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Abstract. We prove that the maximum norm of the deformation tensor controls
the possible breakdown of smooth solutions for the 3-dimensional Euler
equations. More precisely, the loss of regularity in a local smooth solution of the
Euler equations implies the growth without bound of the deformation tensor as
the critical time approaches; equivalently, if the deformation tensor remains
bounded the existence of a smooth solution is guaranteed.

The motion of an ideal incompressible fluid is described by a system of partial
differential equations known as Euler equations. In [1] J. T. Beale, T. Kato, and A.
Majda have given a mathematically rigorous connection between the accumulation
of vorticity and the development of singularities for the three-dimensional Euler
equations. In fact, they have shown that the maximum norm of the vorticity alone
controls the breakdown of smooth solution of these equations. Thus one may ask:
Does the blow up of the solution imply also the blow up of the deformation tensor in
the maximum norm? or, may it stay bounded for a longer time? In this note we
answer these questions. More precisely, we obtain the same results as those in [1],
when the vorticity is substituted by the deformation tensor.

Thus we consider the system

(a) f u\ + uj'djuk + dkp = 0 k = 1,2,3

(b) jdivM = 0 W

where xeM3, t>0,u = u(x, t) = (w1, w2, w3) is the velocity field, and p = p(x, t) is the
pressure.

For this system the following local existence theorem is known: Given an initial
velocity uoeHs, s integer, s ̂  3 and divu0 = 0, there exists To = T 0 ( | |M 0 | | S ) SO that
the system (1) has a unique solution ueC([0, Γj F J n C ^ O , T^.H8'1) at least
for T=T0. (See reference in [1]). •

Here we denote by Hs = HS(U3) (s being a positive integer) the Sobolev space
consisting of functions whose distributional derivatives up to order s belong to
L2([R3), and by \\u\\s the norm of u in Hs. Also, we use ω = V x u for the vorticity
and T = (Tij) ί, j = 1 , 2 , 3, where Ti} = d u1 + dμi for the deformation tensor.
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Theorem 1. Let ueC([0, T^'.H^nC1 (10, T J : / / 5 " 1 ) be a solution of (2). Γften
the inequality

(2)

for all te[0, ΓJ.

Corollary 1. // the solution of (1) considered above exists in the time interval

[0, T2) and cannot be extended beyond T2, then

and, in particular,

lim sup |7yLoo(ί) = oo.
t\τ2

Corollary 2. // the solution of (1) considered above exists in the time interval

[0, T3], and for some T4 > T3 we have that

then the solution can be extended to the interval [0, T4], in which it remains of the same
type. •

Corollary 1 and Corollary 2 are immediate consequences of the local existence
theorem and the estimate (2), and their proof will be omitted here.

Using classical energy estimates (see [1]) one can obtain the inequality

for all ίe[0, T], where the solution of the type considered above exists. In [1] further
estimates which involve the vorticity equation and the Biot-Savart law were used to
find a bound of | Vw|L(ί) as a function of |ω|L«o(ί). Here our method of proof of (2) is
based only on a careful computation of the energy estimates.

Proof of Theorem 1. In the proof of this theorem we will use the following: If u is a
solution of (1) and v1, v2, v3, weH^U3), then

j ujdjVk-vk = 0 and J uLd}w = 0.

These facts follow from Eq. (1) (b) and integration by parts.
First we provide the proof for the case 5 = 3.
By the above | |M(ί)| |L2= ||w(0)||L2 for all ίε[0,7;]. Taking dflm derivatives of

Eqs. (1) (a), multiplying the result by dflm uk, adding in k, i, h m and integrating, we
obtain that

\jt WlΛt) IIL* + μtlm(ujdjukyδflmuk=o. (3)
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Since

$uJ-d?lmdjUk-d?lmuk = O. (4)

we only need to handle the remaining three terms of the integral in (3).
The first one

can be written after summation in i and j as

from which we obtain the estimate

\τdL4DMh (5)
for all /, m, k. The same applies to the term

\dlmu^djU

k-Sflmuk

with k instead of ί. The last term

ίδ^-δ2

mJu
k-dflmuk (6)

can be bounded by

In order to estimate ||δ«MJ'||L4 we write

Σ
k=l

and

Thus by properties of the Riesz transform (see [2])

U3S«Ί|L4gC Σ \\dkTkj\\Li,
k= 1

and by application of the Gagliardo-Nirenberg inequalities

Therefore (6) can be estimated by

I^I^P 2^llL 2 P 3 w|lL^I^I^ P3w|li2. (7)

Using (4), (5), (7) in (3), and then GronwalΓs inequality (2) is proved for the
case s = 3.

In (4) the use of 34u can be justified by approximating u(0) by smooth initial data
of the same type, performing the above energy estimate, and then passing to the limit
(see [3]).
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Finally, we sketch the proof of (2) for general s ^ 3. As before we can obtain

\jtl{d(a)uk{ή "L2 + i^W'W'W = °> (8)

here summation signs in kj = 1,2,3 and |α| = s are omitted. First, the following three
terms of the integral in (8) are considered:

$uj d{a)djUk'd(a)uk = 0, j ^ ' ^ ' ^ / ^V,

where α' = α - eι with e1 = (1,0,0) and so on. Summation in α and j gives us the
bound

and the term

$d{a)uj dju
k'd(*)u\

for which the same technique given above applies, with I replaced by k.
The remaining terms of the integral in (8) can be estimated by

\\d(a\ujdjUk) - uj'd(a)ejUk - d^ δ^ΰjU11 - δ ( αV 3 / | | L 2 | |D su| |L 2. (9)

By calculus of inequalities (see [4], [5]) in the first factor above we bound (9) with

IID^IL.II^-^II^II^II^. (10)

where _

4 = 2(s-l) and r= *.
S Δι

Since 5 ^ 3 , using again dfjUk = dfjΔ " ιdmTmk, properties of the Riesz transform,
and the Gagliardo-Nirenberg inequalities, it follows that

where

α = and β =
s 1

and β = .
s- 1 s— 1

Thus all the terms of the integral in (8) can be estimated by

C s |7;i|Lβo||Dβiι||22.

From this point on the proof is similar to that provided for that case 5 = 3.
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