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Thermodynamic Inequalities for Percolation

R. Durrett* and B. Nguyen

Department of Mathematics, U.C.L.A., Los Angeles, CA 90024, USA

Abstract. In this paper we describe the percolation analogues of the Gibbs and
Helmholtz potentials and use these quantities to prove some general in-
equalities concerning the critical exponents of percolation processes.

1. Introduction

The main results in this paper and the reason for interest in them can be explained
in a few words: Scaling theory (see e.g. [11, Sect. 4]) predicts that the critical
exponents of a percolation process should satisfy

and we have been able to show

/^jSϊί-i), (i)
(2)

2. (3)

To make these inequalities meaningful we will have to give a number of
definitions.

The first thing we have to describe is the class of models under consideration.
The basic ingredients for a percolation process are

(i) a set of sites S,
(ii) a set of bonds BcSxS,

(iii) a collection of random variables η(x)x e S which take values in {0, 1},
(iv) a family PpQ^p^ 1 of probability measures so that under Pp the η's are

independent and have Pp(η(x) = l) = p.
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The following examples should illustrate the range of possibilities and help
explain the definitions which will follow.

1. Site percolation in Zά

2. Oriented site percolation in Zd

3. Discrete time contact process in Zd~1

S = Zd B = {((x,n),(y,n+l)):x

4. Bond percolation in Zd

B = {((u, υ)9 (x, y)) : (u9 υ) and (x, y) have a common endpoint} .

5. Percolation on the binary tree

S = finite strings of O's and Γs ,

B = {(x,xQ),(x,xl):xεS}.

We think of the x e S as points in space, which are open if η(x) = 1 , and closed if
η(x) = 0, and we think of the set of bonds B as indicating which points are adjacent.
With these interpretations in mind we say that y can be reached from x and write
x->y if there is a sequence of sites x0, ...,xw with x0 = x, xm = y which has (a)
(Xi-ι,xdeBίoτ all l^i^m and (b) η(Xi)=l for all O^ίgM.

Let C0 = {x : 0->x} = the set of points which can be reached from 0 and let |C0|
= the number of points in C0. The main object of study in percolation is the
distribution of |C0| and in particular what is the probability ofΩ0 0 = {|C0| = oo} =
"percolation" occurs. It is easy to show that if we throw out the trivial case S = Z1,
then in the examples above, pc = mϊ{p : Pp(Ωao) > 0} is in (0, 1) but it has turned out
to be very difficult to answer basic questions about pc and the behavior of the
process at the critical value:

(i) What is pc?
(ii) IsPp(QJ = Owhenp = pe?
For Examples 1-4 above these are open problems in d ̂  2 and only known in

d = 2 for (i) Example 4, (ii) Examples 1 and 4, see [18] for details.
Given the state of our knowledge concerning pc it may come as somewhat of a

surprise that it has been possible to prove general results concerning the behavior
of percolation quantities as p->pc without knowing what pc is! To state the results
which have obtained and explain our contribution we have to introduce the
critical exponents which appear in (l)-(3) To save time we will simply define them
in one fell swoop and then make some comments to explain the definitions.

To shorten the definitions of our critical exponents we will write

as an abbreviation for: f(p) = (p—pcYL(p—pc), where L is a slowly varying
function, i.e. v r / λ / r / λ , Γ 1t /Λ λlιmL(ty)/L(t) = 1 for all y e (0, oo) .

ί j O
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This is a little stronger than the usual definition (see e.g. [22, p. 32]) but (a) it is
expected that most examples will have this type of behavior and (b) this definition
allows us to use familiar Tauberian theorems rather than having to invent new
ones.

With the « notation introduced, we can quickly define the Greek letters which
appear in our inequalities:

as

as

as

as

as

Ppe(\C<>\>n)κn-9 as n-»oo,

where in the last line have we used an obvious extension of the definition of «.
The first three definitions and the last one are self-explanatory (or if they are

not see [9]). If you compare the second and third and look at the fourth, you see
that we could have defined A'k by considering the behavior of £p(|C0|

fc; |C0| < oo) as
p I pc, and a quick glance at the table confirms that with the exception of β (which
only makes sense for p I pc)9 primes are used to indicate approach from p >pc. We
use the same Greek letters for p ΐ pc and p I pc because "conventional wisdom" tells
us that the exponents coming from the two directions of approach will be equal.
This is true in Example 5 (see [9]) but it is far from obvious why this should be true
in general.

Last but not least we have the two definitions of α. The first one is the naive
analogue of the Ising model definition and not coincidentally the one that we can
prove something about. The second definition is probably the right definition.
Kesten has shown (see [18, Theorem 9.4]) that for two dimensional percolation
problems which are part of a matching pair (e.g. Examples 1 and 4), then
Ep(\C0\ ~ ί |C0| ̂  1) is C2 on [0,1] (and hence α'2 = 0) and his calculations suggest
that 33F/δp3-»oo. The reader should note that thanks to the -1 in the definition
of α3 we have α2 ̂  α3 with equality if α2 > 0, i.e. α2 = (α3)

+, so if you want, (2) can be
rewritten as β(l + (5)^2-(α'3)

+.
With the definitions of the critical exponents completed we have finally

introduced all the variables which appear in our inequalities. The last step in
making (l)-(3) meaningful statements is to state what we must assume about
percolation for our proofs to work:

(i) K=sup\{y:(x9y)eB}\«x>9

(ii) pce(0,6l),
(iii) PP(ΩJ = 0 when p = pe.



256 R. Durrett and B. Nguyen

Of these the first two are very natural and are known to hold for all our
examples (in d ̂  2). The third is a little undesirable but the first inequality is trivial
if /? = 0 and our proof of the second breaks down if P^Ω^+^O as p j pc.

The rest of the paper is devoted to proving (l)-(3) and explaining why they
hold. In Sect. 2 we (re)define the free energy F(p, ft)> discuss some of its properties
and prove (1). In Sect. 3 we show that although F(p, h) is not always convex in p (it
is not in Example 5), if we pick C large enough then C(p—pc)

2 H- F(p, h) is a convex
function of (p, h) near (pc, 0). In Sect. 4 we define the Helmholtz potential

A(p,θ)=sup(θh-F(p,h))
h>0

(a.k.a. conjugate convex function) and show that it looks enough like its Ising
model analogue so that we can use Griffith's [15] argument to prove (2). Finally
the proof of (3) is given in Sect. 5. It is a simple computation which is essentially
independent of previous developments.

2. The Gibbs Potential

The first step in our investigation of relationships between critical exponents is to
(re)define the percolation analogue of the free energy of a magnetic system or, to be
precise — 1 times the Gibbs potential (see [23, p. 29]). We let

F(p,A) = A(l-αo(p)) + Σ n~^n(p)e~n\ (1)
«=ι

where απ(ρ) = Pp(|C0| = n), and the sum here and below is over lgn<oo. The
second term in the expression above was first introduced by Kasteleyn and
Fortuin (1969) to set up a correspondence between quantities for percolation and
analogous quantities for magnetic systems which we will now describe.

If G(T, H) is the Gibbs potential for a magnetic system at temperature T and in
an external field H, then the magnetization M is defined by

(see [23, p. 34], the subscript Γ indicates a derivative taken "at constant
temperature"). If we differentiate F(p, ft) with respect to ft, we get

dF °°
— (p,ft)=l-α0(p)- Σ α«(p)e ,
UiT n = 1

and when we set ft = 0 we get

f(p,0) = Wo| = oo).

[This is one reason for adding ft(l — α0(p)) to the old definition, another one will
appear in Sect. 4.]

The last computation suggests that we should think of ft as the "external
magnetic field" and M(p, ft) = dF/dh(p, ft) as being the "magnetization." For
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arguments below it is useful to note that these quantities have interpretations for
percolation. Consider a new percolation process in which each site in S is
connected by a bond to a "ghost" site * and each of the bonds is closed with
probability e~h and open with probability 1 — e~h. If in the modified system
|C0| = n then * φ C0 and hence no point in C0 can be connected to *, so introducing
some obvious notation for probabilities in the new system we have

and

Having taken one derivative and found the percolation probability, the
inevitable next step is to take another and see what we get

i.e. the mean size of finite clusters in the modified system. We have used the letter χ
above because the mean cluster size is the analogue of the (isothermal)
susceptibility of magnetic systems which is obtained by differentiating the
magnetic field M with respect to H (see [23, p. 35]). The reader should note that
thanks to the exclusion of n = oo from the sum

Λ j O

The analogue of this quantity for the Ising model is

where </>+ = ί fdμ+,μ+ being the Gibbs state which is the limit with +
boundary conditions (for more about this quantity see [22] or [1]).

Having found how M and χ (and hence β and γ) are related to the free energy,
the next step is to find δ and uf2,

M(pe,Λ)-Af(Pί,0)= Σ an(pc)(l-e-""),

and we have assumed M(pc,0) = 0, so if Pp(\C0\>ή)^n~1/δ and δ>l, it follows
from a standard Tauberian theorem (see e.g. [12, Sect. 13]) that M(p,h)&hί/δ.

On the other hand F(p,0) = £p(|C0Γ
1;|C0|^l), so

-^-^(p,v)tt(p —PC) 2 as plpc.dp2

Comparing the last two formulas with the definition of β, and the two y's

})~(p-PcY as plpc9

,P-
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shows that all the exponents are concerned with some aspect of the behavior of
M(p, h) near (pc, 0), and given this it should not be surprising that there are some
relationships between the exponents which hold for all percolation processes. If
one is optimistic one can hope that near (pc, 0) the "singular part" of the free energy
can be written as

(see [11, Formula (4.27)]) or what is almost the same is that the "equation of state"
has the homogeneous form,

h = MδΦ((p-pc)/Mllβ) (**)

(see [3, p. 9]). From either one of these assumptions (see [11, Sect. 4.3] or [3, p. 9])
one can conclude that

y = y'=β(δ-l).

(This is an example of "Scaling Theory" at work.)
These assumptions while probably true, are virtually impossible to verify in

nontrivial examples and nontrivial to prove even in trivial examples (try it on the
tree). In the light of these difficulties it is interesting to observe that by using simple
properties of M we can show that

f^β(δ-l). (2)

Proof. The proof of this result is an almost word for word translation of Griffiths
[15] proof of the corresponding result for the Ising model [see p. 1961,
Formulas (23)-(25)].

is a decreasing function of h for fixed p, so h-+M(p, h) is concave and hence

). (3)

Now h->M(p, h) is an increasing function for fixed p, and we have assumed that
M(pc,0) = 0 and pce(0, 1), so if p>pc and near pc we can pick h and h' so that

,A) = 2Λf(p,0),

and since p->M(p,h) is an increasing function we have h'^h. Combining the
results in the last sentence with (2) gives

2M(p, 0) = M(p, h) ̂  M(p, 0) + hχ(p, 0) ,
(4)

Now the definitions of the critical exponents imply that as p j pc
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so (4) implies [recall x2<x when xe(0,1)],

which is the desired inequality.

3. Convexity of the Modified Free Energy

In the last section we used the fact that /ι->M(p, fo) is concave to prove a
relationship between critical exponents. For magnetic systems (see [23, p. 36]) the
Gibbs potential is a concave function of (p, h) and this can be used to prove further
inequalities between critical exponents. Based on this we might hope that our free
energy F would be a convex function of (p, h) at least near (pc, 0). The derivatives
with respect to h have the right sign

— ( «=l-α M- y α f )έΓ"*>0
Orl 1 ̂ w < oo

d2F

but the derivatives with respect to p are not. A little computation (and a number of
checks and rechecks to make sure the signs are right) shows that for percolation on
the binary tree (see Appendix for details)

where

- - 2 ,
4

SO

d2F

dp (l/2,0)=-5/(l/4)=-4.

The last example shows that convexity oϊF does not hold in general. The next
result provides a substitute for convexity which is still good enough for some
purposes

If C is sufficiently large,

F(p,/0 = C(p-pc)
2 + F(p,/0 (1)

is a convex function of (p, h) near (pc, 0).

Proof. The first step is get a more explicit expression for Pp(\C0\ = ή). Let

dCQ = {y:yφC0 and there is an xeC0 with (x ,y)eB} .

A little thought reveals
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where
αϊi,m=: the number of clusters containing 0 with size n and boundary of size m.

With this notation we can write

[since α0(p)= 1 — p for site percolation] and differentiate to get

-Σn-x^- vo-pr1 n

\μ' (1-p)

The first term in d2F/dp2 is > 0, but the second is

|δC0|/|C0|\

However we have supposed \{y:(x,y)εB}\^K<ao for all xeS and that
pce(0, 1), so we have |3C0|^J£|C0|, and it follows that near (pc,0) we have

where K'efΌ, oo), so if we pick C^2K', we will have

x*j \2

-ϊ̂ J >o. (2)

To finish the proof of convexity we need to show that

\dpdh =dh2 dp2

To do this we observe

dF dF

SO

Λ"> -Λ /
m

m,n\P I—I

and
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Now if we let αn>m(p, h) = κn,mpn(\ -p)me nh we have

Σ(-- —-̂< I ~ 1dpdh

Squaring both sides leads to three terms on the right. To handle the last one we
observe that the Cauchy-Schwarz inequality implies

m

m,n\P I-
* Σ«α,.m(p,Λ)

n m

P l-

by the choice of C made above.
To complete the proof of (3) and hence of (1) it only remains to show that near

(pc, 0) we have

2 =
m,n\P 1—P.

(4)

but this is easy;

d2F

,nP -

near (pc,0) and d2F/dh2(pc,Q)>0, so (4) holds if Kf is sufficiently large.
At first glance the conclusion in (1) probably appears worthless because we

have obtained the convexity by force. The next argument should show that (1) is
indeed useful. More evidence will be given in the next section.

The starting point of our derivation of Rushbrooke's inequality is the fact that
the convexity of F implies

\dpdh
[this was (3) above] and the definitions of the critical exponents imply that as p \. pc,

so if we strengthen the definition of β to

d2F d2F

it follows that we have

which is Rushbrooke's inequality.



262 R. Durrett and B. Nguyen

The argument above is from Griffiths [15]. In the next section we will show
that with the usual definition of β we have β(l + δ) ̂  2 — α^ Combining that result
with the inequality of Sect. 3 gives a proof of Rushbrooke's inequality which avoids
the extra assumption about β.

4. Helmholtz Potential

In Sect. 2 we defined the Gibbs potential. This is just one of four thermodynamic
state functions for magnetic systems (see [23, pp. 22, 23]). Another quantity which
has been useful in studying the Ising model is the Helmholtz potential

A(p,θ)=sup Θh-F(p,h).

For fixed p θ^>A(p, θ) is the convex function conjugate to the function

ff(p,Λ) Λ^O

[αo

(or in other words its Legendre transform) and as such is convex in θ for fixed p
(see [24, p. 156]).

The definition of A may not appear natural at first, but the following
computation should suggest that it is a useful quantity for studying percolation. If
p>pc, then

and h->F(p,h) is convex, so if θ < M (/?, 0),

sup Θh-F(p,h) =-F(p,0),
Λ ^ O

i.e. h->A(p,h) is constant for 0<h<M(p).
The last conclusion is reminiscent of pictures of the free energy for magnetic

systems (see Fig. 1 and/or cf. [23, p. 37]) and for the Ising model (see [15, p. 1959])
and θ^>A(p, θ) is convex, so one might think (as Wu [25, p. 122] claimed) that we
have all the basic ingredients needed in a derivation of Griffith's inequality.
Unfortunately the crucial property for Griffith's proof is the fact that p^>A(p, θ) is
concave for fixed θ [see Formula (7) on p. 1960], and the results given for
percolation on the tree in the last section show that this need not hold in general.

Faced with this difficulty the way out as if was in the last section is to look at the
modified free energy

and look at its Legendre transform

Since F(p, h) is a convex function of (p, h) it follows easily that we have

p->A(p, θ) is concave for each θ . (1)
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G= -F

\

M (p)

Fig.l

"slope =-M (p)

concave convex

Proof. Let p1 <p2, let ε>0, and pick h1h2 so that

θhi-F(pi9hύ>A(pi9θ)-ε.

and since ε is arbitrary, the result follows.
With (1) established we are now ready to follow Griffiths [15] argument with A

replaced by A. The argument can be summarized in one picture:

M ( p ; 0 )

Fig. 2

Let

( p c ,

(The letter S stands for entropy, see [23, pp. 22, 23].)
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As Griffiths [15] says "for both conceptual and computational purposes" it is
convenient to introduce the starred quantities

A*(p9θ) = A(p9θ)-A(pe,θ)-(p-pJ$(pe,0),

flΆ*
S*(p, 0) = S(p, θ) - S(pc, 0) = — (p, 0) .

dp

Concavity of Ά* implies

A*(p0θ)£A*(p,β) + (p-pϊ§*(p,θ), (2)

butif 0<Af(p,0),

rlλ flΆ

$<p,θ)~(p,θ)~(p,ΰ),

so we have

A*(p,0) = A(p, 0) - A(pa 0) - (p - pc) S(pc, 0) ,

S*(p,θ) = S(p,0)-S(pc,Q),

and using (2)

Now A(p,0) = -f(p,0)= -F(p,0)-C(p-Pc)
2, so if

^(p-fcΓ i as plpt,

it follows that the right-hand side w (p—pc)
2 ~α/2 as p [ pc. To compute the behavior

of the left-hand side we observe that

A*(pc9 θ) = Ά(pc, θ) - A(pe9 0) = A(pe9 θ) - A(pc9 0)

If 0>0 the maximum of Θh—F(pc,h) occurs at the h(θ) which is the solution of

i.e. at the external magnetic field strength needed to produce a percolation
probability = θ, and we have assumed

as h-+Q so h(θ)&θδ. Now writing

h(θ) Qp

c,0)= ί θ--^-(pc,o ^w
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and observing that y^>dF/dh(pc, y) is increasing and = θ at y = h(θ), we see that the
last expression ( = A*(pc, θ)) is

so we must have β(ί + δ)^2 — α^, the desired inequality.

5. Inequalities for A2

In this section we will prove

Δ2^2, (3)

zΓ2^(/? + /)Λ2. (30

The starting point is letting

χ(p)=£p(|C0 |;|Col<oo),

and observing that

SO

and using Cauchy-Schwarz gives

. / (n m \2 \

(*)
n,mP ~

where

«„,» = «n,mP"(l -P)m = Pp(|Co| = n, \BC0\ = m).

The first term on the right-hand side of (*) is E^ICol2; |C0 < oo). To bound the
second we let M(p) = PP(|C0| = oo), and observe that

M(p)= 1 -α0(p)- Σ «π,
π,m

and 1 — a0(p)=p, so differentiating gives

m
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If p < pc then M(p) = 0 so

|Col

where K = supx\{y: (x, y) e B}\ is the maximum coordination number of the lattice.
We have assumed K < oo and pc e (0,1), so near pc we have

fdχ

V

for some K'e(0, oo) or

£|Col2^(^Y'•

If dχ/dp « (p — pc) ~ y ~ x then χ(p) ~(p — pc)~y and the right-hand side « (p — pc) ~ 2,
proving (3).

When p>pc, things are a little more complicated. M(/?)φO so we have

Now dM/dp ^ 0, but nothing is known about the sign of d2M/dp2. In most models
we expect that M will be concave near pc (since we expect β ̂  1 in general), so we
will start with that case.

When —d2M/dp2>0 near pc there is no possibility of cancellation so we have
(recall x"2^x - 1 when 0<x<l)

I

and hence

If j8-2^ -/, the above reduces to -A'2^ -2. If β-2^ -f, then we get -zT2

^—γ'—β. Combining the two inequalities gives A '2 ̂  2 Λ (jβ + /)? which is (3") when

If d2M/dp2 is bounded above then the last proof still works, so ignoring
pathologies we are left with the case d2M/dp2^> + oo as p^>pc (which we conjecture
never occurs). In this case we can ignore the second term and argue as in the case
p < pc to conclude that A ' ̂  2, which is the desired inequality since R(p) ^ 0 implies
β-2^-γ'9 i.e.
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Appendix. Free Energy for Percolation on the Binary Tree

In this section we will consider percolation on the binary tree (Example 5 of Sect. 1)
and derive an exact expression for the free energy F(p, K) defined in Sect. 2. The
derivation given below is based on arguments of [13]. The starting point is the
observation that (in the notation of Sect. 2)

t χ n m = Q unless m = n+l. (1)

To prove (1) we observe that it is true for n = 1 and adding a site in dC0 removes one
boundary site but adds two new ones.

With (1) in hand, the problem of calculating F(p, K) becomes greatly simplified
because

n=l

and if we let bn = n~ίoιntn+1 and

B(0)= £ bnθ",
n=l

then we can write

F(p,h) = hp + (l-p)B(p(l-p}e-h). (2)

Now if p < \,

dF

so differentiating (2) with respect to h and setting h = 0 gives

flF
— (p,h)

or

β'(p(l-p)) = l/(l-p)2. (3)

Now if p(l— p) = x, then p2—p + x = Q, so solving gives

P= 2 -

The right-hand side is < 1/2 if we pick the solution with — , so substituting this root
for p in (3) gives

2

and since 5(0) = 0, it follows that

1 -4y)2 dy, x^\. (4)
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The reader should note that J5/(l/4) = 4, so B does not ->oo at x=l/4, it just
becomes complex for x > 1/4.

Equations (2) and (4) when combined give the formula we gave for F(p, K) in
Sect. 3. To verify now that d2F/dp2<G it remains then to differentiate (2) and
evaluate the result,

dF
- (p, 0) = - B(p(l - p)) + (1 - p) β'(p(l - p)) (1 - 2p) ,

dp2

The second term -»0 as p-»l/2 [5"->oo but (1 — 2p)2->0 faster], so

32F

dp- r(l/2,0)=-B'(l/4)=-4,

as we claimed in Sect. 3. The reader should note that differentiating again leads to a
term of the form 2(1 -p) (1 -2p) β"(p(l -p)), and

so d3F/dp3 is discontinuous at (1/2,0). This result is, of course, "well known," see
[11].
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