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Abstract. We consider, in a 1 + 3 space time, arbitrary (finite) systems of non-
linear Klein-Gordon equations (respectively Schrόdinger equations) with an
arbitrary local and analytic non-linearity in the unknown and its first and second
order space-time (respectively first order space) derivatives, having no constant
or linear terms. No restriction is given on the frequency sign of the initial data. In
the case of non-linear Klein-Gordon equations all masses are supposed to be
different from zero.

We prove, for such systems, that the wave operator (from t = oo to t = 0)
exists on a domain of small entire test functions of exponential type and that the
analytic Cauchy problem, in U+ x IR3, has a unique solution for each initial
condition (at t = 0) being in the image of the wave operator. The decay properties
of such solutions are discussed in detail.

1. Introduction

To fix the ideas we first introduce the following systems of non-linear equations:

( • + mj)Uj(t, x) = Fj(u(t, x\Du{U x),Z)2u(ί, *)),m, ̂ 0 , l^j^N (NLKG')

and

)\εj=±l l^j^N, (NLS)

where xeU\ teU+ = {η\η^ 0}, V = (d/dxl9d/dx2,d/dx3),D = (d/dt, V),

i = i cXi dt

The non-linearity F = (FU...,FN) is restricted to be an analytic function in a
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neighbourhood Θ of zero:

F : ( ! ) c C N x C 4 J v x C 1 6 ^ C N for (NLKG)

and

F ί P c C ^ x C 3 ^ ^ for (NLS),

satisfying in both cases F(0) = F(0) = 0(F denoting the Frechet derivative of F).
Writing the second time derivatives in the non-linearity of (NLKG') as (d2/dt2)Uj =
(\3 + m2)Uj + Δiij — m2Up we can, imposing that 0 is sufficiently small and using
the implicit function theorem, reduce (NLKG) to

( • + m])Uj(t,x) = F/w(ί,x),DM(ί,x),DVM(ί,x)),m^ 0, 1 ̂ j g N, (NLKG)

where F is a new analytic function in some neighbourhood & of zero:

F\Θ a CN x C4N x C 1 2"->CN,F(0) = F(0) = 0.

Remark 1.1.

a) Instead of (NLKG') one could consider more general systems of non-linear
massive local relativistic evolution equations autonomous in t9 x. However, under
reasonable hypothesis, the Cauchy problem for such evolution equations can
be studied through (NLKG). For example, a non-linear Dirac equation like
(iyμdμ + m)φ = G(u,Du,φ,Dφ), with initial condition φ0 at ί = 0 is reduced to
( • + m2) φ = (iyμ dμ - m)G(u, Du, φ,Dφ) with initial condition (φθ9 φo)9 where
(y°yjdj + iy°m)φ0 — ίy°G{u0, Du0, φ0, (φ0, Vφ0)) = Φo- The last equation has a solu-
tion φ0 for small initial data.

b) Non-linear Schrodinger equations with real analytic non linearities as

(d/dt - iΔ)u(t9x) = G(u(t9x)9u(t9x),Vκ(ί,x),Vκ(ί,x)),G(0) = G'(0),G complex analytic,

fall into the class (NLS). (Here Z is the complex conjugate of ZeC). One has

only to introduce a new variable υ(t9 x) = u(t, x) and then consider the system

~-iΔ )u = G(u,v,VM,v)9\— + iΔ )υ = G(v,u,Vv,Wu)9 w(0,x) = f(0,x),
κdt J \dt )

where G(ξ)= Σ ^α^αifG(<^)= Σ a* ζa'ιs> the Taylor development of G around zero.

A similar remaik is obviously true for NLKG'.

Before outlining the content of the article we introduce certain notations. We
denote by Wn<p (U3, Cι)9n ^ 0,1 ^ p ^ oo, / ̂  1, the Sobolev space of functions from
U3 to Cι, being in Lp with their n first derivatives. In the case of (NLKG) (respectively
(NLS)) Jf =W4<2(n3XN)®W3>2(U3,CN) (respectively j f = W3'2(R\C% the
Fourier transform of / : Un -+ Cι

91 ^ 1, is given by f(k) = (2π)"n/2 J dx ~ίk xf(x). D{a\

a ^ 1 denotes, in the case of (NLKG) (respectively (NLS)), the subset of functions
(/,#) (respectively / ) in J f such that /, #eC 1 4(IR 3,CN) and such that the support
of f,g (respectively / ) is contained in {/celR3| \k\ ^a} (respectively
{keU3\(a+1)"1 ^ \k\ ^α}). D(a) is given its natural Banach norm. The
unitary evolution in Jf defined by the linear part of (NLKG) (respectively (NLS))
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is denoted Vt9 teU9 i.e.

N Γ / 0 I\~]ί * \
Vt= © exp t[ respectively Vt = © exp(ίϊε Zi) .

j=1 |_ \Δ-mj o / j \ y = 1 y

This is a C0-group in D(α). The scattering problem, with given scattering data
φ + eD(a) at t = oo, for (NLKG) (respectively (NLS)) is posed by the equation

φ(t)=Vtφ+-]vt.sJ(ψ(s))ds, φ{t)eJT9t^09 (1.1)

where |>(ί)](*) = (w(ί, x), (d/dt)u(t, x)) (respectively {φ(t))(x) = u(t9 x)) and
(J(φ{t)))(x) = (0, F(u(t9 x)9 Du{t9 x)9 DVu(t9 x))9 (respectively (J(φ(ή))(x) = F(u(t9 x)9

Vw(ί,x)). The corresponding Yang-Feldman equation for the wave operator
Ω:φ + ->φ{0) is

Ω = I - J F _ s J°Ωo Vsds, I = identity. (1.1')
o

We prove, in Sects. 2 and 3, that Eq. (1. Γ) has a solution Ω being an analytic function
from a neighbourhood of zero in D(a), a ^ 1 into Jf.

Given two Banach spaces X and 7, we denote by F(X, Y\ the space of formal
power series A = Σ An

9A
neLn(X9Y)9 the space of n-linear symmetric continuous

maps from X to 7. We do not make the distinction between An considered as a
monomial from X to 7, or as an element in Ln (X, 7) or as an element in L{®n

sX, 7),
where ®n

s is the n-fold symmetrized projective tensor product. Equation (1.1') is
solved first by considering Ω as an element of F(D(a), 3/F\ which gives the iterative
equation

Ωn=- J V_sJ
p(Ωni®'-®Ωnή(®nVs)dsσ, n^2,Ω1=I, (1.1")

0

where σ is the normalized symmetrization operator. We show in Sect. 2, by using the
method of stationary phase, that the decrease of the Ln(D{a)9 2tf) (respectively Ln{D{a\
L00)) norm of Ωn(®nVt) is better than ί~1/2 (respectively t~2) for n = 2 and Γ1

(respectively Γ2) for n = 3, as t -+ oo. The actual decay of these norms is usually
better. For example, the indicated decay for n = 2 is obtained for (NLKG) when
there is a relation of the type ε1Mι + ε 2 M 2 + ε 3 M 3 = 0, ε 1 , ε 2 , f i 3 = ± l and
M 1,M 2,M 3e{m 1,. . .,mΛ r}, and is obtained for the (NLS) when εί + εJ = 0 for
some l ^ i J ^ J V . Otherwise the decay turns out to be of the order of ί~3/2

(respectively t~3). The decay of Ω3(® 3Vt) in L3(D(α),L00) is always better than the
one indicated, but a ί ~ 2 type decay is sufficient for our purpose. Sobolev estimates
give now that the time decay for the Lw(D(α),^f)-norm of Ωn(®nVt) is at least

t-(t + n/8) for n ^ 4 at ί -^ cx). The linear dependence in n of the exponent is important
as it exactly compensates through the integration in (1.1"), the derivative loss due
to the fact that J is continuous from Jf into (1-Δ)~1I2JF (but in general not into
Jf). In Sect. 3, the convergence of Ω = £ Ωn is proved by using a variation of the

iteration scheme proposed in [8]. The solutions of Eq. (1.1) are now given by
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φ(t) = Ω(Vtφ+\t ^ 0, for φ+ in the domain of convergence. D(a) is a space of analytic
vectors for the representation t -* Vt (in D(a)). From this and the analyticity of Ω we
deduce in Sect. 4, that the obtained solutions for (NLKG) and (NLS) are analytic in
a neighbourhood of IR + x (R3. From the above indicated decay of Ωn(®n Vt), n ^ 2, it
is clear that ||<P(0IILW decays as ί~3/2, ί->oo.

There is a rich literature on the systems (NLKG) and (NLS), (cf. [5,9]). Recent
contributions on the existence of global solutions and scattering states for (NLKG)
are [3,6] and for (NLS) [1,3,6]. These references solve, in the case of 1 + 3
dimensions the problem of existence of decaying scattering solutions for the case
where F is C °° and F(0) = F(0) = F'(0), i.e. there are no quadratic terms in the non-
linearity. The system (NLKG) with N = 1, and without derivatives in F, was proved
[8] to have scattering solutions for a set of scattering states similar to D(a) when
certain combinations of masses appear (TV ̂  1) this was proved when the scattering
states have a definite frequency sign [7].

2. Decay Properties of Certain Integrals of Products of Free Solutions

We calculate in this paragraph the wave operators for the systems (NLS) and
(NLKG) up to order three. This can be done by evaluating, with the help of the
method of stationary phase, the decay properties as t -» oo of integrals of the type

ds$dpeifMsu(p,k), ueC£(M% /feGC°°((R3)
t

:R3

M% /feGC°°((R3), keU3.

For meR define ωm:R3->[R by

ωm(k) = (m2 + \k\ψ2. (2.1)

F o r m, m 1 ? m 2 # 0 , ε, β l 5 ε 2 = ± 1, fceIR3, define / k : I R 3 - > [ R b y

(p) + ε2ωm2(p - k). (2.2)

As m 1 , m 2 ^ 0 , equation f'k(p) = 0 (derivative with respect to the variable p) is
equivalent to

(είmί + ε2m2)p = ε^fc. (2.3)

In the case ε1mί 4- ε1m1 ψ 0 the values of fk and det f'k' are, when f'k{p) = 0:

, 3

det/ϊ(p) = + ( - ^ - \ε1m1 + ε 2m 2 | 7(ε 1m 1 + ε2m2)(ω(ε )(k)), (2.5)

if p = ε1m1(ε1m1 +ε2m2)~1fc.

Lemma 2.1. Let ίf(fe) = eUωmik)t

9 fk(p) = - εωjk) + εxωm i(p) + ε2ωW 2(p - fc),m,ml9

m 2 > 0 , ε 1 m 1 + ε 2 m 2 ^ 0 , ειmι+ε2m2Φεm, ε , ε 1 , ε 2 = ± l and gufaeCoi^3)1

1 CQ(IR3) is the space of complex valued Ck-functions on IR3 with compact support dt = d/dkit

α = («!,α2,α3), |α| = otί + α2 + α3, d
a = d\x df d%\ ka = kγ ka

2

2 kf
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or let vt(k) = em\ Λ(p)= -ε|fc|2 + £ l ( |p | 2 + \p-k\2), ε,εt = ±l and

ΐιuτ(k) = ]ds[ dp e'f^g^Uk - p), OϊtϊT, (2.6)
3t U3

then fitτ has a limit fit in CQ(U3) as T->oo and if supp^ ί = X i then supp fitT

K1 + K2 and

Here C is a constant only dependent on the indicated variables.

Proof. Denote by p(k) the unique solution of f'k(p) = 0, ke U3. The function k -• p(k)
is C00. Since det/f(p(/c))^ 0 for keU3, Theorems 7.7.5 and 7.7.6 of [2] give

\$eιmsuk(p)dp - e » | det(/2(p(fc))/2π)|"1/2^-3'2 Y (LfJthukMk))s~j\
j=o

£C{m,f)s-m\\uk\\WM.s>09 (2.7)

where uk(p) = gι{p)g2{k — p\ σ the signature oίfk and LfJ k differential operators of
order 2/ in p with C00 coefficients in p and k. The supports of gγ and $ 2

 a r e compact,
so the existence of the limit fit in CQ(IR3) as T -> oo of/zίΓ follows from (2.7). Introduce

F^x) = J ί/sβixss-α, α > 1. According to (2.7)
1

et ( / Z 2 " ϊ 1

)(m—l)-1ί- ί m-1>||f# f c | |w^.., ί > 0 , m ^ 2 . (2.8)

The supports of gx and ^ 2 are such that \fk(p{k))\^C{Kί,K2)>0 for
(k,k — p(/c))esuppg1 x supp^2 = ̂ i x K2. Fa has the asymptotic expansion

Fa(x)-eix
where p α , 0 = - l and

- φ + l ) . . . ( α + α - l ) for / ^ l . This is obtained from Fa(x) = (ix)~1(-eix +
aFa+ί(x)). Introducing this into (2.8) and keeping on the left-hand side only terms
decreasing slower than t~{m~1] one gets:

\fιt{k) - eiσ«'*\det(f'k'(p(k))/2πT W < * * » r ^ {LfJ,kuk)(p{k))

C(m,/,K1,K2)t-<--1>||«lk||wta.^ t >0 .
(2.9)

One notes that if K = Ki + K2 = {k = px + p2\PieK1,p2eK2}, then the support of
the function k-* \\uk\\^. is contained in K, so (} ||Mt||^..</fe)1/2^C(/C1,A:2)
llίilln*- ll^ll^-.- Taking m = 3, (2.9) gives:

3 / 2 y i | | H , β . y 2 | | ( y 6 . , ( ^ l . (2.10)
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It is known that \\v,*g\\w,^C\t\~3'2 \\g||w,Λ,tΦQ when ϋt(k) = emH, and that
\\vt*g\\w»^C\t\-3l2\\g\\^,, t^O when ύ£k) = ehω^' (cf. [4]). If 4φ) = e"""4

|det(/ί'((p(/c))/2π)|-1/2(L/j./[M/i)(p(/c))pί(i/t(p(fc)))-<'+1», then &,, e Q ( R 3 ) and

llftjllw-' ^ Cnx^WiJw*'^ c("> f'κi>κi) yi l lH^^-ll^ll i i-^- Consequently
the terms in the sum appearing in (2.9) give (with υ't{k) = vt(k)elf("m')

'WόΛw+v -WόiWw*^ t > 0 . (2.11)

Using (2.9) with m = 4 one gets, by summing over 7, / ̂  0,7 + / < 3/2

Ik• A,H^.. ̂ g IIύl gtj

As |k*0| |L,, ^ y IILi, it follows from (2.9) that the last term in (2.12) is smaller than

CinJ.K^K^Γ^Wg^A^U^ ί>0.

Inserting this and (2.11) in (2.12) one gets:

l k * M w . ^ C ( n , / , K 1 , K 2 ) t - 3 y 1 | | ί V . . y 2 | | l ^ . ί > l . (2.13)

The statement of the lemma follows now from (2.10) and (2.13) by observing that

f o r O ^ ί ^ l . (Q.E.D)

If ειm1 + ε2m2 = 0, then the limit when Γ-» 00 of fiuT is no longer in CQ(1R3)

in general. As in this case, the zeros of f'k{p) = ΰ are exactly /c = 0, pe(R3 and
fk(p) φ 0 for k, peU3, a bounded singularity appears in general at k = 0. However
the decay properties of ht in L2 and L00 are the same as in lemma 2.1.

Lemma 2.2. Let ε o , ε = ± 1, mo,m>0,^1,^2GC5 )((R3) am/ let fk(p)= -εωm(fc)

]]εo(ωmo(rt - ωmo(p - k)). If ύt(k) = e " > < and fiuT(k) =] ds \ dp e ™

άi(P)U2(k-p), then for n = 0, 1... /ίίjΓ /ias a limit ht in Wn'2 as T->oo and ί/
supp βi = Kf then supp ίtfT c Ki •+• K 2 and

The proof of this lemma is so similar to that of Lemma 5.1 in [8], that we omit it.
We now consider the cases where the zeros of fk(p) and f'k(p) coincide. Decay

properties of ||AJL2 and \\ht\\Loo obtained in Lemmas 2.1 and 2.2. are then no
more valid.

Lemma2.3. Let gug2eC${U\ ε , ε o = ± l , ϋt{k) = em2\ and let fk(p)=-ε\k\2
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£,,Γ(fc) =]ds\dp e' -p), Oϊtί

and if s u p p g{ = Kh then s u p p fίtT aK1+ K2, htT has a limit ht in Wn'2, H
1,..., as T-> oo and

= 0,

\\vt*ht\\w..»'£C(n,Kί9K2)(l +ί)~2ll^ill^* ll̂ 2ll̂ *-» ί^0-

Proof fk(p)= -(ε + εo)|fc|2 + 2εo/c p, so after a change of variables p-^k-p
and (or) p -> - p we have only to consider the case ε = - ε0 = - 1. Then fk(p) = 2k-p.
Let φeC£(M3) be equal to one in a neighbourhood of Kί + K2 and let £

vm{p\k) + r(p,k\ where vm(p;k) is a monomial of degree m in fc, be the Taylor
development of k->§γ{p)Q2(k — p) at fc = 0, with a remaining term k->r{p,k)
having a zero of order 6 at A; = 0. Theorem 7.7.1 of [2] gives

sup
P

So for 0 < t g T

]ds$dpe2isk>'r(p,k)φ(k)dp

^2'ψY (2.14)

Denoting FJk) = \elikpυm{p;k), then FmeS(R3) and

\e2ik"svm(p;k)dp = s-mFm(ks), s>0.

The L«-norm l^q^ao of .he function k-+s-mFm(sk) is s"(3/«+m) | |F m | | L , and
^ . , 0 ^ m ^ 5 , which gives

μSμpe2isk"vm(p;k)φ(k)

) , 0 ^ m ^ 5 , 0 < ί ^ Γ , 1 ^ 4 < o o . (2.15)

Since <p(fc)( £ ι>w(p;fc) + r(p,fc) ) = gM^ik - pi it follows from (2.14) and (2.15),

that

||Λ,,1 | |H,J^C(n,K1,/C2)y1 | |L.
that the limit h, exists in W 2 and that

(2.16)

1,(2.16) and the definition of ft,,τ show

\ - l / 2 , ί^O.
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Similarly it follows that

as | | / | | L - ^ | | / | | L i . Q.E.D.

Lemma 2.4. Let β , ε 1 , ε 2 = ± l , m,m 1 ,m 2 >0, ε1m1 + ε2m2φθ and εm = ε1m1 +
ε2m2. Let vt(k) = eιεωM\fk(p) = - εωjk) + ε1ωmi{p) + ε2ωm2(p - k)9 and let
όl9 g2eC$(U3). If

fιuτ{k) = ]ds\ dpe^g^Uk -p\ O^t^T,

and if supp^ = Ki9 then supp/ϊ^ c Xx + K2, fitT has a limit fit in CQ as T^coand

| I M w . ^ C ( n , X 1 , K 2 ) ( l + ί Γ 1 / 2 | | d 1 | | ^ . | | d 2 | | ^ . , (2.17)

\\vMt\\w-^C(n,KuK2)(l^ty2\\gJwS4g2\\w^ (2.18)

Proof. For keU3, let p{k) be the unique solution of/;(/?) = 0. Then, by (2.5), det
fk(p(k)) φ 0, therefore, formulas (2.7) and (2.8) are valid. Formula (2.7) gives at once
that the limit ίit exists in Cg. By (2.4), fk(p(k)) = 0, so formula (2.8) reads

\K(k) - eiσ^I det (Π(p(k))/2πΓ1'2 f (LfJ,kuk)(p(k))F3/2 + /0)r
j=o

ύCJm-\)Γ^-^\\uk\\w^t>^ m^2. (2.19)

If ΐfi) is the coefficient in front of r°"+1/2) in (2.19), then TjeC%(R3). Inequality (2.17)
follows now from (2.19) with m = 2 as the support of fc-> ||Mfc||̂ .oo is in K1 + K2.
Taking m = 3, one gets:

As | | ι? f *flf | | L .gCr 3 / 2 | |^ | |^,ί>0and ||t;f flf||L-^ ||0||Lt, this gives

Inserting the definition of ΐj and (2.19) in the last expression, one obtains (2.18) for
n = 0. For nφ0, (2.18) follows now from s u p p i ( c K 1 + X 2 . Q.E.D.

Next, we consider decay properties of third order terms. Sufficiently good decay
properties at third order, for the iteration scheme in Sect. 3 to work, are obtained in
most cases by combining the decay properties at second order in Lemmas 2.1 and 2.2
with the ί~3/2 decay of the L00 norm of free solutions. Lemmas 2.5 and 2.6 will treat
the cases to which this does not apply.

Lemma 2.5. For ε,εo,ε1,ε2 = ± l,s1,52eR, fc,fc1,fe2eίR3 let fk(k1,k2,sus2) =
(— ε|/c|2 -h εj/cj2 + εo|fc — fcJ^Si 4- (— βol^ — ̂ il2 + ^2|/c — fcx — /c2|

2)s2. For 1 ^
i ^ 3 , let ^eC^OR 3 -^}) , and let Ki = supp0i9K = K1+K2 + K3. If

KTUTM = ϊ dsx )
2 ds2 f dkx dW^^MkMifcfaik - *! - fc2), 0 ̂  t ί

t
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T1 ^ T2, then suppHtTuT2 cz K,ίϊtTuT2 has a limit Ht in Cg(R3) as Tu T2 -• oo and

lid l ii^io co y 2 ii ̂ i o - ιι# 3 ii wιo'<°>

where vt(k) = em\

Proof. Introduce x = sjs29 y = s2 and Dt = {(x, j;)|0 ̂  x ̂  1, ί ̂  x^}. If
2 2 2 2 2

k!-k2\
2l then fk(kuk2^us2) = hk(kuk29x)y and Ai(fc1,fe2,x) = 0

(/z' is the derivative with respect to kx and fc2) has only the solution kγ = k,
k2 = xειε2k. We also have that deti/zj^/c^! ε2/c,x)) = 2 6 and hk(k,xε1ε2k,x) =
^ ( ε i - ε ) ! ^ 2 . If uk{kuk2) = g1(k1)g2(k2)g3(k-kί-k2l then by Theorem 7.7.5
of [2],

^ l , (2.20)

where LjXx is a differential operator of order 2/ with coefficients C00 in all variables.
The existence of the limit Ht in Cg(IR3) follows (2.20) with m = 3, and we have

k2β
f l W* I *1 x)J'ιι4(fc1,it2). (2.21)

The decay property of \\Ht\\L,, follows now from (2.21) and (2.20) with m = 3.

Let vβ,z,y)= \dxπ3e"ΊAe^a(LJJt^(k,xε1ε2k). (2.22)

By hypothesis there is (5>0 such that Kt^ {keU3\δ^\k\^l/δ}9i= 1,2,3.
The support of the function /c-^Mfc(/c,xε1ε2/c) is contained in {keU3\x~1δ ^
l/c]^^"1}, which is empty if x<<52. Hence vJ{k,z,y) = vJ{k,z9δ~2) if j>^<5~2.
Put v/fc,z,y) = vβ9z) iϊy^δ~2.By (2.20), (2.21) and (2.22) we then have

- Σ ? dyvβΛ*i
t

rι\\uk\\w^, t^δ-2,mϊi3. (2.23)

Let Si-εφO and put vu{k)= - π V π σ / 4 ( ί ( ε - ε i P l T < l + 1 ) c > ' / d x ' x
(LM>xufc(fc,ε1ε2fcx))|x = 1, Z,;^0. The support of £,-_, and fc-ίv/fc,^! -ε)|fc|2y) is
contained in X — {|fc| < ̂ }. Partial integration gives the asymptotic expansion

., y > 0 , M ^ l (2.24)

Inequality (2.24) gives after integration in y and introduction of the asymptotic
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expansion of Fa(z) = J eizyy~ady, α > 1( see after (2.8))
1

(2.25)

„„•„., ί > 0 .

Inequalities (2.23) and (2.25) show that

where ί/fc) = Σvrfι(k)pz+r+ln(i(ε1 — ε)\k\2)~n and the last sum is overj =
/ + n. When εί = ε, it follows directly from (2.23) that

) ί - w | | w f c | | ^ m + 4 0 O , ί ^ < 5 - 2 , ε = ε i ; (2.27)

w h e r e ftj(k) = (j + l Γ ^ foO). Def ine ^ = 0 , A(fc) = eiSi]k]2t if ε i - ε ^ O a n d
μt(k) = eιφ]h if ε 2 — ε = 0. E q u a l i t i e s (2.26) a n d (2.27) w i t h m = 3 give for εί= ± ε 9

\\vt*Ht- t μt*hjt-3\\L^\\vtHt- t flfijt-'Wv
7 = 1 j = l

^ C(m,δ)Γ3Π IIΛII^o., ί^^"2. (2.28)
i = l

Inequalities ||μ, VΊlz.- i Cru+3/2>||fy||L, and ||Λ/llί." ^ C(K)\\Kj\\w.^ C(δ) f\ x
i = l

llίill^+* βi γ e together with (2.28) the announced decay of Wv^H^^ for t^δ~2.

Moreover | | ι ; ί*/f ί | |L^C| | ί; t*// f | |^ 2 = C||// f | |^2^C((5)Π WMw- for 0 ^ t ύδ~\
ί = l

by the already proved decay property of | |iί f ||L2. The ^-dependence in the constants
can finally be replaced by dependence on K1,K2,K3 by taking the smallest δ
satisfying its definition. Q.E.D.

Remark 2.1. It follows from the proof that the decay actually is \\Ht\\L2f^
C{\ + t)~2 and | |ϋ t*H f | |L β, ^ C(l 4- t)~Ί/2 if ε φzγ. The following lemma could have
been formulated and proved in a way similar to that of Lemma 2.5.

Lemma 2.6. Let E, E 0 = ± l , M , M o > 0 , goeC^(U3% supp go = Ko and let
μt(k) = eiEω"{k)t. In the situation of Lemma 2.4, let

Huτ(k) = ] dse~ιEω^s J dpeιE°ω^)sg0{p)(βsK){k - p).
t

Then s u p p HtT c K = X 0 + K 1 + K2, HtT has a limit Ht in L 2 a s Γ - > oo

i = 1
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Proof. By Lemma 2.4, fiseC^ and supp ftseKί + K2. This shows that HuTeC§, that
supp HuTaK0 + Ki + K2 and that | | μ f * H t t l | | L and | ( H t l | | L 2 are smaller than

C(K)\\go\\L. supp | |/iJL2 for O g ί g 1. By (2.17), one than get that | | f l f i l | | L 2 and

\\Pt*Htti\\L~ are bounded by

C W I W O I I L - I W I I I I ^ - I I ^ I I ^ . , O g ί ^ l . (2.29)

Put vf(p) = - EωM{k) + £oωM o(P) + βωm(P ~ k). It follows from (2.19) that

oo / m-1 \

f dsϊdpe^SgoipM fis(k-p)- Y ΐik-p)s-(j+1/2) (2.30)
V 7 = o /

where uk(p) = g1(
First let £ o ^ o + em = 0. Then there is λ > 0, such that |vk(p)| ^ A, for fc, /?e(R3.

It follows from (2.30) with m = 5, the definition of ΐj and the asymptotic expansion
of Fa after (2.8) that

J>n

j dsj dpeixu{p)sg0{p)fis{k - p) - j dpelVh{p)t ^ p ( 1 / 2 +j)tnόoiP)lft ~ P)

ί ^ l , (2.31)

where the sum is taken over 1/2 H-j + Z< 3 and vk(kuk2) = ^0(^1)^1(^2)x

^3(fc - fcj - fc2). It follows now as in the proof of Lemma 5.1 of [8] that if qt jt(k) =
]dpgo{p)ΐ3{k - p)e^\ivjj>)r^l\ then

and

As Hζ H^ ^ C ί K ί l l ^ i l l ^ ^ - H ^ I I ^ ^ - j t h e t w o ^ a s t inequalities prove, together
with (2.31), the existence of the limit Ht in L2 and the decay properties in the case
E0M0 + εm = 0.

Second, if £ o M o + ε m ^ 0 , then fdpe / V k (^o(p)Γ j(fc-p) = /?jiI(ifc) can be
estimated by formula (2.7), which leads to an asymptotic expansion of the

00

type (2.8) of J Rhs(k)s~u+ί/2)ds. If EM Φ E0M0 + εm, one then proceeds as in the
t

proof of Lemma 2.1, and if EM = E0M0 + εm, one proceeds as in the proof of
Lemma 2.4, to determine the decay of the terms | |rΛ ί | |L 2 and ||μf *r</ff||L«, where fjt{k)

00

= J RjfSs~u+ll2)ds. Substitution of these results into (2.30) gives then the announced

results. Q.E.D.

The following lemma is well-known and is a trivial consequence of decay properties

of free solutions.
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Lemma 2.7. Let ε0, εt = ± 1, m0, mi > 0, ^ e C ^ , supp cji = Kh 1 <; i g 3.
Moreover let fk(k1, /c2) = ε0ωmo(/c) - ε1ωm i(/c1) - ε2ωm2(k2) - ε3ωm3(k1 + k2 - k\ or
let fk{kx, fc2) = εo|fc|2 - ε j / c j 2 - ε2 |fc2 |

2 - ε3|/c1 + fc2 - /c|2. //

ίf Γ /z«5 α /imiί Ht in L2 wten T ^ o o , supp ί)tT<^K = K1+K2 + K

and \\Ht\\L2^C(K)(l + ί ) " 2 Π IIΛIIHK., /or ί^O.

Proo/. If <yfc) = e1'8^-^(respectively ί;Λί(fc) = eiε^\ then

r / 3 \

ifί>Γ = \dsvOt-M Π ^,5*^ l As || 17̂ 1̂1̂ .00 ^Cί^KJHgfill^lίl 3 / 2, one gets
t \i=l )

Q.E.D.

Lemmas 2.1 to 2.7 lead immediately to the existence and decay properties of the
wave operators, at second and third order. We note that by Eq. (1")

The lemma follows now from

= -J ds^JpoV^-] ds2VSι_S2J
2(I®J2 + J2®I)°vA (2.32)

t \ si /

Proposition 2.8. Let Vt9 t ^ 0 , be defined as before and vl9v2,v3eD(a), a^l. The
strong Riemann integrals Ω2(v1®υ2\ Ω3(v1<S)v2(g)v3) exist then in Jtif, Ωιe
L{(D(a\#e\ / = 2, 3, supp Ω\vx®v2y^K, supp Ω\vv®υ2®υ3)

κ^. 3K, where
K = {XEU3\ \X\ S a], and for t ^ 0,

-I-

Proof The Fourier transform (K_fi22((l^t;1)(x)(Kii;2)))Ais just a sum of terms /ί(with
C00 coefficients in the case of NLKG) defined in Lemmas 2.1-2.4. In the case of Ω3

the analog is true, by Lemmas 2.5-2.7. The lemma follows now, if one use, in the case
of the terms figuring in Lemma 2.7, that | |K/IIL- ^ c(a) II/IIL** / e ΰ ( 4

Q.E.D.
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3. Construction of Wave Operators

Let (τbf) (x) = f(x + b\ x, beU3. Introduce the space Jf(α), a ^ 1 of formal power

series A=Σ A", AneLn(D(a\ tf\ τbA
n = An(® nτb). Let &λ(a\ λ > 0 be the Banach

space of elements Ae&(a) for which the norm pλ(A) = Σ λn \A\ < oo, where
n^2

\A2\2 = su P ((i + 01/2(M2oKllL2(D(fl)^) + (i + 03/2M2oKllL2(D(4n)X (3.1)

|Λ3 |3 = sup ((1 + ί)( \\A3 o K l l ^ ^ + (1 + ί) M 3 o Kll^αλL-jίλ (3.2)

and

\An\n = sup ((1 + ί)1 +n/8 \\An° ^ll^zxW' n = 4 (3-3)

In this paragraph, we shall show that the equation

B = - J V-SJ°(I + β 2 + ί2 3 + B)o Fsd5 - ί2 2 - ί2 3 (3.4)
o

has a unique solution Be&λ(a\ for some λ > 0; i.e. there is a unique wave operator
Ω = I + Ω2 + Ω3 + B satisfying Eq. (Γ). Let ^(α) be the subspace of elements

[), with A2 = A3 = 0, and let JΛ(α) = @λ(a)n J(α). Introduce

JVΓ(β) = - J F_S(J°(/ + Ω2 + /23 + B) - J°(/ + β 2 +1?))°F sds, (3.6)

for T ^ 0 and J3e JA(α) and denote by N(B) = iVJΰ) and NT(B)n (respectively N(B)n)
the n-homogeneous part of NT(B) (respectively N(B)). We note that Nτ(B)n = 0 for

Proposition 3.1. There is r 0 > 0 (depending on a) such that, if 0 < A < r 0 , 0 < r < r 0,

n^5 ί>0

Tί9 T2^~T and for some C > 0,
ii) N(B)e@λ(a)
iii) ^(Bi - B2) ^ C(λ + r) pλ(Bi - B2), for some C > 0.

Proo/. By hypothesis, the function F in (NLKG) (respectively (NLS)) is analytic in a
neighbourhood of zero in E = CN x C4 i V x £12N (respectively E = CN x C37V). Let
F = £ F π be the Taylor expansion of F around zero, where FneLn(E9 CN). There is

p > 0 such that the series G(z) = Σ zn\\ Fn || L (£Cw} converges for \z\ ̂  p, ZGC.

ΌQnotebyA1=I9A
2=Ω2

9A
3=Ω3,A= Σ AnandN1(BUB2) = J°(A + BJ-

n=l
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J°(A + B2), for Bl9 B2e$(a). N1(Bί,B2) is an element of J(α) as J(α) is stable
under composition with V and under pointwise multiplication. In order to estimate
the Ln(D(a\ tf )-norm oϊN1(B1, B2)

π, the π-homogeneous part oϊN^Bί, B2), we note
first that

^Ό(A + xB1+(l-x)B2).(B1-B2)dx. (3.7)

Introduce (as a formal power series in v)

<?v( ) = Σ n \ \ L . M a W < n + Σ v"ii-nWD(eW7, v ^ o ,

and introduce the functions fn:U
+ -• IR+, rc ̂  5 by the following equality of formal

power series in v:

X vVΛs, x) = C.GXC.qXAo Vs) + C^B, o Ks) + C l ί v (B 2 o K J ) ^ ^ ! - B2)o Vs).

(3.8)

In the case of NLS (respectively NLKG) the n-homogeneous part Jn

ίtX of
J'°(A + xB1 +{1 —x)B2).(B1 —B2) is a sum of products of factors, each factor
being a term in A, Bx, B2 or Bt — β 2 composed with not more than one (respectively
two for the W4)2-valued part and one for the W3'2-valued part) derivative. Taking
W2'°°-norm of factors involving a term from A and W2'2-norm of the other factors,
one gets after composition with Vs that

iϊC1 is sufficiently big. It follows then from the definition of D(a) and the translation
in variance oί J\X°VS that

l|J".χ° KHuDίαur, ̂  C2αn/n(5,x), 5 ̂  0,7i ^ 5 (3.9)

for some C2 > 0. By the definition of D(a) and by Proposition 2.8, there is Ca > 0 such
that C ^ v μ o γs) ^ Ca(v + v2 + v3) and ^ ( B - Ks) ̂  (1 + 5 ) ~ λ pv(1+5)-1/8 (B- Vs\ i = 1, 2,
by the definition of gv and pv. It follows now from the positivity of the coefficients in
the expansion of G and (3.8) that

where

5)"3 / 2v + (1 + sΓ 2(v 2 + v3)

•pv{Usr~,s(B1-B2), s^O. (3.10)

and Ca is sufficiently big. Let the argument in G' be smaller than p for s = 0, so that
(3.10) is an equality of convergent series for small positive v. Inequality (3.9) give
then (with new Ca)

sΓ(2+"l8\ n^5,s^0. (3.11)



Study of Non-Linear Klein-Gordon and Schrόdinger Equations 555

Equations (3.7) and (3.11) give for Bx= B and B2 = 0,

sup(l + tγ+nl8\\NTi{BoVt)
n-Nτ^γtγ\\LMa)^)

^ sup(l + t)χ+n/8 J CangJί0)(l + s + t)-(2+n/8)ds

- t)χ+n/8(l + t -f- T ) ~ ( 1 + / I / 8 )

-χy-tT-"-* for 0gχ<l , TuT2^T. (3.12)

Summation of inequality (3.12) for n ̂  5 and the definition (3.10) of gn give (with new

Q :

X sup V|| JVΓl(Bo Vtγ - NT2(B° Vnκma),^

^ Q l - χ)1 - ^ Γ - ( 1 " ^ G ' ί Q ί v + v2 + v3) + pv(B)))pv(B), (3.13)

for 0 ̂  χ < 1, Tl9 T2^T. One can choose r0 small enough so that Ca(r0 + ΓQ + ΓQ)
+ r 0 < p. Together with (3.13) this proves part i) of the proposition.

In analogy with the derivation of estimate (3.12) one finds, using (3.7), (3.11) and
definition (3.3), that (with new Ca)

pάNiBJ - N(B2)) ^ CaG'(Ca((λ + λ2 + λ3) + px(Bx) + pλ(B2)))pλ{B1 - B2).
(3.14)

Take r 0 small enough so that Ca(λ + λ2 + λ3) + 2r <ρ. The right-hand side of
inequality (3.14) is then finite for pλ(Bi)^r, and ^ e ^ λ ( α ) , ί= 1, 2. This proves
point ii) of the proposition by taking B2 = 0. If r 0 is sufficiently small then
CaG'((λ + λ2 + λ3) + 2r)) ̂  C\λ 4- r), which proves iii). Q.E.D.

Remark 3.2.

i) The fact that J is a continuous map from neighbourhood of zero in Jf into
(1 - A Y1/2 J f (but not generally into ^f) gives rise to the factor n on the right-hand
side of (3.9). This loss of radious of analyticity is compensated by the integration in
N(B\ which is seen in the second inequality in (3.12). If the nonlinearities in NLKG
or NLS involved more derivatives (or if a = oo), then the situation would be different
and the above proof would not permit us to conclude that N(B)e$λ(a).

ii) The first part of Proposition 3.1 assures the convergence oϊNτ(B) to N^B) in
the space of functions analytic on the ball of radius λ in D(a) into Jf.

Proposition 3.3. There is λ > 0 such that Eq. (3.4) has a unique solution B in $λ(a).

Proof. Equation (3.4) reads B = N(B) + X, where

X=- J V_sJo(I +Ω2 +Ω3)oVsds-Ω2 -Ω3. (3.15)= - J V_
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Let r 0 > 0 be such that the conclusions of Proposition 3.1. hold. Choose λ and r in
the interval ]0,ro[ such that C(λ + r) ^ ^ , where C is given by Proposition 3.L iii).
Then pλ{N(B)) g rβ and pΛ(M^i) - N(B2)) ^ ^pλ(B1 - B2). It will be proved in
Lemma 3.4 that I e i v ( α ) , for some v > 0, so pv{X) ^ rβ if v is sufficiently small. Now,
let λ also satisfy λ ^ v. The map 5 -• 7V(/?) + X is then a contraction of the ball of
radius r around zero in Mλ(a) into itself. This proves that the equation B = N(B) + X
has a unique solution in that ball. As the solution of this equation is unique in &(a\ it
is also unique in &λ(a). Q.E.D.

Lemma 3.4. X defined by (3.15) is an element of$λ(a) if λ > 0 is sufficiently small.

Proof. Let the function G be as in the proof of Proposition 3.1 and define H by
H(z) = G ( z ) - z 2 | | F 2 | | L 2 ( £ ) C , ) - z 3 | | F 3 | | L 3 ( £ Λ , where ZGC and \z\^p. Introduce the

norm pv=Σv" II IILJHM.*)> v ^ 0, and let A = / + β 2 + β 3 , Λ = J - J 2 - J 3 . If /I

is sufficiently small then R°Ae@λ(a\ and we have

RoA = $RΌ(χA).Adx. (3.16)
o

Denote by (R°A)n (respectively (RΌ(χA)Ά)n) the n-homogeneous part of R°A
(respectively Rf°{xA)A\ and introduce the functions fn'M

+ x [0,1] ->ίR+ by the
equality of formal power series (in v)

Vs\ (3.17)

xe[O,l], C ! > 0 ,

where qv is as in the proof of Proposition 3.1. One proves, in the same way as in
equality (3.9), that

|| (RΌ(χA).A)no Vs | | W f l ( Λ j r ) S C2anfn(s, x), n ^ 4, s ^ 0, (3.18)

xe[0,1], for some C2 > 0. It follows from Proposition 2.8 and decay properties of Vs

that

qv{A°Vs)^Ca(v{\ + s)~3/2 + (v2 + v3)(l + s)~2), s^O, (3.19)

and that

pv{Ao Vs) S Ca{v + v2(l + 5)" 1 / 2 + v3(l + 5)"x), s ^ 0, (3.20)

for some Ca > 0. Let the functions gn: U+ -+ U+ be defined by the equality of formal
powerseries:

X v"(l + syi2+n/8)gn(s) = CβH'(Cβ(v(l + s)~3 / 2 + (v2 + v3)(l + s)~2)

*(v-f v2(l + s)" 1 / 2 + v3(l + s)"1), s^0. (3.21)

The functions gn satisfy gn(s) S gnΦ)> f°Γ s ^ 0. It follows then from the definition of//,
and formulas (3.17) and (3.19)-(3.21) that if Ca in (3.21) is sufficiently big then
/ π ( s ,x)g( l+5)" ( 2 + w / 8 ) ^(s)g^(0)( l -h5)- ( 2 + n / 8 ) This together with (3.18) and



Study of Non-Linear Klein-Gordon and Schrόdinger Equations 557

(3.16), leads to

UR-AfoVs]\Wa)^^CangH(0)(l + 5 ) ^ 2 + il/8>, s^0,π^4. (3.22)

The definition of pλ and (3.22) show that

Σ sup(i + o ( 1 + π / 8 ) ϊ \\{R°Aγovs+t\\Ln{mds
n^4 ί^O °

^ X C ^ O ^ S + nΓ1 ^ £ 8Cβftl(0).
«^4 n^4

By the definition (3.21) of ̂ n it follows from the last inequality that

p i J K_ S (Λ^ ° Vs)ds\ ^ SCaCaH'(Ca(λ + λ2 + λ3))(λ + λ2 + A3),

where /I > 0 is so small that the right-hand side is finite. Hence

] V.s(RoAoVs)dse@λ{a\ for some Λ>0. (3.23)

o

Let Y = - ]dsV-s(Jo(l + A)-J2-(J2(I®A2 + A2®I) + J3))oVs and let

Ω1 = I. The integrand can be written as

+ Ω2 + ί23)o Ks 4-

From (3.23) and Proposition 2.8 it follows that Ye$λ{a\ for λ > 0 sufficiently small.
From the definition of Ω2,Ω3 it then follows that X= Yeΰ!λ{a), for such 1

Q.E.D.

Corollary 3.4. The equation

Ω=I- ] dsV_sJoΩ°Vs

o

has, for some λ>09a unique solution Ω — Ie&λ(a). If ueD(a\ || u\\D(a) < λ, then Ω(u)
is an analytic function on U3.

Proof. The uniqueness and existence follow from Proposition 3.3 by the substi-
tution B = Ω-I-Ω2 -Ω3 and the fact that Ω2 + Ω3e@λ{a) by Proposition 2.8.
For xeU3 the function x ->τxueDa is analytic and so is the function x ->Ω(τxu)sJ^,
as Ω-le@λ{a). {Ω(u))(x) is well defined for every xeU3, as Ω{u)e3tf) and JT
consists of continuous functions. x-+(Ω(u))(x) is then analytic as the function
δ -> (ί2(w)) (x + δ) = (τδΩ(u))(x) = (Ω(τδ u))(x) is analytic in a neighbourhood of zero.

Q.E.D.



558 J C. H. Simon and E. Taflin

4. Properties of Solutions of the Nonlinear Equations

Through this paragraph Ω will denote the solution of the equation in Corollary 3.4.
The following simple uniqueness result, for the analytic Cauchy problems

(NLKG) and (NLS), is certainly well-known.

Proposition 4.1. Let u ( 1 ) and u{2) be two solutions of (NLKG) (respectively (NLS))
analytic in a connected open neighbourhood Θ of {0} x R3. // w(1)(0,x) = M(2)(0,X),
(d/dήu(1)(O,x) = (d/dήu(2)(O,x) (respectively w(1)(O,x) = w(2)(0,x)) for every X E R 3 ,
then u(1) = u(2) in Θ.

Proof. The proofs for the two cases (NLKG) and (NLS) are analogous, so we only
consider the first one. Let u = u{1) - u{2\ By hypothesis (Ψu) (0,x) = 0 and (ΨDu)
(0,x) = 0 for xeR 3, n ^ 0. By equation (NLKG) it follows that

,χ) = m](Au)(0,x) + F>(1)(O,x),Z)w(1)(O,x), VZ)M ( 1 )(0,X))

- F/w(2)(0, x), Dw(2)(0, x), VDw(2)(0, x)), 1 ^j ^ N9 xe U3.

Thus ((d2/dt2)u)(0,x) = 0 for xeR 3. Repeating this argument for the time derivatives
of (NLKG) gives that ((dn/dtn)u)(0,x) = 0 for n ^ 0, xeR 3. In particular it follows that
u is zero in a neighbourhood of zero in R4, which by analytic continuation proves
that u = 0 in G. Q.E.D.

We introduce a set E of scattering states φ +, invariant under the linear evolution
Vt91 ^ 0, on which the series Ω(φ+) converges and Ωn(Vtφ+\ n ^ 2, has the decay
properties described by the norms | |n in (3.1)—(3.3) for r-> oo. For this purpose
let

E' = {φ + eD(a)\\\φ+\\Dia)<λ,a^lλ>0 and Ω-Ie@λ(a)}.

We define E=[j VtE'. Obviously VtE a E for t ^ 0, and it follows from Corollary

3.4 that E is non-empty. We notice that Er\D(a) is open in D(a).
For convenience we give the decay properties of Ωn(Vtφ+\ φ + eE, which are

rather obvious from the definition of E. For / : R + -* Jt let

) = sup((l +ί)||/(ί)llL2 + (l + 0 2 I I / W I I L - ) , (4.3)

and

l n^4. (4.4)

Proposition 4.2. Let φ + eE and let φmn(ή = (l - Δ)m/2Ωn(Vtφ+). Then

i) Σ Pn(ψm,n) < co for m^O,

ii) there is ε > 0 such that V-εφ + eE and
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ίii) the function φ -• Ω(Vtφ + + φ)e J^, t ^ 0 is analytic in a neighbourhood of zero in
D{a\ for every a ̂  1.

Proof.
i) By the definition of E there is Λ>0, α ^ l and Γ ^ O such that φ + eD(a\
Ω-IeΛλ(a) and | | F _ r φ + | | D ( f l ) < λ Let φm,n(t) = (l - Δrf2Ωn(Vt(V-τφ+)). By the
definition of pn it follows now that pn(φm n) ̂  pπ(ιAm „), and then by the definition of
the norm | \n (see (3.1)-(3.3)) that ' pn{φm,n)i{\ + n2a2)m/2\Ωn\n\\V_τφ+\\n

D[Φ

for n ^ 2 . The series Σ λn\Ωn\n is convergent as Ω-Ie@λ(a). The series

X (1 +n2a2)mi2\Ωn\n\\V-nτφ+\\n

D(a) is then also convergent as | | ^ Γ φ + | | D ( f l ) < λ It

is well known that Pι{φmΛ) < oo. This proves that £ pn{φm,n) < c0-

ii) The second statement of the proposition follows from the fact that there is
ε > 0, such that \\V_T(V_εφ+)\\D{a) < λ as V is strongly continuous in D{a).
iii) As Ω - Is®λ{a\ it follows from formulas (3.1)-(3.3) that (Ω - /)° VteΛλ(a) for
every t ^ 0. The map φ -> Vtφ map open neighbourhoods of zero in D(a'\ a! ̂  1
onto open neighbourhoods of zero in D(af\ for teU. By the definition of T it
follows then that the map φ->Ω(Vtφ+ +ψ) = (Ω°Vt + τ)(V_τφ+ + K_f _ Γ ^)eJ f is
analytic in an open neighbourhood of zero in D(a'). Q.E.D.

The next proposition leads to analyticity properties of the solutions we are
going to construct for (NLKG) and (NLS). We recall that {Ω(φ+))(x) is in C2N

(respectively CN) for the case of (NLKG) (respectively (NLS)).

Proposition 4.3. Let φ + eE. There is then ε > 0 such that the function ( ί , x ) ^
(Ω(Vtφ+))(x) is analytic in Θε = ] - ε, oo[ x R3.

Proof. By Proposition 4.2 there is ε > 0 such that V^εφ + eE. Let b = (bl9b29b2)9

(τbf){x) = f(x + b) and b^U for 0 ^ ΐ ^ 3 . Then (bo,b)eU*^Vboτbφ+eD(al is
an analytic function, where a has been chosen such that φ + eD(a). It follows that
the function (b0,b)^>Ω(Vt+boτbφ+)e3^, t > — ε, is analytic in a neighbourhood of
zero in 1R4 as φ-j>Ω(Vtφ+ + φ)eJ^ is analytic in a neighbourhood of zero in D(a\
by Proposition 4.2. The function (bθ9b)MΩ{Vt+boτbφ+))(x) = (Ω(Vt+boφ+))(x + b)
e£2N (in the case of (NLKG) and CN in the case of (NLS)) is then analytic in a
neighbourhood of zero in (R4, by Sobolev embedding, for t > — ε, xeU3.

We next prove the fact that the wave operator Ω composed by the linear
evolution Vt is the non-linear evolution.

Proposition 4.4. Let φ + eE. Then the function tel — ε,ool^φ(t)-Ω(Vtφ + )eJf is
a solution of the equation

φ(t)=Vtφ+-]vt_sJ(φ(s))ds, (4.5)
ί

and φ: ] — ε, oo [ -> Jf is analytic, for some ε > 0.

Proof. By Proposition 4.2 there is ε > 0 such V-εφ + eE;so Vtφ + sE for t> - ε ,
by the definition of E. As Ω - IeΛλ{a) implies that (Ω - /)° Vse@λ(a) for s > 0, it
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follows from Corollary 3.4 that φ satisfies (in 3tf) the equation

φ(t) =Vtφ+-j V.sJ(ψ(s + t))ds9 t^-ε.

Equation (4.5) follows after the substitution s + t-+s. Then as in the proof of
Proposition 4.3, φ: ] — ε, oo[ -• Jf is analytic if ε > 0 is sufficiently small. Q.E.D.

The set F = ΩE will play the role of initial data at t = 0 for the Cauchy problems
(NLKG) and (NLS).

When we say that φ(t) = Ω° Vtφ + is a solution of (NLKG) we mean that the
first component of the function (t,x)-+(φ(t))(x) = (w(r,x), (d/dt)u(t,x)) is a solution
of (NLKG).

Corollary 4.5. Let φosF. There is then ε > 0 , such that the equation (NLKG)
{respectively (NLS)) has a unique analytic solution (ί, x): ] — ε, oo] x IR3 -+(φ(t))(x)e
C2N (respectively CN\ with φo = φ(0). Further there is φ + εE such that

Proof. By Corollary 3.4,xe(R3->φ0(x)eC2N (respectively CN) is an analytic
function, and by Proposition 4.1 the solution φ of (NLKG) (respectively (NLS)) is
unique as an analytic function, when it exists. The definition of F means that there
exists φ + eE such that φ0 = Ω(φ+). Let φ(t) = Ω(Vtφ+). By Proposition 4.3 there is
ε > 0 such that (ί,x)-»(φ(ί))(x)eC2N (respectively CN) is an analytic function
in Θε = ] — ε, oo [ x R3, and in view of Proposition 4.4 the analytic function
ίe] — ε, oo[->φ(t)eJ^ satisfies Eq. (4.5) if ε > 0 is sufficiently small. But an
analytic solution of (4.5) is also a solution of (NLKG) (respectively (NLS)).

Q.E.D.

The following proposition shows that we have as many initial data in F at t = 0
as in E at t= oo.

Proposition 4.6. The map Ω:E-+3tf? is ίnjective.

Proof. Let φ%\ φ^sF. There is then φ{l\ φψeE such that φtf = Ω{φ%
i= 1, 2. If φ(i\t) = Ω(Vtφ% then lim V_tφ

(i)(t) = φ^ in jf, which follows from

Proposition 4.2.i. Thus if φ{l]ψφ^\ then there is TeU+ such that φ{l\T)Φ
φi2)(T). The function (ί,x)e] - ε, oo[ x R3-+(φil)(t))(x)εC2N (respectively CN), i = 1,
2, is, by Corollary (4.5) an analytic solution of (NLKG) (respectively (NLS)).
Proposition 4.1 applied to the data φ{1)(T) and φ{2\T) gives that φ ( 1 ) Φ φ{2\ This
shows, once more by Proposition 4.1 that φ (

o

υ Φ φ(

0

2) if φ(+} φ φ{2). Q.E.D.

One can reformulate certain properties of the solutions of the analytic Cauchy
problems (NLKG) and (NLS) in F in terms of an abstract evolution operator.

Theorem 4.7. There is a unique evolution operator U: U+ x F -• Jtif such that the
function t^>φ(t) — Ut(φ0)eJf, φoeJί? is analytic in a neighbourhood of U+ and such
that

\ (4.6)
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Further U has the following properties:

i) U:U+ xF-->F,Ut + t, = UtoU^Ut = ΩoVtoΩ-\ fort,t'^0.
ii) The function (t,x)->(Ut(φ0))(x) is analytic in Θε = ] —ε, oo[ x U3 for every φoeF
and some ε > 0 (dependent of φ0).
iii) For φoeF let φ+ be the unique element in E such that Ut(φ0)= £ Ωn(Vtφ+\

t ^ 0, and let φm,n(t) = (1- Δ)m/2Ωn(Vtφ+). Then £ pn{φmj < oo, foTeυery m £ 0 .

Proof. Let φoeF. By Proposition 4.6 there is then a unique φ + eE such that
φo = Ω(φ+). In light of Proposition 4.2 there is ε > 0 such that the function
t -• φ(ί) = Ω(Vtφ+)e J^ is analytic in ] — ε, oo[. By Proposition 4.4, φ is a solution of

Eq. (4.5). From Vtφ0 = Vt(φ+ - J K_sJ(φ(s))ds J it follows:

φ(t) = Vtφ+ - J Ff_,J(φ(s))<fc = K fφ0 + } Vt.sJ(φ(s))ds.
o

This gives Eq. (4.6). The uniqueness of the solution φ of Eq. (4.6) as an analytic
function in t, follows now by successive derivations in t as in the proof of Proposition
4.1. We define Ut(φ0) = Ω(Vtφ + ). Then U: U+ x F->F and Ut = Ωo V^Ω'1 (Pro-
position 4.6), which proves the existence of U as well as i). Point ii) (respectively
iii)) are just a reformulation of Proposition 4.3 (respectively 4.2. i)). Q.E.D.
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Note added in proof After submission of the present article, the authors have taken knowledge of the

following results:

[1'] Kleinerman, S.: Global existence of small amplitude solutions to nonlinear Klein-Gordon

equations in four space-time dimensions Preprint

[2'] Ginibre, J , Velo, G.: The global Cauchy problem for the nonlinear Schrόdinger equation

revisited, and: The global Cauchy problem for the nonlinear Klein-Gordon equation Preprints

The case of quadratic nonlinearities is covered by these references under various hypothesis, supple-

mentary (or different) to ours. The spaces of initial conditions considered for these cases are larger

than ours




