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Abstract. A problem of Mackey for von Neumann algebras has been settled by
the conjunction of the early work of Gleason and the recent advances of
Christensen and Yeadon. We show that Mackey's conjecture holds in much
greater generality. Let A be a JBW-algebra and let L be the lattice of all
projections in A. A quantum measure on L is a countably additive map, m, from
L into the real numbers. Our results imply that m always has a unique exten-
sion to a bounded linear functional on A, provided that A has no Type I2

direct summand.

Introduction

Let W be a von Neumann algebra or a JBW-algebra (see below for definitions). Let
P(W) be the lattice of all projections in W. A measure on P(W) is a positive, real-
valued function, μ, on P(W) such that μ(0) = 0 and, whenever p and q are
orthogonal projections, μ(p + q) = μ(p) + μ(q) If, whenever (pt) is a countable
family of orthogonal projections in W, μ(ΣPi) = ΣXPi)» then μ is said to be
countably additive. Clearly, each positive linear functional on W restricts to a
measure on P(W). When W is the algebra of complex two-by-two matrices, or a
spin factor, there exist measures on P(W) which do not correspond to linear
functionals on W.

Over twenty-five years ago, Mackey conjectured:
When Wίsa von Neumann algebra with no Type I2 direct summand and μ is any

countably additive probability measure on P(W) then μ can be extended to a state
of W.

Very recently the problem of establishing Mackey's conjecture has been
completely solved by Christensen [7] and Yeadon [33,34]. Christensen used great
ingenuity and insight to solve the problem for properly infinite von Neumann and
for von Neumann algebras of Type /„, where 3 ̂  n < oo. Yeadon devised different
methods to deal with general finite von Neumann algebras and so complete the
solution. We are grateful to the referee for drawing our attention to the work of
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Matveichuk who, independently, considered the problem for semiίinite algebras
[20]. The first major result had been obtained by Gleason [12] who solved the
problem for Type / factors. Important contributions were made by Gunson [14]
who established crucial continuity properties of countably additive measures on
continuous von Neumann algebras, and by Aarnes who worked with general
C*-algebras.

In most mathematical formulations of the foundations of quantum mechanics,
the bounded observables of a physical system are identified with a real linear space,
L, of bounded self-adjoint operators on a Hubert space, H. Those bounded
observables which correspond to the projections in L form a complete ortho-
modular lattice, P, otherwise known as the lattice of "questions" or the quantum
logic of the physical system.

For x, y in B(H)sa, the physicist P. Jordan defined the Jordan product of x and y
by

χ°y=2(χy+yχ)=(χ +y)2—χ2—y2.
So it is reasonable to assume that L is a Jordan algebra of self-adjoint operators on
H which is closed in the weak operator topology. Hence L is a JBW-algebra.
Mackey's Axiom VII, [19], makes the much stronger assumption that L=B(H)sa.
Mackey states that, unlike his other axioms, Axiom VII has no physical basis but is
made for technical convenience. He goes to say "It would be interesting to have a
thorough study of the consequences of modifying Axiom VII... ." One of the
technical advantages of Axiom VII is that it allows us to use Gleason's theorem
[12] to identify the completely additive probability measures on P with the normal
states.

The main purposes of this paper is to extend the Gleason-Christensen-Yeadon
theorem from von Neumann algebras to JBW-algebras. This removes one of the
mathematical difficulties arising from weakening Axiom VII to the physically
plausible assumption that L is a JBW-algebra.

The main results of this paper may be summarized as follows:

Theorem. Let M be a JBW-algebra with P(M) its lattice of projections. Let M be
either Type In for 3 ̂  n < oo, or Type I^.or without Type I direct summand. Then any
measure on P(M) is the restriction of a positive linear functional on M.

Corollary. Let M be a JBW-algebra with no Type I2 direct summand. Then any
countably additive measure on P(M) is the restriction of a positive linear functional
on M.

We make essential use of the methods of Christensen, Yeadon, Gunson, and
Aarnes. It turns out that for the Type II\ case the methods of Yeadon can be
generalized fairly easily. On the other hand, we need to surmount a number of
technical obstacles before we can cope with the properly infinite JBW-algebras.
Indeed, Type /„, for n ̂  3 gives rise to some non-trivial difficulties.

1. Preliminaries

A real Jordan algebra which is also a Banach space with a norm which satisfies
\\a2 — b2\\ 5^max(||α2||, ||ft2 | |), ||α2|| = \\ a \\2, for each pair of elements a,b is said to be
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a JB-algebra. A JBW-algebra is a JB-algebra which is also the dual of a Banach
space.

A uniformly closed Jordan algebra of self-adjoint operators on a Hubert space
is said to be a JC-algebra and is an example of a JB-algebra. A JW-algebra is a JC-
algebra which is closed in the weak operator topology and is an example of a JBW-
algebra. The classical example of a JB-algebra which lacks a Hubert space
representation is Ml, the 3 x 3 hermitian matrices over the Cayley numbers.
Essentially, these account for all JB-algebras. In particular, each JBW-algebra, M,
has a unique decomposition

where Mex is isomorphic to the real algebra C^(X9Ml) of all Mf-valued
continuous functions on some hyperstonean space X, and Msp is (isomorphic to) a
JW-algebra, [25, Theorem 3.9].

Each JW-algebra, M, has a unique decomposition of the form
/finθ I ao ®HI θ//oo ®IH> M being called properly infinite if its finite part / f in®//!
vanishes, [2, 31].

The Jordan triple product {α, b, c} of elements α, b, c in a Jordan algebra, A, is
defined by {α, b, c} = (a ° b) ° c + a ° (b ° c) — (a ° c) ° b. The operators ί/β, La on v4 are
defined by Ua(b) = {α, b, α}, Lfl(b) — a°b. One has ί/α = 2L^ — Lfl2. If A is a special
Jordan algebra, these reduce to

{a, b, c} =^(abc + cbά) , {α, b, α} = aba , α ° b=^(ab + bα) .

The elements a,b in A are said to operator commute if LaLb = LbLa on A. An
element which operator commutes with all other elements is said to be central, and
the set, in A, of all such elements is said to be the centre of A. Frequent (and tacit)
use will be made of the well-known Jordan identities,

+ Ua(b2}+Ub(a2).

Further details of the theory of JB-algebras used here can be found in [3-6, 8, 9,
16, 25, 32]. The reader is referred to [2, 10, 26-29, 31] for the relevant background
on JC-algebras and to [15] for the general theory of Jordan algebras.

Given a JBW-algebra, M, and a subset, S, of M we denote by C[S] and VF[S],
respectively, the JB-algebra and the JBW-algebra generated by S in M. We write
C[S] = C[α2, ...,aj, WTS] = Wΐα,...,αn] if S = {α,...,αJ is a finite set. The
algebra W[l9a,b], with a,b in M, can be realized as a JW-algebra, as may be
deduced from [32, Corollary 2; 10]; W[l,α] is the self-adjoint part of a
commutative FF*-algebra, as is every associative JBW-algebra.

Definitions. Let M be a JBW-algebra and let P(M) be its projection lattice.
(a) A measure, μ, on P(M) will be said to be a measure on M and a probability

measure on M if μ(l) = 1.
(b) A positive quasi-linear functional on M is a mapping ψ : M->R such that ψ

restricts to a positive linear functional on C[x], for every x in M. Also, φ is said to
be a quasi-state if !/;(!)= 1.
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The set of all positive quasi-linear functionals on, φ,M, for which <^(1)^1, is
denoted by Q(M). A quasi-state, φ, is said to be pure if whenever α e Q(M) with
oc^ψ, then a = λψ for some Λe[0, 1]. Since the functional calculus for JBW-
algebras is the same as that for W*-algebras, it is easily deduced, from arguments
used in [1], that

(i) If M is associative then every positive quasi-linear functional on M is
linear.

(ii) β(M) is a convex and compact set in the topology of pointwise
convergence. The pure quasi-states are precisely the non-zero extreme points of
β(M).

(iii) Each probability measure, φ9 on M extends uniquely and canonically to a
quasi-state, ιp, on M. The extension is expressed in the bijective correspondence
given by

ψ(ά)= I λdφ(ej, Φ = Ψ\P(M),
σ(a)

where σ(ά) is the spectrum, and (eλ) is the spectral resolution, of the element a of M.

2. JBW-Factors of Type /„, where 3^n< oo

The first lemma is a technicality, the content of which occurs in various guises
throughout the paper. Use will be made of the following identities. It can be
varified that they hold in all special Jordan algebras. By Macdonald's theorem,
[15, p. 40], it follows that they are valid in every Jordan algebra.

(11) 4(x o y) o (x o z) = z o !/,(,,) + y o Ux(z) + Ux(y o z) + {z, x2, y},

(12) 4x*(yo(x°z» = z o

Recall that two projections e,f of a JBW-algebra M are said to be (Jordan)
equivalent, written e~f9 if there exist symmetries si9...9sn in M such that
C7S l... USn(e)=f. The projections e9f are said to be exchanged by a symmetry s if

Lemma 2.1. Let M be a JBW- algebra containing distinct projections /, g9 e and a
symmetry s such that /°0φO, e°f=e°g = Q, Us(f) = e9 [7y(0)eR/, l7g(/)eR0.
Then A = Wlf, gj s] ̂  M3(R)Sfl.

Proof. If we knew already that A was special, this would be quite straightforward.
The general case seems to require a little more care. By appealing to the special
Jordan algebras W[_f9s\9 W[e9s]9 W[g9s\9 where necessary, we obtain Uf(s)

addition, 0 - g ° Ue(s) = Ue(g ° 5) - UsUf(g ° s). So Uf(g ° s) = 0. Similarly,
Ug(f°s) = 0. We claim that A = lin{/, g9 e,f°g,f°s,g°(/°s)} = B, say. Indeed, the
elements /«(/o g)=$(Uf(g) +/o ff), gf o (/o ff)=^(17^) + 0 o/), (/o ff)2

5. Moreover, since s operator commutes with both /° s and 0 ° s, we see that, from
^° ̂ s(/) — 0? 25o(5o/) =/+ e9 ( g ° f ) ° s = 2(g°(5°(5°/)))°s = 2(g°5) o(5o(5o/))
= (gos)°f+g°(s°f). Hence, {gf,s,/} = 0, and { s 9 f , g } = 2g°(f°s).
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From (II), (12), respectively, we therefore deduce that 4(/° g) o (fo s) = s° Uf(g)
+ 2#°(/°s), 4/° (0°(/°s)) = s° [//#), which belong to B. So, 00(/0(00(/°s)))
eR 0°(/°s). Note also that, since /°s, s operator commute,

= 4t7J.(,.Λ(flf) = Vwffa) = l/

This implies that 4UfaS(g) = UsUf(g)eJR.e. Therefore,

σ° s)°(9° σ° s)) =±(Vf.,(g) + (f° s)2 o 0) e Re + R/» 0

and, finally,

4(0 o (/o S))2 = 2(/o S) o [/9(/o S) + Ug((fo s)*) + l7/ei<0) e R0 + Re .

It follows that A is special, of dimension 6 and, since it must contain a factor of
Type /3, is isomorphic to M3(R)sα. The proof is complete. We remark that if, in
Lemma 2.1, f=g or /°0 = 0, then ^^M2(R)Sfl or R + M2(IR)sα, respectively.

The Type I2 JBW-factors are precisely the spin factors. There exists a spin
factor with orthonormal dimension of any given cardinality. For 3 g n < oo, each
Type /„ JBW-factor is isomorphic to Mf or Mw(F)sα, where F=R, C or the
quaternion algebra, H.

Theorem 2.2. Let φ be a measure on the Type In JBW-factor, M, where 3^n< oo.
Then φ extends to a positive linear functional on M.

Proof. Consider the extension of φ to a positive quasi-linear functional on M, also
denoted by φ. In view of Gleason's theorem and the preceeding remarks, we may
suppose that M = M \ or Mπ(H)sα, where H is the quaternion algebra. We will deal
with both of these types simultaneously.

First, for minimal projections f,g in M, we will show that φ is linear on
W\_f, Q\. We may suppose that /°#ΦO. Since, by [3, Lemma 3.9], / v #φ 1, we
can find a minimal projection, e, in M such that e^ 1 — / v g. Further, according
to [5, Lemma 6.3] there is a symmetry, 5 in M such that Us(f) = e. Now Lemma 2.1
implies that W[f, g~] £ W\_f, gj° s] ~ M3(IR)sα. Therefore, by Gleason's theorem, φ
is linear on W\_f,g\.

Now let /?, x lie in M, where p is a minimal projection of M. We will proceed to
show that φ must be linear on W[p,x].

The special Jordan algebra W[x, p] has a centrally orthogonal decomposition
into JW-factors,

W[x,p'] = Aί® ... φ^r, say.

r

Accordingly, x = Σ xf , for some x, e 4^ Since p is minimal, it must lie inside one of
e = l

the A{\ and we may suppose that p e Aγ. This means that the factor A^ = W[xl9p],
and that for each z^2, the factors A~W[x^\ are associative (and hence are
isomorphic to R or {0}). Thus we need only show that φ is linear on the JW-factor
A19 which we may suppose to be non-associative.

Let, then, Aί be a Type Ik JW-factor, where k ̂  2. Spectral theory demands that
x1 satisfy a polynomial of degree <Jfc. Since t/p(M) = Rp, and by using to
advantage the fact that Aί = W[_x^p] is special, one can easily check that A1 is
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linearly generated by the elements p, x™, P o χ ι> M»P>xϊK where m, /, r,
s= 1, ..., fc — 1. Upon counting, we see that Aί has dimension less than or equal to

Thus A1 cannot be the quaternionic Type Ik factor. If Av = Mk(F)sα, F= 1R or (C, for
fcΞ> 3, then our object is attained on applying Gleason's theorem. Thus it remains
to consider the case when Aλ is a Type I2 factor.

Suppose then that Aί = W[x1? p] is a spin factor, and let h be the unit of A±.
This implies that xl=ah + βq for some non- trivial projection, q, of Al9 where α, jS
are real numbers. Since A t is a spin factor, we have h = p v qe W\_p, q"]QAiy and so
W[p, q] = A1ι and, moreover, p and q must be exchanged by a symmetry of A! (and
hence by a symmetry of M, [31, Proposition 6]). Consequently, q, as well as p, must
be a minimal projection of the whole algebra, M. Hence, by the first part of the
proof, φ must be linear on Aί = W[p, q\ and so, by the above remarks, φ is linear

on W[x,p].
Finally, given any pair of elements x, y of M it now follows immediately, by

using spectral theory and then iterating, that φ(x + y) — φ(x) + φ(y). This completes
the proof.

3. JBW-Algebras of Type /„, 3^n< oo

We begin with a brief survey of the properties of pure quasi-states and their
connection with the problem in question. Brevity is appropriate because of the
close similarity with the work of Aarnes [1].

Proposition 3.1. Each pure quasi-state on a JBW-algebra restricts to a pure state on
the centre.

Proof. Let M be a JBW-algebra. Then Z(M) = CR(X), for some hyperstonean
space X. Consequently, the argument from line 8 in [1, Sect. 5, Lemma 2, p. 614],
with obvious modifications, implies that for any given pure quasi-state, φ, of M
there exist x0 in X such that φ(h) = h(x0) for every h in C(X). This means that φ is
pure on the centre.

The primitive quotients of a JBW-algebra, M, of Type /„, 3 ̂  n < oo, are JBW-
factors of the same type. By [30, Theorem 21] and [24, Theorem 3.9], it follows
that Z(M) ̂  CΈi(X)9 where X = Prim(M). Moreover, also taking into account [16,
Satz 36], for wΞ>3 there exist hyperstonean spaces Xί9 71? Y2, F3 for which

M^ c*(x9 Mi)ecR(y15 MΛ(R)jΘCR(y2, MΛ(<C) jecR(y3, MΛ(H) j,
the first summand vanishing when n > 3. Thus, bearing in mind the presence of the
identity element wherever appropriate, the analogues, for M, of most of [1, Sect. 6]
are easily obtained. In particular, we pick out:

Lemma 3.2 (cf. [1, Sect. 6, Lemma 2, p. 620]). Let Mbea JBW-algebra of Type In,
3 ̂  n < oo, and let φbea pure quasi-state of M. Suppose that Z(M) = C(X) and that
x0 is the point of X for which φ(h) = h(x0) for every h in Z(M). Then if x, y are in M
which agree on a neighbourhood U of x0, we have φ(x) = φ(y).
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Now running through the analogues (for JBW-algebras of Type /„, 3 ̂  n < oo)
of [1, Sect. 6, Lemmas 3 and 4, Theorem 5] we get down to that of [1, Sect. 6,
Corollary 3] which, on taking into account Theorem 2.2 and the Krein-Milman
theorem, may be stated thus :

Theorem 3.3. Let MbeaJB W-algebra of Type In, 3 ̂  n < oo . // all pure quasi-states
on M are continuous then all quasi-states on M are linear.

If MQB(H)sa is a JW-algebra, R(M) and [M], respectively, will represent the
real norm closed algebra and the C*-algebra generated by M, with R(M)~, [M] ~
denoting the corresponding weak operator closures in B(H ). Recall that M is said
to be reversible if αx ... an + an ... a1 belongs to M whenever α t ... an lie in M.

A projection p is said to be faithful in the JB W-algebra M if c(p) = 1 [where c(p)
is the central support of p in M], it is said to be homogeneous of degree n < oo if
UP(M) is Type /„. Observe that if p and q are equivalent projections in M then c(p)

Definition. Projections e,f in the JB W-algebra M are isodinic with angle α e [0,f)
if [/β(/ ) = e - cos2 α, [7/έ?) =/ cos2 α.

Remarks 3.4. Let e,/ be projections in the JB W-algebra M. Then
(1) Iϊe,f are isoclinic, then e,/ are minimal in W[_e,f~\ = M2(R)sα. Thus, there

is s in W\_e,n with s2 = e v/, U8(e)=f9 U8(f) = e, [5, Corollary 6.3]. Then
t = 1 + s — s2 is a symmetry in M with l/f (e) =/.

(2) If \\e-f \\<1, then [31, Proposition 7] applied to the JW-algebra
j/] implies that Us(e)=f for the symmetry s = c~1 / 2°(e+/— 1), where

The results contained in the following lemma are proved for JW-algebras in
[31, Theorem 10, Corollary 21, Lemma 26].

Lemma 3.5. Let M be a JBW-algebra and let e,f be projections in M. Then:
(i) There is a central projection z and a symmetry s in M such that Us(e ° z)

(ii) // M has no infinite part and e~f, then e,f are exchanged by a symmetry,
in M.

(iiΐ) If e,f are abelian and c(e) = c(f), then e,f are exchanged by a symmetry.

Proof, (i) This can be obtained by straightforward modifications to [31, Corollary
16, Proposition 11, Lemmas 18 and 19, Theorem 19] together with inspection of
the arguments in [5, Sect. 6].

(ii) By [25, Theorem 3.9] and [31, Corollary 21], M can be supposed to be purely
exceptional. Let π be a factor representation of M and let s1? . . ., sn be symmetries in
M such that l/S l... USn(e)=f. Choose a central projection c and a symmetry s
satisfying (i). Since πM = M|, it follows that π(/°z) = Uπ(Sl} ... t/π(Sn)ί/π(s)(π(/oz)).
Therefore, by [5, Corollary 5.7], foZ = USl...Us I7,(/°z). Hence e°z = Vs(f°z).
Similarly, *o(i-z) = t7β(/o(l-z)). So, Us(e}=f.n

(iii) Choose central projection z and a symmetry s satisfying (i). In particular,
p=Us(e°z)^f°z = q. Both p, q are abelian and c(p) = c(q). By the proof of [9,
Theorem, p. 322], p = qc(p). Hence p = q. Similarly, Us(f(l —z)) = e°(l—z). Hence

Us(e)=f
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Lemma 3.6. Let f,g be projections in the JBW-algebra, M, and suppose that
\\f—g\\<l and that there is a projection e in M such that e~f, e°f = e°g = Q.
Suppose also that the angle α e [0, π/4) and sin" 1 {Uf(l — #)1/2} rg2α/. Then there
exists a projection h in M isoclinic with angle α to both f and g. In particular, this
holds when α-^sin'1 1| 17/1 -g)1/2\\.

Proof. There exist central projections el9 e2, e3 in M, where (up to isomorphism)
^rev = e1 ° M is a reversible JW-algebra, M2 = e2 ° M is a Type J2 JW-algebra and
A^ex — e3°M is purely exceptional. Since

iy i= 1,2,3,

ex.it is enough to prove the result separately for each of the cases M = M2, Mrev, M
(a) M = M2. Let π be a factor representation of M. Then π(M) is a spin factor,

[26, Lemma 2] since π(e) ~ π(/) ~ π(g) and π(e) ° (π(/) + n(g)) = 0 and since all
projections φO, 1 in a spin factor are minimal, it follows that π(f—g) = Q. Hence
f=9, by [5, Corollary 5.7]. By [31, Corollary 21], or Lemma 3.4(ii), there is a
symmetry, 5, in M such that Us(e)=f. Put /z=/ cos2α + 2{/, 5, e}sinαcosα
+ e sin2 α. Calculation shows that h is a projection and that ί/Λ(/) = h cos2 α, Uf(h)
=/ cos2α.

(b) M = Mrev. Inspection of the arguments in [14, Lemma 2.6] and [7, Lemma
2.3] reveals that the discussions there can be conducted entirely in R(M)~ . The
facts that one needs to observe are that the elements W9 Win [14, Lemma 2.6], can
be chosen in ^(M)". Indeed, W\x\9 is the polar decomposition in [M]~ of
x = (l —e)feeR(M). Consequently (see, for example, the proof [21, 2.2.9]), W is
the strong limit of the sequence x(\/n + |x|) ~ 1, lying in R(M). Hence Wε R(M) ~~ . In
addition, because there exist symmetries si9...9sn in M such that
s1 ...snesn...s1 =/, we can choose W'=fsn... s1 e R(M). It then follows that the
relevant projection heR(M)~a=M, because M is reversible [27, Remark 2.5].

(c) M = Mex. By Lemma 3.5(ii), there is a symmetry 5 in M with Us(e)=f.
Consider the JBW-subalgebra of M, A = W [ f , g , f ° s " ] . Using the fact that
W\J> sl? W\β> sl are JW-algebras, one obtains C7/(s) = l/β(s) = 0; 2(s°f)°f=s°f
= s°e = 2(s°e)°e; (2(s °/))2 = e +/, U 2 ( S ΰ f } ( f ) = e. Therefore, e and / are equiva-
lent in A. In fact, Ut(e) =/, t2 = 1A, where t=lA + 2f°s — e-f(lA being the identity
element of A). Thus in view of (a), (b) and the remarks preceding them, the proof
will be complete once it is shown that A is (isomorphic to) a JW-algebra.

First, observe that e, /, and g are abelian projections in M, and consequently in
A. Indeed, for any factor representation π of M, π(M) = M^ and so either π(/), π(e)9

π(g) are either all minimal or all zero. Now use [6, Lemma 3.2].
Consider now the JB-subalgebra of A, B = C[lA,f, g,f° t], and let ψ : B-+N be

any factor representation. B contains e9t9 and either ψ(e)9 ψ(f)9 ψ(g) are all
minimal or all zero. Therefore, Λf ^R or N= W[\p(f)9 ψ(g)9 φ(f)°ψ(ty] and the
latter has dimension ^ 6, by Lemma 2.1 and the remarks following it. Hence B is a
JC-algebra, by [5, Theorem 9.5]. Consequently, A9 which is the σ(M, M J closure
of B (where M# is the predual of M), is a JW-algebra, being a quotient of the JW-
algebra B**.

The proof of the final statement in the lemma is contained in [7, Lemma 2.3].
This completes the proof.
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Corollary 3.7. Let f,g be projections in a JBW-algebra M of Type /„, where
3 ̂  n < oo . Suppose that \\ f— g\\<% and that f is faithful and homogeneous of degree

k in M. Then for any measure φ on M, \φ(f)-φ(g)\<L2]/2 k \\f-g\\1/2

Proof. The symmetry s = c~1 / 2° (/+#-!), where c = (/+#- 1)2, exchanges /
and g, by Remarks 3.4(2). Operating in the JW-algebra W[l,f,g] one calculates
that Uf(s) = c~1/2°a = a1/2, where a — Uf(g). By assumption, /= p± + . . . + pk, for
some faithful abelian projections pl9 ...,pk. Put qt = ί/s(pj).Then the qi are faithful
abelian and q = q^ + ... +qk. Observe that

^
and that

l i ft- i/Pi(fl1/2)ll = HiW-fl1 / 2)ll ^ Il/-a 1 / 2ll ̂  ll/-α|| £ II/-0II .
So,

\\Upi(l -qύ\\ = \\Pt- υpUfUs

Therefore, \\pt-qt\\£]/2 ||/-#||1/2<1, by symmetry.
Fix i. By Lemma 3.6, there exists a projection h{ isoclinic to both pi and qt with

angle α = sin" 1 1| L/p.(l — q^12 \\. By Remarks 3.4(1), ht is also faithful and abelian in
M. This means that there is a projection eί^\—pi v Jιί5 which is faithful abelian in
M and, consequently, a symmetry sf exchanging et and p/? by Lemma 3.5(iii). Thus,
PF[pί,/ϊί,pί°sί]^M3(R)Sfl, by Lemma 2.1. Similarly, gί? /ij can be embedded in a
copy of M3(R)sα contained in M. Applying Gleason's theorem, as in the relevant
part of [7, Proposition 2.3], it follows that \φ(p^ — φ(qί)\^2\\pi — qt\\. Therefore,

and the proof is complete.

Theorem 3.8. Let M be a Type In JBW-algebra, where 3rgn<oo. Then every
measure on M extends to a positive linear functional on M.

Proof. We are now in a position to adapt [7, Theorem 3.1] more or less directly.
Indeed, suppose that φ is a pure quasi-state on M. By [16, Satz 36] and [25,
Theorem 3.9], we may suppose that M = CR(Z, MM(F) J, where F - IR, <C, H or the
Cayley numbers; and X is some hyperstonean space. Then φ is concentrated at
some point x0 ofX, in the sense of Lemma 3.2. Given c, d in M, ε > 0, \\c — d\\ < ε, an
hyperstonean neighbourhood, V, of x0 can be chosen so that

m

\φ(c) - φ(d)\ ^ s/2 + _Σ λi\Φ(PΪ) - Φ(qj\, where m ̂  n,

for certain positive real numbers λi and projections pi9 qt which are faithful and
homogeneous, of degree fcf = dimension Pi(x0)9 in N = C(V9 Mn(F)sα) satisfying

-2

ί-βill^^-T \4ki\ 1 +

2n
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Thus \φ(c) — φ(d)\<ε. Therefore, the desired conclusion results from Lemma 3.7
and Theorem 3.3.

4. Properly Infinite JW-Algebras

The reader is referred to [2] and [31] for an account of the relevant properties of
finite and infinite JW-algebras (called, respectively, modular and non-modular in
[31]). In order to apply the techniques of Christensen, [7], we first need to establish
certain technical properties of JW-algebras.

The JC-algebra A is isomorphic to a generating JC-subalgebra of its universal
enveloping C*-algebra, C*(A), [4, Theorem 5.2]. By abstract nonsense, if A and B
are isomorphic JC-algebras then C*(A) and C*(B) are *-isomorρhic C*-algebras.

Suppose that A is a finite dimensional JC-algebra. Then C*(A) is finite
dimensional, and we may make the identifications (see [13, p. 90] and [24, p. 355])

CR(JT, A) = C^(X)®^A , CC(X, C*(A)) = CCC2Q® CC*(4) ,

where X is a compact Hausdorff space. We may also regard A and CR(X)®R>1 as
being contained in and generating C*(A) and CCPQ®CC*(>4), respectively.

Let B be a C*-algebra and let π: CΏi(X)®κA-*Bsa be a Jordan homomor-
phism. By the universal property the induced Jordan homomorphisms

BM(x->π(x(g) 1)), π2 : 4->BM(α-

extend to *-homomorphisms πί:C(X)-+B and π 2 : C*(A)-+B, respectively. In
turn these induce a linear mapping

π : Cc(X)<g) cC%4)-Kx® α-^OO π2(α)) ,

which clearly extends π. From the fact that A generates C*(A) it is easy to see that π
is actually a *-homomorphism. It follows that C*(C^(X9 A)) = CC(X, C*(A)).

In addition, let us note that by [11, Corollary 5.1],

C*(CR(Z, A))** * Ce(X, C*G4))** * CC(Z)**®CC*G4)** ̂  C(7)® CC*(^4)** ,

for some hyperstonean space 7, whenever A is finite dimensional.
Let Vn denote a spin factor of orthonormal dimension n + 1, where 2 ̂  w < oo.

By [15, pp. 75 and 263], C*(F2J = M2n(C) and C*(F2n + 1)-M2n(C)φM2n((C).
Using [28, Corollary 6.5] and [29, Corollary 3.5], for example, it can be seen that
C*(MΠ(F)J = MB(C), MW(C)ΘMΠ((C) or M2||(C), respectively, according to
whether F=]R, C or H, for n^3.

The following lemma is an immediate consequence of the above remarks.

Lemma 4.1. Let A be a JC-algebra and X a compact Hausdorff space. Then [A] ~ is
(i) Type In if A*C(X,Mn(F)J, where F = R or C.

(ii) TypeI2nifA^C(X,Mn(Ή)sa).
(iii) Type I2n if A^C(X, Fk), where k = 2nor2n+l.

We will now prove a sequence of lemmas aimed at Theorem 4.6.

Lemma 4.2. Let M<±B(H)sa be a JW-algebra and let p,q be projections in M.
Suppose that the identity of B(H) is contained in M and that N is a JW-subalgebra of
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M containing 1 and isomorphic to M3(R)SΛ such that N£ {p, q}'r\M. Then the JW-
algebra Q=W[_{p,q}^jN~\ has central summands of Type /3 or Type I6 only.

Proof. Using Lemma 4.1, M3(C)^[ΛΠ£{p,g}VΛ[M]~. SinceL=[JV] commutes
elementwise with {p, q}'\ there is an algebraic surjective *-homomorphism from
{p,q}"®L onto the algebra generated by {p,q}" and L. In addition, from [30,
Chap. V, Theorem 1.41] and the reasoning employed in the preamble to Lemma
4.1, there exist algebraic *-isomorphisms

= ̂ , say,

for certain hyperstonean spaces X, Y. Therefore, since the algebra generated by
{p, q} and L is weakly dense in {{/?, ̂ }}uL}/x = [Q]~, there exist hyperstonean
spaces S, T such that CC(S,M3(C)®C(C(T,M6(C))^^** -^ [β]~, where φ is a
w*-continuous surjective *-homomorphism. The desired conclusion is now an
immediate consequence of [29, Theorem 6.4; 6, Proposition 4.5; 16, Satz 36] and
Lemma 4.1.

Lemma 4.3. Let MQB(H)sa be a properly infinite JW-algebra, containing the
identity element of B(H) and such that R(M)~ r\iR(M)~ = 0. Suppose that
AΓ = M3(R)sα is a JW-subalgebra of M containing 1. Then MπN' is a properly
infinite JW-algebra.

Proof. M is reversible, by [28, Theorems 6.4 and 6.6] and [M] ~ is a properly
infinite von Neumann algebra, by [2, Theorems]. Since le[JV] = M3((C),
[M]~nN'=[M]~"n[JV]' is also properly infinite.

Consider the real algebra R = R(M)~nN'. Then RnίR = Q. By [29, Theorem
2.4], [M]-=Λ(M)~ΘiΛ(M)~, and it follows that Λ®«? = [M]~nJV'. In ad-
dition, since R(M)~a = M, we find that Rsa = MnN'.

If Mn JV' is not properly infinite then it has a non-zero finite normal trace, φ.
But then, on applying [2, Theorem 1] to R, φ must extend to a finite normal trace
on the properly infinite algebra [M]~nΛΓ, a contradiction. Therefore, Mr\N' is
properly infinite, completing the proof.

Suppose that M is a properly infinite JW-algebra. Since [M]~ is properly
infinite, there is a projection e in [M] ~ with e~\—e~\ (where here ~ denotes the
usual von Neumann equivalence). The intention of the following digression (it will
be needed in Theorem 4.6) is to show how e may be chosen in M with a measure of
control over the partial isometries implementing the equivalences. The usual
Jordan equivalence is inadequate for this purpose.

Because, for technical reasons, we need consider no other kind, we will confine
our attention to reversible JW-algebras and avoid unnecessary qualifications.

Let M be a reversible JW-algebra and let e,f be projections in M. We will write
e&f if there exists a partial isometry u in R(M)~ such that e = u*u, f = uu*. If
there exists u in R(M)~ such that e = u*u, uu*^f, we will write e^f. [Note
that uu* eM, because
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It is easy to see that if in a reversible JW-algebra, M, e,f are Jordan equivalent,
then e&f and, moreover, that « is an equivalence relation amongst the
projections of M.

Lemma 4.4. Let M be a reversible JW-algebra. Then,
(i) // (e^i e /, (fi)iel are both families of mutually orthogonal projections in M

such that βi&fi, for every i in /, then Σ^^Σ/i
(ii) // e,f are projections in M such that e^f, f^e, then e&f.

(iii) // e,f are projections in M, then there exists a central projection z in M such

Proof, (i) Let uteR(M)~ such that et = ufui9 fi = u uf9 ϊ e/ . Then Σ ut lies in

R(M)~ and implements the equivalence Σ eι~ Σ ft- eel

eel ίel

(ii) Let u, v e R(M)~ such that e = u*u, uu* = f± ^f,f = v*v, vv* = ei^e. Then,
in view of (i), inspection of the argument in [30, Chap. V, Proposition 1.3] yields
e&f.

(iii) By [31, Theorem 19] (see also Lemma 3.1), there exists a symmetry s and a
central projection z in M with sezs^fz, se(l—z)s^e(l—z). Put u = sez,
v = sf(\ —z). The result follows.

A projection e is a JBW-algebra M is said to be properly infinite if eMe is a
properly infinite JW-algebra.

Proposition 4.5. Let e be a projection in a reversible JW-algebra M. Then the
following are equivalent.

(i) e is properly infinite in M.
(ii) There exists an infinite sequence (pn) of mutually orthogonal projections in

00

M such that Σ Pn = e~Pm> for every m.
n=l

(iii) There exists a projection f in M with e^

Proof, (i) => (ii): We may suppose that e— 1 is properly infinite. By [31, Lemma
23], there exists an infinite sequence, (rπ), of mutually orthogonal Jordan
equivalent projections in M. In particular, rn^rm, for all m, n. From this fact and
Lemma 4.4 it can be shown as in [22, 2.2.4] with only formal notational changes,
that there is, in M a central projection, z, and in infinite sequence, (/?„), of mutu-

00

ally orthogonal projections such that Σ Pn = z~Pm> f°r every m. Since
« = ι

(1 — z) o M is properly infinite, the result follows by transfϊnite induction.
(ii) => (iii) : This follows immediately from Lemma 4.4(ii).

(iii) => (i): Assume (iii). Then e[M~\~e is a properly infinite von Neumann
algebra. In order to deduce (i) we may suppose that R(M)~nίR(M)~ =0, by [28,
Lemma 6.1]. Applying [2, Theorem 1] to the real algebra R = eR(M)~e, it follows
that if eMe has a non-zero finite normal trace then so does e[M~\~e, a
contradiction. Therefore, eMe is properly infinite.

Mackey's conjecture for properly infinite JW-algebras can now be established
by applying the methods of Christensen [7, Theorem 4.1]. For completeness we
indicate the proof.
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Theorem 4.6. Every measure φ on a properly infinite JW-algebra M extends to a
positive linear functional on M.

Proof. We may suppose that M£B(H)sa, where M contains the unit of B(H) and
that φ is a quasi-state on M. The fact that M is reversible (see above), so that
R(M\a = M, will be used tacitly. Applying [7, Theorem 4.1] and [28, Lemma 6.1]
together, we may further assume that R(M)~πiR(M)~ = 0.

Now suppose that AT is a JW-subalgebra of M such that 1 e ΛΓ = M3(]R)sα, and
consider the JW-algebra Q = MnN'. Using Lemma 4.3 and Proposition 4.5, there
can be chosen in M an increasing sequence, (pn), of mutually orthogonal
projections such that pn& 1«1 —pn (in β), φ(l—pn)^2~n for every n. Next, given
a, b in M with 0 ̂  α, b^pn, and β > 0, choose fc > w such that φ(l — pk) < (ε/6)2. As in
[7, Theorem 4.1], we find orthogonal projections q, r such that a = pπgpπ, fc = pnrpn,
and by Proposition 4.5, we can ensure that q, r lie in Q. By Theorem 3.8 and Lemma
4.2, φ restricts to a positive linear functional on W[pn, q\. Extend this to a positive
linear functional ψ on the C*-algebra, [W[pπ,#]]. Then

Treating q + r, r similarly, one gets \φ(a + b) — φ(ά) — φ(b)\ < ε and proceeds to show
that φ is linear on pnQpn exactly as in [7, Theorem 4.1].

As above, there exists, in M, an increasing sequence of projections, (en\ such
that en w 1 - en w 1 and φ(en) 11. Choose orthogonal projections /„, gn ̂  1 — en, in M,
such that 1 -en =fn + gn&fntegn. Then there are partial isometrics un, υn in R(M)~
such that u%un = v%vn = en, unu%=fn, vnv% = gn, en + unu% + vnv% = 1. One can easily
check that the real linear space, lin{en, /„, gn, un + u*, vn + v%, unv% + v%un} = Nn,
contained in M, is a JW-algebra isomorphic to M3(R)sa. Since φ is linear on
MnN'n, and since enxen + unxu* + vnxv* eMn>N'n, for all x in M, the proof can
now be completed as in the final paragraph of [7, Theorem 4.1].

5. Type 1^ JW-Algebras

Let M be a Type II\ JW-algebra. Then M is reversible and [M]" is a Type 77ί

FF*-algebra, by [28, Theorems 6.4 and 6.6] and [2, Theorem 8], respectively.
Moreover, M has a (unique) faithful normal centre-valued trace, T (see [31, Sect.
18]). Since the centre, Z(M), of M is contained in the centre of [M]~, and the
closed convex hull of the set {Us.... USn(x): st symmetries in M, n e N} intersects
Z(M) nontrivially, [31, Proposition 1, Theorem 25], it follows from the properties
of Γ and the construction in [23,2.4.6], for example, that Tis the restriction of the
faithful normal centre-valued trace on [M]~, which we will also denote by T.

Lemma 5.1. Let M be a Type IIί JW-algebra and let e,f be projections in M. Then
(i) T(e) < T(f) (respectively T(e) = T(f)) if and only if Us(e) < f (respectively

Us(s) =f) for some symmetry s in M.
(ii) // e and f are (von Neumann) equivalent in [M] ~, then Us(e) =/, for some

symmetry s in M.

Proof, (i) Suppose that T(e) ^ T(f). By [31, Theorem 10] on Lemma 3.4(i), there is
a symmetry s and a central projection z in M such that Us(e<
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I7β(/o(l-z))^eo(i_z). Therefore,

T(((f- U,(e)) o (1 - z)) = T(Us(fo (1 - Z)) - e o (1 - z)) = 0 .

Hence /- Us(e) = (/- I7β(*)) ° z ̂  0.
The rest is clear.
(ii) This follows from the above remarks together with (i) and [30, Chap. V,

Corollary 2.8].

Lemma 5.2. Let M be a Type II \ JW-algebra and let φbea probability measure on
M. Suppose that f,g are projections in M with \\f-g\\ <£<2 Then \φ(f — φ(g)\

<4|/2ε1/2.

Proof. We may suppose that / Λ g = 0. Let s be a symmetry in M such that
Us(f) = g [see Remarks 3.4(ii)]. By [31, Theorem 17], there exist, in M, equivalent
and orthogonal projections /ι,/2 such that /=/Ί +/2. Put gt=Us(f^ for ί = 1,2.

Then | |/,-flfil |^|/2| |/-flf | | 1 / 2<l, i=l,2, by the proof of Corollary 3.7. By the
above remarks, T(f v g) = 2T(f) = 4T(f1) and T(f, v gί) = 2T(fl). Hence,
T((l ~/ι) A (1 -0J) - T(l -Λ v 0J ̂  2T(/1). Thus, by Lemma 5.1 there exist, in
M, orthogonal projections p l 9g 1 ? such that Pι~<h~/i~#ι and P\Qf\ = g\ofi
= Pι°gι = Q:> moreover, we can choose symmetries s^^ in M such that t/Sl(/Ί)
= qi = ί/f^i). By Lemma 3.6, there exists a projection /^ E W\_f^g^ pv~\ isoclinic
to both /!,#! with angle α^^sin"1 ||(/ι(l-^ι)/)1/2]|. Since, using Lemma 2.1,

ι^ι051]^^[^1,/z1,^1oί1]^M3(R)sfl it follows that \φ(fί)-φ(gί)\
g f i l l , as in [7, Proposition 2.3] on using Gleason's theorem. Similarly,

\φ(f2) — ̂ (02)l = 2||/2 — ^2 I I ? an(l the proof is complete.
Given any probability measure, φ, on the Type II \ JW-algebra M, in view of

Lemma 5.2, the reversibility of M and [31, Theorem 17], one can easily adapt [33,
Proposition 2] to show that, via Theorem 3.8,

Φ(f) = Φ(βfg) + ̂ ((1 - 0)/(l - ff)) + ^(flf/(l - flf) + (1 - g)fg) ,

for any pair of projections /, g in M.
In order to profit from the ingenious insights of Yeadon, [33, 34], we notice

that φ extends to a state, φ, say, on the centre of [M] ~ and define a finite trace, φ, on
[M] ~ by ψ(ά) = φT(a) for every α in [M] ~. By restriction, ψ is a finite trace on M,
of course.

Armed with this construction and the above facts, examination of [33, 34]
shows that Yeadon's methods can be carried over to the present context with very
minor modifications, allowing us to state :

Theorem 5.3. Every measure on a Type II \ JW-algebra extends to a positive linear
functional on the whole algebra.

A JBW-algebra M is said to be bounded Type /fίn if M = M10M20 ... 0Mr,
where, for each i, Mf is of Type /Πι with nt a finite integer.

Thus, in conclusion, on combining Theorems 3.8, 4.6, and 5.3, we have:
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Theorem 5.4. // M is a JBW-algebra with bounded Type /fin part and without Type

12 part then every measure on M extends to a positive linear functional on M.

Corollary 5.5. // M is a JBW-algebra without Type I2 part then every countably

additive measure on M extends to a positive linear functional on M.
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