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Abstract. The deep connection between the spin and statistics of solitons and
homotopy groups is clarified by using J-Homomorphism.

The deep connection between the spin and statistics of solitons and homotopy
groups provides a fascinating link between physics and mathematics [1, 2].
Recently, this connection has been studied in the context of concrete field theoretic
models [3,4] with possible relevance to the real world. The purpose of this paper is
to sharpen the existing analysis and to bring the notion of J-homomorphism to the
attention of the physics community.

Consider a generalized "nonlinear σ-model" in which the field φ (or the order
parameter in condensed matter physics) is restricted to lie on a manifold M. If the
homotopy ππ(M) is nontrivial, then topologically stable solitons exist in
n-dimensional space, as is well-known. (Space does not mean space-time here.) A
soliton is specified by a function φ:Rn^M. The energy functional has the generic
and schematic form with φ(x)eM, where Rn is Euclidean space.

(1)

It is understood that the indicated operations, differentiation and scalar product,
can be defined. (The most common examples studied by physicists have M = Sn,
taken to be the subset {φ:φ2 = ί} of Rn+ΐ, on which SO(n-fl) acts by matrix

multiplication.) In order that the soliton have finite energy one requires -^- to

vanish rapidly at oo, i.e. φ(x = oo) = φQ, a constant. Since φ(x) is effectively constant
outside a compact region, we may consider φ to be defined on Bn, the unit ball. For

example, the soliton corresponds to the map Bn^-+S"—>M. Here / is a
representative map of an element of πΠ(M) and the pinch p is defined by

f(xsinπ|x|/|x|,cosπ|x|) if xφO,

if x = 0.
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The boundary of Bn = dBn = Sn~1 is mapped into a single point (0, — 1), the "south
pole," on Sn. The map fp, suitably interpreted, is known as a Skyrmion in the
physics literature [5].

To discuss the spin and statistics of the soliton, one has to introduce the notion
of time. We go back to the basic notion of angular momentum and rotate the
soliton through 2π over a long time period T. In quantum mechanics, the state
acquires a phase factor ei2πj at the end of this rotation, where J is the angular
momentum of the solution. This rotation acts on the field φ and defines a family of
functions R x Bn-+M by the formula φ(t,x) = φ(Rtx). When Rt is the rotation at
time t this family satisfies φ(0, x) = φ(x) = φ(T, x) and φ(t, x = oo) = φ0 by writing
φ(t,x)=ftp we get a family {/Jo^r of maps, S"->M which, because of the
periodicity over time T, defines a map S1 x S"->M. We denote the homotopic class
of these maps by [S1 x S", M]', where the prime reminds us of the special condition
φ(ί, x = oo) = φ0. To determine the statistics, we exchange a pair of solitons.

How is the preceding related to homotopy groups? To see the connection we
have to go to an alternative point of view in determining spin and statistics. One
thinks of the path integral formulation of quantum mechanics and considers the
following history. Start at t = — oo with the vacuum state, i.e. a configuration
φ (ί = — oo, x) — φ0 for all x. As time evolves, one causes a pair of soliton and anti-
soliton to be created and to be separated to a large distance from each other. One
rotates the soliton through 2π and then brings the soliton to the anti-soliton and
allows them to annihilate, thus ending up at ί = + oo again in the vacuum
configuration. Since the function φ(t, x) corresponding to this history goes to the
constant φ0 at the boundary of spacetime, it clearly defines a map of Sn+1 -»M. The
basic principles of quantum mechanics tell us that the phase ei2πj acquired by the
wave function describes the angular momentum J of the soliton. Now, if
πw + 1(M) = Z2, then the phase can only be +1 or — ί=eiπ. Thus, one can have
either J integral or J half-integral. On the other hand, if πn+ί(M) = Z, the phase is
not constrained by homotopic considerations and may in general take on an
arbitrary value elθ. The physics with spin neither integral or half-integral and
obeying statistics neither Bose-Einstein or Fermi-Dirac has been developed in a
series of papers [6, 4, 7]. To determine the statistics, one considers a different
history: two soliton-anti-soliton pairs are created and separated, then the two
solitons are interchanged, and finally the solitons and the anti-solitons are allowed
to annihilate. The function φ(ί,x) again corresponds to an element of πw+1(M).

The relation between the processes described in the two preceding paragraphs
is best explained by referring to Fig. 1. We have pictured the process of creating
and annihilating a soliton and anti-soliton pair. The smaller rectangle frames a
"close-up" shot of the 2π rotation of the soliton. By "putting" an element of [S1

x S", M]' into the smaller rectangle, one obtains an element oϊπn + 1(M) described
by the larger rectangle.

We had studied [4] in detail the case M = S2. Since π3(S2} = Z, we have a
concrete example of solitons with peculiar spin and statistics. In contrast, in the
case studied by Witten [3], M = S3, and the solitons are required by the homotopy
π4(S3) to be either bosons or fermions. The fascinating possibility that the
observed baryon may correspond to a soliton of this type has been suggested [3, 8,
9]
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Fig. 1. Determination of the angular momentum of the soliton; see text for detailed explanation

It is worth noting that as a special case of the Freudenthal suspension Σ:
πn+k(Sn)^πn+k+1(Sn+1) these two discussions are related by π2(Sr2)->π3(S3),
π3(S2)->π4(S3). (For the explicit maps, see Ref. 4.) Freudenthal proved that the
suspension is onto for n = k +1 and an isomorphism for n > k +1.

We recall that in standard treatment of [10] angular momentum and quantum
statistics one considers the first homotopy of the rotation group πί(SO(d)). For
dΞ>3, it is known that [11] π1(SO(d)) = Z2; thus, the rotation group admits
double-valued representations and angular momentum can be half-integral. In
contrast, πί(SO(2)) = Z. The angular momentum algebra is abelian in 2-dimen-
sional space and so angular momentum is not quantized.

We ended Ref. 4 by remarking that there ought to be a connection between the
first homotopy of the rotation groups and the homotopy of spheres, since
π1(SO(2))-π3(S2) and n^SO^-n^S3). Indeed, there is. As we will see, the
connection can be understood in rather physical terms.

We now describe the J-homomorphism [12] which maps πk(SO(n))-+πn+k(Sn).
Given a representative of an element of πk(SO(n)\ i.e. a map R:Sk^>SO(n), we
are to construct a map J(R):Sn+k^S". We first define the map R: Sk x Bn-*B" by
sending (t, x) to R(t)x where t with |t| = 1 is in Sk and x with |x| ̂  1 is in Bn. Now we
can pinch Bn to Sn by the map p described earlier. Next, we pinch Sk xBntoSn+k by

an onto map s defined by s(t, x) = (tj/1— x2, x). The restriction of s to the boundary
d(Sk xBn} = SkxSn~1 is just projection onto Sn~ίcSn+k. (Note that this pinching
is not to be confused with another pinching defined by identity (Sk) x p. Recall that
S1 x B1 can be pinched to either S2 or the torus.) It can be shown [12] that the
homotopy class of J(R) depends only on that of jR.

The map s is invertible except on S""1. Explicitly, s" 1(v, w) = (v/j/1 — w2, w)
with v2 + w2 - 1. We define J (R) to be pRs ~ 1. On Sn ~ 1 we let the image of J (R) be
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(0, — 1). In summary, the J-homomorphism is constructed as follows

J is an isomorphism for k = 1 but not in general.
The above is a precise construction of J. Most physicists, however, would be

content with an explicit formula for J(R). Let Sn+k = {(t, x), t e Rk+ \ x e jR", with
x2 + t2 = 2}. Then, given R, we define

= ( ( U ) .f t = 0

All of this is highly mathematical. But, in fact, it is easy to relate heuristically all
this to the physical process of rotating the soliton described earlier. Let the
rotation R(t) be parametrized by teSk. (In the actual physical process we take
k= 1.) The set of rotations through 2π describes an element of πk(SO(n)} while the
soliton φ(x) describes an element of πn(M). Thus, the function φ(R(t)x) defines a
map of SkxSn-^M. Therefore, physics naturally leads us to a map of
πk(SO(n))xπn(M)^[_SkxSn,M']f. We want a map into πk+n(M) rather than
[Sfc x SΠ, M]'. (See earlier.) The J-homomorphism allows us to define precisely the
desired map:

πk(SO(n)) x πn(M)^ πn+k(S") x πn(

The composition c defines a map Sn+k^M by multiplying S"+/C-»S" with Sn->M.
We end with a few remarks about homotopy.
(1) Since π1(SO(n)) = Z2 for n>2 one might think that if πn(M)φO then

πn+i(M) must be either 0 or Z2. This is not true. A counter-example is provided by
π8(S3) = Z2 and π9(S3) = Z3. We believe that in this case the corresponding soliton
must be quantized as a boson.

(2) We can use the composition c to write, for example,

π4(S3) x π3(S2)-+π4(S2), π7(S4) x π4(S

and so on. Thus, the Hopf map S3->S2 and its suspension allows us to conclude
that an SO (3) nonlinear σ-model in 3-dimensional space may be quantized as a
fermion (π4(S

2) = Z2).
(3) Various properties of J are known to mathematicians, of course. For

instance, the diagram

commutes where i is induced by the inclusion of S0(ή) into SO (n+ 1).
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Like Σ, i is an isomorphism for n > k + 1 and onto for n = k + 1. This diagram
provides a connection between various discussions in the physics literature [3,4].

(4) J allows us to generate various maps. For example, π3(SO(3))—> π6(S3).
Since SU(2)~S3, the double covering of SO(3) by SU(2) generates π3(50(3)).
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