Commun. Math. Phys. 98, 349-353 (1985)

Remarks on a Paper by J. T. Beale, T. Kato, and A. Majda

Gustavo Ponce

Escuela de Fisica, Mathematicas, Fac, de Ciencias Universidad Central de Venezuela, Apartado 50.925 Caracas, Venezuela

Abstract. We prove that the maximum norm of the deformation tensor controls the possible breakdown of smooth solutions for the 3-dimensional Euler equations. More precisely, the loss of regularity in a local smooth solution of the Euler equations implies the growth without bound of the deformation tensor as the critical time approaches; equivalently, if the deformation tensor remains bounded the existence of a smooth solution is guaranteed.

The motion of an ideal incompressible fluid is described by a system of partial differential equations known as Euler equations. In [1] J. T. Beale, T. Kato, and A. Majda have given a mathematically rigorous connection between the accumulation of vorticity and the development of singularities for the three-dimensional Euler equations. In fact, they have shown that the maximum norm of the vorticity alone controls the breakdown of smooth solution of these equations. Thus one may ask: Does the blow up of the solution imply also the blow up of the deformation tensor in the maximum norm? or, may it stay bounded for a longer time? In this note we answer these questions. More precisely, we obtain the same results as those in [1], when the vorticity is substituted by the deformation tensor.

Thus we consider the system

(a)
$$\begin{cases} u_t^k + u^j \cdot \partial_j u^k + \partial_k p = 0 & k = 1, 2, 3 \\ \text{div} \, u = 0 \end{cases}$$
 (1)

where $x \in \mathbb{R}^3$, t > 0, $u = u(x, t) = (u^1, u^2, u^3)$ is the velocity field, and p = p(x, t) is the pressure.

For this system the following local existence theorem is known: Given an initial velocity $u_0 \in H^s$, s integer, $s \ge 3$ and div $u_0 = 0$, there exists $T_0 = T_0(||u_0||_s)$ so that the system (1) has a unique solution $u \in C([0, T]: H^s) \cap C^1([0, T]: H^{s-1})$ at least for $T = T_0$. (See reference in [1]). \Box

Here we denote by $H^s = H^s(\mathbb{R}^3)$ (s being a positive integer) the Sobolev space consisting of functions whose distributional derivatives up to order s belong to $L^2(\mathbb{R}^3)$, and by $||u||_s$ the norm of u in H^s . Also, we use $\omega = \nabla \times u$ for the vorticity and $T = (T_{ij})$ i, j = 1, 2, 3, where $T_{ij} = \partial_j u^i + \partial_j u^j$ for the deformation tensor.

Theorem 1. Let $u \in C([0, T_1]: H^s) \cap C^1([0, T_1]: H^{s-1})$ be a solution of (1). Then the inequality

$$\|u(t)\|_{s} \leq \|u(0)\|_{s} \cdot e^{C_{s} \cdot \int_{0}^{t} |T_{i}|_{L^{\infty}}(\tau)d\tau}$$
⁽²⁾

holds for all $t \in [0, T_1]$.

Corollary 1. If the solution of (1) considered above exists in the time interval $[0, T_2)$ and cannot be extended beyond T_2 , then

$$\int_{0}^{T_2} |T_{ij}|_{L^{\infty}}(\tau) \, d\tau = \infty$$

and, in particular,

$$\lim_{t\uparrow T_2} \sup |T_{ij}|_{L^{\infty}}(t) = \infty.$$

Corollary 2. If the solution of (1) considered above exists in the time interval $[0, T_3]$, and for some $T_4 > T_3$ we have that

$$\int_{0}^{T_{4}} |T_{ij}|(\tau) d\tau < \infty,$$

then the solution can be extended to the interval $[0, T_4]$, in which it remains of the same type. \Box

Corollary 1 and Corollary 2 are immediate consequences of the local existence theorem and the estimate (2), and their proof will be omitted here.

Using classical energy estimates (see [1]) one can obtain the inequality

$$\|\boldsymbol{u}(t)\|_{s} \leq \|\boldsymbol{u}(0)\|_{s} e^{C_{s} \int_{0}^{t} |\nabla \boldsymbol{u}|_{L^{\infty}}(\tau) d\tau}$$

for all $t \in [0, T]$, where the solution of the type considered above exists. In [1] further estimates which involve the vorticity equation and the Biot-Savart law were used to find a bound of $|\nabla u|_L(t)$ as a function of $|\omega|_{L^{\infty}}(t)$. Here our method of proof of (2) is based only on a careful computation of the energy estimates.

Proof of Theorem 1. In the proof of this theorem we will use the following: If u is a solution of (1) and v^1 , v^2 , v^3 , $w \in H^1(\mathbb{R}^3)$, then

$$\int u^j \partial_j v^k \cdot v^k = 0$$
 and $\int u^j \cdot \partial_j w = 0.$

These facts follow from Eq. (1) (b) and integration by parts.

First we provide the proof for the case s = 3.

By the above $||u(t)||_{L^2} = ||u(0)||_{L^2}$ for all $t \in [0, T_1]$. Taking ∂_{ilm}^3 derivatives of Eqs. (1) (a), multiplying the result by $\partial_{ilm}^3 u^k$, adding in k, i, l, m and integrating, we obtain that

$$\frac{1}{2}\frac{d}{dt}\|\partial_{ilm}^3 u^k(t)\|_{L^2} + \int \partial_{ilm}^3 (u^j \partial_j u^k) \cdot \partial_{ilm}^3 u^k = 0.$$
(3)

Development of Singularity for the 3-D Euler Equations

Since

$$\int u^j \cdot \partial^3_{ilm} \partial_j u^k \cdot \partial^3_{ilm} u^k = 0.$$
⁽⁴⁾

we only need to handle the remaining three terms of the integral in (3).

The first one

 $\int \partial_i u^j \cdot \partial_{jlm}^3 u^k \cdot \partial_{ilm}^3 u^k$

can be written after summation in i and j as

$$\sum_{i\leq j}\int T_{ij}\cdot\partial_{jlm}^3 u^k\cdot\partial_{ilm}u^k$$

from which we obtain the estimate

$$|T_{ij}|_{L^{\infty}} \|D^3 u\|_{L^2}^2 \tag{5}$$

for all l, m, k. The same applies to the term

$$\int \partial^3_{ilm} u^j \cdot \partial_j u^k \cdot \partial^3_{ilm} u^k$$

with k instead of i. The last term

$$\int \partial_{il}^2 u^j \cdot \partial_{mj}^2 u^k \cdot \partial_{ilm}^3 u^k \tag{6}$$

can be bounded by

$$\|\partial_{il}^2 u^j\|_{L^4} \cdot \|\partial_{mj} u^k\|_{L^4} \cdot \|\partial_{ilm} u^k\|_{L^2}.$$

In order to estimate $\|\partial_{il}^2 u^j\|_{L^4}$ we write

$$\partial_k T_{kj} = \sum_{k=1}^3 \partial_k (\partial_j u^k + \partial_k u^j) = \Delta u^j$$

and

$$\partial_{il}^2 u^j = \partial_{il}^2 \Delta^{-1} (\partial_k T_{kj}).$$

Thus by properties of the Riesz transform (see [2])

$$\|\partial_{ii}^2 u^j\|_{L^4} \leq C \cdot \sum_{k=1}^3 \|\partial_k T_{kj}\|_{L^4},$$

and by application of the Gagliardo-Nirenberg inequalities

 $\|\partial_k T_{kj}\|_{L^4} \leq C \|D^2 T_{kj}\|_{L^2}^{1/2} \cdot |T_{kj}|_{L^{\infty}}^{1/2}.$

Therefore (6) can be estimated by

$$|T_{ij}|_{L^{\infty}} \|D^{2}T_{ij}\|_{L^{2}} \cdot \|D^{3}u\|_{L^{2}} \leq |T_{ij}|_{L^{\infty}} \cdot \|D^{3}u\|_{L^{2}}^{2}.$$
(7)

Using (4), (5), (7) in (3), and then Gronwall's inequality (2) is proved for the case s = 3.

In (4) the use of $\partial^4 u$ can be justified by approximating u(0) by smooth initial data of the same type, performing the above energy estimate, and then passing to the limit (see [3]).

Finally, we sketch the proof of (2) for general $s \ge 3$. As before we can obtain

$$\frac{1}{2}\frac{d}{dt}\|\partial^{(\alpha)}u^{k}(t)\|_{L^{2}}+\int\partial^{(\alpha)}(u^{j}\cdot\partial_{j}u^{k})\cdot\partial^{(\alpha)}u^{k}=0,$$
(8)

here summation signs in k, j = 1, 2, 3 and $|\alpha| = s$ are omitted. First, the following three terms of the integral in (8) are considered:

$$\int u^j \cdot \partial^{(\alpha)} \partial_j u^k \cdot \partial^{(\alpha)} u^k = 0, \int \partial_l u^j \cdot \partial^{(\alpha')} \partial_j u^k \cdot \partial^{(\alpha)} u^k,$$

where $\alpha' = \alpha - e_i$ with $e_1 = (1, 0, 0)$ and so on. Summation in α and j gives us the bound

$$|T_{li}|_{L^{\infty}} \cdot \|D^{s}u\|_{L^{2}}^{2}$$

and the term

$$\int \partial^{(\alpha)} u^j \cdot \partial_j u^k \cdot \partial^{(\alpha)} u^k$$

for which the same technique given above applies, with l replaced by k.

The remaining terms of the integral in (8) can be estimated by

$$\|\partial^{(\alpha)}(u^{j}\partial_{j}u^{k}) - u^{j}\cdot\partial^{(\alpha)}\partial_{j}u^{k} - \partial_{l}u^{j}\cdot\partial^{(\alpha')}\partial_{j}u^{k} - \partial^{(\alpha)}u^{j}\cdot\partial_{j}u^{k}\|_{L^{2}} \cdot \|D^{s}u\|_{L^{2}}.$$
(9)

By calculus of inequalities (see [4], [5]) in the first factor above we bound (9) with

$$\|D^{2}u\|_{L^{q}}\|D^{s-1}u\|_{L^{r}}\|D^{s}u\|_{L^{2}}.$$
(10)

where

$$q = 2(s-1)$$
 and $r = \frac{2(s-1)}{s-2}$.

Since $s \ge 3$, using again $\partial_{lj}^2 u^k = \partial_{lj}^2 \Delta^{-1} \partial_m T_{mk}$, properties of the Riesz transform, and the Gagliardo-Nirenberg inequalities, it follows that

$$\|D^{2}u\|_{L^{q}} \leq C \|DT_{ij}\|_{L^{q}} \leq C' \cdot \|D^{s-1}T_{ij}\|_{L^{2}}^{\alpha} \cdot |T_{ij}|_{L^{\infty}}^{1-\alpha},$$

$$\|D^{s-1}u\|_{L^{r}} \leq C \|D^{s-2}T_{ij}\|_{L^{r}} \leq C' \cdot \|D^{s-1}T_{ij}\|_{L^{2}}^{\beta} \cdot |T_{ij}|_{L^{\infty}}^{1-\alpha},$$

where

$$\alpha = \frac{1}{s-1}$$
 and $\beta = \frac{s-2}{s-1}$.

Thus all the terms of the integral in (8) can be estimated by

$$C_s \cdot \|T_{ij}\|_{L^\infty} \|D^s u\|_{L^2}^2.$$

From this point on the proof is similar to that provided for that case s = 3.

Acknowledgements. The author would like to thank J. T. Beale, P. Embid, T. Kato and A. Majda for useful conversations concerning this work.

References

1. Beale, J. T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations (preprint)

Development of Singularity for the 3-D Euler Equations

- 2. Stein, E. M., Singular integrals and differentiability properties of functions. Princeton: Princeton University Press, 1970
- 3. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. In: Applied Mathematical Sciences Series. Berlin, Heidelberg, New York: Springer, 1983
- 4. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481-524 (1981)
- 5. Moser, J.: A rapidly convergent iteration method and nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa 20, (1966), 265-315 (1966)

Communicated by L. Nirenberg

Received August 1, 1983