
Communications in
Commun. Math. Phys. 98, 369-390 (1985) Mathematical

Physics
© Springer-Verlag 1985

Algebraic Quantization of Systems
with a Gauge Degeneracy

Hendrik B. G. S. Grundling and C. A. Hurst
Department of Mathematical Physics, University of Adelaide, South Australia 5001

Abstract. Systems with a gauge degeneracy are characterized either by
supplementary conditions, or by a set of generators of gauge transformations,
or by a set of constraints deriving from Dirac's canonical constraint method.
These constraints can be expressed either as conditions on the field algebra #",
or on the states on <F. In a C*-algebra framework, we show that the state
conditions give rise to a factor algebra of a subalgebra of the field algebra #".
This factor algebra, M, is free of state conditions. In this formulation we show
also that the algebraic conditions can be treated in the same way as the state
conditions. The connection between states on <F and states on M is investigated
further within this framework, as is also the set of transformations which are
compatible with the set of constraints. It is also shown that not every set of
constraints can give rise to a nontrivial system. Finally as an example, the
abstract theory is applied to the electromagnetic field, and this treatment can
be generalized to all systems of bosons with linear constraints. The question of
dynamics is not discussed.

1. Introduction

The meaning of the term "systems with a gauge degeneracy" that we refer to is
that of systems with a mathematical degree of freedom that is not physically
realized, i.e. a mathematical redundancy. The problem then is to find a canonical
procedure that will rid the system of this redundancy, leaving only the physical
theory.

The problem of gauge degeneracies occurs in classical systems as early as the
variational formulation, where it appears as the problem of the non-uniqueness of
solutions in Hamilton's principle, [1]:

Here, q(t) is the path of motion between times s, t. It is found that there are an
infinite number of solutions if S"\_q~\ = 0, where S'[q~\ denotes the Frechet derivative
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of S with relation to path space [1]. This means (d2L/dq2) = 0, or in the case of
more than one degree of freedom

l f e l O ? (1.1)

and this is just the condition characterizing the class of "singular Lagrangians" to
which Dirac's canonical constraint procedure is applicable [2-6].

In its naivest form, Dirac's constraint theory is as follows. The singularity
condition (1.1) indicates immediately that the Lagrangian formalism (ί, qb q^9

i= 1,...,iV, is not equivalent to the Hamiltonian formalism (t,qbPi), i— 1,..., JV.
Indeed, let the rank of the matrix [βpi/dqj] be R, R<N. Then in passing from
(ί> q» Pi)t0 (ί> 4i> 9i)> Λe system of equations p{ = p{{q, q,t),i=\,...,N can only be
solved for R velocities, and there are N — R independent relations ψs(q,p) = 0,
called primary constraints. The effect of these is to reduce the phase space (qu ^ ) ,
i= 1, ...,iV to an N + R dimensional manifold Y. From the requirement that all
dynamical trajectories should lie in this manifold, we get the consistency
conditions: ψs(q,p) \ Y={ψs,H} ί 7=0, where {,} is the Poisson bracket and H
is the Hamiltonian. The requirement for these to hold leads to a new set of
constraints, which in turn should also satisfy consistency conditions on the
further reduced manifold. The process is continued until it terminates, and in
general an additional set of constraints {φs(q, p)}, called secondary constraints, are
obtained. The total set of constraints, denoted {χk}, defines the "reduced phase
space" Z. The set of phase space functionals P can now be divided into two sets,
first we have Θc.= {AeP; {A,χk}\Z = 0\/fc}, called the observables or first class
variables or weak commutant of {χk}, and second the set of gauge variables P\ΘC.
Then the first class constraints are the elements of [{χj]n#c=.{αs}, where [•]
denotes the linear space generated by its argument, and the second class
constraints are {ξr}.= [{#J]\{αs}. By taking linear combinations we can obtain a
maximum number of first class constraints. Originally P formed a function group
under the Lie product defined by the Poisson bracket. Since the phase space has
been reduced to Z, a new Lie product will have to be defined on the set of
functionals on Z to ensure that this set will be a function group. This Lie product is
the Dirac bracket, [6,7]: {A, B}D = {A, B} - {A, ξr}Crs{ξs, £}, where
CrS'= [{£/c? ζiΏ™ x> a n d u s e is made of the summation convention. All second class
constraints vanish identically with relation to the Dirac bracket. Furthermore,
since the Dirac bracket satisfies the Jacobi identity, is bilinear and antisymmetric,
it is a suitable ansatz for the quantum mechanical commutator. It is possible to
transform to a natural coordinate system on Z, so that in this coordinate system
the Dirac bracket will become a Poisson bracket, [7]. The dynamical equations
become: F \Z = {F, HE}D \Z+(dF/dt) \Z, where the extended Hamiltonian HE is
defined by HE.= H+λaχa, λae(£, and {χα}.= [{tps}]n0c is the set of primary first
class constraints. Following some rigorous work in a presymplectic geometrical
framework, Gotay et al. [8] and Gotay [24] concluded that in general the
question of whether the secondary first class constraints are to be included in HE,
i.e. whether they generate gauge transformations or not, is a matter of
interpretation.
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There have been various approaches to quantizing the constraint theory of
Dirac [2,9-11]. Dirac [2] suggested in the heuristic quantum theory that to
quantize degenerate theories, only the reduced phase space functionals are
quantized, and this is effected with the rules {V}D->[ ,•]/#*> and as\ψ} = 09 where
the latter conditions select the Hubert states on which the quantum system acts.
The second-class constraints therefore do not enter the quantum theory at all. As
an alternative one might try to quantize in natural coordinates and in this case
the Dirac bracket reverts to the Poisson bracket. Some authors [20] have chosen
to interpret the second class constraints in the quantum framework as being
algebraic conditions ξr = 0. In a later section of this paper we show that this
interpretation leads to difficulties, and the best one can do is to quantize in such a
way that the second class constraints are absent from the theory from the start. For
quantization in a rigorous algebraic framework, it is the suggestion above of Dirac
which will be developed here.

Further approaches to quantization of degenerate systems are those of
Faddeev [9] who developed path integral quantization for such systems, and
Bergman and Goldberg [10] who suggested the following. A classical system can
be described by its set of canonical transformations, and these will be unitary
transformations in the quantum theory. An invariant subgroup of this group of
canonical transformations will be the group of transformations generated by the
first class constraints. Then the factor group of the canonical transformations on
the system, modulo this invariant subgroup is formed. The new system described
by this factor group will be constraint free, and we can quantize as usual. This
approach is in the spirit of what we intend to do in the quantum mechanical
framework. However in view of the results [8, 24], it would seem that we might
have to modify the Bergman and Goldberg approach by excluding from the
abovementioned subgroup all the first class secondary constraints that do not
generate gauge transformations.

Apart from Dirac's canonical constraint theory, there are other ways of dealing
with degenerate systems. The traditional way is the use of a supplementary
condition. Given an infinite class of solutions, it is possible to select one of them by
imposing more conditions viz. a supplementary condition. Whilst there is some
freedom in the choice of a supplementary condition, it is clear that it cannot be
totally arbitrary as the condition must select one and only one solution. The
resulting theory, said to be in a specific "gauge," has highly individual features in its
form, some of which might be undesirable. In the quantization of a theory with
supplementary conditions, these conditions are chosen to be of only two kinds,
algebraic conditions: ξr = 0, and state conditions: <xs\ψ} = 0. As examples, consider
the different treatments of electromagnetism in [12, 23].

Because of the different structure of the quantum system from that of the
classical system, there are firstly, more alternatives for dealing with degenerate
systems, and secondly, quantum degeneracies which have no classical counterpart.
An example of the former is the so-called Fermi trick. This consists of adding an
extra term to the Lagrangian so that it is nondegenerate, and then to select only
those states on which this extra term will vanish - once more a state condition. In
the second instance, the quantum degeneracies are described by gauge transform-
ations. One then eliminates these by imposing either state conditions or algebraic
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conditions on the generators of the gauge transformations (this corresponds to the
selection of a "gauge invariant algebra"). No other kind of condition than state or
algebraic conditions seems possible.

For a general system, quantization is not a well-defined map from the phase
space functionals to the set of Hubert space operators, since in imposing for
instance the requirements {v}-*[v]/^> !CI~~^QM>

 o n e has to contend with
Groenewold's theorem [13], which leads to inconsistencies. Following the
discussion in [21], it seems that the best one can do in quantizing a general system
is to assume a structure in some quantum framework which will more or less mimic
the classical structure. The quantum framework that we choose to work in is that
of algebraic field theory - the language of C*-algebras [14,15]. This choice is due
to the rich, well-controlled theory available for C*-algebras.

In the algebraic framework we will have to assume state and algebraic
conditions for dealing with degeneracies, corresponding to the various require-
ments discussed above. To overcome problems with unboundedness, we can define
in the heuristic framework: U, (Λ,).= exp(z/lχI ), λ e R, where all the conditions χt can
always be chosen to be self adjoint. Then the algebraic conditions are Ur(/ί) = i ,
and the state conditions are Us(λ)\ψ} = |φ>. We assume in the C*-framework an
analogous structure.

2. Basic Structure and State Conditions

Following [14], we assume:

Assumption 2.7. 3 a C*-algebra J5', called the "field algebra," and a set of states ®
on it, and all physical information is contained in this pair. The algebra 3F has a
unit, 1.

Assumption 2.2. 3 two families of one-parameter groups: { U ^ / l e R , iel} and
{Vi(λ)\λ e R, i e J) in J^, where / and J are index sets which need not be finite. Call

the state conditions, and {Vf(A)} the algebraic conditions.

In what follows, we develop the theory associated with the state conditions
without reference to the algebraic conditions, since the theory of these, and the
compatibility questions will be considered in a later section.

We need to impose the state conditions in the algebraic framework in a way
analogous to U ^ l ψ ) = |ψ>V i e 7, λ e R. Since every state on 3F is a vector state in
its GNS representation, it seems that the weakest selection condition for a state
ωeS would be

(2.3)

There are other stronger conditions, e.g. (ω
Vi e 7, V/l e R, VA e 3F\ but we will prove that they are equivalent. Define the Dirac
states as the elements of

SD = {ω e SI<ω; U,(Λ)> = 1 Vie7, λ eR}. (2.4)
If we define

1, (2.5)
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and let s/(L) be the C*-subalgebra of & generated by {Lf(/l)|/leR, iel}, then
ω e S ΰ iff Lf(/l) e Kerω Vi e / , l e R . The stronger condition mentioned above can
be written <ω, ̂ L ^ ) ) = 0 = <ω, Lf(/l)^> V i 6 /, λ e R, A e ̂ . We use the following
notation: if Ώc ̂  is any set, then [ί2] denotes the closed linear space in SF
generated by Ω (closed in the C*-norm).

Theorem 2.6. (i).// 3 an ω e S such that {Lt(X)\ieI9 AGR}cKerω, then s/(L)
CKerω.

(ii) Let stf be any sub-C*-algebra oflF.If3anωe(5 such that stf C Kerω, then
erω.

Proof, (i) Let {L;(/l)}cKerω. Then from (2.5) we get Li(λ)Lf(λ)= -Lf(λ)-Lt(λ)9

and hence <ω; Lί(λ)Lf(λ)} = 0. Using the Cauchy Schwarz inequality,

we get

Since {L{(λ)} C #", this means that all products Li(λ)...Lj(y)cKerω. Then because
Kerω is a closed involutive linear space, this means that j/(L)cKerω.

(ii) Let j/cKerω, then <ω; ̂ L *̂> = 0V^ej/ . Thus V F G J ^ , , 4 G ^ :
|<ω; ylF>|2 ^<ω; AA*} <ω; F*.F> = 0 or j/J^cKerω. Since Kerω is an involu-
tive set, J^j/cKerω, and since Kerω is a closed linear space, [ J / ^ U # \ S / ]
CKerω. D

This theorem shows the equivalence of Condition (2.3), and the stronger
condition: <ω; ATJi(λ)y = (ω; A} = (ω; JJ^λjA}. Since Theorem 2.6 says that
ωGSa iff j2/(L)cKerω iff [j/(L)^u^Λ/(L)]cKerω, we can look at the
existence of Dirac states:

Theorem 2.7. Let, stf be any C*-subalgebra of 3F. Then the following conditions are
equivalent:

(i) 3ωG(5 such that j^cKerω;
(ii) tφl&stvsfP];

(iii) tφst.
In this case ω may be chosen to be pure.

Proof. (i)=>(ϋ). If 3ωG(5 such that j/cKerω, then [ j / ^ u J ^ ] c K e r ω . If
1 G [ J ^ J / U J / ^ ] , then <ω; 1> = 0, which is contradictory with the definition of a
state.

(ii)=>(i). Let 1 φ [J*WuJ/J^]. Now [ # " J / ] is a closed left ideal for J% and is
proper because: [ ^ J ^ C C J ^ J / U J / J ^ ] , and thus tφ\βrsί\ I G J ^ .

By Pedersen, 3.13.5 [17], each closed left ideal Lin a C*-algebra 3F is the
intersection of those left kernels of pure states of $F which contain L.The left kernel
of a state is the set

JVw.= {FGjnP>TG Kerω}. (2.8)

It is also true that Nω + AT* QKerω. Thus by this theorem, 3ω e <SP (superscript P
indicates pure states) such that [#\s/]£iVω, i.e. j / c D ^ / ] £ i V ω c K e r ω which
also proves the last statement.
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Since trivially (ii)=>(iii), we only have to prove (iii)=>(ii). Assume \φsrf. Since si
is a C*-algebra, we can define its multiplier algebra:

M(s/).= {Fe^\FAejtf,AFejtfVAesi}, (2.9)

i.e. the largest set for which si is a two-sided ideal. A moment's reflection will show
that M(si) is a C*-algebra, and that si is a proper subalgebra of M(si) iff i φ si\

Therefore, in this case, si is a proper ideal of M(s/)9 and we see that
t φ [ i M ( i ) u M ( i ) i ] = si. Then by the first part of this theorem, 3 a state ω on
M{si) such that J / C Kerω. By the Hahn Banach theorem 3 an extension ώ of ω to
ίF. Since ώ\M(s/) = ω9 Kerω = KerώnM(j/), i.e. KerωgKerώ, we get
<s/CKerώ. Hence by the first part of this theorem, tφ [PsivsiP] . D

We have therefore obtained the simple criterion 1 φ s/(L)9 for Dirac states to
exist, and the satisfaction of this criterion depends only on the nature of the state
conditions given. If we denote by S£ the set of pure states contained in <5D9 then
Pedersen 3.13.5 quoted above actually implies the stronger statement:

DF.*(L)]= f)Nω. (2.10)
ωeSo

Henceforth, to ensure nontriviality of the system we assume:

Assumption 2.11. ίφsi(L). Thus from arguments above, ΛΛ= [J*\s/(L)] is a
proper closed left ideal of &*. We can improve on (2.10):

Theorem 2.12. Jf = ft Nω.

Proof. Since f] NωQ f] Nω9 it would suffice, via (2.10), to show that
β

F e Jf since Jf is a proper

^ ( L ) # 1 C Kerω Vω e S D ,

Jf Q Nω Vω e <5D. Let F e Jf, then F*F e Jf since Jf is a proper left ideal of #\
Then

i.e. FeNω by (2.8). D

Theorem 2.13. Define ®.= ̂ Γn^r* = [^'j/(L)]n[^(L)^']. Tteπ ̂  is ίftβ
C*-algebrain f]

Proo/. We first show that 0 is a C*-algebra. Since Jί and ,/Γ* are closed linear
spaces, so is 29 and it is also clear that 2 is an involutive set. For products, let Z),
Doe@. Then DDoe^JίcJί and ΌΌ^J^^dJ^, i.e. ̂ 2)0^^0^* = ̂ .
Thus ̂  is a closed *-algebra of the C*-algebra J5', and hence a C*-algebra. Now for
maximality. Let M be any C*-algebra contained in Jf, i.e.
Since 1 is a C*-algebra, X K * e ^ c K e r ω and

Vω 6 SD. Thus JϊtNωCΛN% Vω e SD, i.e.

ς Π (N
ωe®D

via Theorem 2.12. Thus ^g®VC*-algebras Md Jf. D
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Thus 3 is the largest C*-algebra annihilated by the state conditions (2.3). For
any set Ωc^, define its "weak commutant" as

ί2;.= {Fe jη[F,#]eί2V#eί2} . (2.14)

Then for the commutant, Ω'cΩ'w iff {0}cΩ, and hence since {0}C^(L)C3, we
have 3'C3f

w. In this situation, 3'w corresponds roughly to Dirac's concept of "first
class variables," which he took as his observables. We will take 3'w to be our
observables.

Theorem 2.15. & = 3'W = M(3) (cί (2.9);.

Proof. If FeM(3\ then F3c3, 3FC3, hence \F93ί]c2 or M(3)Q3'W. For
reverse inclusion, let Fe3'w, De3. Then [F,D] =.DPe3, i.e. FD = DF
+ DFe3'w3. Now Όe3 = Jfc\Jf*, implies 3 two Cauchy sequences in Jί and
Jf* respectively, converging to the same element D, or in other words:

where L̂ , I^es/(L); Fu, F'ut3F, and we have finite summation over repeated

indices. Also, since DF e 3), 3 a Cauchy sequence {X£F£} —̂ -> DF where ZJ e «s/(L),
00

F^ e #". Hence by continuity of multiplication and addition, we have Cauchy
sequences

Thus we have two Cauchy sequences, both converging to the same element, with
terms contained in Jί and Jf* respectively. The common limit must therefore be
in 3>9 i.e. FDeS), or Sf'JUizSi. Similarly QfQf^cSf. Thus 2 is a two-sided ideal of

D

It is clear from Theorem 2.7 that if tφs/(L), then

Furthermore, 3) is a proper closed two-sided ideal of 0— M(^) iff 1 φ 3. Thus
under Assumption 2.11,3 is proper in (P. Since & is a C*-algebra, we can define the
C*-algebra of the physical observables as

0t.= Gj3. (2.16)

It is clear that ^ is a C*-algebra with unit, and that it is free of all state
conditions Ut (/l).

We now present another equivalent algebraic structure which is less intuitive,
but perhaps more useful in calculations, and in fact, we will make use of it in a later
section.

Let ίfd^ be the largest set such that

jtf(L)5^ C [#"J/(L)] . (2.17)

Then ίf* C & is the largest set such that ̂ * J / ( L ) C [^(L)^] = Jί *. It is clear that
these sets are nonempty because
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Theorem 2.18. (i) & = S
(ii) Θ = ̂ n^, and hence st(L)'CG.

Proof, (i) ey*j/(L)^C^*C#'^(L)]c[^^(L)] and similarly
Thus ^ * ^ ( L ) ^ C Jfc\Jf* = 2. From definitions

Hence: @Q = &*sf(L)&'<:2c&'n9'*. It is not difficult to see that Sf and
are norm closed algebras, that £f*c\Sf is a C*-algebra and that £&0 =
is a closed two-sided ideal for it. We prove that it is proper. Since ^

00, we have that tφ90. But teίfn^* and hence 30 is a proper
closed two-sided ideal of y n ^ * . From definitions, ^ C ^ n ^ * , and 2f is a two-
sided ideal of ^ n ^ 7 * because {? c\Sf*)Jr <LJT, {? c\Sr*)Jί* <LJΓ* via (2.17), and
hence ( ^ n ^ * ) ^ C ^ . Since 5^n^* and ^ are involutive, 9 is a two-sided ideal
for ^ n ^ * , i.e. y n y * c M ( S ) = ft Via Dixmier 2.9.4 [18]; if JSf^C^ a r e t w o

closed left ideals of a C*-algebra, and every positive functional that vanishes on
JS?! also vanishes on £P2, then <£γ = ££2- Thus we have to show that S^($o)
= ®®o(

Θol where ®^((P0)
is t h e s e t of states on Θ0 = ̂ n^ such that ^ C Ker ω,

and S^O(0O) is the set of states on Θo such that ®ocKerω. By the Hahn-Banach
theorem, every state on Θo is the restriction of a state on #\ Thus since
Ker(ω \Θ0) = Kerωn&0, we have

since Λ / ( L ) C ^ 0

 τ h e n by Theorem 2.13,
Thus every state on Θo that vanishes on Θo vanishes on 2, and since every positive
functional can be obtained from a state by multiplication by a constant, 3) = 2Q.

(ii) It has been proven above that Θ0QΘ. Conversely, let Fe Θ. Then F9c2
and 9F C Q), i.e. 3)F C ̂  C Jf. Since J / ( L ) C 2, this implies J3/(L)F c Jf =>F e Sf by
(2.17). Similarly F G ^ * and hence Fe^n^* = φ0. Thus <ί?g^0. D

Since ja/(L)' are the traditional gauge invariant observables, the fact that
s/(L)'cΘ partly justifies the choice of & as the set of observables. After exploring
these basic algebraic structures associated with conditions (2.3), we now turn
our attention to the states on them.

Theorem 2.19. (i) S D is convex, closed in the w*-topology, and compact. SD is the w*-
closure of the convex hull of its extreme points.

(ii) ωeSDiff πω(D)Ωω = 0 VD e 3), where πω, Ωω are the GNS representation
and associated cyclic state respectively associated with ω.

(iii) Let υω denote the set of vector states associated with a GNS representation
π«' l'e' υω = {ωζe<5\(ωξ; A}=(ξ; πω(A)ξ)VAe^ and some ξe^ω).

LetωεZD,ξe jfω. Then πω(β)ξ = 0 iff ωξe <5D.

Proof (i) Let « »
i=l i=ί

be any finite convex combination of elements of QD. Since S is convex, ω e S, and
n

λι > 0, we have that s/(L) £ Ker ω = f] Ker ωi9 ωt e SD. Thus ω s QD, and QD is a

convex set. Let J / ( L ) 1 C # ' * be the annihilator of s/(L) in the dual #"* of &9 and
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this is a w*-closed subspace of J5'* (see Naimark p. 65 [19]). Furthermore
is w*-closed if i e J ^ and hence S2 > = S Π J / ( L ) 1 is w*-closed. By Alaoglu's
theorem, the closed unit ball in J^*, 33.= {φ e J^* | | |φ|| ̂  1} is compact in the w*-
topology. But <SD C ® C 93, and any closed subset of a compact set is compact, thus
S D is w*-compact. Furthermore, since J^* is a locally convex linear topological
space, the Krein-Milman theorem applies, so that S^ is the smallest w*-closed
convex set containing all its extreme points:

(ii) Since [JΣ Γ j/(L)]£[JΓ^]£[#'[#'^(L)]]g[#'ja/(L)], we have that
= [&3f\. Then using Theorem 2.6, ωeSD iff

0 = <ω, FD} = (Ωω9 πω(FD)Ωω) = (πω(F*)ί2ω, πω(D)Ωω) VFe^,Dε3.

Since Ωω is cyclic for πω{^), we get πω(D)Ωω = 0 VD e 3.
(iii) Clearly πω(3)ξ = 0=>ωξe<ZD. Conversely, if ωξe

(ZD, then
2 = 0. D

By Theorem 2.7, S£φ0, and since 2>££ 2># (extreme Dirac states), we get that
at least some of the extreme Dirac states are pure. The question naturally arises
whether they all are. This can be proven in the particular case when (5 is
metrizable, e.g. when 3F is separable, but not in the general case. The problem is
that in the barycentric decomposition of a state ω, the maximal measure on β
corresponding to ω is only pseudo-supported by the pure states, but not always
supported by them [15]. From [#W(L)] = [ # ^ ] , proven above, we see that
\jF3ί\n[βtF~\ =3), and therefore the definition of 3) is consistent, i.e. 3) cannot in
turn serve as a new constraint algebra s/(L) from which an even larger 3) can be
constructed. This is also seen from Theorem 2.13. We can equally define S^ as the
set of states with 3 in their kernels.

Theorem 2.20. (i) 3 a w*'-continuous, isometric bίjectίon between the Dirac states on
Θ, denoted &D(&), and the states on St9

(ii) 3 a bijection between ®£(0) and
(iii) Ifωe <SD(Θ)9 then 3 Q Kerπω, so that trivially πω(D)ξ = 0 VD e 3, Vξ G f̂ω,

Dirac'*s requirement.

Proof, (i) This follows from ®I)(fl?) = {ωeS(ύ?)|®gKerω} and Dixmier 2.11.6
[18].

(ii) This follows from Dixmier 2.11.8 [18].
(iii) By Dixmier 2.4.10 [18], Kerπω is the largest closed two-sided ideal in

Kerω. But ^ c K e r ω is a closed two-sided ideal of Θ. Thus ®£Kerπω. D

By Dixmier 2.10.1 [18], every pure state on Θ, can be extended to a pure state
on #\ Hence since 3 C Θ, and thus SD \& = SD(Θ\ we get that ®£(0) corresponds
to a subset of S£, i.e. ωe S£(0)=>3ώe 2>£ such that ώ\Θ = ω. This gives a partial
answer to the significance of the extreme states of &D that are not pure states, if
they exist. Theorem 2.20 (iii) shows that the constraint condition is an algebraic
condition in each GNS representation πω of a state ω e ®#(0). Since Θ is a C*-
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algebra, its set of Dirac states will be the w*-convex hull of its extreme Dirac states
by an argument similar to Theorem 2.19 (i).

Assumption 2.21. All the physical information of the system <#", 6, {Uf(/l)}> is
contained in the subsystem < ?̂, S(^?)>.

3. Transformations

In this section the compatibility of the structure defined above with various
automorphisms of 3F is examined. Let G denote the locally compact symmetry
group of 3F. Then we have the triple (J^, G, α>, where the action α: G->Aut #^ is a
continuous homomorphism. Furthermore, since «f is a C*-algebra, each
ocg e kvXSF is continuous for g e G fixed. Call the procedure developed in Sect. 2 for
passing from <^, {U^)}, S> to (β, ®(^)>, the Γ-procedure. Then we would like
to determine whether the diagram:

defines a map oζ under which it is commutative, and what the properties of ocg are.
Then we can select a class of transformations for which Sk = Mg (equality is in terms
of equivalence classes in #", not isomorphism), which we will regard as the physical
transformations of the system.

For α^eAutJS let s/J(L) be the C*-algebra generated by the set
{ ] l 9 λ e R } , and SDg, Sfφ 0g9 3)Q are the corresponding entities defined

as in Sect. 2.

Theorem 3.1. (i) α ^ ^
(ii) OLg[_Sf~\ = Sfg9 oιg[&'] = Θg, ^g\β1 = 3)φ and Q)g is a proper closed two-sided

ideal for Θg. Thus define 9tg.= GJ9g.
(iii) 3 a natural isomorphism between ffl and 3kg, defined by (xg[ξ(A)'] =

where ξ(A) and ξg(Ar) are respectively the equivalence classes ξ(A).=
AeΘ, and ξg(Ar).= {Af+D'\D'e3)g), A'eΘg. Call this isomorphism o£;

Proof, (i) This follows trivially as o^eAutJ^ is a homomorphism, and thus
preserves multiplication, summation, scalar multiplication, involution, and is
continuous, so preserves limits.

(ii) Let SeS?. Then α,[S]eα,[^], and jtf,(L)α,[S] = α,|>(L)S] C α , [ ^ ]
= [#-j/^L)]. Thus QLglSης&g. Conversely, let Sge£rg. Then s/g(L)Sg

= αff[Λ/(L)]S C [ ^ ^ ( L ) ] = α^[^r]. Since G is a group, g~% and s/(L)ag'
1[mSg]

CJT, i.e. α ~ f [ S j G ^ , or Sgeag\_6f~\. Thus SPg£u.g\Sr\ Taking adjoints of Sfg

= *glSr\ gives 5y = α g [^*] . Thus ^ - *

ff Furthermore, ^ = «S^*J^(L)«S^ = α^[y*j^(L)^] = α^[^]. Since αff is a
homomorphism, and ̂  is a closed ideal for 0, ag\_S)~\ will be a closed ideal of (^[0].
Now α^[i] = i , and since ag is an automorphism, there are no other elements
A + t such that OLg\_A~\ = t. Thus tφsrf(L)o±φsrfg(L). Thus ^ is proper in Θg.

(iii) α f K μ ) ] = α,[μ + D | D e ^ ] = {α gMH-l) f |D,6^ f} = ί > g M ) . We
wish to show that this is an isomorphism between M and 0tg. It is trivial that
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, , and α,K(Λ) + «B)] = αβK(Λ)] + αβK(B)] and
For products

Thus (x'g is a homomorphism. The zero equivalence class in 3k (respectively 01 g) is ζ#
(respectively Sfg). Now cκ,g e AutJ^^Kerα^ = {0}, and this still holds for ocg \Θ, i.e. ocg

is an isomorphism from 0 to α g[0]. By the form of the defining equality for oc'g, we
have Ker < = ag

 x \βg\ i.e. ξ(A) e Kero£ if α,K(X)] = 0 , = ξ,(0) = ί ^ M ) . Then
^ M e ®r or v4 e α^"x [ ^ J = a;x [ug[βj\ = 2. Thus Keroζ = 2 = ξ(0) and α; is an
isomorphism. D

Whilst 3k and 9tQ are isomorphic, we really have no way of visualizing ag as a
physical transformation, unless there is some "identity" isomorphism between M
and Stg to compare ocg with. For this reason we wish to restrict ourselves to those
age AutJ^ such that 3& = Mg in the sense of equivalence classes in Θ. In this case
& = &g, 2f = 2fg. However since Θ = M(β)9 the requirement 2 = 2g suffices to
guarantee that M = 3&g. Define

φ.= {α f feAut#ΊflfeG,^ = ®β}. (3.2)

Theorem 3.1 says that the T-procedure maps {ocg\geG} into Isom(M,&lg)9 and
specifically maps ^ into Aut^. Symbolically, define T;^->Aut^? by

Theorem 3.3. (i) β̂ is α
(ii) T: ^-•Aut^? is α homomorphism, and thus ^5/KerT is isomorphic to

(iii) α^eKerΓ iff ag\_A\ = A + Dg(A)\IAe&, where Dg:Θ->@ is an involutive
linear map satisfying VA, BEΘ:

g g g g g B ) . (3.4)

In this case Dg(i) = 0.

Proof, (i) It is clear from (3.2) that the successive application of elements in ty yields
an element of % and that the identity αe e Sβ, where e is the identity of G.

If ocg e φ, then α ~x e φ, since Sf = &g = (xgl^oa;1 \β\ = 9.
(ii) Let <xg, <xh e φ. Then Vξ(A) e 3$, A e Θ,

and

(iii) ag E Ker T iff Γ(α,) = i A u t ^ 5 i.e.
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or

= K

and thus α^[^] = ̂  + D ^ ) , where Dg(A) e 3) ΊA e Θ. Since ocg is linear and
involutive we get that Dg: G-+Q) is linear and involutive. Furthermore we find

ΊA, B e &: a,|>4B] = 4B + Z>,G4B) = α,|X|α,[B]

and (3.4) is clear. Now since αff is an automorphism, we have α^[i] = 1. But α
4). Thus Dg(t) = 0. •

It is clear that if sίg(L) = J / ( L ) , then ag e β̂, via defining relations. The converse
will not hold in general, since if α^[j/(L)] = Sf9 then we still get that ocg e % and we
do not have generally that s/(L) = 2). Note that it is only the behaviour of an
ocg e Aut 3F on Θ, which matters in determining whether it is in φ or Ker T. Outside
of Θ, its behaviour can be arbitrary. If ag e $, then since & — @g, we have that <5D

= SD. Furthermore, since f] Nω = f] iVω, we get [#"J/(L)] = [ # ^ ( L ) ] by
ω e @D ω e SDff

Theorem 2.12; - a slightly stronger result than 3) — 3)g.
We would now like to determine the nature of the transformations eliminated

from the system in going from $F to ̂ ?, i.e. the transformations in Ker T. This group
of transformations should contain all transformations generated by the con-
straints {Uf(2)}, and indeed all those generated by 2f. Then the question arises as to
what other transformations are eliminated from the theory, and whether they are
physical or not. Define the following groups of gauge transformations:

.= {«i. x e Aut^ I α, λlA~\ .= U ^ M U ^ ) " 1 V ^ e <F9 λ e R}, (3.4)

( - UD), Ae&,λeΈL9De2h}, (3.5)

).= {αD e Aut ^ Ί αD[X] .= (1 + D) A(t + D*)

VX e & and VD e 9 such that D + D* = - DD* = - D*D}. (3.6)

The last condition in (3.6) ensures that ( i + D) is unitary:

It is easy to see that all these transformations are gauge transformations, because
they leave Dirac state expectation values unchanged:

It is not clear that ^(β) is a group.

Theorem 3.7. (i) <S{β) is a group, and &u

(ii)

Proof, (i) We first show that <S(β) is a group. Clearly αD* = α^x e ^(^) if aD e
Next, the unit element e = ocoe<g(@). Now let <x.D, aEe^{β). Then for
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*\ where F.= D + E + DEe@, furthermore a little
algebra verifies F + F* = -FF* = -F*F, i.e. αFe^(®), or αj,°α£e0(0). Thus
^{β) is a group. Let us consider the infinitesimal transformations of Ήiβ): choose
for ε small, the form:

aiεD\_A] = (± + iεD)A(t - ίεD*) ̂ A + ίε(DA -AD*).

For ociεD e <3{β\ we should have iεD - iεD* = - ε2DD*, i.e. D^D*orDe @h. Since
is a group, we can successively apply aiεD to get for Ds3)h\

iλD/N)ΉA(i-iλD/N)N

iV->oo

Thus aLD,λe<&{β) or <&u(3ϊ)c<&(β). Whilst 0 t t(0) and 0(0) have the same
infinitesimal generators, we cannot prove that they are equal because ΦJίβ) is
arcwise connected, but <3{β) is not obviously so, i.e. if we try to construct the arc
aλD, λe[0,1] connecting e to αD, then we find that λD + λD* = λ2DD* = -λ2D*D
can only be satisfied for Λ = 0, 1, i.e. ocλDφ^(2) for λe(0,1). This is because the
set {De2$\D + D*= — DD*= — D*D} is a group under the composition
law D x oD2.=D1-\-D2-\-DίD2, but is not closed under scalar multiplication.

(ii) L ^
x = (1 + Hλ))A(l + Lf (A)) = o

where αL.(λ) 6 ̂ (®) because

L,(A) + Lf (A) + L ^ L f μ ) = 0 Vi e I,λ e R.

Thus ^(χ)C^(^). Let α ^ e ^ ® ) . Then

= (1 + D)A(t + D*) = A + DA + AD* + DAD* = A + DD(A),

where the last relation defines DD(A). It is clear that DD: Θ^Q) is a linear map, and
that

DD(AB) = ADD(B) + DD(A)B + !),,(

as can be seen by expansion. Since DD(A*) = DD(A)*9 the conditions of Theorem
3.3 (iii) are fulfilled, and aD e Ker T, i.e. <9(β) Q Ker T. D

Lemma {xeΘ\x&CJίrjx*Θ}C@, where X.= n{Kerω|ωeSD}.

Proof. Let J / ( ) denote the C*-algebra in (5 generated by its argument. Since & is a
unital C*-algebra, j?/(x) £ Λ/(X, i) C ί? Vx e Θ. Suppose that for an x e Θ we have xΘ
CJΓDX*&. Then χj/(x, ±)CxΘί X, and x* J/(X, 1) C x*Θ C Jf, and thus XJ/(X, i )
+ X*Λ/(X,1) = J2/(X)CJΓ, as JΓ is a linear space. But by Theorem 2.13, 2f is the
largest C*-algebra in JΓ in the sense that it contains all C*-algebras contained in
Jf. Thus x e φ ) C @ . D

Theorem 3.8.

Proo/. It is clear from Theorem 3.3 (iii) that if o^eKerΓ, then
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Conversely, let α^eAutJ^ such that

<ω, α / i ] F ) = <ω, AF} Vω 6 <

Then
-A)Fe n{Kerω|ωe <SD} =.Jf VF, 4 e 0 ,

i.e. (ag[A~] — A)ΘcX>VAe&, and since ocg is a *-automorphism, and 0 is a C*-
algebra, (u.g[A~\-A)*GctfVAeG. Thus by the lemma above: ag[A~\
— AG!3VAG&, i.e. α^[.4] = A + ̂ (^4), where ^ : 0->ί^ is an involutive, linear map
satisfying

dg(AB) = dg(A)B + Adg(B) + dg(A)dg(B) VA,BeΘ.

This property derives from the fact that ocg is a *-homomorphism. It then follows
from Theorem 3.3 (iii) that o^eKerϋ D

Since 01 is interpreted as the algebra of the physical observables, the
implication of Theorems 3.3 and 3.8 is that all the transformations on 3F which
have physical significance must be in 9β, and the gauge transformations are in
Ker T. By Theorem 3.3 (ii) we have that T(ty) is only included in Aut(̂ ?) and is not
equal to it. This is related to the problem of "lifting" an automorphism from a
factor algebra to the algebra from which it is constructed, which is still an unsolved
problem [25], and it is also related to the problem of extending automorphisms
from a subalgebra to a larger algebra which is not always possible. Therefore, there
are usually automorphisms on the physical algebra M which cannot be derived
from automorphisms on #", i.e. are not contained in T(9β). We therefore do not
generally expect that all physical transformations can be defined on either 3F or G9

but if they can be defined on 3F, they should be in ty.
The situation as described above gives a particular choice of structure, i.e.

given a set of constraints {U4(A)}, we can define the physical observable algebra
M, and the set of physical transformations ψ on #\ In practice however, one is
faced with a different situation; along with the set {Uf(A)}, one is also given a
subset of the set of physical transformations of the system, e.g. a realization of
the Lorentz group. Call this subset Sβv In this case we would first have to verify
that Sβt Q 93, before being able to claim that <Ά is the physical observable algebra.
When this does not hold, i.e. 3aeSβί such that α[®] Φ @ι9 we would have to alter
the procedure above.

There are various ways in which d{β\ = @ can fail. First, consider a\β~\^3).
This means that we would have to augment the system with "secondary quantum
constraints," i.e. additional constraints generated by the application of ς^1 to the
original constraint set. Then one would have to impose as constraints the ^ - o
set of the original constraints {U^A)}, i.e. the set: M U ^ X J I a e ^ , is I,
The Γ-procedure is now applied as before, providing that 1 φs/(Lx)9 where s/(Lx)
is the C*-algebra generated from the ($1 -orbit set of {L,-(A)}. The resultant algebra
3/tx can now be interpreted as the physical observable algebra if we can show that
v\β\\ = Sf! Vα e Sβv This might not be generally the case, although it certainly is
when <^β1 is one dimensional, e.g. time translation, since then αO^Li)] = ̂ /(LJ,
Vα G S$v When we find that a[β{\ + 3)γ for some α s ^J1? we can only conclude that
the constraint set {U4(A)} and the given set of transformations ^ are inconsistent,
and a different choice of constraints or transformations (^β1 is called for.
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If d[β~\^S) for some α ε $ l 9 it means that there are too many gauge
transformations, i.e. some are eliminated by physical transformations, or in other
words, the set {Ut (/l)} is too large. To see this, consider the earlier observation that
α[j^(L)] = .a/(L)=>α[0] = 3), the fact that «s/(L) is generated by {L£(A)} and that α
is a homomorphism. Then we get that

i.e. the constraint set is mapped onto a smaller subset. A natural candidate for the
new constraint set could be:

eg - I I α Γ Π α

but again, this will only give a consistent result through the T-procedure if
iφstf(J£) and α[®J?] = ̂ V α e φ 1 and the notation is obvious.

In the case when u\β\ — ̂ Φ 0 φ ^ — a[β~\ for some α e $ l 5 it seems we will
have to choose a new constraint set to make the system consistent, and it seems
easiest to choose

&•= u 4π «[®]l

As before, this is a matter of choice, and the consistency conditions given above will
have to hold.

4. Algebraic Conditions

In Assumption 2.2 we also assumed the existence of algebraic conditions
Define Nj(Λ,).= Y^λ) -1, and let J / ( N ) be the C*-algebra generated in & by the set
{Nf(Λ,)}. In heuristic theories, algebraic conditions are often imposed in the form
ξr = 0. In this framework it does not make sense to put directly N = 0\/Ne ja/(N),
because these elements in the C*-algebra 3F are not zero. We would have to impose
some construction wherein j?/(N) = 0 holds. In some theories (e.g. if the constraints
are a pair of conjugate variables (p, q))9 we have the structure that 3* = s/(N)®$,
where 3k is a C*-algebra. In this case topological arguments, aside, it is very simple
to omit j^/(N) from the framework by selecting 01 as the physical observable
algebra. In more difficult situations where we do not have this direct product
structure, but where J^ is a von Neumann algebra, we can make use of the spectral
projections of the constraints. Let PN be the domain projection of N e s/(N)9 then
we select the set of observables by &.= {AE^\ΛPN = 0 = PNA ViVeJ*(N)}. This
definition makes sense since ίF is a von Neumann algebra and hence PN e #\
Notice that & is empty whenever 1 e J / ( N ) , SO that if J / ( N ) derives from a set of
second class Dirac constraints, this is very likely.

In the case when $F is a general C*-algebra, we cannot use the method above
because we cannot be sure that PNe^ \/N e «a/(N). A natural generalization of the
condition above would be A e Θ iϊAN = 0 = NA ViV e <s/(N), but this seems unduly
strict because then 0 will be a very small subalgebra of stf(N)\ which is the
traditional observables. To generalize the condition, observe that all we need to
require is that j/(N) acts as a zero element on Θ, i.e. AN G J / ( N ) ,
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NA e s/(N) ViV e J / ( N ) , A e Θ. From this it is clear that Θ is the multiplier algebra
of J / ( N ) , i.e. Θa.= M ( J * ( N ) ) [cf. (2.9)]. Then j*(N) will be a proper ideal of Θa iff
1 £ <s/(N), and this will be the nontriviality condition for the system, again casting
doubt on deriving s/(N) from second class Dirac constraints. Then we can define
the algebra of physical observables as &a = ΘJs/(N).

The algebraic construction above seems simple and natural until one considers
the states on Ma. By Dixmier 2.11.6 [18], there is a canonical bijection between the
states on Ma and the states on 0a = M ( J / ( N ) ) , such that J / ( N ) C Ker ω. This means
that through the construction above, we are imposing essentially the same type of
requirement as the state conditions, and so the same theory as in Sect. 2 would
apply. In other words, to put s/(N) equal to zero is the same as putting [#\s/(N)]
Π [ J / ( N ) ^ ] =3a equal to zero. So for the total system, the {L^λ)} and {N^)} are
to be treated on the same footing. Work is in progress to prove that Ska is
isomorphic to St.= M{β^/2a. If si is the C*-algebra generated by s/(L) and
s/(N), the nontriviality condition would then be 1 φ si.

If one chose to quantise Dirac's second class constraints as algebraic
conditions, it seems unlikely that iφsi, for the following reasons. The second class
constraints are phase space functionals whose mutual Poisson brackets do not lie
in the linear space generated by the full set of constraints. So if one quantises in
such a way that the second class constraints are nonzero elements of the field
algebra, it is unlikely that their mutual commutators will always lie in the algebra
generated by the first class constraints. In fact, if one of the commutators gives rise
to an invertible element, then the generated algebra will be unital. A simple
example of this is to choose a pair of canonical vairables (q, p) as second class
constraints. Then i e si{q, p). It is not difficult to construct examples of degenerate
Lagrangians with constraints such that t e si. Thus if we wish to apply the
construction above, the best one can do is to follow the spirit of Dirac's suggestion
by quantizing only the reduced phase space functionals, possibly in natural
coordinates, in which case the second-class constraints do not enter the quantum
theory at all. We are considering alternative algebraic constructions for eliminat-
ing constraint algebras sf(N) such that 1 e si(N)9 canonically from the theory,
and may pursue this further in future publications.

5. An Example: Έlectromagnetism

The classical form of electromagnetism under consideration is given by
S= -i$FμvF

μvd4x, where Fμv(x) = AVfμ(x)-AμtV(x), which results in the Euler-
Lagrange equation Fμv'

v(x) = 0. The momenta conjugate to the vector potentials
are Bμ(x).=Fμ0(x), and thus the equal-time Poisson bracket relations hold:

{Aμ(x)9 i4v(x0},o=*δ = iH*)> *v(*0Lo=*δ = 0

==xb = gμvδ\x-x'). (CCR)

It is easy to see that the Lagrangian is degenerate, and it gives rise to the two
constraints Bo(x)&0 andlV(x)^O, and these are first-class.

In quantizing this system, we use some methods of [16], and the general
framework of [22]. First we need to smear the Aμ(x)9 Bμ(x) with suitable test
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functions. From the CCR we see that we need to retain the sharp time aspect, and
thus we smear according to

AX0(F).= J d3xAμ(x0, x)/*(x), BX0(F).= ί d*xBμ{x0, x)/"(x),

where F(x) = (/°(x), f1(x), /2(x), /3(x)) is a 4-component vector where each
component belongs to the space of Schwarz functions on ]R3, ̂ (R 3 ) , i.e. they are
real valued, infinitely differentiable and of fast decrease. In other words,

FeΣ Θ^ ( ί )(R 3) Then the CCR are:

IAXO(F), AX0{GJ\ = 0 = IBXO(F), BXo(G)-] ,
and

[AX0(Fl BXo(G)l = if d*xf»(x)gμ(x) =.i(F, G).

To form the C*-algebra of the CCR, (cf. [14,22]), we need a pair (J, £), where Ά is a
locally convex topological vector space, and B(-, •) is a nondegenerate antisym-
metric continuous bilinear form on Ά. Now for =2, we choose the complexification
of the test function space, i.e.

&= Σ Θ^ ( 0(lR3) + i Σ Θ^(O(1R3),
ί = 0 t = 0

which will be a locally convex vector space with the topology induced by the usual
norm: / 3 3 y/2

I l ^ i + ^ H Σ H/iΊI2+ Σ II/2ΊI2 ,

where || fμ \\ is the supremum norm, and F = Fί + iF2 e Ά. For the symplectic form
B(-, •) we follow the literature (i.e. [23]) and choose

This form is bilinear, continuous and antisymmetric. That it is also nondegenerate
is easily verifiable.

Definition 5.1. Let Δ(Ά) be the normed *-algebra such that:
(i) The elements of Δ{2) are complex valued functions on J with support

consisting of a finite subset of J.
(ii) Let Δ(Ά) have the obvious linear structure, and the multiplication law:

(/i/2)00.= Σ Mzi)f2(z-Zi)ewl-iB(zuz)/2-].

The involution is defined by /*(z).= /( —z).

(iii) Define a norm in Δ{Ά) by \\f\\v= Σ 1/0)1

The completion in this norm of Δ(Ά) is denoted Δ^Ά). The set of functions δz,
such that <52(z') = 1 if z = z' and zero otherwise, forms a linear basis for Δ(Ά). Let P
denote the set of all nondegenerate representations π of Δx(β) by bounded Hubert
space operators, such that π(δλz) is weakly continuous in /leRVzei>.

Definition 5.2. The C*-algebra of the CCR over (J, £), is the completion of Δ x(l) in
the norm | |/ | | .= sup ||π(/)||, and is denoted by A(β).

πeP
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We shall choose this as our field algebra, i.e. 3P = Δ(Ά). In order to apply the
constraint formalism of Sect. 2, we need to define the set {U^λ)}. Given a pair
(Ά9 B) as specified above, a Weyl system over (Ά9 B) is defined as a map W from Ά
into the set of unitary operators on a Hubert space, such that W(λz) is strongly
continuous in λeR for fixed z e i , and the multiplication law

W(z) W(z') = W(z + z') exp[ - iB(z9 z)/2]

is satisfied. Now a Weyl system is postulated to arise via

W(F)=
where formally

l/(F).= exp(iflX0(F));

We would like to pursue this formal aspect further in order to define the quantum
constraints, where the link with £F is furnished by the result [14], that there is a
bijection between the set of all representations π e P, and the Weyl systems on
(J,β), and this is realized by the relation: Wπ(F) = π(δF), FeΆ,πeP.

Let F = (/(x), 0,0,0), /(x)e^(R 3 ) . Then 5 / ) = | ί 4 ( x o , x ) / ( x ) , and
this is a smeared first constraint Bo. For the second constraint Br

r, consider

Then BXo(F)= jd3xB/r(xo,x)f(x). Therefore form the two classes of test
functions:

,0,0,0)| +i(0,0,0,0)cJ,

|F = (0, -/(x) f l, -/(x),2? -/(x) i 3)j +i(0,0,0,0)CJ.

Thus in consideration of the results mentioned beforehand, formally
{W(F)|Fe«'1} corresponds to

{expliίBQ(xθ9x)f(x)d3x]},

and {W(F)\Fe%>2} corresponds to

{exppί Br-'(xQ9 x)/(x)rf3x] I f(x) e

Then using the relation WJF) = π(δF)9 it is reasonable to define U ^
f= 1,2} as the Uf of the state conditions. Note that (βγc\cβ2 — {̂ }, and thus U 1 n U 2

=δo=±
This method of defining constraints by selecting sets of test functions will apply

to any problem of bosons with linear constraints. However, if the constraints are
nonlinear, one might have to use a more elaborate method, like defining the Ut(X)
in terms of series or integrals of the δF.

Now that we have defined 3F and Uί9 the procedure of Sect. 2 can be applied.
Define Lί(λF).= δλF-i, ΛeR, Fe%; f = 1,2. Then s/(L) is the C*-algebra
generated by all the L^AF). The Dirac states are defined by

ωe<5D iff (ω9δλFAy = (ω9Ay = (ω9Aδ
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We have used here the equivalent condition mentioned in Sect. 2. Then choose
A = δf9feX to get:

ωe&D iff <ω,δ/> = <ω

where use was made of the multiplication rules. For a fixed / e i , this equality can
only hold if either

or/and if B(λF9 f) = 2nπVΛ,GIR, F e ^ and some n e Σ In the first case we find
<ω,δf} = 0Vωe(ZEh i.e. <5^GJf.= n{Keτω\ω e SD}. In the second case we find
B(F9f) = 0VFe<gi9 i.e. via multiplication rule, δfest(Ly. So for any fe J, we
have either <5y G Jf, or/and δ r G es/(L)', i.e. the Dirac states will vanish on all those
δf which are not in the traditional observables sf(L)'. Since {δf\feΆ} forms a
linear basis for A(Ά)9 this implies a very simple structure for Δ(Ά\ i.e. every 4̂ e Δ(β)
can be written as A = k + p, where

fc= Σ /l^j., n<oo, /I^GC, <3/fG jf,

and
m

p= Σ r Λ ι » m < 0 0 'ί = l

This means that Ά = ίκjfι, where /.= {/ e Ά \ δf e Jf} and /.= {/ e J | ̂  G
and zl(J) = K + P, where K (respectively P) is the linear space generated by
{δf\fe A} (respectively {δf\fe /}). P is a *-algebra. Furthermore, {<5F | F e Vt} C P,
and since I G P , we find the *-algebra generated by L^IF) in A(k), denoted by
j/0(L), to satisfy sto(L)CKnP. Since L^IF) ePCs/(L)\ s/(L)Cstf(L)\ it follows
that eβ/(L) is abelian. Whilst this is satisfied for electromagnetism, it is a very strong
restriction in general, since it would also apply to all boson theories with linear
constraints, as would all the preceding structure as well as the theory to follow.
Since J / ( L ) and thus J / 0 ( L ) is abelian, it follows from the multiplication rule that
j/0(L) consists of specific linear combinations of {δF\Fe [ ^ j U ^ l l

In passing from Aiβ) to J^, we first completed Δ(Ά) in the || || i-norm, and then
completed it in the C*-norm. Now

and we still have Aί(£ί) = Kί + Pί, where in this context we redefine

Ki (respectively P^

•= { Σ Wfλfte* (respectively » , λte(L, £ μ,|<c» > .
0 = 0 i = 0 J

Denote the closure of Kx (respectively Px) in the C*-norm by Σ (respectively A).
Since K1CJf and Px C ^(L)', and both j f and ̂ (L) 7 are closed in the C*-norm, it
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follows that Σ Q Jf and A Q J/(L) ' . Furthermore, since addition is continuous in the
C*-norm,

A is a C*-algebra.
In order to apply the general theory we wish to construct ίf. Since ίf C #", we

have for a n s e ^ that s = fc + p, where keΣ, peA. We need to verify
]. Then:

(δF -

Since p e ^(L)', we only need to consider fc, and since multiplication is continuous
in the C*-norm, it suffices to consider keKu and from the form of these elements,
it suffices to let k = δf,fe4. Thus we have to show {δF-t)δf£ [#\s/(L)]. But

(δF - t)δf = δf{δF exppB(/, F)] -1),

and since δf e &9 this will only be in [^^(L)] if

(δF exppΰ(/, F)] - 1 ) e [ # ^ ( L ) ] VF e

In this case, by Theorem 2.6 (ii) we should have (5FexppjB(/,F)] — i e Jf, i.e.

-1> = expp5(/, F)] - 1 = 0 Vω e S β ,

Then B(/, F) = 0, i.e. δf e ^(L)'. This means that 5^C^(h) f. Since s/(L)'cSrnSr*9

we have Sf = y* = j*(L)', and © = ̂ (Ly. Furthermore, ^ - * ( L ) ^
= s/(L)'s/(L). So in the nontrivial case when tφstf(L), the physical observable
algebra is ^ = G/2 =

6. Conclusion

This approach gives a rigorous picture for degenerate systems, but there are still
some questions which need to be discussed. Firstly, the result of Gotay, Nester and
Hinds [8], that the secondary first class constraints do not necessarily generate
gauge transformations is not yet understood in this formalism. If Gotay [24] is
correct, it seems that in the standard interpretation all first class constraints
generate gauge transformations, which is what the present theory says. Secondly
the explicit treatment of theories with non-linear constraints is likely to be
complicated. Thirdly the verification that 1 φ «s/(L), for a given set of constraints
will be difficult. The treatment here of the transformations on the algebras is
incomplete, and we hope in future publications to develop this aspect further,
especially in relation to the realizations of the Lorentz group, and unitary
implementability.

Another aspect which needs further attention, is the presence of an indefinite
inner product, especially since many degenerate systems are represented on an
indefinite inner product space. There are two structural questions here. Firstly,
given a field algebra that can be embedded in a C*-algebra, and is represented on
an indefinite inner product space, what can one say about these representations?
This question has been addressed in [26] for a theory of bosons, where it was
shown that such representations on indefinite inner product spaces are associated
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to certain nonpositive functionals on the algebra. Therefore the usual assumption
that all physical information is contained in the field algebra and its set of states
has to be broadened to include these nonpositive functionals, and these should
also be considered in the treatment above of degenerate systems. The second
structural question is, given a *-algebra of observables on an indefinite inner
product space, can all the physical relevant objects in this algebra be embedded in a
C*-algebra? This question has not been addressed to the best of our knowledge,
although [16] is an example where a C*-algebra was constructed for the field
algebra for a theory that is usually represented on an indefinite inner product
space, electromagnetism.
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