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Abstract. We consider, in a 1 + 3 space time, arbitrary (finite) systems of non-
linear Klein—Gordon equations (respectively Schrodinger equations) with an
arbitrary local and analytic non-linearity in the unknown and its first and second
order space-time (respectively first order space) derivatives, having no constant
or linear terms. No restriction is given on the frequency sign of the initial data. In
the case of non-linear Klein—-Gordon equations all masses are supposed to be
different from zero.

We prove, for such systems, that the wave operator (from ¢t = oo to t =0)
exists on a domain of small entire test functions of exponential type and that the
analytic Cauchy problem, in R* x R3, has a unique solution for each initial
condition (at t = 0) being in the image of the wave operator. The decay properties
of such solutions are discussed in detail.

1. Introduction
To fix the ideas we first introduce the following systems of non-linear equations:
(O + muy(t, x) = Fj(u(t, x), Du(t, x),D?u(t, x))m; #0, 1<j<N (NLKG')

and

0 , ;
<E+ale)uj(t,x)=Fj(u(t,x),Vu(t,x)),ej=il, 1<j<N, (NLS)

where xeR3,teR* = {n|n 2 0},V = (0/0x,, 0/0x,,8/0x3),D = (8/dt, V),

3 62 02
A= Z az—,lj =W—A,u,{t,x)eC,u=(u1,...,uN) and N>1.
i=1 i

The non-linearity F =(F,...,Fy) is restricted to be an analytic function in a
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neighbourhood O of zero:
F:0cCN¥xC*" xC'N»CN for (NLKG)
and
F:0cC¥xC3N->C¥ for (NLS),

satisfying in both cases F(0) = F'(0) = O(F’ denoting the Fréchet derivative of F).
Writing the second time derivatives in the non-linearity of (NLKG’) as (0/0t*)u; =
(O + m})u; + Au;— m?u;, we can, imposing that @ is sufficiently small and using
the implicit function theorem, reduce (NLKG’) to

(I___| + mJZ )uj(t’ x) = Fj(u(t’ x)aDu(t9 x),DVu(t,x)),mﬁ’: 0, 1 é.} é N’ (NLKG)
where F is a new analytic function in some neighbourhood @ of zero:

F:0 < CN x C*¥ x C12N - CV, F(0) = F(0) = 0.

Remark 1.1.

a) Instead of (NLKG’) one could consider more general systems of non-linear
massive local relativistic evolution equations autonomous in t, x. However, under
reasonable hypothesis, the Cauchy problem for such evolution equations can
be studied through (NLKG’). For example, a non-linear Dirac equation like
(iy*0, + m)o = G(u, Du, ¢, D), with initial condition ¢, at t=0 is reduced to
(O +m?)e = (iy*d, — m)G(u, Du, p,De) with initial condition (@, Po), Where
(¢°y,;0° + iy°m)po — iy° G(ug, Dug, 9o, (@0, V®o)) = @o. The last equation has a solu-
tion ¢, for small initial data.

b) Non-linear Schrodinger equations with real analytic non linearities as
(0/0t —iA)u(t, x) = G(u(t, x),u(t, x),Vu(t, x),V u(t, x)),G(0) = G'(0),G complex analytic,
fall into the class (NLS). (Here Z is the complex conjugate of ZeC). One has
only to introduce a new variable v(t, x) = u(t, x) and then consider the system

(% — iA)u = G(u,v,Vu, v),(% + iA>v =G, u,Vov,Vu), u0,x)=r0(0,x),

where G(¢) = Y a,&*if G({)= Y a,&%is the Taylor development of G around zero.

A similar renllazligri( is obviouslylat%lzle for NLKG'.

Before outlining the content of the article we introduce certain notations. We
denote by W™? (R3,C),n 20,1 < p < 00,1 = 1, the Sobolev space of functions from
R3 to C', being in L? with their n first derivatives. In the case of (NLK G) (respectively
(NLS)) # = W*2(R3,CY)@® W32(R3,C") (respectively # = W?>2(R? CY), the
Fourier transform of f/:R"—C',1 2 1, is given by f(k) = (2r) "2 | dx~**f(x). D(a),

P

a = 1 denotes, in the case of (NLKG) (respectively (NLS)), the subset of functions
(f9) (respectively f) in # such that f, geC**(R> C¥) and such that the support
of f,§ (respectively f) is contained in {keR?||k|< a} (respectively
{keR*(a+1)"'<|k|<a}). D(a) is given its natural Banach norm. The
unitary evolution in s defined by the linear part of (NLKG) (respectively (NLS))
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is denoted V,, teR, i.e.

N 0 I N
V.= @ exp| t 5 respectively V, = @ exp (tig;4) ).
j=1 A—-—m? 0 j=1

J

This is a Cy-group in D(a). The scattering problem, with given scattering data
¢, €D(a) at t = o0, for (NLKG) (respectively (NLS)) is posed by the equation

PO = Vs — | Vi J@(s)ds, @(t)est,t20, (L1)

where  [o(t)](x) = (u(t, x), (0/0t)u(t,x))  (respectively  (o(t))(x) =u(t,x)) and
(J(@())(x) = (0, F(u(t, x), Du(t, x), DVu(t, x)), (respectively (J(p(1)))(x) = F(u(z, x),
Vu(t, x)). The corresponding Yang—Feldman equation for the wave operator
2:¢0, > p(0)is

Q=1I-[V_JeQ-Vds, I=identity. (1.1)
0

We prove, in Sects. 2 and 3, that Eq. (1.1') has a solution £2 being an analytic function
from a neighbourhood of zero in D(a), a =1 into .

Given two Banach spaces X and Y, we denote by F(X, Y), the space of formal
power series A= Y. A", A"eL,(X.,Y), the space of n-linear symmetric continuous

maps from X to Y. lWe do not make the distinction between A" considered as a
monomial from X to Y, or as an elementin L, (X, Y) or as an element in L(® "X, Y),
where ®" is the n-fold symmetrized projective tensor product. Equation (1.1') is
solved first by considering 2 as an element of F(D(a), #), which gives the iterative
equation

o=— ¥ I V_JNQ" @ @Q™)(®"V )dso, n22,Q =1, (1.17)

I<psn
n+ +n,,:n,n,~gl

where ¢ is the normalized symmetrization operator. We show in Sect. 2, by using the
method of stationary phase, that the decrease of the L (D(a), #) (respectively L,(D(a),
L)) norm of Q"(®"V,) is better than ¢~ /2 (respectively t~2) for n=2 and ¢!
(respectively t~2) for n =3, as t - oo. The actual decay of these norms is usually
better. For example, the indicated decay for n =2 is obtained for (NLKG) when
there is a relation of the type e M, +&,M, +eM;=0, ¢,¢6,,65=11 and
M ,M,,Mse{my,...,my}, and is obtained for the (NLS) when ¢ +¢;=0 for
some 1<i,j<N. Otherwise the decay turns out to be of the order of ¢~ %>
(respectively t~3). The decay of Q3(® *V,) in L(D(a),L™) is always better than the
one indicated, but a t ~ 2 type decay is sufficient for our purpose. Sobolev estimates
give now that the time decay for the L,(D(a),#')-norm of Q"(®"V,) is at least
t~¢*"8) for n = 4 at t — oo. The linear dependence in n of the exponent is important
as it exactly compensates through the integration in (1.1”), the derivative loss due
to the fact that J is continuous from 4 into (1 — A)~ Y2 5 (but in general not into
). In Sect. 3, the convergence of 2 = ) Q" is proved by using a variation of the
nz1

iteration scheme proposed in [8]. The solutions of Eq. (1.1) are now given by
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o(t)=Q(V,0,),t 20, for ¢, in the domain of convergence. D(a) is a space of analytic
vectors for the representation ¢t — V, (in D(a)). From this and the analyticity of 2 we
deduce in Sect. 4, that the obtained solutions for (NLKG) and (NLS) are analytic in
aneighbourhood of R* x R3. From the above indicated decay of 2"(®"V,),n = 2,it
is clear that || ¢(t)|| - decays as t ™32, t— o0.

There is a rich literature on the systems (NLKG) and (NLS), (cf. [5,9]). Recent
contributions on the existence of global solutions and scattering states for (NLKG)
are [3,6] and for (NLS) [1,3,6]. These references solve, in the case of 1+ 3
dimensions the problem of existence of decaying scattering solutions for the case
where F is C* and F(0) = F'(0) = F"(0), i.e. there are no quadratic terms in the non-
linearity. The system (NLKG) with N = 1, and without derivatives in F, was proved
[8] to have scattering solutions for a set of scattering states similar to D(a) when
certain combinations of masses appear (N = 1) this was proved when the scattering
states have a definite frequency sign [7].

2. Decay Properties of Certain Integrals of Products of Free Solutions

We calculate in this paragraph the wave operators for the systems (NLS) and
(NLKG) up to order three. This can be done by evaluating, with the help of the
method of stationary phase, the decay properties as ¢t — co of integrals of the type
[ ds{dpenosu(p,k), ueCF(RS), f,eC®R3, keR>.
t

For meR define w,,:R*— R by

(k) = (m? + |k|?)'/2. 2.1)
Form, my, m, #0,¢ ¢, 6,= 11, k€R3, define fi: RjaR by
fk(p) == ew”‘(k) + €1 a)ml(p) + 82wm2(p - k) (22)

As my,m,#0, equation f(p) =0 (derivative with respect to the variable p) is
equivalent to

(eymy + e,m,)p = gymyk. (2.3)
In the case ¢,m; + ¢,m, # 0 the values of f, and det f; are, when f}(p)=0:
eymy + €,m,

fk(p) = - GCUm(k) + |Elm1 + 82m2| (eymy + £,my)®

(24)

3
" €185
det fi(p) = + <m1m ) leymy + eam,|7 (e1my + &,my) (@, +egmy)s 25)
1Mz

if p = 81m1(81m1 + 82m2)— 1k.

Lemma 2.1. Let ﬁt(k) = eiewm(k)t’ fk(p) =- Ewm(k) + elwml(p) + 82(0»12(1’ - k)’ m,my,
my,>0, emy +e,m, #0, g;my +e,m, #em, ge,6,==+1 and §,,§,eC (R

1 CYR? is the space of complex valued C*-functions on R® with compact support &;=0/dk;,
o= (01, 05,03), o] =0ty + 01, + 013, 0 =0 0% 0%, k* =k k3 k3
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or et d(k)=e"",  fiup)= —elk> +ey(Ip* +1p—kI*), ee;=+1 and
91,9,€CT(R* —{0}). If

T
h, (k) = | ds ﬁfa dpe™™§,(p)g,(k—p), 0<t=<T, (2.6)
t

then h, 1 has a limit h, in C}(R®) as T — co and if suppg;=K; then supph, <
K, +K, and
1B llyme < (14072 Cn,f, K 1, Ko) 11 e = 192 ]| woes
o % hll yn < (1 + 0)72Cf, K1, Ko) 191w =112 [l s o
Here C is a constant only dependent on the indicated variables.

Proof . Denote by p(k) the unique solution of f%(p) = 0,keR>. The function k — p(k)
is C*. Since detf}(p(k))# 0 for keR3, Theorems 7.7.5 and 7.7.6 of [2] give

[P u,(p)dp — W74  det (fi(p(k))/2m)| =112 efom/ts ™3 ,ZO (Ly,jx ) (p(k))s ™|
i~

< Cm,f)s ™™ [l yem =5 > O, 2.7

where u,(p) = 4,(p)g.(k — p), o the signature of f; and L, ; , differential operators of
order 2j in p with C* coefficients in p and k. The supports of 4, and g, are compact,
so the existence of the limit 4, in C(R%) as T — oo of , 1 follows from (2.7). Introduce

F(x)= j' dse™s™% a> 1. According to (2.7)
1

369 — €| det (F3PON2 2T, (L st PIODF 2 A0 2]

SCm, f)m =171 " Vufyne, t>0m22. (2.8)

The supports of g, and ¢, are such that |f,(p(k))=C(K,,K,;)>0 for
(k,k — p(k))esuppg‘lx suppd, =K, x K,. F, has the asymptotic expansion

F(x)—e™ Z Pur(ix)" VIS Clx|”™* Y, where p,o=—1 and p,,=
—a(x+1).. (oc +a—1) for I=1. This is obtained from F(x)=(ix)"!(—e*+
oF, 4 1(x)). Introducing this into (2.8) and keeping on the left-hand side only terms
decreasing slower than t~™~1 one gets:

h(k) — e”™/*|det (fi(p(k))/2m)| /2P %" (L, ) (p(k))

Jilz20
32+j+l<m—1

P32 +j,l(ifk(p(k)))_(’+ D= @R+ < Cm, f K1, Kt ™™ D ||y | wmey  £>0.
(2.9)

One notes that if K = K, + K, = {k=p, + p,|p,€K,,p,€K,}, then the support of
the function k— [u]|yam- is contained in K, so ([ |lullfm-dk)'’? < C(K,,K5)
91 llwanellg2 ]l womo. Taking m =3, (2.9) gives:

bl yns < CU LKy Koy mt ™2 (g o<l llyo -, t 2 1. (2.10)
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It is known that [v,*gll,.. < Clt|™%? ||gllymi,t #0 when 6,(k) = e, and that
o %gllwns < Cltl ™2 [|gllynsss, t # 0 when 6,(k) = *>=®* (cf. [4]). If g, (k) =e'"™/*
Idet (& ((p(k))/2m)| = Y/2 (L j ) (p(K))p, G filp(K))) = ¢, then ¢, ;eCT(R?) and
lguilwmess £ Cok kJdillws« < Cln, [, Ky, Ko) g1l wsrai= | g2 llwesne.  Consequently
the terms in the sum appearing in (2.9) give (with vj(k) = v(k)e’/P®)

lvg *gl’jt—(:wz+j+t)”W"m <C(n, f,Kl,Kz)t_(3+”j)
WG hwersollGollposain, >0 (2.11)
Using (2.9) with m = 4 one gets, by summing over j, [ 20, j +1< 3/2

loex by [l yno = Zl l}%gs,;t= 2T e
Js
+ logx(h, — Z;ei”’" Vgt TG [ (2.12)
Js

As |v,%g| o £ gl s, it follows from (2.9) that the last term in (2.12) is smaller than
Cln, £, K1, Kt 2Ng 1 lys < g2 llws=s >0
Inserting this and (2.11) in (2.12) one gets:
loosh e < Cln, £ K K Y2 0G 1 e <N g2lle e £> 10 2.13)

The statement of the lemma follows now from (2.10) and (2.13) by observing that
ht = ht,l + hl s

loe%hi, 1l = < Cn, K1, K) Myl < €' Ky K)ol
e,y llwn < COu K 1, K o) ol - and (A gl - < €, Ky, Ko) 11l 1921
for0<t=<1. (QE.D)

If &;m, + e,m, = 0, then the limit when T — oo of A, ; is no longer in C(R®)
in general. As in this case, the zeros of fj(p)=0 are exactly k=0, peR*® and
fip) #0 for k, peR?, a bounded singularity appears in general at k = 0. However
the decay properties of h, in L2 and L™ are the same as in lemma 2.1.

Lemma 2.2. Let eg,e= + 1, mg,m>0,4,,d,eCZ(R?) and let fk(;;}= — e, (k) +
£0(Omo(P) — 0P — ). If  Ofk)=em®" and B, 4(k)=[ ds | dpe'"”

t R3
G1(p) §o(k — p), then for n=0, 1... h,y has a limit h, in W™* as T—co and if
supp ¢; = K; then supp h, ;< K, + K, and

Ik llwnz < C, K1, K) 11 llye = 192 llweo(1 + 87372, 120,
0% Ryl ym - < C0, K 1, K) 1 o= G2 lwe (1 +6)73, 120

The proof of this lemma is so similar to that of Lemma 5.1 in [8], that we omit it.

We now consider the cases where the zeros of fi(p) and fi(p) coincide. Decay
properties of |h]l> and | k|~ obtained in Lemmas 2.1 and 2.2. are then no
more valid.

Lemma 2.3. Let §,,d,eC2(R%), e,e0= + 1, 6,k) =€ and let f(p)= — elk|?
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+eo(lpl* — Ik —pI?). If
T
hr(k)= | ds[dp e P4 (p)do(k —p), 0St<T

and if supp §;=K;, then supp h, = K, + K,, h, 1 has a limit h, in W"%, n=0,
1,...,as T—> o0 and

bl gz < Cln, Ky, Ko)(L+ 0721191 e 192 1o, £20,
0% Byl yne < €1, K1, K)(1+ )7 21G1 [ pree |92l oo £20.

Proof. fi(p)= —(¢+ &o)k|* +2eok-p, so after a change of variables p—>k—p
and (or) p— — p we have only to consider the case ¢ = — ¢, = — 1. Then fi(p) = 2k-p.
Let peCF(R’) be equal to one in a neighbourhood of K; + K, and let )

0<m<sS
V(P k) + r(p, k), where v,(p;k) is a monomial of degree m in k, be the Taylor
development of k—g,(p)d,(k—p) at k=0, with a remaining term k- r(p,k)
having a zero of order 6 at k =0. Theorem 7.7.1 of [2] gives

r(p, \Ikl’“‘ oK), s>0.

|J €2 Pr(p, k)p(k)dp| = Cs™* }. sup

<3 P

aa
SoforO0<t=sT

T
[ ds [ dp e Pr(p, k)(/)(k)dp. S CK K)o -

R 11
-ngHWw<t—2~7;>. (2.14)

Denoting F,(k) = [ e** ?v,(p; k), then F,eS(R>) and
fe** Pv,(p;k)dp = s~ " F ,(ks), s>0.
The L4norm 1<g< oo of .he function k—s™™F,(sk) is s~ C/4*™ |F,| ., and

IFmllLe < C(Ky, K) 191l wrs o [1g2ll e, 0 Sm =5, which gives

T q) 1/a°
{ wl ] s dpe o, (p; ol } <10l CK 1. K ) 19 = 192 e

,(t—((3-q)/q+m) _ T—((3—q)/q+m))’0 <m< 5, 0<t

IA

T,1<g<o0. (2.15)

Since (p(k)( Y vup;k) + r(p, k)) = §,(p)g,(k — p), it follows from (2.14) and (2.15),

0sm=S
that

1y zllge: < Cn, K K )™ = T )1y Lyl dall e 1 S 2= T,neN,

(2.16)

e illyn: < Cn, Ky, KNGyl = 1121 12, 0 = £ £ 1,(2.16) and the definition of h, + show
that the limit h, exists in W™2 and that

iy < Cn, Ky, Ko) G llpre =[G Nl e (1 + 712, £20.
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Similarly it follows that

ooty [l yme < N(L A1 1PY2h ) 12 £ C0, K, Ko) 191 oo |2 1] pres(1+2)72,
nz0, as |fl==<)FllL QED.

Lemma 24. Let &,6,,6,=+1, mym;,m, >0, ¢,m, +e,m,#0 and em=¢em; +
egmy.  Let  9(k)= e, f1(p)= — ewn(k) + &10p, (p) + £20,,(p —K), and let
d1> §2€C3 (R). If

T
h2(k)= [ ds [ dpe™®§,(p)g,(k—p), O0St<T,
t R?

and if suppg; = K, then supph, ; = K, + K,, h, 1 has a limit h, in C3 as T— coand
IBllynz < Cln, K, KA +8)7 211 Lo 192l s = (2.17)
% hell = < Cln, Ky, KD)(A 4872 (11 lle <192 [l - (2.18)

Proof. For keR3, let p(k) be the unique solution of f(p) = 0. Then, by (2.5), det
«(p(k)) # 0, therefore, formulas (2.7) and (2.8) are valid. Formula (2.7) gives at once
that the limit A, exists in C3. By (2.4), f,(p(k)) =0, so formula (2.8) reads

m—1
|hy(k) — eio™*| det (f7 (p(Kk))/2m| ~*/? ZO (L4 (P(K))F 35 1 (O)~U+12)
j=

< Cplm— 1t~ V[ ]| yonrt >0, m=2. (2.19)

If T(k) is the coefficient in front of t~0*'? in (2.19), then [, CF (R?). Inequality (2.17)
follows now from (2.19) with m =2 as the support of k— ||u| 4« is in K; + K.
Taking m =3, one gets:

lo*hyll = < oot =12 + 1t 732) | o+ Nlogx(h, — It ™72 — 17 32) | .

As ||v,%gl» < Ct 32| gll o, t >0 and |[o,xg|,- < |41, this gives
o % byl = < CK 1, K )t ™32 (Tl et ™12 + [T ||yt =373)

+ b, =Tt =12 =Tt 32 .

Inserting the definition of TJ and (2.19) in the last expression, one obtains (2.18) for
n=0. For n+0, (2.18) follows now from supph,c K, + K,. QED.

Next, we consider decay properties of third order terms. Sufficiently good decay
properties at third order, for the iteration scheme in Sect. 3 to work, are obtained in
most cases by combining the decay properties at second order in Lemmas 2.1 and 2.2
with the ¢t =32 decay of the L* norm of free solutions. Lemmas 2.5 and 2.6 will treat
the cases to which this does not apply.

Lemma 25. For ¢&¢p,61,6, =+ 1,5.,5,€R, kk,k,eR® let fi(ky,kp51,5,)=

(= 3|k|2 + 81|k1|2 + golk — k1|2)51 + (—golk — k1|2 +elk —ky — k2|2)32- For 1<

i<3, let §;eCy(R*—{0}), and let K,=suppg,K=K,+K,+K;. If
T: T2 )

ﬁt,Tl,Tz(k) = I ds, j ds, Idk1 dk e kess9g, (k1)g,(k)ds(k — ki—k,), 0=t=<
t

St
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T, £ T,, thensupp A, 1, 1, < K, A, 1, 1, has a limit A, in C§(R%) as T, T, — o and

IH, |l < CK)L + )" gyl =Nl e - g3l ooy £20,
”Ut*Ht“l}’éC(K1>K27K3)(1 +t)_5/2, t:>—_0a

d1 1l wiowllga llwiow g3l wiow,
ielk|?;

where O(k) = €
Proof. Introduce x=s;/s,, y=s, and D,={(x,»)0=x=1, t=<xy}. If
ik, kyyx) = (= elk|? + &1k |* + eolk — ky|?)x + (— golk — kil? + &3 lk,)* — &,k —

ky —kal?), then Jidkys kg, s1,85) = hy(ky, ky, x)y and h(ky, ky,x) =0
(W' is the derivative with respect to k, and k,) has only the solution k, =k,
k, = xe,e,k. We also have that det(hy(k, xe, e,k,x)) =2% and h(k, xe,e,k, x) =
x(e; —e)lk|%. I wyky, ky) = d1(k1)go(ky)gs(k — k, —k,), then by Theorem 7.7.5
of [2],

|j’dkldkzeihk(kl,kz,x)yuk(kl, kz,) _ 7.C3ei1l:a'/4el'x(£, —e)lklzyy— 3 Z y—j

0<jsm—4

“(Ljk i) (k, xe€2k)| < CK)y ™™ [ty | yame,  y>0,m 21, (2.20)
where L;, . is a differential operator of order 2j with coefficients C* in all variables.
The existence of the limit H, in CJ(R?) follows (2.20) with m = 3, and we have
H(k)= [ dxdyy[dk,dk,e™< k22vy (k k). (2.21)
De
The decay property of ||H,| ., follows now from (2.21) and (2.20) with m = 3.

1
Let vik,z,y) = [ dxne™*e™*(L;, w)(k, xe,,k). (222
y—l
By hypothesis there is >0 such that K;c{keR*|6<|k|<1/6},i=1,2,3.
The support of the function k—uk,xe e,k) is contained in {keR3|x™6 <
lk| <61}, which is empty if x <62 Hence vik,z,p)=v{k,z672) if y2~2
Put vi(k,z,y) = vi(k,z) if y = 672 By (2.20), (2.21) and (2.22) we then have

[H(k)— Y. [ dyvik (e, —e)lkl>y)y~ @+
t
0sjsm—4

S CEK)((m=2" ) gl yame, 267 2m23. (2.23)

Let & —¢#0 and put  §;,(k)=—ne™*(i(e — &) kI?) T D oYox! x
(Ljjex, welk, €1 82kx))|x = 1, 1, j =2 0. The support of 6;, and k—v;(k,(e; — e)k|?y) is
contained in K — {|k| < d}. Partial integration gives the asymptotic expansion

M-1
v lo(ey — K2y — 3 €W, (= D)
=0
< C(K, Oy ™Ml ysuer y>0,M 21 (224)

Inequality (2.24) gives after integration in y and introduction of the asymptotic
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expansion of F(z) = [ ¢ y~*dy, a > 1( see after (2.8))
1

@
! vilk(e, —o)lkI?y)y~ @ Ay — Y 0;(K)ps s jugae™ M
3+1-H§2<M

(2.25)
(e, — e)[k|2) e @i < O(8, MYt M | yarenay 2> 0.

Inequalities (2.23) and (2.25) show that
|A (k) — el % Ej(k)t‘fl S Cm, )t ™|l yamsewn t 2672, &, —e#0,

25jsm—1

where h:(k) =Y 0, (k)P3+r+1alile, —€)|kI*)"" and the last sum is over j=2+4r+
[+ n. When ¢, =g, it follows directly from (2.23) that

Hk)— Y Ak I < Com Kyt ™ ugllyomeey 1267 2e=85 (227)
1SjEm—1
where ﬁ(k) (j+1)"1v,(k,0. Define h; =0, fk) =™ if & —e#£0 and
Ak) = e’s"" "if g, — e = 0. Equalities (2.26) and (2.27) with m =3 give for g; = + ¢,

lv,xH, — 'Zl ,uz*hjt—j”m = Hﬁ,ﬁ, - 'zl ﬁtﬁjt_j”Ll
j= i=
3
< C(m, )3 H 19:lproas 202 (2.28)
i=1

. . 3

Inequalities || p,xhjt ™/ .. < Ct™U32 || hy|| Land ||kt < C(K) 1A e - < C(6) ﬂ

1g;ll yoe» give together with (2.28) the announced decay of ||v,*H,]|;~ for t> (5 2,

Moreover o, H,l» < Clos Hlyss = CIH, s < C) [T [dillye- For 015672,
i=1

by the already proved decay property of |H,| 2. The 6-dependence in the constants
can finally be replaced by dependence on K,,K,,K; by taking the smallest ¢
satisfying its definition. Q.E.D.

Remark 2.1. Tt follows from the proof that the decay actually is ||H,|. . <
C(1+1t)"?and |jv,xH,||,. < C(1 +1t)~7? if ¢ # ¢,. The following lemma could have
been formulated and proved in a way similar to that of Lemma 2.5.

Lemma 2.6. Let E, Eo=+1, M,M,>0, §,eCZ(R?), supp g§,=K, and let
f,(k) = eEeu® I the situation of Lemma 2.4, let

T
A, 1(k) = [ dse™ " [ dpe™on?* §o(p)(8,h,) (k — p).
t
Then supp H,r < K=K, + K, + K,, H, 1 has a limit H, in L* as T — co and

3
IH, ]2 = CK)1 +1)” I:[ gillws.=, 20
3

lpexHll = = C(K)(1 +8)” 5’2[11 [gillwe=, t20.
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Proof. 1}y Lemma 2.4, h,eC3, and supp h,eK, + K,. This shows that A, ;eCg, that
supp H, =Ko+ K, + K, and that (uxH, |- and [[H,[;- are smaller than
C(K)|lgoll~ supp Al 2 for 0=t < 1. By (2.17), one than get that |H, |- and
lp*H, 1l gffl;ounded by

CEKMolli-lg1llwe=llg2llpe=, 0= 1 (2.29)
Put v{p) = — Ewpdk) + Eqwp,(p) + £0,{(p — k). It follows from (2.19) that

© m—1
f dsjdpe”"“”séo(l’)<ﬁs(k -p)— ZO Tk — p)s"(j+1/2)>
t j=

< C(m, K)t"'"‘z’st;_‘gp(léo(p)l lug - pllwms)y, mz3, t>0,
peR®

(2.30)

where uy(p) = §,(p)g.(k — p).
First let E,M + em = 0. Then there is A > 0, such that |v(p)| 2 4, for k, peR>.

It follows from (2.30) with m = 5, the definition of l: and the asymptotic expansion
of F, after (2.8) that

| ds|dpe™®g(p)h(k — p)— [ dpe™ ™Y pi1 3+ pado(Pifk — P)
t J.n

(indp)) VTR S CK) T ol £2 1, (2.31)

where the sum is taken over 1/2+j+1<3 and vk, k)= dolk,)d,(k,) X
d3(k — k; — k). It follows now as in the proof of Lemma 5.1 of [8] that if §, ; (k) =
[ dpdo(p) [tk — p)e™ <P (iv(p)) ~¢* V), then

11,512 < CE D + 07> (ol s o Tl e
and

lite% gy gl = < CE D+ 172 Gollws ol Tl s -
As ”Z}”WA:»SC(K) 1911l waseswlldallwors=» the two last inequalities prove, together

with (2.31), the existence of the limit H, in L2 and the decay properties in the case
EqMy+em=0.

Second, if EoM,+em#0, then [dpe™™*gy(p)Ii(k —p)=R js(k) can be
estimated by formula (2.7), which leads to an asymptotic expansion of the

type (2.8) of | R; (k)s™VU* Y2 ds. If EM # E,M, + em, one then proceeds as in the
t

proof of Lemma 2.1, and if EM = E;M, + ¢m, one proceeds as in the proof of
Lemma 2.4, to determine the decay of the terms ||r; [l and ||y, *7; [ -, Wwhere 7; (k)

o]

= | R;,s~U*VDds. Substitution of these results into (2.30) gives then the announced
t

results. Q.E.D.

The following lemma is well-known and is a trivial consequence of decay properties
of free solutions.
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Lemma 2.7. Let ¢&y,,=+1, my,m; >0, §,eCy, supp 4:=K;, 1=ZiZ3.
Moreover let fi(k;,k,) = oWy (k) — €10, (k1) — £30,,(Ky) — €300,,,(ky + ky — k), OF
let filky,ky) = eolkl® — eylky|* — ealk,)? — ealky +ky — k|2 If

T
Ht,T(k) = ! dsfdk1 dk, elfk(kl'kZ)sgl(kl)gz(kz)g3(k —ky —ky),

then H,r has a limit H, in L? when T—co, supp H,; < K=K, + K, + K,
3
and |H |- < C(K)1 + 072 [] 14ill e, for t20.

i=1

Proof. 1f 9; (k) = e*s*=®" (respectively d; (k) = e*"), then

T 3
H, = jdsvo,—s*( H ”i,s*gi)'AS l0:,9ill yro < C(n, K;) |l g [l L:]t] =32, one gets
t i=1

0:,0%Gi o < C1, K) il s (1 4 [2]) 72

The lemma follows now from

T
IH 7l = jds 01,5%G1 | Lo | 025%g5 | L= g3 1l L2(1 +8) 71 QED.
t

Lemmas 2.1 to 2.7 lead immediately to the existence and decay properties of the
wave operators, at second and third order. We note that by Eq.(1")

Q% V= — [ dsV,_J%V,
t

Q3V,= — [ ds, V,_sl<J3oVsl — [ dsyV,, _, JAI®J? +J2®I)0Vs2>. (2.32)
t S1

Proposition 2.8. Let V,, t =0, be defined as before and v,,v,,v3€D(a), a=1. The
strong Riemann integrals Q2%*v; ®v,), 2%*(v, ®v,®v;) exist then in H, Qe
Ly(D(a), #), i=2, 3, supp 2%v,®@v,)'=K, supp 23v, ®v, ®v;) = 3K, where
K = {xeR3||x| L a}, and for t 20,

12%(V,0) ® (V;02)) I 12 < C(@)(1 + )™ 2104 | pay 102 ]| piay»
||93((V11)1)®(V102)®(Vz”3)) 2= Cl@)(1 +1)” ! v ”D(a) v, ”D(a) [vs “D(a)’
192%((V;v) @ (Vo)) - < Cl@)(1 4+ 8) ™[04 [l peay 102l Dy
1923((V;0) ® (V02) ® (V;03)) = < C(@)(1 + 1) 2110, | pgay 192 | piay 1931 oy -
Proof. The Fourier transform (V_,02,((V,v,) ® (V,v,)))"is just a sum of terms A (with
C* coefficients in the case of NLKG) defined in Lemmas 2.1-2.4. In the case of £,
the analog is true, by Lemmas 2.5-2.7. The lemma follows now, if one use, in the case

of the terms figuring in Lemma 2.7, that | V,f| . < C(a) || f |2, f€D(a).
Q.E.D.
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3. Construction of Wave Operators
Let (t,f) (x) = f(x + b), x, beR>. Introduce the space %(a), a = 1 of formal power
series A=Y, A", A"eL,(D(a), #), 1,A" = A(®"1,). Let #,(a), 2 >0 be the Banach

nx2
space of elements Ae%(a) for which the norm p;(4)= ). A" |A4", < oo, where

n22

|42, = sup (1 + )" 2(1 4% Vill oo + (1 + 021 A2 Vil o)) (3.1)

20
|A3|3 = sup ((1 +)( 430 V:“L,(D(a),m +(1+1)A% Vz”z,,(n(a),Lm))), (3.2)
20
and
|4%, = sup (1 + &) *"*[l A" V[l o) P24 (33

20

In this paragraph, we shall show that the equation
B=— [V_Jo(I+ Q%+ Q%+ B)oVds— Q2> — Q3 (34)
0

has a unique solution Be%,(a), for some 1 > 0; i.. there is a unique wave operator
Q=1+ 02%+ Q3+ B satisfying Eq. (1'). Let %(a) be the subspace of elements
AedB(a), with A2 = 43 =0, and let &,(a) = B,(a) " %(a). Introduce

N.(B)= — E V_(Jo(I+ 2%+ Q23+ B)—Jo(I + 2% + P))oVds, (3.6)

for T > 0 and Be4,(a) and denote by N(B) = N (B) and N (B)" (respectively N(B)")
the n-homogeneous part of N (B) (respectively N(B)). We note that N (B)" =0 for
n<4.

Proposition g.l. There is ro > 0 (depending on a) such that, if 0< A <ry, 0<r<r,,
B, By, B,e%;(a) and py(B), pi(B,), pi(B,) =r, then

i) z A"sup (1 4t *"8|[N 1 (B V)" — Np,(Be V'l Lo = CT U7%, for0<y<1,

n25 2
T; ,ZTz g‘ 79 and for some C >0,
ii) N(B)eZ,(a)
iil) p,(B, — B,) S C(A +71) p)(B; — B,), for some C > 0.

Proof. By hypothesis, the function F in (NLKG) (respectively (NLS)) is analyticina

neighbourhood of zero in E =C" x C*¥ x C!2" (respectively E = CN x C3"). Let

F =Y F"be the Taylor expansion of F around zero, where F"eL,(E, C"). There is
n22

p >0 such that the series G(z) = Y, z"|| F"| L&ch converges for |z| < p, zeC.

nx2

3
Denoteby A' =1,4>=02% A>=0Q%* A=) A"and N,(B;,B,)=J°(4 + B,)—
n=1
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Jo(A + B,), for By, B,e%(a). N,(B;, B,) is an element of %(a) as %(a) is stable
under composition with V and under pointwise multiplication. In order to estimate
the L,(D(a), #’)-norm of N,(B;, B,)", the n-homogeneous part of N,(B,, B,), we note
first that

1
N,(By,B,) = gJ’o(A +xB, +(1 — x)B,).(B, — B,)dx. (3.7)

Introduce (as a formal power series in v)

3

o0
q,()= 21 VIl oy + 24 VIl @y VZ 0,
n= n=

and introduce the functions f,:R* - R™, n > 5 by the following equality of formal
power series in v:

YV £5,2) = C,G(C1a,(A°V) + C,a,(By° V) + C14,(B2° V) 4(By — Bo) Vo).
nzs
(3.8)
In the case of NLS (respectively NLKG) the n-homogeneous part J}, of
J'o(A+ xB, + (1 —x)B,).(B, — B,) is a sum of products of factors, each factor
being a term in A4, B, B, or B; — B, composed with not more than one (respectively
two for the W*2-valued part and one for the W32-valued part) derivative. Taking
W?2=.norm of factors involving a term from 4 and W?2-norm of the other factors,
one gets after composition with ¥ that
“J';,xo V;”I,(D(a),(l —A) 1) < fls,x), s20,nz5
if C, is sufficiently big. It follows then from the definition of D(a) and the translation
invariance of J1 ,° ¥, that
1150 Vil Loae) S Caan fo(s, x), s20,n=5 3.9)

for some C, > 0. By the definition of D(a) and by Proposition 2.8, there is C, > 0 such
that C,q,(4°V) S C,0v +v* +v) and q,(B;e V) S (1 +5) ™' pyyy e Bro V), i=1,2,
by the definition of g, and p,. It follows now from the positivity of the coefficients in
the expansion of G and (3.8) that

I8, X) £ g,(s)(1 4 5)" "8 < g (0)(1 4 5)~@*7®),
where

Y Vg )1 4+ 5)" O = C,G(C((1 +5) ¥ 2v+ (1 +5)7 (v +?)

nx5
+(1+s)” 1(pv(1+s)'”3(B1) + pv(l+s)"/“(B2))))(1 +5)7!
'pv(l+s)‘”"(Bl - BZ)’ N 2 0. (310)

and C, is sufficiently big. Let the argument in G’ be smaller than p for s =0, so that
(3.10) is an equality of convergent series for small positive v. Inequality (3.9) give
then (with new C,)

”‘]';,xO V;“L,.(D(a}..)i") é Cangn(o)(l + S)—(Z +n/8)’ n g 5’ N g 0. (31 1)
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Equations (3.7) and (3.11) give for B, = B and B, =0,

sup (1 + t)XH/s [N7,(BoV)" — Nr,(B-V)" ”L,,(D(a),,;?’)

t20

Ssup (1 +*m8
t20

T2
| Cang,(0)(1 + s+ 1)~ @*"/®ds
T,

< g,(0)16C, sup (1 + t)**"8(1 4+ ¢ + T)~ 1 +n/®

t=0

x+n/8\¥+"8 i ( T \¢7?
< L X
< 32Cag,,(0)< o /8> (48 *( 1=

<g016C,(1— ' " *T~"7% for 0<y<l, T,,,<T (312

Summation of inequality (3.12) for n = S and the definition (3.10) of g, give (with new
C,):

Z sup v"|| NT1(B° v — NTz(BO Vr)"”L,(D(a),yf)

nz5 t=20

SC1 =)' T UTPG(CA(v +v? +v®) + p(B)))py(B), (3.13)

for 0<y <1, T;, T, £ T. One can choose r, small enough so that C,(r + 13 +r3)
+ro < p. Together with (3.13) this proves part i) of the proposition.

In analogy with the derivation of estimate (3.12) one finds, using (3.7), (3.11) and
definition (3.3), that (with new C,)

PAN(B;) — N(B,)) < C,G'(C,((A + A% + A3) + py(B;) + pa(B.)))pi(B; — Bz)k
3.14)

Take r, small enough so that C,(4+ A%+ A%) + 2r < p. The right-hand side of
inequality (3.14) is then finite for p,(B;) <r, and B;e%,(a), i=1, 2. This proves
point ii) of the proposition by taking B, =0. If ry is sufficiently small then
C,G'((A+ A%+ A%) + 2r)) £ C'(A + r), which proves iii). QED.

Remark 3.2.

i) The fact that J is a continuous map from neighbourhood of zero in # into
(1 — A)~ 12 (but not generally into #°) gives rise to the factor n on the right-hand
side of (3.9). This loss of radious of analyticity is compensated by the integration in
N(B), which is seen in the second inequality in (3.12). If the nonlinearities in NLKG
or NLS involved more derivatives (or if a = o0), then the situation would be different
and the above proof would not permit us to conclude that N(B)eZ%,(a).

ii) The first part of Proposition 3.1 assures the convergence of N (B) to N ,(B) in
the space of functions analytic on the ball of radius 4 in D(a) into H#.

Proposition 3.3. There is >0 such that Eq. (3.4) has a unique solution B in % ,(a).
Proof. Equation (3.4) reads B = N(B) + X, where

X=— [ V_Jo(l + 2>+ %) V,ds — P — Q. (3.15)
0
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Let r, > 0 be such that the conclusions of Proposition 3.1. hold. Choose 4 and r in
the interval ]0,r,[ such that C(4 + r) <3, where C is given by Proposition 3.1. iii).

Then p,(N(B)) £r/2 and p,(N(B,) — N(B,)) <ip,(B; — B,). It will be proved in
Lemma 3.4 that X e (a), for some v > 0, s0 p(X) < r/2 if vis sufficiently small. Now,
let A also satisfy 4 < v. The map B— N(B) + X is then a contraction of the ball of
radius r around zero in %,(a) into itself. This proves that the equation B= N(B) + X
has a unique solution in that ball. As the solution of this equation is unique in %(a), it

is also unique in %,(a). Q.E.D.
Lemma 3.4. X defined by (3.15) is an element of & ,(a) if A > 0 is sufficiently small.

Proof. Let the function G be as in the proof of Proposition 3.1 and define H by
H(z) = G(2) = 22 | F?|| g,y = 2° | >l L g.cvp Where zeC and |z < p. Introduce the

norm p,= Y V'|| ||, pry?20, and let A=I+Q%>+Q3R=J—-J>—J3 If A

n21
is sufficiently small then Re Ae%,(a), and we have
1
RoA = [R'o(xA).Adx. (3.16)
0

Denote by (RoA4)" (respectively (R'o(xA)-A)") the n-homogeneous part of RcA4
(respectively R’o(xA)-A), and introduce the functions f,:R* x [0,1]— R™ by the
equality of formal power series (in v)

2 Vs, %)= C H'(Cixq,(A°V ))pfA4°V)), (3.17)

nz4

xe[0,1], C,>0,

where g, is as in the proof of Proposition 3.1. One proves, in the same way as in
equality (3.9), that

(R o(xA).A)"V ”L,,(D(a),,;{’) = Cyanf,(s,x), n=24,520, (3.18)

x€[0, 1], for some C, > 0.1t follows from Proposition 2.8 and decay properties of ¥
that

g A VIS C (1 +5)73 2+ (2 +v)(1 +5)72), 520, (3.19)
and that

PAA VIS Co(v + v (1 +5) 2+ v3 1 +5)7Y), 520, (3.20)
for some C, > 0. Let the functions g,:R* — R* be defined by the equality of formal

powerseries:

Y V(L4 8)" g (5) = C,H'(Co(v(1 + )32 + (2 +V3)(1 +5)7?)

nz4

W+ +8) 24931 +5)7Y), s=20.  (3.21)

The functions g, satisfy g,(s) < ¢,(0), for s = 0. It follows then from the definition of H,
and formulas (3.17) and (3.19)—(3.21) that if C, in (3.21) is sufficiently big then
Fu8,x) S (1 +5)" @8 () < g, (0)(1 +5)~?*"® This together with (3.18) and
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(3.16), leads to
HRAY V)1 paar S Cangnl0)(1 + 5", 520,n2 4. (322
The definition of p, and (3.22) show that

m( | V-sRvovsds> < Y sup(L+ 00 [ [(Ro AV, ds
0

nz4 t=20
< Y Cigu08nE +m)' < Y 8C.g,0)
n24 n24

By the definition (3.21) of g, it follows from the last inequality that
p,1< [ V_y(ReA° Vs)ds> S8C,C,H'(Cy(A+ A2+ 23))(A+ A2 + 13,
0
where 1> 0 is so small that the right-hand side is finite. Hence

V_J(ReA°V)dse%,(a), for some A>0. (3.23)

Ot=r 8

Let Y=—cjodsV_s(Jo(I+A)—J2—(J2(1®A2+A2®I)+J3))°Vs and let
0

' =I. The integrand can be written as

Vo Ro(2' + Q2+ Q%)V + ) V_ JH Q" RQ%)V

Py+pp24
1§P.’§3

+ Z V_SJ3(Qp1®sz®Qp3)O Vs_

From (3.23) and Proposition 2.8 it follows that Y eZ,(a), for 1 > 0 sufficiently small.
From the definition of 22,023 it then follows that X = Ye%,(a), for such A.
QED.

Corollary 3.4. The equation
Q=1—[dsV_JeQeV,
0

has, for some 1 > 0, a unique solution 2 — 1€ % ,(a). If ueD(a),||u| pay < 4, then 2(u)
is an analytic function on R>.

Proof. The uniqueness and existence follow from Proposition 3.3 by the substi-
tution B=Q — [ — 22 — 23 and the fact that 22 + 23e%,(a) by Proposition 2.8.
For xeR3 the function x — t,ueD, is analytic and so is the function x — Q(z, u)e #,
as 2 — Ie®,(a). (2(u))(x) is well defined for every xeR3, as Q(u)e#) and #
consists of continuous functions. x —(2(u))(x) is then analytic as the function
0= (2() (x + 8) = (t;2(u))(x) = (2(r;u))(x) is analytic in a neighbourhood of zero.

Q.E.D.
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4. Properties of Solutions of the Nonlinear Equations

Through this paragraph £2 will denote the solution of the equation in Corollary 3.4.
The following simple uniqueness result, for the analytic Cauchy problems
(NLKG) and (NLS), is certainly well-known.

Proposition 4.1. Let u?? and u® be two solutions of (NLKG) (respectively (NLS))
analytic in a connected open neighbourhood O of {0} x R*. If u'"(0,x) = u?(0,x),
(6/0t)u'(0,x) = (8/0t)u'?(0,x) (respectively u*(0,x)=u?(0,x)) for every xeR>3,
then u™ = u® in 0.

Proof. The proofs for the two cases (NLKG) and (NLS) are analogous, so we only
consider the first one. Let u = u' —u®, By hypothesis (V"u) (0, x) = 0 and (V"Du)
(0,x) =0 for xeR?3, n= 0. By equation (NLKG) it follows that

2
(;7 uj>(0, x) = m}(Au)(0,x) + F j(u™(0, x), Du(0,x), VDu‘ (0, x))

— F{u®(0,x), Du®(0,x), VDu®(0,x)), 1=j=<N,xeR’

Thus ((0%/3t*)u)(0, x) = 0 for xeR3. Repeating this argument for the time derivatives
of (NLKG) gives that ((0"/0t")u)(0, x) = 0 for n 2 0, xeR3. In particular it follows that
u is zero in a neighbourhood of zero in R*, which by analytic continuation proves
that u=0in 0. Q.E.D.

We introduce a set E of scattering states ¢, , invariant under the linear evolution
V,, t =20, on which the series £2(¢ ,) converges and 2"(V,¢ ), n = 2, has the decay
properties described by the norms | |, in (3.1)—(3.3) for ¢t » co. For this purpose
let
E={p,eD@l¢.lpe<hbaz1,i>0 and Q2—IeBa)).

We define E = ( ) V,E'". Obviously V,E c E for t 2 0, and it follows from Corollary

3.4 that E is nct)%?empty. We notice that En D(a) is open in D(a).
For convenience we give the decay properties of Q"(V,¢,), ¢ , €E, which are
rather obvious from the definition of E. For f:R™ — # let

pi(f)= Sl>1p(|lf(t) Iz + 1+ 2] £l L), “.1)
p2(f) = Sl;)((1 + O fON2 + A + 21 fO)ll), (4.2)
p3(f) = Stl=1:3((1 +O1fO 2+ A+ 21O l=), (4.3)
and .
puf)=sup((L + 0" "B f(B)]l2), nz4 (4.4)

t=0
Proposition 4.2. Let ¢, €E and let ¢, (t)=(1— A)"*Q"(V,¢ ). Then
) Y PuPmm <0 for mz0,

n21
ii) there is ¢ >0 such that V_,p . €E and
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ili) the functiony —»QV,p, + ), t = 0is analytic in a neighbourhood of zero in
D(a), for every a = 1.

Proof .

i) By the definition of E there is A>0, a=1 and T =20 such that ¢, eD(a),
Q —IeB(a) and |V 10 | p@ < A Let Y, (t) = (1 = A)"22%V(V _1¢)). By the
definition of p,, it follows now that p,(¢,, ,) < p(¥m ), and then by the definition of
the norm | |, (see (3.1)-(3.3)) that p,(Ym.) <(1+na®"?|Q", 1V _ 10 D@,
for n=2. The series ) A"Q"|, is convergent as 2 —Ied,(a). The series

nx2 .
Y (14 n2a®)™2| 2%,V 10 + b is then also convergent as |V _7¢ 4 [lpg < 4. It
22 .
is well known that P1(Y 1) < 0. This proves that Y p,(¢,,,) < .

ii) The second statement of the proposition follo(;vgs1 from the fact that there is
¢>0, such that ||V _(V_,0.)llpa <4 as V is strongly continuous in D(a).

iil) As Q2 — Ie#,(a), it follows from formulas (3.1)—(3.3) that (£2 — I)°V,e%,(a) for
every t = 0. The map ¢ —» V,y map open neighbourhoods of zero in D(a), a’ = 1
onto open neighbourhoods of zero in D(a'), for teR. By the definition of T it
follows then that the map y - Q(V,0, +Y)=(QeV, )V _70, +V _,_t¥)eH is
analytic in an open neighbourhood of zero in D(a'). Q.E.D.

The next proposition leads to analyticity properties of the solutions we are
going to construct for (NLKG) and (NLS). We recall that (£2(¢,))(x) is in C*¥
(respectively CV) for the case of (NLKG) (respectively (NLS)).

Proposition 4.3. Let ¢ . cE. There is then ¢>0 such that the function (t,x)—
(Q(V,0 ))(x) is analytic in 0, =] —¢, o[ x R>.

Proof. By Proposition 4.2 there is ¢ >0 such that V_,p,€E. Let b=(b,,b,,b;),
(tof)(x) = f(x + b) and b,eR for 0<i<3. Then (b,,b)eR* >V, 1,0,€D(a), is
an analytic function, where a has been chosen such that ¢, eD(a). It follows that
the function (by, b) = 2(V 44, 7p¢ + )X, t > — ¢, is analytic in a neighbourhood of
zero in R* as y —» Q(V,¢, + Y)eH# is analytic in a neighbourhood of zero in D(a),
by Proposition 4.2. The function (bg,b) = (2(V, 45, T6® +))(%) = (2(V;+ 5,9 +))(x + D)
eC?¥ (in the case of (NLKG) and C¥ in the case of (NLS)) is then analytic in a
neighbourhood of zero in R*, by Sobolev embedding, for t > — &, xeR>.

We next prove the fact that the wave operator £ composed by the linear
evolution ¥, is the non-linear evolution.

Proposition 4.4. Let ¢ . €E. Then the function te[ — e, c0[ - ¢(t) = Q(V,@ . )eH is

a solution of the equation

o) =V, — f V- J(oo)ds, 45)

and ¢:]—¢, oo = # is analytic, for some ¢ > 0.

Proof. By Proposition 4.2 there is e >0 such V_,p.€E;so V,p,.€E fort > —eg,
by the definition of E. As Q — Ie%,(a) implies that (2 — I)oV e, (a) for s >0, it
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follows from Corollary 3.4 that ¢ satisfies (in #) the equation
pO)=V.p,— [V_J(@s+1t)ds, t=—e
0

Equation (4.5) follows after the substitution s + ¢ —s. Then as in the proof of
Proposition 4.3, ¢:] —¢, oo[ - J# is analytic if ¢ > 0 is sufficiently small. Q.E.D.

The set F = QE will play the role of initial data at t = 0 for the Cauchy problems
(NLKG) and (NLS).

When we say that ¢(t) = Q-V,¢, is a solution of (NLKG) we mean that the
first component of the function (¢, x) = (@(t))(x) = (u(t, x), (3/0t)u(t, x)) is a solution
of (NLKG).

Corollary 4.5. Let @,eF. There is then ¢ >0, such that the equation (NLKG)
(respectively (NLS)) has a unique analytic solution (t,x):] —¢, 0] x R3 > (¢(t))(x)e
C?N (respectively CV), with @,= @(0). Further there is ¢, .€E such that
(1) =2(V,0.).

Proof. By Corollary 3.4,xeR3— ¢ (x)eC?¥ (respectively C¥) is an analytic
function, and by Proposition 4.1 the solution ¢ of (NLKG) (respectively (NLS)) is
unique as an analytic function, when it exists. The definition of F means that there
exists ¢ . € E such that o, = Q(¢ ). Let o(t) = Q(V,p ). By Proposition 4.3 there is
¢>0 such that (t,x)—(¢(t))(x)eC?N (respectively C¥) is an analytic function
in 0,=]—¢00[ x R3 and in view of Proposition 4.4 the analytic function
te]—e oo[— @(t)eA# satisfies Eq. (4.5) if e>0 is sufficiently small. But an
analytic solution of (4.5) is also a solution of (NLKG) (respectively (NLS)).
Q.E.D.

The following proposition shows that we have as many initial data in F at t =0
asin E at t = 0.

Proposition 4.6. The map Q:E — # is injective.

Proof. Let o3, @PeF. There is then ¢V, ¢PeE such that ¢ = Q(p?),
i=1, 2. If ot)=Q2(V,0?), then lim V _,09(t) = ¢¥ in #, which follows from

Proposition 4.2.i. Thus if (p‘j’%(pt‘z’o? then there is TeR* such that )(T)#
@®(T). The function (t, x)e] — &, co[ x R> - (®(£))(x)eC? (respectively C¥), i=1,
2, is, by Corollary (4.5) an analytic solution of (NLKG) (respectively (NLS)).
Proposition 4.1 applied to the data ¢*((T) and ¢®(T) gives that ¢'*) # @@, This
shows, once more by Proposition 4.1 that @{) # ¢ if o) # ¢'2. Q.E.D.

One can reformulate certain properties of the solutions of the analytic Cauchy
problems (NLKG) and (NLS) in F in terms of an abstract evolution operator.

Theorem 4.7. There is a unique evolution operator U:R* x F— # such that the
Sunction t — @(t) = U(@o)eH, o€ is analytic in a neighbourhood of R* and such
that

o) =Vipo + f Voo J(0() ds. 46)
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Further U has the following properties:

) UR*xFoF,U,,,=U,cU,,U=QV,0cQ ! fort,i' 20.

ii) The function (t,x)— (U (@o))(x) is analyticin O, = ] — ¢, o[ x R? for every p,eF
and some ¢ > 0 (dependent of ¢,).

iii) For po€F let ¢, be the unique element in E such that Ufpo)= Y. 2"(V,9.),

nx1
t20, and let ¢, ,(t)=(1—A)"*Q"(V,¢.). Then Y, p(pp.n) < o0, for every m =0.

nxl
Proof. Let @y,eF. By Proposition 4.6 there is then a unique ¢, €E such that
©o=£2(¢p.). In light of Proposition 4.2 there is ¢>0 such that the function
t—(t) = Q(V,p . )eH is analyticin ] — ¢, co[. By Proposition 4.4, ¢ is a solution of

Eq. (4.5). From V,¢p, = V,((p,, - V_SJ((p(s))ds> it follows:
0

o) =V, — | Vielols)ds = V.o + iv,-s.l(w(s»ds.

This gives Eq. (4.6). The uniqueness of the solution ¢ of Eq. (4.6) as an analytic
function in ¢, follows now by successive derivations in ¢ as in the proof of Proposition
4.1. We define U(¢,) = 2(V,¢.). Then U:R* x F»>F and U, = 2V, (Pro-
position 4.6), which proves the existence of U as well as i). Point ii) (respectively
iil)) are just a reformulation of Proposition 4.3 (respectively 4.2. i)). Q.E.D.
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Note added in proof After submission of the present article, the authors have taken knowledge of the
following results:

[1'] Kleinerman, S.: Global existence of small amplitude solutions to nonlinear Klein-Gordon
equations in four space-time dimensions Preprint

[2'] Ginibre, J, Velo, G.: The global Cauchy problem for the nonlinear Schrédinger equation
revisited, and: The global Cauchy problem for the nonlinear Klein-Gordon equation Preprints

The case of quadratic nonlinearities is covered by these references under various hypothesis, supple-
mentary (or different) to ours. The spaces of initial conditions considered for these cases are larger
than ours





