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Abstract. It is proved that the system of free fermions on arbitrary lattices is
equivalent to the set of locally interacting constrained spins. The fermionic
counterpart of the unconstrained spin system is also derived. The general-
ization to the interacting theories is possible.

1. Introduction

In spite of many impressive results [1, 2], the Monte Carlo calculation with
fermions on the lattice is still limited by the non-local nature of the problem.
Mapping the fermionic into bosonic degrees of freedom may considerably change
this situation. There are many attempts to do that, see for example [3], where you
can also find a short historical outline and more references concerning this topic.

In this paper we will discuss the generalization of the Jordan-Wigner
transformation to arbitrary dimensions [4]. We will prove the equivalence
between the system of fermions and the set of locally interacting constrained spins.
Such an equivalence was only conjectured in [4].

To begin with, we recall the construction proposed in [4]. Sections 2 and 3
contain necessary definitions and the proof of the equivalence. In Sect. 4 the role of
the constraints is clarified. The fermionic counterpart of the unconstrained spin
system is also derived there.

Consider the following Hamiltonian in two dimensions:

H = iaΣ Φ\n)Φ(n + e)-Φ\n + e)Φ(n),
n,e

where n = (nx, nγ) labels the lattice sites and the unit vector e = ex, eγ. The fermion
field Φ satisfies

and other anticommutators vanish. Our aim is to express H in terms of the
operators which rather commute at large distances, and hence, resemble the spin
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or the bosonic degrees of freedom. To this end define the link operators

Sz(n, e) = iZ(n)Z(n + e), Z = X, Y,

with

Y(ή) = i(Φ\n)-Φ(n)),

obeying the Clifford algebra. The link operators satisfy the following mixed
relations:

{Sz(0, SZ(Γ)} = 0 if / and V have one common vertex, (1.1)

[Sz(/),Sz(Γ)] = 0 otherwise.

The / and Γ denote the oriented links of the form (n, e) on the cubic lattice. The
Hamiltonian, when expressed in terms of {S}, reads:

It was observed in [4] that the algebra (1.1) is also fulfilled by the operators:

+ ̂ ) ,

S¥(n,eγ)=Γ2(n)Γ\n + eγ),

with Γ\ή) = i Π Γj(ή), where Γj(n)J = 1,..., 4, are the four dimensional Euclidean-
j*k

Dirac matrices describing the degree of freedom at the site n. This suggests that
there exists a correspondence between the set of free fermions and the system of
spin-like objects described by the Hamiltonian

) + Γ\ή)Γ\n + eτ) + (Γ^f). (1.3)

In d dimensions the algebra (1.1) is satisfied by the choice of the 2d-dimensional
representation of the Clifford algebra for {Γ}. For d= 1 the relation between {Γ}
(now {σ}) and {Φ} reduces to the well known Jordan-Wigner transformation
[5, 6]. For d > 1, however, the equivalence of H and H was not obvious. In fact, the
set of constraints which reduces the Hubert space of Eq. (1.3), was introduced in [4]
(cf. Sect. IV). Even then the relation between {S} and {§} was not clear.

In Sect. 3 we will prove that the commutation relations (1.1) determine the link
operators up to the unitary transformation. The proof works for arbitrary lattices
and with the n-depending coordinate number. It will also be carried out for a
general Hamiltonian bilinear in the fermion field. Hence, it will apply to the
important case of the Kogut-Susskind Hamiltonian [7-9].
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2. The Algebra of the Link Operators

Let us establish the notations which will be used throughout this paper. The word
lattice will denote what is usually called a graph. The words: link, path, loop will be
used in the place of words: edge, chain, and circuit, respectively [12-15].

Let L be a directed lattice which is symmetric and connected, N its vertex-set
containing Jί points and {Φn:neN} a fermionic field defined on the
2^-dimensional Hubert space V. Obviously,

{φM=δnm,

{Φn,Φm}=0, n,meN.

It is well known that the rules (2.1) determine these operators up to the unitary
isomorphism.

Consider the following Hamiltonian:

H= Σ(b{n,m)lmΦiΦm + c(n,m)ReΦtΦm)+ΣdnΦlΦn. (2.2)

The lattice L will be called the interaction lattice associated with the Hamiltonian
(2.2) iff for a pair (n, m) which is not a link of L one has:

b(n, m) = b{m, n) = C(n, m) = C(m, ή) = 0

In the following only the interaction lattices will be considered.
The operators:

* . - « ! • • . .

Yn =ί(Φl-Φn), neN,

fulfil the algebra:

W,Z = X,Y.

As the consequence of (2.1) and (2.3) the Clifford commutation rules determine the
operators Zn up to unitary equivalence. From (2.3) one obtains:

Therefore, the Hamiltonian (2.2) is the sum of the terms of the form iWmZn, where
W,Z = X,Y and m, n are the vertices of L. To have a compact description of these
terms and their algebra we introduce the directed double lattice L. The vertex-set
of L is equal to N x {X, Y} and the pair (mw, nz) [where mw stands for (m, W)~\ is a
link of L in the following cases:

i) (m, n) is a directed link of L,
ii) m = n and W+Z.
Now, assigning to each link / = (mw, nz) of L the operator

= iWmZn, (2.4)
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one has:
H=Σa,S(l),

le£

where at are reals.
Define the operator

where ll9..., lk form the path y, and S(y) = i if γ is a degenerated path, i.e. a single
vertex-point. From the previous definitions one obtains immediately

S(yίy2)=-ίS(y1)S(y2), (2.5)

where the end of the γ± is the beginning of y2 and yίy2 stands for the sum of both
paths.

The following proposition describes the algebra of the link operators

Proposition 1. A) (S(Γ>y = S(l), (S(l))2 = l for lei,
B) {S(0, S(Γ)} = 0 if links l,V have exactly one common point (they overlap),
[S(0,S(O] = 0 in other cases,

C) T r Π S ( % , n y ) = 0,
neN

D) S(y) = i, if y is a closed path on L.
These rules are consequences of (2.3) and the definitions of the link and path

operators.
The problem which was formulated in the Introduction can now be stated

more precisely. Does the Proposition 1 determine the link operators uniquely?
This question will be studied in the next section.

We will also need the following result.

Proposition 2. // the set of operators {S(l): / e L} has the properties A), B) and S(l)
= —SQ'1), where Γ1 is a link directed inversely to Z, then:

a ) {S(yi),S(y2)}=0 ι/ yufi are not closed paths having exactly one common
edge-point (i.e. the end or the beginning),

b) ίS(γ)9 S(0] = 0 when I e L and y is a closed path,
c) (S(y)V = S(y), (S(y))2 = 1 if y is not a closed path,
d) (S(y))t = -S(y), (S(y))2 = - 1 if y is a closed path, and

3. The Generalization of the Jordan-Wigner Transformation
to Arbitrary Lattices

The equivalence between the Clifford and the link variables will be shown in two
steps. First, consider a tree subset of a general lattice. In this case there exists a one-
to-one correspondence between the vertices of the graph and the paths. One simply
chooses, for every vertex, the unique path connecting it to the root of the tree.
Therefore, the generalization of the Jordan-Wigner transformation to arbitrary
trees is possible. Secondly, a simple algebraic observation will allow for the
extension of our construction to the full lattices.
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We begin with the following:

Theorem. Let L' denote the directed tree with its vertex-set N = N x {X, Y}. Choose
the root of the tree to be w = ήx. Further, let {S'(l): leU} denote the family of the
operators, on a finite-dimensional Hilbert space V, fulfilling the rules A) and B).
Finally, call yw the only path connecting the root point w with weN. If

Tr(S'(ySy) Π S'(γnχ)S'(γnϊ)) = 0, (3.1)

then there exists a family of hermίtian operators {X'n, Ύ^\ neN} such that:

{W^,Z'n}=2δmnδwz,

and ) = iWnZ'n, where l = (mw,nz) is a link of L.

Equation (3.1) replaces Condition C). Since there are no closed paths on the
tree L, Condition D) is trivially satisfied.

Proof. Operators {S'(yw): wφw} fulfill the following algebra:

(3.2)
{S'(yw),S'(yu)} = 2δwu, w,u + w.

Denoting S/ = ijr'1S/(ynγ)TlSXynχ)S/(ynγ)9 one has [from (3.1) and (3.2)] the
identities: " φ "

/C"Λt_C" /O'\2_i
yd ) — o , yd ) — I ,

[S',S'(yJ] = 0 for

Consider the decomposition of V into two mutually orthogonal subspaces
corresponding to the two eigenvalues (+1) of S". Using the block notation, we can
write:

for wφw. It follows from (3.2) that the T's satisfy:

Ti, {Ti,Ί:} = 2δwu for w,uΦw, i = l , 2 .

Since the anti-commutation relations determine the operators {Γ̂ ,} up to the
unitary equivalence, there exists the unitary isomorphism U: Vγ -> V2 such that

lU~ι = T^ for w + ήx,ήY. From the relation:

- l
1 T1

x

 λnY

Ή T Γ I M

o
0

I T^, T j T r T ^ l Γ 7 Π 1 T J — 1

I " Y « Φ n

one obtains

T f

2

r =-l7Γ, 1

r l/- 1 .
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Define

After the simple algebra one obtains

(3.4)
{Yί,s'(y-nr)}=o,

for w+ήχ,ήγ. Now we can define the required operators:

Xn=-iS'(ynγ)Yή = iYήS(7nr),

X'n=-iX'nS\lnx), (3.5)

for n + ή. From the equality S'(γnz) = iX'nZ'n (Z = X, Y), formulas (3.2H3.5) one
has the relations:

Consider now a directed link (mw, nz) on L. Hmw = ήx, then S'(ήx, nz) = S'(γnz), and
this gives the equality S'(ήx, nz) = iX'nZ'n. If mw + ήx, one has n z + % and
lmw{mw,nz) = ynz. Using (2.5) we obtain S'(γnz) = -iS'(γmw)S'(mw,nz), and from
this S'(mw,nz) = iS'(ymw)S'(ynz), which gives the identity S'(mw,nz) = iW^Z'n. This
ends the proof.

Now, we will generalize this result to arbitrary lattices with closed paths.

Corollary. Let Lbea directed lattice and L its double lattice. If {S'(Γ): let,} denotes
a set of operators on a finite-dimensional Hubert space V, fulfilling points A), B),
C), and D), then there exists the family of operators {X'n, Y^'.neL} for which:

for W,Z=X, Y, m,neN, and such that

where I = (mw, nz) e L. Moreover, if {S(l): / e L} is the set of operators defined by the
equality (2.4), then there exists a unitary isomorphism U: F-> V such that

US(l)U-1=S\l) for let.

Proof. For an arbitrary choice of the root point ήx there exists a maximal directed
tree L'cL. Theorem applies for the family of operators {£'(/): IGL} because the
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same consideration as in the end of the proof of Theorem reduces Eq. (3.1) to
Assumption C). Now let us define the operators {S(l): / e L} by the equality

for any directed link (mw, nz) e L. Of course, the S(I) and S'(l) coincide for / e L. In
addition,

— — —
S(mw,nz)=iS(γmw)S(ynz).

Since paths γmw, ynz are built from the links belonging to L', one immediately
obtains

S'(ymw)=S(ymw).

Taking into account Eqs. (3.6) finally one has:

for an arbitrary link in L.
Resuming, one sees that the conditions from Proposition 1, which are fulfilled

for operators {S(l):leL} determine them uniquely up to the unitary equivalence.
This is the first step towards solving the problem formulated in [4].

In the next section we will investigate the spin representation of the link
operators.

4. The System of Constrained Spins

Assume that each vertex of the interaction lattice L has an even number of
neighbours equal to 2kn (kn ̂  1). The set of the nearest neighbours of a given vertex
will be denoted Ln. Let Vn be 2kn-dimensional Hubert space and {Γ^: keLn} a
family of 2kn operators on Vn having the algebra

for fe, / e Ln. Define

where m l5 ...,m2fcn is an arbitrary order on Ln and

1n ι in '•' Λn

1n lln1n

Let Γo be an operator on the two dimensional Hubert space Vo, such that Γo

f = Γo,
(Γ0)

2 = 1, TrΓo = 0. The Hubert space of the whole system is

g
neN
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S(mx, nx) = - S(nX9 mx) = I?m>T%

S(mY9 nγ) = - S(nγ, mγ) = f<M

S(mx, Πy) = - S(nY9 mx) = / J ) ^

Si[my, n,,) = - S(nx, mγ) = f ^

S(nx, ny) = - S(nγ, nx) =

Fig. 3 Fig. 4

For an operator Bn on the space Vn9 B(n) will denote f (X) lm) ®Bn. Define, for
the oriented link (m, ή) in L,

(4.2)

where ^40 = Γo iff the pair (m^, nz) contains the vertex ήx and Ao = 1 in other cases.
Equations (4.2) are similar to (1.2). Note, however, the additional contribution
from the nx vertex1.

In the following we will explain the relation between the S's and the standard
fermionic operators.

Points A) and B) are valid for the family {§(1): leL} and moreover S(l~ι)
= — S(0, hence Proposition 2 is satisfied. However, Condition D) is not fulfilled for
kn>\. The dimension of W is greater than 2N in this case. Therefore, we must
restrict ourselves to the relevant subspaces. We will construct them in a few steps.
The construction is illustrated in the figures for the two dimensional toroidal
lattice (Fig. 1).

First, let us choose, from the lattice L, the directed tree R, with the root at the
vertex n (Fig. 2). R has exactly N — 1 links. Then we build the directed tree L in the
following way: the vertex-set of L is the set N x {X, Y}, and the set of links is
equal to {(nz, mz): (n, m) is a link oϊR,Z = X, Y} u {(ήx, ΰγ)} (Fig. 3). The point nx is

1 Γ° is related to the total number of fermions in the system. The precise connection depends on
the topology of the lattice
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chosen as the root of L. Define also the oriented complement of R to L(cf. Fig. 4):
K = {hleL and IJ'^R}. It is easy to see that K has Jί= Σ kn-(JT-l)

neN

elements. For every link λ = (m,ri)eK one can construct the loop
yλ = ymχ(mx>nx)(ynx)~\ a n d associated with it the operator Pλ= —ίS(γλ).

The following equalities are consequences of (4.1), (4.2), and Proposition 2:

a) (PλV = Pλ,

b) [P λ ,S(0]=0 for /eL, λeK, which implies
(4.3)

c) [ Λ ? Λ ' ] = 0, where λ,λ'eK, v '
d) T r ( P Λ l . . . P J = 0 if λt + λj when i+j.

The family of operators {Pλ: λ e K} is the maximal family of the loop operators
satisfying (4.3). The main reason for introducing the complement K was to extract
explicitly such a family.

Let F = {ε :K-+{ —1,1}} stand for the set of all sign functions on K. There are
2M elements of F. We will identify a function ε with its extension to L by the
conditions: ε(λ) = ε(λ ~x) if λ e L, ε(λ) = 1 when λ e R, and with the function on L
defined in the following way: ε{nx,nY) = ε{nY, nx) = l, ε(mw,nz) = ε(m,ή) where
(m, ή) 6 L.

Let ε be an arbitrary element of F. Associate with ε the hermitian projector

£ε= 11
λeK I

onto the subspace Wε. It follows from (4.3) that the subspaces {Wε: εeF} are
mutually orthogonal and W= 0 WB. Moreover, Eq. (4.3b) implies that

εeF ^

[Ξg, S(/)] = 0, i.e. that Wε is an invariant subspace of S(l). In what follows the
superscript ε will denote the restriction of a given operator to the subspace Wε.

Now we will show that the operators {Sε(l): leL) satisfy the assumptions of
Theorem. They obviously fulfill points A) and B). To prove (3.1) it is sufficient to
note that

S(nx,nY) = ίS(ynχ)S(ynγ) (4.4)

for n Φ ή. One can show this inductively using the formula

S(mw, nz) = - S(mw, mx)S(mx, nx)S(nx, nz), (4.5)

where (m, ή) is a directed link of L. From (4.4) one obtains the identity:

SKvnr) Π (S%γnχ)S%γnγ))= J^Ξε Π S(nx,nr)ojΛ9 (4.6)
nΦή I neN

where j ε : Wε-+ W\% a natural inclusion. Thus the trace of the left-hand side of (4.6) is
equal to the trace of

τ^τΞBUS(nX9nY).
I neN
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This trace is equal to zero due to the A(0) factor introduced in (4.2). One can now see
why we have introduced the additional space Fo. There exists a unitary
isomorphism Uε:V^Wε such that Sε(l) = UεS(l)Uε-

ί for leL. Operators
{S\Ϊ)'Λe L}, defined by the formula S\ϊ) = U8S(l) U~ \ obey Conditions A) to D),
and Sε(l) = Sε(l) for leU. Further Pε

λ = ε(m,ή) for λ = (m,n)eK, and from the
definition of P\ one has:

(™x> nx)γ~x

1) = iε(m, ή).

Proposition 2e) gives:

§%mx, nx) = iε(λ)(S\γmχ))

On the other hand, we have for Sε(ΐ):

Hence, since Sε(l) = Sε(l) for / e L', we have:

Sε(mx, nx) = ε(m, n)Sε(mx, nx)

for (m, n)eK. From (4.4) and the analogous equality for {Sε(ΐ):leL}, one obtains

S%nx, nY) = S%nx, nY) = s(nx, nY)S%nx, nY).

The identities S%1)= -S^/" 1 ) , Sε(l)= -SXΓ1) give

for a link l = (mx,nx) or l = (mw,mz% where W+Z. Using (4.5) and a similar
equation valid for {Sε(Z): 'e£}> we get finally:

= s(t)Sε(t) = <I)UβWΓl (4.7)

for an arbitrary link / of L. Equation (4.7) is the main result of this section.
It turns out that the link operators in the spin representation are equivalent to

the standard one in the Fermi representation. The only effect of the constraints are
the appropriate Z 2 factors residing on the links of the original lattice. For the
particular choice of the constraints ε = 1 one has Sε(l) = UεS(l)U~1.

Let us now derive the fermionic equivalent of the unconstrained spin system.
To this end we number the elements of F:εί,s2, ...,S2JI such that εί = ί. If
{ei:i=l,...,2jr} is an (orthonormal) basis of V, then {UBj(ei):i=l9...92

jr

9

7 = 1,...,2**} is obviously the (orthonormal) basis of W. Let [S(0] denote the
matrix of the operator S{ΐ) with respect to the basis {et}. The matrix of 8(1) in the
basis {UBj(e^} is the following:

_ _ _°_ _
0 i β2(J)[S(0] i

0 T . ι
(4.8)
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If we put H= J^ciiS(l), then (in the basis {Uε(e$)

leL

raj_o j
0 i [H2]ι

2 (4.9)

where [H^\ stands for the matrix of the operator

le

in the basis {e;: i= 1, ...,2^}. Moreover, one can see that

Equations (4.7) and (4.9) answer the question about the relations between the
unconstrained spins and fermions on an arbitrary lattice.

It follows from the commutation relations (4.1) that Γ's can be considered as
Green components of a parafermi field [16,17]. However, our case differs in two
points:

1) The roles of internal degrees of freedom and the space-time variables are
exchanged.

2) Lattices discussed here can have n-dependent coordination number.
For a constant coordination number one can consider the relation between our

approach and the Klein transformations which in this case would directly relate
Γ's with anticommuting objects. The transformation (4.7) preserves locality of the
interactions between Γ's while, as it is well known, the Klein transformations
would lead to the non-local interactions in higher dimensions [16]. Therefore,
there are no Klein transformations on Γ's which would give the link operators
similar to those proposed in Eqs. (4.2). This can also be seen from Eq. (4.7). Only for
s = l one may expect the existence of such transformations. This is the well known
case of one-dimensional lattices.

5. Summary and Conclusions

The replacement of the fermionic operators {£(/)} has one main advantage. The
later anticommute only locally contrary to the Fermi operators. Thus it might be
useful, from the point of view of future numerical calculations, to deal only with the
link operators. However, the matrix representation of {£(/)} is quite complicated if
one uses the traditional Jordan-Wigner transformation in more than one
dimension.

In [4] a quite simple representation for the link operators was proposed.
However, the precise relation between the two was not clear. The existence of too
many paths on a lattice in more than one dimension caused the difficulty. Reducing
the lattice to the tree, on the first stage of the proof, was the important
simplification. As a consequence, the more precise understanding of the relation
between spins and fermions in higher dimensions becomes possible.
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In this paper we have proved that, with a small modification, the system of
constrained spins considered in [4] is equivalent to the set of fermions on rather
general lattices. The role of the constraints was also clarified. The fermionic
equivalent of the system of unconstrained spins was also derived [Eqs. (4.7) and
(4.9)]. It was shown that the effect of the constraints is to introduce some Z 2 factors
on the links of the original lattice with fermionic degrees of freedom. Our
considerations include the Kogut-Susskind Hamiltonian in the three dimensional
space as a special case. They can be also generalized to the interacting theories.
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