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Abstract. For the three-dimensional ANNNI model a converging expression
for the curve of the coexistence of the (3.3)-phase and ferromagnetic phase is
derived for low temperatures using a new extension of the Peierls contour
method.

1. Description of ANNNI Model and Formulation of the Result

We consider a classical spin model on the lattice Z3, where the spin variables take
the values +1 and the Hamiltonian has the form

H(φ(U))=-J0 Σ φ(x)φ(xΊ-Jί Σ

+J2 Σ (2Φ(χ)φ(χ'). (i)
(x,x')eUill

Here [/cZ (3) is a finite set, Uhor is the set of horizontal bonds,
U^lliU^H) is the set of vertical bonds of length 1 (2); in all cases the ends belong
to [/, φ(x) is the spin variable at the point x, φ(U) is the notation for a
configuration on U. Parameters Jo, J 1 ? J2 are positive coupling constants.

This model is called the axial next-nearest neighbor Ising model or, briefly,
ANNNI model. It was introduced more than twenty years ago by Domb [1] and
Elliott [2], and recently attracted much attention in connection with experimental
results concerning compounds of rare-earth elements (see [3]).

This paper was motivated by the deep analysis of the phase diagram of the
ANNNI model performed in the paper by Fisher and Selke (see [4]). Using a
formal perturbation theory the authors have shown that for low temperatures T
there are infinitely many separation-phase lines on the plane (T,Jι/J2) All these
lines start in the point (0,1/2), where an infinite degeneracy of ground states takes
place. From the mathematical point of view these lines determine the values of
parameters where the number of periodic extreme limit Gibbs states is
discontinuous.

The main idea of [4] which apparently is of more general importance is that for
finite temperatures there appears a splitting of ground states if we take into
account one-point spin flips of the least energy.
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We reproduce below the corresponding arguments. Assume that U is a cube of
size / and we consider configurations φ(U) with periodic boundary conditions. It is
easy to see that it is sufficient to look for ground states for which φ(x),
x = (x1? χ2? χ3) depend only on x3. All such configurations decompose onto series
of horizontal planes x3 = const, where φ(x) is a constant. We denote by Nr

= Nr(φ(U)) the number of such series of the width r. Assuming that Σ Nr > 1 we

can rewrite (1) as follows:

+ J2N1 + J2 Σ (r-2)Nr-2J2 Σ Nr
r>2

Nr-l)l2 + 4J2N±l2

The first two terms give the energy of the ferromagnetic configuration for which
φ(x) = const, xeU. For this configuration Nt= 1, JVr = O for r<l.

For J1 — 2J2 = 0 we have an infinite degeneracy of ground states because all
configurations with Nί = 0 are ground states. If J x — 2J2 > 0 then the ground states
(g.s.) are ferromagnetic configurations (/-g.s.). If J1 — 2J2 < 0 then the ground states
are four configurations for which Nr = 0 for r =t= 2.

Assume that an inverse temperature β is chosen and fixed. In the usual picture
of phase transitions of the first kind the limit Gibbs states corresponding to
physical phases are concentrated on configurations which look like small islands
of perturbations of an underlying "ground state sea." If this picture is valid then the
main contribution to the free energy of the corresponding phase comes from one-
point perturbations of the ground state. We shall list now all possible one-point
perturbations and their energies in the case of ANNNI-model. In Table 1 the

Table 1

Configuration

1) + + + - -

2) + + + + +

3) - + + - -

Perturbed
configuration

_ | _ 1

1

Change of energy

ε0 = 8 J o

ε1 = 8J 0 + 4J 1 —4J 2

c — 8 T J-AT
&2 — o«y o ι ^J 2

4)

+ ι

+ 1 I

SΊ J_-J__L _ L _ L c— 8ί J-4ί ±8ί
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configurations which are drawn horizontally are indeed vertical. Also we assume
that Jo is sufficiently large comparing with JUJ2. Otherwise one should take into
account two-point perturbations (we are indebted to G. Uimin for this remark).

The table shows that the least energy ε0 have perturbations on the boundaries
between different series. Let us denote by Ut the set of points where spin flips of
type i can happen, i = 0, 1,2, 3, 4. It is easy to check that \U0\ = 2l3 Σ Nr, |C7±|

= l2 Σ <r-4)Nr9 \U3\ = 2l2 Σ ΛΓr, \U2\ = 12N29 \U^\ = 12N3. ^
r^5 r^4

Here and further the absolute value of a set means its cardinality. The number of
configurations of k non-interacting spin-flips can be written up to terms of the next
order as C\υ.\. Using binomial coefficients we neglect an interaction of spin flips.
Let us introduce for a ground state φ(U) the partition function

S<β>(φ(E/))= Σπp{-βH(φ(U))}9
φ{U)

where the sum is taken over only those φ(U) which arise after some number of non-
interacting spin flips from φ(U). As was said before, in the main order

4 \Ui\

Ξ^(φ(U)) κexp{-βH(φ(U))} n Σ Cf^e"**
ί = 0 k = 0

= exp I - βH(φ(U)) + ΣQ I Ut\ ln(l + exp( - βe

Thus the approximate value of the free energy corresponding to the ground state
φ(U) is equal to

^ ( 2 J 0 + J1-J2)βl3-2(J1-2J2)β Σ Nr l2

+ 2l2e~βεo Σ Nr + l2e~βεί Σ (r-4)Nr

The difference £ί—ε2 = 4(J1 — 2J2) = 4δ. In the domain δ = Jι — 2J2>0 we con-
sider the sum

-2βδl2 Σ Nr + 2cxp{-βs0}l2 Σ Nr

-2βδN2l
2 + (-2βδ + 2exp{-βεo})l
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If

δ>0, 2(-βδ + exp{-βεo})-3exp{-βεί}>0,

then the sum takes the largest value for the ground state for which N2 = Nr = 0 for
r ̂  4. This ground state consists of series of three horizontal planes of the same sign
((3,3)-g.s.) If

δ>0, 2(-/?<5 + exp{-/?εo})-3exp{-βε1}<0

then the sum takes the largest value when Σ Nr takes the least value, i.e. for /-g.s.
If ^ 4

2(-j8δ + exp{-j8εo})-3exp{-j8ε1} = 0,

then

[2(-jSa + exp{-j?εo})-4exp{-jSεJ]<0

and the sum takes the largest value for N2 = Nr — 0, r ̂  4. Thus if we neglect terms
of smallness less than exp{ —βεj then for

δo = β-1exp{-βεo}-3/2β-1exp{-βει} (2)

the free energies of/-g.s. and (3,3)-g.s. coincide. In other words the equality (2) gives
an approximate equation for the co-existence of ferromagnetic and (3,3)-phases.

The arguments presented above give evidence for the following picture: there
exist β0 and a curve δ = δ(β) defined for β>β0 and close to δo(β) up to terms of
order less than exp {— βεί} such that for all β > β0 and δ > δ(β) there are two limit
Gibbs states which are small perturbations of f.g.s. (see [6]), for δ<δ(β) and close
enough to δo(β) there are six limit Gibbs states which are small perturbations of six
(3,3)-g.s. while for δ = δ(β) we have eight limit Gibbs states corresponding to the
coexistence of f.g.s. and (3,3)-g.s.

Now we can describe the main result of this paper. We develop a version of
Peierls contour method suitable for the ANNNI model. We shall see that it has
several peculiarities comparing with the usual situation (see [6]). With the help of
the new technique we show the following theorem.

Main Theorem. For large enough β there exists a continuous function δ = δ(β) such
that for J\ — 2J2 = 2δ(β) the ANNNI model has eight periodic limit Gibbs states.

One can already see from the previous discussion a special role of isolated spin
flips with the energies ε0, εx and ε2. All functions of/? which tend to zero faster than
β~1 exp{ — β ε j will be called very small (v.s.). In particular, we shall see that δ(β)
— δo(β) is v.s. Also we put

1 - j ; 1 | + |x2-3;2 | , \x3-y3\)

for x,

2. Boundaries for ANNNI Model

Assume that a configuration φ is given which coincides outside a finite set either

2,with a f.g.s. or with a (3,3)-g.s. We shall say that φ at a point x = (x1, x2, x 3 )eZ 3 is
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in a ferromagnetic phase (f.ph) if φ(y) coincides with a f.g.s. for all y, d(x, y) ̂  9. Also
φ is in (3,3)-phase ((3,3)-ph) at x e Z3 if there is a (3,3)-g.s. ψ and an interval (a, ft),
b — a=\& such that ΐ)ψ(xux2, a— l)Φip(x l 5 x2, α), φ(x l 9 x2, b — l)Φip(x l 5 x2, b);
2) α + 6 ^ x 3 < α + 1 2 ; 3) φ(y) coincides with ψ(y) for all j ; = (y l 5 j / 2 , ^3) such
that a£y3<b9 \yι-x1\ + \y2-x2\S9.

Due to this definition any boundary of the domain occupied by the (3,3)-phase
lies between series of different signs.

All points where φ is not in a phase are called boundary points. The set of all
boundary points is the boundary of φ and will be denoted by B(φ).

Q(x), x e Z 3 is the closed unit cube with the centrum at x. A set of cubes is called
connected if for any two cubes one can find a chain of cubes belonging to the set
such that the first one and the last one coincide with the given cubes and every two
neighboring cubes of the chain have a non-empty intersection.

We shall identify B(φ) with the set of cubes β(x), x e B(φ). The boundary B{φ)
can be decomposed onto connected components Bu B2, ...,Br. The boundary dBs

of Bs, 1 ̂  5 ̂  r, consists of faces which separate points of Bs and %3\BS. A set of faces
is called connected if for any two faces of the set one can find a chain of faces
belonging to the set such that the first one and the last one coincide with the given
faces and every two neighboring faces of the chain have a non-empty intersection.
Each dBs is decomposed onto connected components one of which is the exteriour
component <3#s(ext) while the others are interiour components dBsk(mt), l^k
^ Ks. We denote Osk the intrinsic connected components of cubes β(x), x e Osk, not
belonging to Bs, whose boundaries are exactly dBsk(int). For each δjBs(ext), dBsk(int)
there is a uniquely defined phase which is adjacent to the component.

A face is called vertical (horizontal) if it is parallel (orthogonal) to the axis x3.
Each component 3£s(ext), dBsk(int) has several components of vertical faces
dβ<v

m

er)(ext), m= 1, ..., Ms9 dB^Z\mt)9m = ί, 2,...,Msk and several components of
horizontal faces 3^o r )(ext), n=l,...,ΛΓ s, 3B^Γ)(int), n=l,...,ΛΓ s k. Due to our
definition of points in the (3,3)-phase the horizontal components which separate
the boundary from a (3,3)-g.s. cut an adjacent (3,3)-g.s. just exactly between ( + )-
series.

The least component b° of the boundary is the component which appears as a
result of an isolated spin-flip inside the sea of a g.s. We write b°(x) if the spin-flip
takes place at the point x.

Let us take a connected component Bp of the boundary B(φ) for a
configuration φ, and dB{pfv) be one of components <9B^r)(ext), 1 ̂  m ̂  Mp or

), 1 ̂  m ̂  Mpk. A component <3J3̂ V/Γ) is called small if there is a point x such
) δ ( b 0 ( ( )

^ ;
A small component dBp

vJτ) is called filled (empty) if there exists (does not exist) at
least one point y e Έ? such that Q(y) C b°(x)nBp. It is clear that we can make one or
several spin-flips after which the small component dB{

pf
r) disappears while other

vertical components do not change. Certainly some components of the horizontal
boundary also may change.

A connected component Bq is called smooth if none of the components of its
vertical boundary is small. By definition any b°(x) is also a smooth component.
Having a non-smooth component Bq we can make all spin-flips, described above,
and get a new configuration φf with one or several smooth components appearing
from Bq.
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3. Contours and Contour Models for ANNNI Model

Let φ coincide at infinity either with a f.g.s. or with a (3,3)-g.s. and B(φ) be its
boundary with the components Bt(φ), 1 ̂ irgr. Two components Bh{φ), Bh(φ) of
B(φ) are called s-connected if the distance between (δB^)01010 and (dBi2)

(hor) is not
more than 38. This notion gives a possibility to decompose B(φ) onto maximal
components which we shall call s-components and denote by bί9 b2,..., bp, pf^r.
The components Bi(φ)Cbj are called connected components belonging to the
s-component by For each bj a function ph is defined on dbj whose value on a face is
a ground state which is adjacent to the face.

Definition 1. A contour y is a pair γ = (b,ph), where b is a maximal s-connected
component of the boundary of a configuration and ph is the function defined on db.

It is easy to see that ph takes a constant value on the exterior part of db. We
shall write y(/)(y(3'3)) if the value of ph on the exterior part is f.g.s. ((3,3)-g.s.). The set
b is called the body of y. If y = (fc, ph) and φ(b) are given one can complete φ(b) till
the configuration φy on the whole lattice using the boundary conditions in such a
way that B(φy) = b.

For any contour y = (b, ph) we put sy to be the contour (sfc, ph), where sb is the
union of smooth components corresponding to contours of b. These smooth
components appear after spin-flips destroying all small components. We denote

df(b) = {z\zedb9ph(z) =

6( int) = {xIx e b9 d(x9 (d/b))™ > 9, d(x, (5 ( 3 t 3)6)<hOT>) > 6}.

A contour y = (6, ph) is called smooth if b = sfc. By definition the least contour
y° = (fe°, p/z) is smooth. For any smooth contour y = (b, pft) we put Sm(y) to be
equal to the set of all contours yι=(bu ph) which after the spin-flips give the
smooth contour y. Also

V(y) = V(b) = {x = (xl9 x29 x3) e Z3lδβ^or> (y)

ndb(hoτ)φφ for some y = (x1,x2,z)6ft,

ph(dQ(hoτ\y)ndb{hoτ)) = f.g.s., | x 3 - z | ^ 10}

u {x = (x l 9 x 2 ? x3) e Z3 |3ρ ( h o Γ )(y)nδfe ( h o r )+ 0

for some y = (xux2,z)eb, ph(dQ(hor\y)ndbihOT))

We shall define now contour models appropriate for the ANNNI model (see
the usual case in [6]). Let be given a finite set UcZ3. We introduce ensembles
9{f\U) (9 (3'3)(L0) whose elements are formal configurations {yj of mutually
disjoint contours y^Xyl3'3^ belonging to U. The distance between any pair of
contours is more than 38.

Remark. Each contour can occupy only a position compatible with its boundary
conditions ph. This is important for the (3?3)-phase.
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Suppose that functions F{f\ F ( 3 ' 3 ) are defined on contours y{f\ y(3'3)

respectively taking the same values on congruent contours. We put the statistical
weight of a configuration of contours {yt } to be equal to

J

ί
The corresponding partition functions are

) Σ
{ y ( 3 , 3 ) }

In the usual cases one assumes that F ( / ) (y ( / ) )^ const \b\, F ( 3 ' 3 ) ( j ( 3 ' 3 ) )^ const |fo| and
const is sufficiently large (see [6]). This gives a possibility to present the logarithms
of partition functions as sums of two terms where the first one is proportional to
\U\ while the second one proportional to \dU\ is a remainder term with nice
propoerties (see [6]). We shall see that this main property of contour models
remains valid under much more mild assumptions concerning Fif\ F ( 3 ' 3 ) .

Now we formulate these assumptions. We omit the indices "/" and "(3,3)." It
means that the formulations are similar in both cases.

Assumptions Concerning F

Let y be a contour, d(sb)(yeτ) be a vertical boundary of sb, sy = (sb, ph), and sy is the
smooth contour corresponding to y. For any vertical face z we denote by T0(z) the
set of contours y = (b, ph) such that δb ( v e r ) consists of a single connected component
and z e db(ver). It means that y is completely defined by the boundary condition and
3b(ver). If the boundary condition is fixed we shall write db{yQT)e T0(z).

The functional

where

1) F1(y)>Kι\d(sb)i™τ)\ for a constant Kγ >0;
2) F2(γ)> -d[1}\b\ for a constant d[1}>0;
3) for any smooth y1 = (b1,ph) and any

lnΓ Σ exp{-F2(y)}
\_γ = (b,ph)\γeSm(γι), b(int) CW

Ί
J

^ F ( 7 ( 0 ) ) } \(Vφί)\bί(int))nW\

for the same constant d^ and a constant dψ > 0; (here AT is a period of g.s. (JV = 1 if
g.s. = / , N = 6ifg.s. = (3,3)));

4) if y = (b, ph) and b = \Jbh where b{ are maximal connected components of b
then

F(γ)= Σ F(7t)-
7i = (bitph)
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Contrary to the usual cases F(y) may be negative. The property 3) is very
important. In fact it requires some estimations of partition functions with
summation over contours corresponding to any fixed smooth contour. In our case
we shall get needed inequalities during the proof of Theorem B (Sect. 6). We shall
use norms

1^11= sup IF&WldisbY^l,
γ = (b,ph)

\\F2\\= sup \F2(y)\/\b\,
y = φ,ph)

Theorem A. Assume that

exp{-F(y°)}-Λ2

-R2 Σ
γ e T0(z)

yφy b

There exist absolute constants Kθ9 Rί=R1(K0), R2 = R2(K0) such that for
> Ko one can find a number a(F) for which

The remainder term A(U\F) satisfies the inequalities
a j \A(U\FJSρ-\δU\;
a2) \Δ(U\F)-Δ(U\F)\ZQ\\F-F\\ \dU\.

Here

is a constant.

Let a contour γ{f) = (b,ph) be given. Os, s=l,2, ...,r are interior domains
corresponding to b, κ(0s) are boundary conditions on dbs(int). We introduce
another ensemble 5cr(y(/)) whose points are formal admissible configurations of
non-intersecting contours inside Os with the same indices "/" and

s {y,} 1 i

where the last sum is taken over all configurations of contours {y[f)} inside Os.
Then under the conditions of Theorem A

In Ξ{cr\y{f) I Fif)) = - F{f)(y(f)) + a ΣI Os\ + Δ {cr\y{f) \ F{f)),
s

where



ANNNI Model 127

Therefore Δ{cr) satisfy the inequalities:

\A{cr)(yif)\Fif))\Sρ\δb\,

In the same manner one can define s{cr)(yi3ί3)\Fi3'3)), remainder terms
zl ( c r )(y ( 3 '3 ) |F ( 3 '3 )) with the same properties.

4. Equations for Contour Functional for the ANNNI Model

We shall proceed as in [6]. Let us take a configuration φ which coincides at infinity
either with a f.g.s. or with a (3?3)-g.s. Its boundary consists of some number of
maximal s-connected subsets b x,..., br or of contours y ί = (b ί, ph), ..., yr = (br9 ph).
For any set VoTL3 we put

-H(φ(V))= Σ φ(:

A contour yt is an outer contour if it is not contained inside any domain bounded
by other contours. For any contour yif) = (bif\ ph) we denote by 2I(y(/)) the set of
configurations for which the boundary consists of the single contour b{f) and put

For any smooth contour yY) = (bi/\ ph) and any set WDbY\int), (Wc%3) we put

y ( b , p Λ ) e S m
blf>(int)CW

where H(f)(b) is the energy of the ferromagnetic configuration on b. In an
analogous way we can introduce Ξx{y{3'3)\β, δ) and S^(yi3'3)|^? ^) Let h{f\ h{3i3)

be the energies per particles for f.g.s. and (3,3)-g.s. respectively which are functions
of <5.

Theorem B. Let δ = J1-2J2>0, δ = δo(β)(1 +o(l)) as β-κx). There exist absolute
constants dψ, 0<rf (

2

1)< 1, and d (

2

2 )>0 not depending on β and such that

In 2g>(^> \β,δ)=- G[{

In S « ( / » > |j8, δ)=- Gf

-e~βεe~βε%V(b)\b(int))nW\
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for some absolute positive constants, Cu C2. The absence of the index "/" or
"(3,3)" means that the inequalities are valid for both types of contours.

Proof of Theorem B is given in Sect. 6. The presence of dψ is very important. If
the volume b were occupied by a phase then the corresponding partition function
would satisfy a similar inequality with dψ = 1, dψ — 0. We shall take dψ, dψ from
Theorem B and use Theorem A with the constants

We recall the notation Os for domains bounded by δhs(int) of any smooth
contour γ = (b,ph)9 O=[jθs, W(b)= (J Osub. Now we introduce the most

s s

important partition functions

Ξ(y\β,δ)

f
xeW(b) I (x,x')e(Z3)hθ

The exterior sum is taken over such configurations φ(W(b)) = (φ(b), φ(O)) that
φ(b) G 9ϊ(y) and φ(O) is compatible with boundary conditions.

Main Hypothesis. The needed curve δ = δ(β) is uniquely defined by the following
assumptions: there exist contour functionals F^\ F ( 3 > 3 ) satisfying the assumptions
of Theorem A and such that

1) a{f)-βhif) = a{3>3)-βh{3>3\
2) Ξ(yif) \β,δ) = Ξ{cr\yif) \ Fif)) exp{/z(/)

The relations 1), 2) are quite similar to analogous relations in [6]. Using them
we derive first the equations for contour functionals and then solve 1) for finding δ.

Let us take a contour γ{f) with its inner components Os C O(yif)) and fix outer
smooth contours y§s) inside each Os. The index "κs" takes the values "/" or "(3,3)"
depending on the boundary condition on dθs = δbs(int). We can write

Ξ(/f)\β,δ)

= Ξ1(y^\β,δ)U Σ ^pl-βg^(\O,\-Σ\W(y^ m UΞ(y^\β,δ). (3)

Using the main hypothesis we rewrite (3) as follows:

Ξ(yίf)\β,δ)

+Δ(OS\F(K*>)}, (4)
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or with the help of -βh(f) + a(f) = - ^ ( 3 3 ) + α ( 3 ' 3 )

_ aω \b\ + Δ{cr\y(f) I F (

Thus we get

- In Ξ! < j ( / ) I β, δ) - βh(f) • |b σ )\ = F(n(yσ)) - A icr)(y(/) | F ( / ) ) + £ 4 (O s

Using Theorem B we get a needed equation in its final form:

F ( K s )) (5)

In the same manner we get an analogous equation for F(3>3):

G(3,3)(?(3,3)) +(^3,3)^(3,3))

( / ) 3 3 ) ( ( 3 3 33 F t e ) ) . (6)

The existence of solutions of (5), (6) is shown in Sect. 5. In Sect. 7 we discuss the final

steps and make some conclusions.

5. Generalized Contour Models and Proof of Theorem A

We shall consider only ensembles $if)(U) the case of θ ( 3 ' 3 ) (£/) is treated in a similar

way. The index " / " is therefore omitted. A contour γ is called an outer contour of a

configuration {yf} if it is not contained in any inner domain O ^ ) of another

contour. As usual (see [5,6]), we introduce correlation functions π s (y l 5 ...,γs\U,F)

= πs(γί,..., γs) which are equal to probabilities of the presence of s outer contours

7is •••JTSJ yi = ΦbPh) in a random configuration of contours. We shall derive now

correlation equations for πs which differ slightly from the usual correlation

equations for outer contours (see [5, 6]).

We use the notat ion T(z) for the set of all contours y = (b,ph) such that

z e db(yeτ). Also we put rί = 19 if ph = f and r x = 18 if pft = (3,3).

F o r any outer contour γ = (b,ph) we denote by W(y) the set {x\x = (x1, x2> ^3)

φb; there exists a point y = (yί, y2, y3)Cdb{hoτ) for which y1 =xi9 y2 — ̂ i^ \x?>~y?\

^ 3 8 } . Put

W&u...,yp)= U
ί 1

U
<O)W"WΊ(> i, .)'j.)*

i , ...,yp)=W1(γι, ...,yp)κj{x\bm(x)n W^y,, . . . , y p ) Φ 0 } ,

ί = 1,2,3.
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We have

πp(yu...,yp\U,F) = πm

Here the sum Σ ( 1 ) is taken over all configurations containing outer contours
71? "-»yP\ Σ ( 2 ) is the sum over all configurations not containing outer contours
y l 5..., yp and containing only contours which do not intersect and not encircle any
of contours y1,...9yp;Ξ1(yί,...,yp)is the partition function over all configurations
of contours y = (b,ph) such that the following two properties are valid:

a j bcW2(γl9...,yp),
a2) if bnW£3S)(yί9 ...,yp)ή=Φ then y = φ9ph) is the least contour.
Let us explain why we need the volume Wi(38). Assume for simplicity that p = 1

and we are dealing with a single contour y1. Then in view of our definitions in the
38-neighbourhood of dbfoτ) the configuration is fixed and the points where spin-
flips produce the least contours s-connected with y1 must belong to W2(y1). We put
now

(8)

Lemma 1. There exists an absolute constant R^ such that

•\W3(yu...,γp)\(l+ρ(Kι;γί,...,γp))^

where

\ρ(K1;γu...,γp)\^xp{-R[l)Kι}.

Proof. We restrict ourselves by summation in Ξγ over configurations consisting
only of the least contours. The result of this summation can be written in the form

e x p j - U x p { - F ( } > ( 0 ) ) } •\W3(y1,...,yp)\(\+ρ(K1;y1,...,γp))\,V
where ρ(K1; yu ...,yp) satisfies the needed estimation. Q.E.D.

Lemma 2. Let y = (b, ph) be a smooth contour such that b is connected. Put

λ1(y) = λι(b) = ̂ p{-K\db^\-d2\b\}, (9)

where K, d2 are constants.

There exist constant Ko, R = R(K0) such that if

K>K0, d2>R Σ exp{-K|δb ( v e r ) | }
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then

where R1 is an absolute constant.

Proof. Firstly we shall consider a simpler model where one can understand better
the essence of the situation and of our arguments and then shall make necessary
additional remarks. Twice during the proof we shall use a trick which we have
learned from Zahradnik [7].

In the simplified model we consider Ising type contours which are connected
volumes. The statistical weight of any such contour b is equal to

(10)

where

# is a constant. Here bo(z) is the least contour for which \bo(z)\ = 1. A contour b is
smooth if either it is the least contour or |δfojver)| > 4 for all vertical components of
the boundary.

_We fix db and B and consider first the sum Σ^iΦ) over such b for which δfc(ext)
= db and \b\=B. We denote by Fthe connected bounded set, for which d(F) = db,
Bx = \b\. We introduce an auxiliary model. For every finite set 0 we denote by
£ (0) an ensemble whose points are formal configurations of disjoint sets ah where
each at is a boundary of a simply connected set, a—d^, αt n O Φ 0 , and put

λ1({ai})=Π™p{-K\a^\}, ΞQ(O)= Σ ^i(K })
ί {«f}

Here α[v e r ) is the set of vertical faces of αt which determines uniquely a{. This model
can be investigated by the usual methods of the theory of contour models. In
particular, one can use Kirkwood-Salzburg equations for correlation functions of
at and investigate the behaviour of Ξ2(0) for large 0 provided that K is large
enough. For such K one can find oc(K) for which

ΞQ(O) - exp{α(K) • |0 | + α^K, 0) \dθ\},

where
- K r + const}, (11)

and r is the cardinality of the least possible |α v e r ) | . Now we have

S= Σ _ A1(6) = exp{-K |55 ( v e r ) | -D.B}- Σ exp{-K|α[ v e r ) | } .
b\db^eτHext) = db, {di}udb = db,

\b\=B \b\=B

The last sum is estimated in the following way:

• Σ Π exp{ - K \atr)\} • Sfi(ja0 exp{ -Λl(K, ^ ) |α;|}

-a(K) (Bj -B)+ max MK, ^\B} • Ξ2(b)
i

= exp{oc(K) B + 2max \at(K, stf)\ B) .
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Thus

where

Now we have to consider in a more detail the structure of <3b(ver)(ext). Each
db(ver)(ext) consists of several connected vertical components δb[ver)(ext). It is an
appropriate moment to introduce several notions. A vertical component a is a
connected set of vertical faces such that each vertical edge belongs to an even
number of faces. The space of all vertical components is denoted by A, the space of
a belonging to a set 0 is denoted by A(0). Each <3b(ver) is a union of a finite number

i

Having a we can complete it in a unique way to the boundary of a connected set
[a] adding some number of connected horizontal components ηj = ηJ{ά) in such a

way that dηj is contained in the set of horizontal edges of faces of α. Thus au (J η^

= 3[α], δ([α]) ( v e r ) = a. The set [α] will be called an interior of the vertical
component a.

Assume that z is a vertical face, z e a0 C db(yer). We shall call a0 a vertical
component of the zeroth level. By induction, suppose that vertical components of
db(yeτ) of the *fth level are defined. Denote them by αΛ b 1 ̂  i S h-We construct η^a^ )
and define the components of the (/+ l) t h level as those components of dΈ{yer)

which intersect r\fa€^ f) and are not components of the previous levels. The level of a
component at is denoted by ^(α,-), /(36(ver)) = max /(ά,). If we are given vertical

ô h

components ae b l^i^I^^ = / 0, we can construct db^0 = [j (J ae {and consider

b, δb = dbj0. We have obviously /(3^v

o

er)) = / 0 . We denote δT^o(z) the set of 3b, z e db
and /(3b) = ̂ 0 ' Now we fix α0 and have to estimate the sum

Σ Σ _ Σ Σ Σ _ λ,{b).
xea0 ί = 0 δb( v e r ) |<f (^ ( v e r ) ) = ̂  B &|ab(ver)(ext) = δί)( v e r)

\b\=B

The last two sums were in fact already estimated. Indeed, if we denote by Jti?(δb(ver))
the number of horizontal faces of db which correspond uniquely to δb ( v e r ), then

and using (12) we get

Σ Σ_

B

S\db{yer)\2 exp{-K\db { y e τ } \
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where

Now we have a simpler sum,
00

S= Σ Σ _ Σ exp{-K ( 1Wv e r ) |-i£i^(<^ ( v e r ))} (13)
x e a 0 έ = 0 d & < ) | d b ( )

= _ Σ exp^-K(

dbedT, (z) 1

V Q 1 If

υ Σ Σ Ki\-κ ( 2 ) Σ

i= 1

We shall estimate it by induction from large to small t. Starting with an arbitrarily
large J§? we assume that the summation over all contours b, for which ί0

^ S£ is already performed, and the result is

Here

We shall use again Zahradnik's trick. Let ηk be a horizontal component of
fl^-ij. We consider an ensemble 93i(*7Λ) whose elements are mutually disjoint
vertical components α^0j such that [^o,j ] π ^ + 0. We shall estimate the sum

where M is the cardinality of the set of horizontal faces of ηk belonging to db(hoτ\
and thus lying outside all [a^Otj\. We can write

where the inner summation goes over all configurations {a^Otj} with the fixed value
of M.

For any set 0 C ηk and X > 0 we put

S f i l(0)= Σ
K.jJCfl

For sufficiently large K one can find α(K) and α^K, 0) such that

lnS f l l(0) = α(K) |0| + α^X, 0) \dθ\, (15)

where d(K), όί^K, 0)S const e~Kr as X^oo, and r is the least possible value of
\dfoj\. In all these arguments we assumed that all a^0jC2ι(ηk). But there can be
also components aίQtj which encircle connected components oϊηk. The summation
over such configurations only changes slightly the remainder term in (15). We shall
assume later that this correction is already present in (15). Then in (14)

Σ exp{-K<2>Σ|α,0,,ll ^
("Λ.J) I j J

α 0 , 7 i 0 J

a ^ 2 ' , ίaίojnηk) • \d(ίa,0Jnηk)\}
2» 2 • M}
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Assuming that \Dι^ύ2{K{2)), we have

Finally

M

< f ° ~ 1 ~ d b d T

Σ K

Thus we passed from ί0 to / 0 - l Therefore for / 0 = 0, the sum So

= Σ exP{ — ̂ (2Vol} The number of all possible components a0 with \ao\ = m is not

more than Cm, where C is an absolute constant. This gives the final result provided
that

max \ (16)

One easily finds that for sufficiently large K the numbers D~Kexp{ — Kr},
α(X), maxlα^^O)!, α(K(2)), max \^{K{2\ 0)\Sconstexp{-Kr}, where r is the

least possible value of \ao\ e T0(z) and const is an absolute constant. Thus if R is
sufficiently large the inequality (16) is valid.

Our arguments can be extended without any difficulties to more complicated
situations such as contour models introduced in Sect. 3. The final conclusion and
the result will be the same provided that K and R are sufficiently large. Q.E.D.

We shall say that a contour y = (b, ph) has the property A if the following is true:
For the stripS = W^\yu ...,yp) the intersection bnS + Φ, and there exists a

configuration of the least contours

such that

b = x ;e

We denote by yx any contour containing XGZ3.

Let us consider the fraction

Q =

It is easy to see that

\\MCS xeM

Ξ(U\F)

Π
xeS\Mγ'x

J γ
*?)
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Here y^ is the notation for the contour having the property A and containing x, y is
a contour encircling at least one of the contours y1? ...,yp;

f(yA) = expίF(yA)-F(f)

f = (£, ph), S=b\[j b<-°Xxj)nS, χy
j

is the indicator for the set of configurations having an outer contour y, y'x is a
contour intersecting S and is not the least contour, E means the expectation with
respect to the ensemble 5(17).

The last expression shows that Q can be written as a linear combination of
correlation functions which gives us the desired system of correlation equations:

Ylf(yt)( Σ (~

We introduce the following norm in the space of sequences π = {πp(y l 5 . . . , yp)}:

| | π | | =

where
I

™1w

i = i

c, D are constants.
The system of correlation equations can be written in the form π = Λπ + Φ.

Here A is a linear operator, Φ = {λ(yu ...,yp)}.

Lemma 3. There exist constants Ko, R{1) = R(1)(Kol R{2) = Ri2)(K0) such that for

L — L ( Z l 5 . . . , Z r , Z l 5 . . . , Z m j —

Σ
beTo(z)
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where

zieW}3SKy1,...,yp), z'jεW}3SXγl9...,γp)

are arbitrary vertical faces.

Proof. We shall write for brevity f(Γ) instead of /(y1? ..., y/j if / is a function of a
configuration Γ={γί9 ...,?,},

γeΓ

Γ(r) _ (VA \r p(m) _ fv'\m

r(r,m) _ r-(r). . r-(m) p(r) _ r..Λ">
J — i^4 U i 5 1A,I~ l / i i i e / ?

/ is a subset of the set (1, ...,r),

Γ{r,m)_ τr(r) p(m) p _ f . ^

Γ(r) _ ί ^ l r(r,m) _ n(r) . . r>(m)
1A,I — {ri / i e/5 i yl ,J —1A,I[J1

It is easy to see that if yf = y(0), then

Σ exp{ -F(yf)} /(yf) exp ί-J-exp{ -

for a constant R3 = R3(D,c). We have
y(»"sm)_ v^ γ(J,m)

where the sum ΣiJ'm) has the same form as Σ(r'm) with the additional condition of
fixing the indices j e J for which yf are the least contours. It corresponds to our
general strategy to consider separately the contribution of least contours.

For Σ{J'm) we can write the estimate

_ 2F(y(0))})1 J | Σ

exp | i exp{ -

eχp|- Σ /ωj πΐ f

f>; D, c)
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It is not difficult to see that

Φi) Γ 1
Π Π exp{-f (y<°>)} ύexp - exp{ - F(y<°>)} f
iel j=l (JSI

where

Zi) = U (K(Wi(mt))nW3(ΓP),
ie/

Consequently

y(J, m) < / n e y n Γ _

yf |

•expj- Σ H
1 c

. exp j l exp{ - F(y(0))} [| W{fϊ\)\ + W(/Xvw) D, c)]

This sum can be estimated as follows. First we can sum up over all contours ŷ ,
/=l , . . . ,m corresponding to some smooth contours fe, ^ = 1 , ...,m and over all
contours ff, i e /, which correspond to some smooth contours yf9 i e /, and not
intersect dW^Γjfj^) (here we use the property 3) of contour functional F with the
following choice of the set W\ W=^V{%) for contours %, 1^/^m and
W= V(yf)\W(fj[ty for contours yf, iel); then we estimate the sum over smooth
contours using Lemma 2.

The result of the first summation gives us the estimate:

• Γ i ) ) i/i + «

max Σ Π D i(r)
,zi)^2ri,iel yAe Γ(2t) yeΓ(r> m>
4 ) ^ 2 r i , 1 ^q^m γqeT(zq)

•exp\- Σ J

-άψ Σ |6\6(int)| +
y = (b,Jp/ι)eΓ(^7) iV

Here C(rx) is a constant, D^y)^ maxl̂ fc ,̂ γ = (b,ph), bt is the connected

component of b. It is clear that \Dx{y)\< max|δfe[ver)|2, D2 is a constant.
I

For any contour y = (b,ph) we denote by n(y) the number of connected
components of the set b which differ from the least components. If b = Ubt is a
decomposition on connected components, then we can assume that bt Φ b{0) for
ίSn(y) a n d j ^ f e ^ for ί > φ ) .

Let Jί{bγ,..., bn) be the set of all contours y = (fc, p/ί) for which n(γ) = n and let bt

= bb 1 ̂ ί^n(y), ^#(0) be the set of contours with n(y) = 0.
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Consider separately the sum over such configurations ΓJ//0 for which

ie/, l^q^m. This sum is not more than

exp { - Σ \(KX -D3) - Σ \(dbf)™\ -4υ Σ l^0(i

- 4 2 ) Σ | ^ > \ & f ( i n j j

f Γ t ) | - 4 2 ) Σ |ft?
e=\ ι=\ e=\

• exp I - i exp{ - F(/°>)} (1 - ρ) | W{,(̂ /m

where

( 0 fe^ufO 0 n d . d(bu...,bn)
j ί ) \ ί ί j l )ielj=l J \i=ίj=l

is the length of the minimal tree which connects the sets W3(b^ l^i^n, W3{b^
= W(yi), yt = {bb ph), ρ ̂ exp{ — C^JK^}, D3, ̂ 4, C2 are absolute constants. Now we
see that the last sum is not more than

- Π 'K«.

• eΓ(rUej( (Λ5exp{-2F(/0))}).

Here

d2 = min((exp{ - F(γm)} - 4 υ ) (1 - ρ), df\r2) ~ι),

R5 is an absolute constant, r2 = 9 if ph = ίg.s. and r2 = 6, if pft = (3.3)-g.s.
Now Lemma 3 follows from Lemma 2.
From the main estimate of Lemma 3 it is not difficult to see that the operator A

is a contraction and \\A || ^ constΐKJ-^O as K1 -> oo. Therefore for sufficiently large

Kj the limit correlation functions can be written as π = Σ ^Φ. The estimation of
i = 0

the difference between the limit correlation functions and the correlation functions
in a finite volume is done by a routine method (see [5, 6]).
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6. Proof the Theorem B

We shall consider the case of contours yif) and Ξ$(yif)\β,δ). Other cases can be
considered in the same manner. We have (see Sect. 4).

Σ

Here Jf (/)(i>) is the energy of the ferromagnetic configuration in b.
For any φ(b) = φ we denote
a j G ( v e r )(» is the set of ordered bonds (x, x') G (Z 3 )^ , xe£, for which <p(x)

φφ(x') and d((x,x% {d(sb))y&x)^rv We recall that d(sb){veτ) is the set of vertical
faces of d(sb) which can be also considered as the set of horizontal bonds
perpendicular to these faces.

a2) G{Γr\φ) is the set of ordered bonds (x, x') e (Z 3 )^ , where xeb, φ(x)
K

a3) G(

2

ver)((^) is the set of xeb for which d(x, G ( v e %)uG (

1

v e %))^2r 1 . The
values of φ(x), xeG2(φ), are defined uniquely by values of φ on G(ver)(φ)

a4) ^ ( φ )
a5) N^φ) is the set of x = (x1? x2, x 3)e WΊ(fe), where ^(x l 5 x2, x3-f l) = φ(xi,

a6) Nr(φ), r > 1 is the number of series of points lying on the same vertical line,
i.e. series of points (x l5 x2, X')E W^b), α<xf^α + r, and φ(xl9 x2, α)φφ(x1 ? x2,
α + 1) = φ(xi, x2, α + 2) = ... = φ(x1? x2, α + r) φ φ(x l5 x2, α + r + 1), Nϊ(φ) is the set
of points of the form (x 1 ? x 2 ? α+l) or (x l 5x2 5α + r), N^2(φ) is the set of points
of the form (x1,x2,^ + /), 2</<r— 1, N?(φ) is the set of points of the form (x l5

x2,α + 2), (x1,x2,α + r—1). An important remark is that r^2r l 5 because
otherwise there will be points in a ferromagnetic phase.

We rewrite the energy of φ(b) as follows:

- H(φ(b)) = - j f ^(6) - i J o \G^(φ)\ -\JQ \

-2(5 Σ Nr{φ)

Here ^ is a correction term l^fj ^const (J1 + J 2) (|G1(φ)| + |G2(φ)|). We recall
our assumption that Jί9 J2 are sufficiently small comparing with Jo.

Lemma 1. There exists α constant c2 such that

Proof. Let a bond (x, x') be orthogonal to a face of δ(sb)(ver) and φ(x) is in a phase
while x' e d(sb){veτ) and φ(x/) is not in the phace. It means that in the neighbourhood
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of the radius rx there must be horizontal bond (y,/)Cb, where φ(y) + φ(y/).
Otherwise φ(xθ will be in a phase. Q.E.D.

The cardinality of the set of connected components db\ver\ |<3b[ver)| = n, passing
through a fixed face is not more than c3, where c3 is a constant. We can choose c3

so large that the cardinality of the set of all possible φ(G ( v e r )) is not more than
c 3

| β b ( v e r ) | .
A point x = (x1 ? x2, x3) e b\G{yer)(φ) is called an elementary defect (e.d.) if φ(x)

φ <p(y) for all y = (yu y2i y3), \yx - x1 \ + \y2 - x2\ = 1, y3 = x3, and there are no other
horizontal bonds (x', x^eft such that (x\ x")nbiO)(x) + 0 and φ(x/) + φ(x//)

A configuration φ(fc) is called ideal if there are no e.d. The set of ideal
configurations in b is denoted by 2I(l)(fe).

Let φo(b) e 2ί(ί)(b). The set of all φ(b) which differ from φo(^) by some number
of e.d. is denoted by 2l(b | φo(b)). Each φ(b) corresponds for one and only one ideal
configuration φo(b).

We can write

- β [Vo |G(ϊβr)(φ(6f))| + | Jo \GιrXψΦW.

+ 2δ Σ
r=2

Σ Σ
f\ph)eSmγ(f) φ(bW)eM
Hint)CW

Σ2 iW

Furthermore

Σ

Σ

• exp I - β Uj.N^ψoφY^ + (5 ^Σ INΪKφoφtp))] + J ^ l J
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Here n^φQyψ)) is the number of e.d. of type i of configuration φ{bψ) (see
Sect. 1) and c is an absolute constant,

0 < c < m i n ( | G 2 Γ 1 ( | G | + |G 1 | ) .

Let V^ΨQΦΨ)) be the set of points x e b(/)(int)\G2, where the spin-flip changes the
energy εt .

Then

4 Ί 4

Σ M P I < V ΓT Γni o~βεininibi ( = Ls 1 1 H^il
i = 0 J [Πi] i = 0

expl £ h~exp Σ

(-j8εo)+ ( N + Kl) exp(-jSeJ).

It is easy to see that

k ( φ o ) l = Σ I W Φ Q ) ! , I«I(ΦO)I= Σ |iVΓ

>2(fl>o)U
3

We remark that every configuration φo{hψ) can be uniquely extended to
VQήXGKjGγ and different configurations will have different extensions. As a result
we can write

ύ Σ

+ <5 Σ |JV t

r

1 ) (φ 0 (^)))πί» |- j8- 1 e-' l ϊ 0 Σ

• |N(

2

1)((KF<>)))rW|+v.s.n. |W—G2|-f-JTΊ

Remember that 2βδ-2e~βε°+3e~βει is v.s.n..We have

/W Σ IJV^'ίφoCn^nbl

b\-e-^ Σ |JVr
r = 5

r=3

r > 2
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As y = (b, ph) is the contour we have

\e~^ Σ \N?Xφo(V(b)))nb(mt))\ + (βδ-2e-βe*)

• \N^(φo(V(b)))nb(int)\ > de~ ̂ \b(int)\G2\

and

\Ni2\φ0(V(b)))n(b\b(mt)uG2)\>d1\b\b(mt)uG2\,

where d, dγ are absolute constants. Also

«Γ* \N^0(V(b)))n(V(b)\b)n W)\

+ e~^ \N?2(φ0(V(b)))n(V(b)\b)n W)\

If the sets G and Gt are fixed, then the number of ideal configurations φo(V(b)) is
not more than const |G| + |Gl1.

Thus

GίCW
GCW

+ de-βεί\b(mt)\(GvG1)\-d1e-βεί\b\b(int)\},

where rf, J x are positive constants and 0 < d < 1.

Lemma 2. Put e~
Gif)^f))= Σexpj - (^ J 0 -const j |G|>.

We shall give only the sketch of the proof. We decompose GKJGX onto
connected components and get a usual contour model (see [6]). We remark that
the statistical weights of the least components are v.s.n. because we excluded e.d.
The needed estimate follows by a direct application of the method of correlation
equations (see [6]).

Thus we get the desired result.

7. Solution of (5) and (6) and Final Remarks

Now we return to Eqs. (5), (6). We look for the solution Fif) = F[f) + F{

2

f\ F(3'3)

= F<1

3 3> + F(

2

3 3). From the very beginning we put F[fKy(f)) = G[fψf)), Fγ>3\y(f))
= Gγ'3)(y(3'3)). Assumption 1 follows easily from Theorem B. Equations (5), (6) for
F2 can be rewritten in the following form:
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- A<CT)<y'> I Fif)) + Σ Λ ( 0 s | F
( K s ) ) ,

FM). (17)
s

Let us put

Then (17) means that

(Gψ9 G(

3

3'3)) = (Fψ, F2

3 '3 )) + T(Fψ9 F (

2

3 '3 )). (18)

It follows from Theorem B that Gψ^ — d^expf —/JeJ \b\9 dψ is some absolute
positive constant independent of β9 d^ < 1. For G(

3

3'3) we have

with the same d(

2

1}. From the other side

yεΓo()
yφy(O)

is v.s.n. In the case of/-phase iV = 1 and exp{ — F(γ(0})} = e~βεi,in (3,3)-phase, N = 6
and

i e x p { - F ( y ( 0 ) ) } = f e x p { - ^ 0 } +v.s.n.

Thus the conditions of Theorem A are valid for sufficiently large β.
It follows from the proof of Theorem B that if a contour consists of several

components then the values of Gψ, G(

2

3'3) are sums of values of different
components, i.e. Assumption 4 for contour models is true.

In the space of pairs (F(/\ F(

2

3'3)) we introduce the norm

Then in (18) the operator T is a contraction and the contraction coefficient is a
v.s.n. as one can easily check. Thus we get the solution of (5), (6). It will satisfy also
Assumptions 4, Sect. 3 because G satisfies it and it remains valid under iterations.

Assumption 3 of the contour functional follows from the estimates of the
partition function Ξ$(γ | β, δ) in Theorem B and from the fact that for any smooth
contour yγ =(bl9ph) and contour γeSm(yι) we have

ΣΛ(Os(y)\F) ^v.s.n. \bt\.

Having Fσ\ jp(3'3) we find δ using the equation a(3>3)-a{f) =
Peierls's method in principle does not give any possibility to approach a

critical point. However, it is apparently possible to estimate the number of values
of δ where the set of limit Gibbs states is discontinuous as a function of β.
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