^2{S). Then, all odd (even) powers of S are skew-(self-)adjoint on 2{S).

Proof. See Chernoff [29].

Proposition A4.3. // T has dense range, and Δ is a core for T, then ran(T \A) is also
dense.

Proposition A4.4. P is strictly positive (i.e. P has no zero eigenvalues) o ranP is
dense.

Proposition A4.5. P strictly positive <=> Pa strictly positive, α = i , i , | , etc.

Proposition A4.6. Any core Δ for P is a core for Pα, α = ^ , ^ , | , etc.

Proposition A4.7.18 A sufficient condition for P strictly positive is the existence of a
core Δ for P and a strictly positive Q such that Δc@(Q) and
VxeA

For the proof of A4.7, use A4.5, A4.6, and the following

18 The use of such a proposition in Sect. 4 arose from a suggestion of J. Dimock
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Lemma A4.8 Let Δd3){P)n2{Q) be a core for P, then \\Px\\ ^ | |βx| |
VxeA => 2(P)t@{Q)and | |Px||^||βx|| Vxe^(P).

Finally, we have

Proposition A4.9. In the situation of Proposition A4.7, 9{Q~1I2)C2(P~112).

For the proof of A4.9, use A4.6, A4.8, A4.4, and the following two lemmas.

Lemma A4.10. | |Px | |^ | |β* | | VxeS>(P) => @(Pί/2)C®(Q1/2) and \\Pί!2x\\

^ \\Q1/2x\\ V%6^(P 1 / 2) (see the "monotonicity of the square root" in [44]).

Lemma A4.ll. Let B, C be densely defined operators such that ran C C Θ(B) and BC

is bounded on 9(Q. Then r a n £ * C ^ ( C * ) and C*£* is bounded on
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