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Abstract. For the three-dimensional ANNNI model a converging expression
for the curve of the coexistence of the (3.3)-phase and ferromagnetic phase is
derived for low temperatures using a new extension of the Peierls contour
method.

1. Description of ANNNI Model and Formulation of the Result

We consider a classical spin model on the lattice Z3, where the spin variables take
the values +1 and the Hamiltonian has the form

HoU)=—Jo T o(o)=J; % ox)o()
S e@e). (1)

(x,x") U

Here UCZ® is a finite set, U,, is the set of horizontal bonds,
UD(U?) is the set of vertical bonds of length 1 (2); in all cases the ends belong
to U, ¢(x) is the spin variable at the point x, @(U) is the notation for a
configuration on U. Parameters J,, J,, J, are positive coupling constants.

This model is called the axial next-nearest neighbor Ising model or, briefly,
ANNNI model. It was introduced more than twenty years ago by Domb [1] and
Elliott [2], and recently attracted much attention in connection with experimental
results concerning compounds of rare-earth elements (see [3]).

This paper was motivated by the deep analysis of the phase diagram of the
ANNNI model performed in the paper by Fisher and Selke (see [4]). Using a
formal perturbation theory the authors have shown that for low temperatures T
there are infinitely many separation-phase lines on the plane (7, J,/J,). All these
lines start in the point (0, 1/2), where an infinite degeneracy of ground states takes
place. From the mathematical point of view these lines determine the values of
parameters where the number of periodic extreme limit Gibbs states is
discontinuous.

The main idea of [4] which apparently is of more general importance is that for
finite temperatures there appears a splitting of ground states if we take into
account one-point spin flips of the least energy.
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We reproduce below the corresponding arguments. Assume that U is a cube of
size [ and we consider configurations ¢(U) with periodic boundary conditions. It is
easy to see that it is sufficient to look for ground states for which ¢(x),
x=(x,, X,, X3) depend only on x5. All such configurations decompose onto series
of horizontal planes x;=const, where ¢(x) is a constant. We denote by N,
= N,(¢(U)) the number of such series of the width 7. Assuming that > N,>1 we

rz1
can rewrite (1) as follows:

H(p(U))= —2J013+13[J1 ; N,—J, 21 (r—1N,
rz1 rz
+J,N,+J, 22 (r—2)N,—2J, ;2 N,]

= =2 B —(J, = TP +2(J, ~2J2)( N~ 1> 12 +4J,N, 2.

The first two terms give the energy of the ferromagnetic configuration for which
@(x)=const, x € U. For this configuration N,=1, N,=0 for r<|.

For J, —2J,=0 we have an infinite degeneracy of ground states because all
configurations with N, =0 are ground states. If J; —2J, >0 then the ground states
(g.s.) are ferromagnetic configurations ( f~g.s.). If J; —2J, < 0 then the ground states
are four configurations for which N,=0 for r+2.

Assume that an inverse temperature f§ is chosen and fixed. In the usual picture
of phase transitions of the first kind the limit Gibbs states corresponding to
physical phases are concentrated on configurations which look like small islands
of perturbations of an underlying “ground state sea.” If this picture is valid then the
main contribution to the free energy of the corresponding phase comes from one-
point perturbations of the ground state. We shall list now all possible one-point
perturbations and their energies in the case of ANNNI-model. In Table 1 the

Table 1
Configuration Perturbed Change of energy
configuration

D ++4+—- ++—-—= e0=8J¢
———++ ——+++

2) +++++ +4+—++ e =8J+4J,—4J,
_____ —— + — —

3) —++—— -t —-—— &,=8Jy+4J,
——++- ———t -
+——++ +—t++
++-——+ -

4 ++++-— 4=+ = e3=8Jo+4J;
—++++ —+—++
+-——= +—+—=

5) —+++-— -+ -+ g,=8Jo+4J,+8J,
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configurations which are drawn horizontally are indeed vertical. Also we assume

that J, is sufficiently large comparing with J,, J,. Otherwise one should take into

account two-point perturbations (we are indebted to G. Uimin for this remark).

The table shows that the least energy ¢, have perturbations on the boundaries

between different series. Let us denote by U, the set of points where spin flips of

type i can happen, i=0, 1, 2, 3, 4. It is easy to check that |Uy|=2I* 3 N,, |U,|
rz3

=l2 Z (r_4)Nr9 |U3| 2212 Z Nr> |U2| =12N2’ IU4[=12N3‘

rz5 r=4
Here and further the absolute value of a set means its cardinality. The number of
configurations of k non-interacting spin-flips can be written up to terms of the next

order as Cfy,. Using binomial coefficients we neglect an interaction of spin flips.
Let us introduce for a ground state @(U) the partition function

EON(G(U)) = ‘%’) exp{—fH(o(U))},

where the sum is taken over only those ¢(U) which arise after some number of non-
interacting spin flips from @(U). As was said before, in the main order

4 Ui
EN@(U)) ~exp{—BH(¢(U))} - T2 Clyge”
4
=exp {—ﬁH (@U)+ X Uil +eXp(—ﬁ8i))} :
Thus the approximate value of the free energy corresponding to the ground state

@(U) is equal to
InENGU)) =Q2Jo+J, =T )P —2(J,=2J)B ¥ N,-I
rz2

+22e7 P 3 N, +Pe P 3 (r—4N,

rz3 rz4

+2Pe Py N, +1Pe PN, +Pe PN,

rz4

The difference ¢, —¢, =4(J; —2J,)=44. In the domain 6=J, —2J,>0 we con-
sider the sum

—2BS1* Y N,+2exp{—PBeo}l* 3 N,
rz2 rz3
+exp{—PBe;} > ¥ N,(r—4)+ 2N ,e Fe
rz4
~ —2BON, 12+ (— 25+ 2 exp{ — feo})?
- Y N,+exp{—Be,} - I* ¥ (r—4)N, +exp{—fe;} N,I*
rz3 rx4

% = (2B3-+exp{— Bei))EN, +[2(— o-+ exp{ — o)
—dexp(—fe - X N+ [2(—Po-+exp{— feo))

—3exp{—Pe,}IN ;1> + exp{ — e, }I*.
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If
0>0, 2(—po+exp{—Peo})—3exp{—pe;}>0,

then the sum takes the largest value for the ground state for which N, =N,=0 for
r = 4. This ground state consists of series of three horizontal planes of the same sign
((3,3)-gs.) If

0>0, 2(—po+exp{—Pey})—3exp{—pPe;}<0

then the sum takes the largest value when > N, takes the least value, i.e. for f-g.s.
If red

2(—po+exp{ —Beo})—3exp{ —fe;} =0,
then
[2(—Bo+exp{—Peo}) —4exp{—Pe;}1<0

and the sum takes the largest value for N, =N,=0, r = 4. Thus if we neglect terms
of smallness less than exp{—fl¢;} then for

do=P""exp{—Peo} —3/2p ' exp{—Pe,} 2

the free energies of f-g.s. and (3,3)-g.s. coincide. In other words the equality (2) gives
an approximate equation for the co-existence of ferromagnetic and (3,3)-phases.

The arguments presented above give evidence for the following picture: there
exist f, and a curve 0 =9(f) defined for > ff, and close to §,(f) up to terms of
order less than exp { — f¢, } such that for all §> 5, and 6 > §(f) there are two limit
Gibbs states which are small perturbations of f.g.s. (see [6]), for 6 < () and close
enough to J,(p) there are six limit Gibbs states which are small perturbations of six
(3, 3)-g.s. while for é = () we have eight limit Gibbs states corresponding to the
coexistence of f.g.s. and (3,3)-g.s.

Now we can describe the main result of this paper. We develop a version of
Peierls contour method suitable for the ANNNI model. We shall see that it has
several peculiarities comparing with the usual situation (see [6]). With the help of
the new technique we show the following theorem.

Main Theorem. For large enough [ there exists a continuous function 6 = () such
that for J;—2J,=25(f) the ANNNI model has eight periodic limit Gibbs states.

One can already see from the previous discussion a special role of isolated spin
flips with the energies &, ¢; and ¢,. All functions of f which tend to zero faster than
B~ !exp{— Be,} will be called very small (v.s.). In particular, we shall see that 5(B)
—d¢(B) is v.s. Also we put

d(x, y)=max(|x; — y;|+ X, = y,l, [x3—y3))
for x, yeZ>.

2. Boundaries for ANNNI Model

Assume that a configuration ¢ is given which coincides outside a finite set either
with a f.g.s. or with a (3,3)-g.s. We shall say that ¢ at a point x =(x,, x,, x3) € Z> is
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in a ferromagnetic phase (f.ph) if ¢(y) coincides with a f.g.s. for all y, d(x, y) <9. Also
o is in (3,3)-phase ((3,3)-ph) at x € Z? if there is a (3,3)-g.s. p and an interval (a, b),
b—a=18 such that 1) w(x,, x,, a— 1) Fp(x,, X5, @), P(x, X5, b— 1) F (x4, X5, b);
2) a+6=x3<a+12; 3) ¢(y) coincides with y(y) for all y=(y;, y,, y3) such
that a<y; <b, |y — x|+ [y, — X,/ 9.

Due to this definition any boundary of the domain occupied by the (3,3)-phase
lies between series of different signs.

All points where ¢ is not in a phase are called boundary points. The set of all
boundary points is the boundary of ¢ and will be denoted by B(¢).

Q(x), x € Z3 is the closed unit cube with the centrum at x. A set of cubes is called
connected if for any two cubes one can find a chain of cubes belonging to the set
such that the first one and the last one coincide with the given cubes and every two
neighboring cubes of the chain have a non-empty intersection.

We shall identify B(¢p) with the set of cubes Q(x), x € B(¢). The boundary B(¢)
can be decomposed onto connected components By, B,, ..., B,. The boundary 0B,
of B,, 1 <s <r, consists of faces which separate points of B;and Z>\B,. A set of faces
is called connected if for any two faces of the set one can find a chain of faces
belonging to the set such that the first one and the last one coincide with the given
faces and every two neighboring faces of the chain have a non-empty intersection.
Each 0B, is decomposed onto connected components one of which is the exteriour
component dBext) while the others are interiour components 0Bg(int), 1 <k
<K,. Wedenote O, the intrinsic connected components of cubes Q(x), x € Oy, not
belonging to B,, whose boundaries are exactly dB(int). For each dB,(ext), 0B (int)
there is a uniquely defined phase which is adjacent to the component.

A face is called vertical (horizontal) if it is parallel (orthogonal) to the axis x5.
Each component 0Bj(ext), 0By(int) has several components of vertical faces
0BY(ext), m=1, ..., M, 0B§(int), m=1, 2, ..., M, and several components of
horizontal faces 0B®*(ext), n=1,..., N, 0B&)(int), n=1, ..., Ng,. Due to our
definition of points in the (3,3)-phase the horizontal components which separate
the boundary from a (3,3)-g.s. cut an adjacent (3,3)-g.s. just exactly between (+)-
series.

The least component b° of the boundary is the component which appears as a
result of an isolated spin-flip inside the sea of a g.s. We write b°(x) if the spin-flip
takes place at the point x.

Let us take a connected component B, of the boundary B(¢p) for a
configuration ¢, and 0B{” be one of components dBS:(ext), ISm<M, or
0BYeint), 1 Sm<M . A component 0B} is called small if there is a point x such
that 0B Ca(b°(x))™e.

A small component 0B is called filled (empty) if there exists (does not exist) at
least one point y € Z* such that Q(y) Cb°(x)nB,,. Itis clear that we can make one or
several spin-flips after which the small component 9B disappears while other
vertical components do not change. Certainly some components of the horizontal
boundary also may change.

A connected component B, is called smooth if none of the components of its
vertical boundary is small. By definition any b°(x) is also a smooth component.
Having a non-smooth component B, we can make all spin-flips, described above,
and get a new configuration ¢’ with one or several smooth components appearing
from B,.



124 E. I. Dinaburg and Ya. G. Sinai

3. Contours and Contour Models for ANNNI Model

Let ¢ coincide at infinity either with a f.g.s. or with a (3,3)-g.s. and B(¢) be its
boundary with the components B(¢), 1 £i<r. Two components B; (¢), B;,(¢) of
B() are called s-connected if the distance between (0B;,)**” and (6B;,)®" is not
more than 38. This notion gives a possibility to decompose B(¢) onto maximal
components which we shall call s-components and denote by b,, by, ...,b,, p<r.
The components By(p)Cb; are called connected components belonging to the
s-component b;. For each b; a function ph is defined on 0b; whose value on a face is
a ground state which is adjacent to the face.

Definition 1. A contour y is a pair y=(b, ph), where b is a maximal s-connected
component of the boundary of a configuration and ph is the function defined on 0b.

It is easy to see that ph takes a constant value on the exterior part of db. We
shall write y)(y3-3) if the value of ph on the exterior part is f.g.s. ((3,3)-g.s.). The set
b is called the body of y. If y = (b, ph) and ¢(b) are given one can complete @(b) till
the configuration ¢, on the whole lattice using the boundary conditions in such a
way that B(ep,)=b.

For any contour y = (b, ph) we put sy to be the contour (sb, ph), where sb is the
union of smooth components corresponding to contours of b. These smooth
components appear after spin-flips destroying all small components. We denote

0s(b)={z|z€0b, ph(z)=fgs.},
0(3,3)(b)={z|z € 0b, ph(z) =(3,3)-gss.},

biny = {x|x €b, d(x, (0 (b))*” >9, d(x, (03, 3b)"") > 6} .

A contour y=(b, ph) is called smooth if b=sb. By definition the least contour
y°=(b°, ph) is smooth. For any smooth contour y=(b, ph) we put Sm(y) to be
equal to the set of all contours y, =(b;, ph) which after the spin-flips give the
smooth contour y. Also

V() =V(b)={x=(x1,%;,x3) € Z>|0Q""(y)
NOb®) £ ¢ for some y=(x,,x,,z)€b,
ph(0Q®7(y)nob*) =fgs., [x3 —z| <10}
U{x=(xy, X4, X3) € Z3|0Q® ()N ObI %)
for some y=(x, x,, z) € b, ph(0Q™"(y)ob™°")
=(3,3)—gs., [x3—z|<12}0b.

We shall define now contour models appropriate for the ANNNI model (see
the usual case in [6]). Let be given a finite set U CZ3. We introduce ensembles
IN(U) (98-3(U)) whose elements are formal configurations {y;} of mutually

disjoint contours y{(y{>*) belonging to U. The distance between any pair of
contours is more than 38.

Remark. Each contour can occupy only a position compatible with its boundary
conditions ph. This is important for the (3,3)-phase.
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Suppose that functions FY), F®® are defined on contours y’, 33
respectively taking the same values on congruent contours. We put the statistical
weight of a configuration of contours {y;} to be equal to

W({y})=exp {_ )y F(f)(ygf))} ’
W({y33 ) =exp {_ > F‘3'3)('y§3’3))} ‘

The corresponding partition functions are
BUIF)= 3 WO,  EUIFS)= T WEHED).
{yi(f)} (};(3,3)}

In the usual cases one assumes that FY(y)) > const |b|, F®3(y¥) > const|b| and
const is sufficiently large (see [ 6]). This gives a possibility to present the logarithms
of partition functions as sums of two terms where the first one is proportional to
|U| while the second one proportional to |0U| is a remainder term with nice
propoerties (see [6]). We shall see that this main property of contour models
remains valid under much more mild assumptions concerning F\), FG3:3),

Now we formulate these assumptions. We omit the indices “f”” and “(3,3).” It
means that the formulations are similar in both cases.

Assumptions Concerning F

Let y be a contour, d(sb)¥*” be a vertical boundary of sh, sy = (sb, ph), and sy is the
smooth contour corresponding to y. For any vertical face z we denote by Tj,(z) the
set of contours y = (b, ph) such that 3b™” consists of a single connected component
and z € 0b"°". It means that y is completely defined by the boundary condition and
ob™*. 1f the boundary condition is fixed we shall write 0b"*" e T(2).

The functional

F()=F()+F,Q©),
where

1) Fi(y)>K,|0(sb)™"| for a constant K, >0;
2) F,(y)> —d{"}b| for a constant d{")>0;
3) for any smooth y, =(b,, ph) and any

Inf e P TR0 ]
y= (b, ph)|yeSm(y1), b(int) CW

<d{V|b, (int)| — d(|b;\b, (int))

+ %GXP{ —FGO)} - [(V(b)\by(int) n W]
for the same constant d{) and a constant d*) > 0; (here N is a period of g.s. (N =1 if
gs.=f, N=6if gs.=(3,3)));
4) if y = (b, ph) and b=|b,, where b, are maximal connected components of b
then
Fi)= > F@).

yi = (bi, ph)
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Contrary to the usual cases F(y) may be negative. The property 3) is very
important. In fact it requires some estimations of partition functions with
summation over contours corresponding to any fixed smooth contour. In our case
we shall get needed inequalities during the proof of Theorem B (Sect. 6). We shall
use norms

[Fill= sup [F()I/0(sb)*",
y= (b, ph)

[F2ll= sup [Fy()/bl,
y=(b, ph)
I EI=Fl+IF,l-

Theorem A. Assume that
1
diP = Srexp{—F(°)} —exp{—R, K}

-exp{—F(3°)}—R, X exp{—K,loy"},

veTogz)
y¥Y

dP >exp{—R,K,}exp{—F(y°)}
—R, X exp{—Kloy"}.

ye To{)Z)
yFY

There exist absolute constants K, Ry =R,(K,), R, =R,(K,) such that for K
> K, one can find a number a(F) for which
InZ(U|F)=a|U|+A(U|F).

The remainder term A(U|F) satisfies the inequalities
a) AU|P|Se-10U;
ay) [A(UIF)—A(U|F)|<¢llF—F]-|oU].

Here
0=0(K,,dV)<3exp{—R, K, —F(;°)}
is a constant.

Let a contour y)=(b, ph) be given. O,, s=1,2,...,r are interior domains
corresponding to b, x(0,) are boundary conditions on db,(int). We introduce
another ensemble 3,(y""’) whose points are formal admissible configurations of
non-intersecting contours inside O, with the same indices “f”” and

EGF) =exp (= FG)} TS exp (= TRV,

s {yd i

where the last sum is taken over all configurations of contours {y'} inside O;.
Then under the conditions of Theorem A

lnE("’)(y(f)|F‘f)) — —F(f)(ym) +a- Z |Os| + A(cr)(y(f)|F(f)) ,

where
A(")(y(f)lF(f))= Z A(OSIFU)) .
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Therefore A" satisfy the inequalities:
|40 D FD)| < ol0b]
[ADGDIF) = ADGVF) Lol | Fy = F ol + 1F, = F,[1- 10y

In the same manner one can define Z¢(y3-3|FG:%) remainder terms
A€P(y3:3) F3-3)) with the same properties.

4. Equations for Contour Functionals for the ANNNI Model

We shall proceed asin [6]. Let us take a configuration ¢ which coincides at infinity
either with a f.g.s. or with a (3,3)-g.s. Its boundary consists of some number of
maximal s-connected subsets b, ..., b, or of contours y, =(by, ph), ..., y,=(b,, ph).
For any set VCZ3? we put

~He)= T o[t | ¥ o)

(x,%")€(Z3)nor

+3 X ()3, X x)
(x, x")e(Z3)$e: (x,x") €(Z3) 2

A contour y; is an outer contour if it is not contained inside any domain bounded
by other contours. For any contour yY) = (b, ph) we denote by A(y") the set of
configurations for which the boundary consists of the single contour b and put

EiV1B,0)= > exp{—fH(p(®")}-

@eA(yN)

For any smooth contour y{” = (b{", ph) and any set W2 b{(int), (WCZ?) we put
ER0Y1B,0)= 2 exp{BHV(BY)} - 2,1, 9),

§) = (B ph) eSm(3(1)
b(H)(int)CW

where HY)(b) is the energy of the ferromagnetic configuration on b. In an
analogous way we can introduce Z,(y3Y|B,6) and EG(y$|B, 6). Let h), b33
be the energies per particles for f.g.s. and (3,3)-g.s. respecnvely which are functlons
of 6.

Theorem B. Let 6=J, —2J,>0, 0=30,(f) (1 + o(1)) as f—00. There exist absolute
constants d5, 0<d <1, and d¥ >0 not depending on f and such that

In &, 1, 8)= — BH- bl - G 6) ~ GLG)
In,(°918,8)= — - [b] = GE-9G) ~ GEI(),
In ZG16,6) = = Gy G) ~ 61,

In ZJGV1,8)= — GEWHS) = GERG),
BC110(sh)"*V|< G (y) £ BC,|0(sb)™"],
ﬁc1|6b(ver)| = G1,W(V) §Bczlab(ver)| >
Gy(y) = —di exp{—fe,} - b,

Gy w(y) 2 —dy - e - |b(int)4-de ™ P*1|b\b(int)|

—e‘ﬂ“](V(b)\b(int))r‘\ W
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for some absolute positive constants, C;, C,. The absence of the index “‘f” or
“(3,3)” means that the inequalities are valid for both types of contours.

Proof of Theorem B is given in Sect. 6. The presence of 4" is very important. If
the volume b were occupied by a phase then the corresponding partition function
would satisfy a similar inequality with d$" =1, d%) = 0. We shall take d'V, d? from
Theorem B and use Theorem A with the constants

dP=dPexp{—Pe,}, dP=dPexp{—Pe}.
We recall the notation O, for domains bounded by db(int) of any smooth
contour y=(b,ph), 0= U 0,, W(b)= U 0,ub. Now we introduce the most

important partition functlons

E(y18,90)
=2 exp {B xe%(b) @(x) [%J o X oK)

(%, X")€(Z*)nor

+31, 0 X e(x)—3J, X o)
(x,x"ye (Z3)$E% (x,x")e(Z3)$%:

The exterior sum is taken over such configurations @(W{(bh))=(p(b), ¢(0)) that
@(b) e U(y) and @(0) is compatible with boundary conditions.

Main Hypothesis. The needed curve §=05(f) is uniquely defined by the following
assumptions: there exist contour functionals FY), F®3 satisfying the assumptions
of Theorem A and such that

1) a‘f)——ﬂh(f)=a(3’3’—ﬁh(3’3),
2) GV, 0)=EDGVF)exp{hY)- [W(b)[}.

EG©18,8)=EIF) exp(h>2 | W(b)]} .

The relations 1), 2) are quite similar to analogous relations in [6]. Using them
we derive first the equations for contour functionals and then solve 1) for finding 6.

Let us take a contour vV with its inner components O,C O(y") and fix outer
smooth contours 7+ inside each O,. The index “x,” takes the values “f”* or “(3,3)”
depending on the boundary condltlon on 00, 6b5(mt) We can write

EGYIB,9)
=5,0VIB.OIL T exp (= fg"?(104 = TIWGEIN] - TTZ08718.9). ()
s o
Using the main hypothesis we rewrite (3) as follows:

E(1B,9)
=2,0"18.0) [ Texp{ — Bh*10,}

- 3 TIECGS16.9)=E,618.6) - TTexp{—Bh™10,J} - 50, F*)

oo} 1

=E,(0"1B,6) - TTexp{(—Bh*? +a") [0 + 4(O,| F*)}, @)
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or with the help of —ph) +a) = — Bh3>3 4 4G
exp{(—ph"+a") - |W(b)|
— FOGUY— gD |b| 4+ A (3| FD)}

=51G1,0)exp {(— B +a") - |0+ T 4O, F)].

Thus we get
—lnEl(y‘f’Iﬁ, d) —ﬁhm . Ib(f’l = F(f)(y(f)) —A‘”’(y(f)|F(f’)+ s A(OS|F(kS))'

Using Theorem B we get a needed equation in its final form:
GG+ GY V)
=FV )())(/ ))_ A(fr)(y(f )I F(f))—{— Z A(Osl F(Ks)) (5)

In the same manner we get an analogous equation for F©®:3);

GF G )+ 65
= FESGE) — O —hE¥) ] = AGED | FED)+ R AO,[F™). (6)

The existence of solutions of (5), (6) is shown in Sect. 5. In Sect. 7 we discuss the final
steps and make some conclusions.

5. Generalized Contour Models and Proof of Theorem A

We shall consider only ensembles 3Y)(U); the case of $*-*(U)is treated in a similar
way. The index “f” is therefore omitted. A contour y is called an outer contour of a
configuration {y;} if it is not contained in any inner domain O(y;) of another
contour. As usual (see [ 5, 6]), we introduce correlation functions n(y,, ..., y5| U, F)
=74y, ..., y,) Which are equal to probabilities of the presence of s outer contours
Y1s-+-» Vss Vi =(b;, ph) in a random configuration of contours. We shall derive now
correlation equations for n, which differ slightly from the usual correlation
equations for outer contours (see 5, 6]).

We use the notation T(z) for the set of all contours y=(b, ph) such that
z€ b, Also we put r, =19 if ph= f and r, =18 if ph=(3,3).

For any outer contour y = (b, ph) we denote by W(y) the set {x|x=(x,, X, X3)
¢b; there exists a point y=(y,, ¥,, y3) Cob® for which y, =x,, y,=Xx,, |x3— 3]
<38}. Put

Wit = U (WG0by,

VVz(sz~--»Vp):W1()’1a--->Vp) U< b(o)(x)>a

x[bO(x) AW 1 (71, ..es p) ¥0

W3('})1, "'ayp): W1(?1, ---aVp)U{x|b(0)(X)nW1(V1: A 'Vp):‘:Q)} s

VVi(m)(yla M) ’Yp): {XIXE VV;(’})D L] Vp)’ d(am(ylv T yp)9 x)ém} H
i=1,2,3.
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We have
ZOTTw(y)
Ty(1seees 7l U, F) = ﬁ
B4 )29 [t o0~ £ o
- 2(U, F) E ()

Here the sum 3V is taken over all configurations containing outer contours
Pir e Pps 200 Is the sum over all configurations not containing outer contours
71> -.-, ¥, and containing only contours which do not intersect and not encircle any
of contours yy,...,7,; £1(y1, ..., 7,) is the partition function over all configurations
of contours y=(b, ph) such that the following two properties are valid:

al) bC WZ(yls ! '))p)b

a,) if bWy, ..., y,) 0 then y=(b, ph) is the least contour.

Let us explain why we need the volume W{3®. Assume for simplicity that p=1
and we are dealing with a single contour y;. Then in view of our definitions in the
38-neighbourhood of 9b{™°” the configuration is fixed and the points where spin-
flips produce the least contours s-connected with y, must belong to W,(y,). We put
now

AYis V) =51 (01 .-.,yp)eXp{— i F(%)}. (®)

i=1

Lemma 1. There exists an absolute constant R\ such that
0

ner) so0] = £ FG) - L exp(—FG)

AW 15 - vl (T 0(K 54, ---,vp))},

where
lo(Ky; 71, ..o yp)lSexp{—R{K} .

Proof. We restrict ourselves by summation in =, over configurations consisting
only of the least contours. The result of this summation can be written in the form

1
eXp{ﬁeXp{—F(v“”)} -le(h,-.-,yp)l(l+Q(K1;V1,---,y,,))},

where o(K,; 7y, ...,7,) satisfies the needed estimation. Q.E.D.

Lemma 2. Let y=(b, ph) be a smooth contour such that b is connected. Put
A1(y)=41(b)=exp{—K|[0b"*"| —d, |b|} , ©)

where K, d, are constants.
There exist constant Ko, R=R(K) such that if

K>K,, d,>R Y  exp{—K|ob"]}

yeTo(z),y* (O
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then

> () ZLexp{—R,K} -exp{—F(3?)},
(o7l
where R, is an absolute constant.

Proof. Firstly we shall consider a simpler model where one can understand better
the essence of the situation and of our arguments and then shall make necessary
additional remarks. Twice during the proof we shall use a trick which we have
learned from Zahradnik [7].

In the simplified model we consider Ising type contours which are connected
volumes. The statistical weight of any such contour b is equal to

Ay(b)=exp{—K|0b"*"|—-DIbl}, (10)

where
D=R > exp{— K |[ob""|},
beTo(z),b+bo(z)
R is a constant. Here b(z) is the least contour for which |b,(z)|=1. A contour b is
smooth if either it is the least contour or |3b{*"| > 4 for all vertical components of
the boundary.

_We fix 0b and B and consider first the sum Y 4,(b) over such b for which db(ext)
=0b and |b| = B. We denote by b the connected bounded set, for which 6(b)= b,
B, =1b|. We introduce an auxiliary model. For every finite set O we denote by
£ (0) an ensemble whose points are formal configurations of disjoint sets a;, where
each g; is a boundary of a simply connected set, a;= 0.9, a;n0 +0, and put

Ai(la)=1Texpl —Kla},  E4(0)= {aZ} Ai{a).

Here a{**" is the set of vertical faces of a; which determines uniquely ;. This model
can be investigated by the usual methods of the theory of contour models. In
particular, one can use Kirkwood-Salzburg equations for correlation functions of
a; and investigate the behaviour of Z4(0) for large O provided that K is large
enough. For such K one can find «(K) for which

Eo(0)=exp{a(K)- 0| +,(K, 0)|00]}

where
loey (K, O)| £exp{ — Kr+const}, (11)

and r is the cardinality of the least possible |a{**"|. Now we have

S= > A(b)=exp{—K|[BB""|—D-B}- ¥  exp{—K|a"|}.
bl@b(VTI:l)(:g)=6b, {a")fifi o,

&l

The last sum is estimated in the following way:
% exp{ —Kla{"*"|} =exp{ —«(K) (B, — B)}
{aj}udb=0b
: {Z} [Texp{—Kla{""|} - Eo(of) - exp{ — o, (K, o) - lail}

sexp{—a(K) (B, — B)+ max o, (K, 4)|B} - Eo(b)
=exp{a(K)- B+2max|«,(K, )| B} .
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Thus
S<exp{—K|0b"*"|—D B}, (12)
where
D,=D—-2u(K)—-2 m;x lo (K, ).

Now we have to consider in a more detail the structure of 9b"*"(ext). Each
0b™*)(ext) consists of several connected vertical components db{"*"(ext). It is an
appropriate moment to introduce several notions. A vertical component a is a
connected set of vertical faces such that each vertical edge belongs to an even
number of faces. The space of all vertical components is denoted by 4, the space of
a belonging to a set O is denoted by A(0). Each 6b"” is a union of a finite number

ofac 4, b= ) a;.

12
Having a we can complete it in a unique way to the boundary of a connected set
[a] adding some number of connected horizontal components #;=#;(a) in such a

way that 0y is contained in the set of horizontal edges of faces of a. Thus au U n;

=0[a], d([a])™*”=a. The set [a] will be called an interior of the vertjical
component a.

Assume that z is a vertical face, z€a,Cb"*. We shall call a, a vertical
component of the zeroth level. By induction, suppose that vertical components of
0b"*" of the /™™ level are defined. Denote them by a, ;, 1 <i<1,. We construct n,(a, ;)
and define the components of the (£ + 1) level as those components of db™e"
which intersect #,(a, ;) and are not components of the previous levels. The level of a
component a; is denoted by #(a;), £(3b"") = max )/(dl-), If we are given vertical

a,Coblver
to I

components a, ;, 1 <i<1,, £/ ={,, we can construct 6_bfo = U U a,;and consider
£=0i=1

b, 0b=0b,,. We have obviously #(3b'") = /,. We denote 0T, (z) the set of 3b, z € b
and /(db)=¢, Now we fix a, and have to estimate the sum

o)

DI

xeap £=0 db(ver)|¢(Fblverly=¢ B blab("e"ige'xl); db(ver)

A, (B).

The last two sums were in fact already estimated. Indeed, if we denote by # (0bven)
the number of horizontal faces of b which correspond uniquely to db%°", then

LA (@b ) S B [obIP,
and using (12) we get
Aq(b)

B b|ob(ver)(ext) =ab(ver), |b| =B
< Y exp{—K|0b"*"|—D, B}
B
< |5E(Ver)|2 -exp{—K |%(ver)l _%DI%(EF(ver))}
éexp{ _K(I)Ia_l;(ver)l _%Dl%(%(ver))} i
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where
KY=K,—2maxt 'Int.
t21
Now we have a simpler sum,
S= 3 Y ¥ -exp{— KW|FB*| 1D, #(@GBv)}.  (13)

xeag £=0 §b(ven)|f(ab(ver))=¢
We shall estimate it by induction from large to small /. Starting with an arbitrarily
large £ we assume that the summation over all contours b, for which 7, <Z(b)
< % is already performed, and the result is

to—1 1,
S&’o: > 'CXP{"K“) > X |a¢’,i|—K(2)
£=0 i=1 i

3bedT,, (2)

1,

> |a/0,i|_%D1%(a—b)}~

=1

Here
K@=K®—-2maxt !Int.
t21

We shall use again Zahradnik’s trick. Let #, be a horizontal component of
a,,—1, We consider an ensemble B,(r,) whose elements are mutually disjoint
vertical components a,, ; such that [a,, 1y, +0. We shall estimate the sum

W= 3 eXp{—K‘Z)Z Iazo,jl—%DlM}, (14)
(@, €210 j

where M is the cardinality of the set of horizontal faces of #, belonging to 0b™",
and thus lying outside all [a,, ;]. We can write

W= §€Xp{—%D1M}'Zexp{—K‘z)z?lafo,jl}, (14)

where the inner summation goes over all configurations {a,, ;} with the fixed value
of M.
For any set OCy, and K >0 we put
5e,(0)= 3 exp{—KZIa,o’jl}.
J

{as,, i3 CL100)
[a(o,J]ﬂ'IkCO

For sufficiently large K one can find &(K) and &,(K, O) such that
InZ, (0)=a(K)|0]+4a,(K, 0) |00}, (15)

where &@(K), @,(K, O)<conste X" as K— o0, and r is the least possible value of
la,,, ;|- In all these arguments we assumed that all a,, ;C £,(n,). But there can be
also components a,, ; which encircle connected components of ;. The summation
over such configurations only changes slightly the remainder term in (15). We shall
assume later that this correction is already present in (15). Then in (14)

2 exp { —K‘Z)g Iazo,,-l} <exp{—&(K®) [In]— M1}

{a,, 3}

- 2 Tlexp{— K(Z)lazo,jl} : Es,([azo,,‘]mﬂk)

{a,,, it i
-exp{— 0—‘1(K(2)o [afo,j]mnk) : Ia([at’o,j] O}
<exp{—a(K®) - [In] — M]+max|a;(K?, [a,, Jny)|- M}
“Bo,(m)= eXP{&z(K(Z)) M3},
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where

Gp(K®) =a(K®)+2 max|a,(K®, [a,, IOl -
Assuming that 1D, >a,(K®), we have

W= 4:4: exp{(—3D; +a,(K®)M} < ; lazy 1

Finally

S[o— 1 é -
0bedTe, - 1(2)

to—2 1, Iy -1 p—
.exp{—K(l) ZO ] la, | —K? .; |a,0*1,i|—%lef(ab)}.
= = i=

1

Thus we passed from ¢, to 7,—1. Therefore for /,=0, the sum S,
< Y exp{— K@|ay|}. The number of all possible components a,, with |a,| = m is not

ao
more than C™, where C is an absolute constant. This gives the final result provided
that

D =20(K)+2max |y (K, 0)] +2 [&(K‘Z’) + max |&, (K@, 0)1} . (16)
0 o

One ecasily finds that for sufficiently large K the numbers D ~ R exp{— Kr},

a(K), max | (K, 0)], &(K®), max|d,(K®, 0)|<constexp{— Kr}, where r is the
o o

least possible value of |a,| € Ty(z) and const is an absolute constant. Thus if R is

sufficiently large the inequality (16) is valid.

Our arguments can be extended without any difficulties to more complicated
situations such as contour models introduced in Sect. 3. The final conclusion and
the result will be the same provided that K and R are sufficiently large. Q.E.D.

We shall say that a contour y = (b, ph) has the property A if the following is true:

For the stripS=W®(y,,...,7,) the intersection bnS+0, and there exists a
configuration of the least contours

(YO0 = 0, ph)},  i=1,...,9(),
such that

a(y)
b= U bO(x)ud\S), x;e W3 2(y,,..,7,).
i=1

We denote by y, any contour containing x € Z>.
Let us consider the fraction

E1(15 ...,Vp) ’ Z(Z)I:IW(%‘)
Q= E(U|F)

It is easy to see that

Q=E{[Z [T 2 %000 11 I;I(l—xy;)JT?I(Fx;)}‘

MCS xeM y4 xeS\M y;
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Here yZ is the notation for the contour having the property A and containing x, 7 is
a contour encircling at least one of the contours y,,...,7,;

") =exp {F OH—F@F

- > F (Y(O)(xj))}a y*=(b, ph),

JIbO (x;)noW 1 0
7=(b,ph), b=\ b (x)nS, 1,
J

is the indicator for the set of configurations having an outer contour y, 7, is a
contour intersecting S and is not the least contour, E means the expectation with
respect to the ensemble 3(U).

The last expression shows that Q can be written as a linear combination of
correlation functions which gives us the desired system of correlation equations:

np(yla'”,’))p)
=My - ,y,,)[lJr z Hf(vf‘)( Z =D

A=l e,

'nr+m(y1’ "-5%‘ ’ /1, cees '))m)

+ _ Z _ (—1)fnr+m+t’('ylfa "‘9’));4>'y/1’ cees y:n’ ’)71: 9?{)):' .

Vireens?,
We introduce the following norm in the space of sequences = {7,();, ...,7,)}:
(715 -5 7))l
In=sup ok
P {¥1s -0 Vp} VIG '--,)’p)

where
_ 1
A('}’l, D) ’Yp) :/1(‘))19 EEET) yp) eXp {Nexp{ _F(V(O))_CKl}
: |(0W3(y15 LR Vp))(hm)|
D (0) 4 (ver)
+ P FGO) - 2 1570

¢, D are constants.
The system of correlation equations can be written in the form n=An+ ®.
Here A is a linear operator, @ ={A(y;,...,7,)}-

Lemma 3. There exist constants K,, RV'=RM(K ), R® =R®(K,) such that for
K, >K,,

<m

r,m ___ r,m / 4 —
2 = XMz ey Zpy Zhs ey Zg) =
yleT(z,), 1 Si
y;*+y@eT(z)),1

/2«_())114: ""y:i”yll’ ay:n)f(yfa ,}’r)

1 r+m
é(eXp{—R‘“Kl}']—V—GXP{—F()/‘O’)}+R‘2’ 2z eXp{—Kllr?b“e”l}> ,

beTo(z)

=r
=j
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where
Z; € VV1(38)(y1> --"yp)v Z;'E VV1(38)(’V15 ceey Vp)
are arbitrary vertical faces.

Proof. We shall write for brevity f(I") instead of f(y,,...,y,) if f is a function of a
configuration I'={y,, ..., 7.},

W(I", D, c) =exp{—cK} |oW5"(D)|
+D 3 [a(sy)™rl,

yel'

ngr): {’})IA}:= 1> (m) {YJ}J 1>
PEm=LPOr®, I =,
I is a subset of the set (1,...,7),
L =r0or™,  L={, .7},
L= {ter,  TiW=000r™.

It is easy to see that if 7 =y, then

S exp{—FGM) - 100 exp{iexp{ FGO)

4yt =@
(W D, C)I} SRexp{—2F(y*)}

for a constant Ry =R;(D,¢). We have
Sram) Zz(l,m) ,

J

where the sum XV>™ has the same form as 2™ with the additional condition of
fixing the indices j e J for which 74 are the least contours. It corresponds to our
general strategy to consider separately the contribution of least contours.

For XY™ we can write the estimate

5Um < (Ry exp{ —2F(O))V!

yeT(zi),iel={1,....r)—J

'[CXP{_YE,;,M)F(V)} 176N 2@
exp{ - -exp(—FGN - Wt Do |

=(Ryexp{ —2F(y")H"!.
y4eT(z),iel

yqu(zq) 1<gq<m

Jewf- = _FolD] T exp(— Foey)

iel j=1

C(E TN eXp{ieXp{ FGO)HWIE™; D, C)H
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It is not difficult to see that

a(y4) 1 ~ A
[T TTexp{—F(GO) Zexp {N exp{ —F(yO)} - W),

iel j=1

where
Wy = U (Ve)\b(int)nWy(I;),  b=bAS.
iel

Consequently

TUM < (Ryexp{—2FG )N
y4d(z, vy Er
v4eT(2g), v+ ¥(®

-eXp{ - Y F (v)} (EEM)

Vel
1 .
~wp{Nemﬂ—F@@»-nwuxwr+wuy¢nbmn}.

This sum can be estimated as follows. First we can sum up over all contours y,
¢=1,...,m corresponding to some smooth contours j,, /=1, ...,m and over all
contours $¢, ie I, which correspond to some smooth contours 77, i€ I, and not
intersect W, (I'{"™) (here we use the property 3) of contour functional F with the
following choice of the set W: W=V(j,) for contours 7, 1=</=<m and
W= V()?{’)\W(ﬂf )) for contours 74, i € I); then we estimate the sum over smooth
contours using Lemma 2.

The result of the first summation gives us the estimate:

ZUm < (Ryexp{ —2F(y ) HPI(Cry )+
max > I1 D7)

Z;|d(Z;,z) S 2ry il FEeT(@) jel @
24|d(E525) S 201, 159Sm 74 TEY

2 {— > F)+dd X |b(int)]

o, m 5= [r,m)
ysFA’I y (b,ph)sFAvI

AP S b(ind] + g exp{— FG))

y=(b,ph)elCpym

. ( 3 VOB + Do Z[o(sy ) - (B ()

7= (b, phyelGm
Here C(r,) is a constant, D,(7)= max|db,, 7=(b, ph), b; is the connected
b,Cb
component of b. It is clear that |D,(7)| < max|0b{"*"|>, D, is a constant.

For any contour y=(b,ph) we denote by n(y) the number of connected
components of the set b which differ from the least components. If b=Ub; is a
decomposition on connected components, then we can assume that b, + b for
i<n(y) and b;=b for i>n(y).

Let # (b, ...,b,) be the set of all contours y = (b, ph) for which n(y) =n and let b,
=b;, 1 i< n(y), #(0) be the set of contours with n(y)=0.
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Consider separately the sum over such configurations I'{"/” for which
e ddP,....bY), T €MD, ..., b;,(g)) ,

iel, 1 =g=<m. This sum is not more than

exp{— > [(KI—DQ' 3 1@~ d 3 1)
yel G =1 =1

—ap 3 by oo - § | ,-Dy

- 2 1@ —d? 3 b (i) —d? 3 lb;“)\bf’(int)lJ}
. 11 (R, exp{ —F(y(o))})d(b{“’-"”’n‘.“) . 111 (R, exp{ _F(,y(O))})d(bi(J'),,,‘,b';l(j))
ie j=

1
-eXp{—NCXP{ FOO)}-(1—0) - [Wy(IY ’"’)I}
where
W, (I (r ) (U U b“’) <U U V(b"”)) db,,...,b,)
iel j=1 i=1j=1

is the length of the minimal tree which connects the sets Ws(b;), 1 Si<n, W;(b;)
=W(,),y;=(b;, ph), 0 Sexp{—C,K .}, D3, R,, C, are absolute constants. Now we
see that the last sum is not more than

y.ef‘;‘,;")lyie./ﬂ(b}"), ...,b,("'))

-[exp { (K, =D5) 3. [(0b)°)~d; 3 rb;w}
J= j=

Ryexp{—FGOp )|

I (Rsexp{—2F(y*)}).
yelt (9)

RS
Here
d, =min((exp{ — F'”)} —d{") (1 —0),dP(r) ™),

R; is an absolute constant, r, =9 if ph={fgs. and r, =6, if ph=(3.3)-gs.

Now Lemma 3 follows from Lemma 2.

From the main estimate of Lemma 3 it is not difficult to see that the operator A
isa contraction and || 4| < const(K,)—0as K, — 0. Therefore for sufficiently large

@0
K, the limit correlation functions can be written as t= Y. A'®. The estimation of
i=0

the difference between the limit correlation functions and the correlation functions
in a finite volume is done by a routine method (see [5, 6]).
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6. Proof the Theorem B

We shall consider the case of contours 7 and Z§(yY”|B, §). Other cases can be
considered in the same manner. We have (see Sect. 4).

Z6Y18.9)
= 3 AV}

1= (b1, ph)eSm(y() b)) eUAFD)
bi(int)e W
exp Bl X o) (310 X e()+3] Y X))
xeby (x, x") € (Z3)50x (x,x) (@30

_%J 2 > (P(x/)>] .
(x,x")e(Z3)$%x

Here #V)(b) is the energy of the ferromagnetic configuration in b.

For any ¢(b)= ¢ we denote

a;) G“*(¢) is the set of ordered bonds (x, x") € (Z*)\}), xe b, for which ¢(x)
+¢(x') and d((x, x"), (0(sb))**")<r,. We recall that d(sbh)"*" is the set of vertical
faces of d(sb) which can be also considered as the set of horizontal bonds
perpendicular to these faces.

a,) GVY(¢) is the set of ordered bonds (x,x")e(Z>)\!), where xeb, ¢(x)
F¢(x) and (x,x) ¢ G**(¢).

a;) GY(¢) is the set of xeb for which d(x, GY"(¢)UG{*(¢))<2r,. The
values of ¢(x), xe G,(¢), are defined uniquely by values of ¢ on G“(¢)
UG (@).

a,) Wi(e)=b\G5*(¢).

as) N, (@) is the set of x=(x,, x,, x3) € W,(b), where ¢(x, X,, x5+ 1)=¢(x,,
Xz, X3 —1)F @(x1, X3, X3).

ag) N,(p),r>11isthe number of series of points lying on the same vertical line,
i.e. series of points (x,, x,, x)€ Wi(b), a<x'Za-+r, and ¢(x,, X,, a)+ @(xy, X,,
a+1)=¢(x1, X3, a+2)=...=@(xy, X5, a+1)*F @(x,, X5, a+r+1), N} () is the set
of points of the form (x;, x,,a+ 1) or (x,x,,a+7r), N, *(¢p) is the set of points
of the form (x,, x,,a+7), 2</<r—1, N*(¢p) is the set of points of the form (x,,
X,,a+2), (Xy,X,a+r—1). An important remark is that r=<2r,, because
otherwise there will be points in a ferromagnetic phase.

We rewrite the energy of ¢(b) as follows:

— H(p(b))= — A V(b) =37, |G @)l — 1 0|G{*"(9)]
—25r§2 N(p)—4J N (p)+ ;.
Here ##, is a correction term |5#;| <const - (J; +J5) - (|G (@) +1G,(p)]). We recall
our assumption that J,, J, are sufficiently small comparing with J,,.
Lemma 1. There exists a constant c, such that
IGY7] > c,|0(sb) ™"

Proof. Let a bond (x, x) be orthogonal to a face of d(sh)™*"” and ¢(x) is in a phase
while x” € d(sb)**” and ¢(x") is not in the phace. It means that in the neighbourhood
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of the radius r, there must be horizontal bond (y, y")Ch, where @(y)=* ().
Otherwise ¢(x") will be in a phase. Q.E.D.

The cardinality of the set of connected components 0b{**", [0b{"*")|=n, passing
through a fixed face is not more than c%, where c; is a constant. We can choose ¢
soI la}rg)e| that the cardinality of the set of all possible ¢(G“*”) is not more than
51,

A point x = (x, X,, x3) € )\G"*"(9) is called an elementary defect (e.d.) if p(x)
+ o) forally=(y1, y2, ¥3), |[¥1 —X1|+ 1y, —x,| =1, y3 = X3, and there are no other
horizontal bonds (x’, x”) € b such that (x’, x")nbP(x) %0 and o(x")+ @(x").

A configuration @(b) is called ideal if there are no e.d. The set of ideal
configurations in b is denoted by AV(b).

Let @o(b) € A(b). The set of all ¢(b) which differ from ¢,(b) by some number
of e.d. is denoted by A(b|p(b)). Each ¢(b) corresponds for one and only one ideal
configuration ¢(b).

We can write

QG 18,0)

¥ =), phye Smy) o(b{)eA({N)
b (int)CW

2 { —p [%J olG @Y +37o|GY* (@ (B))]

+23% |N,<<p<baf)>)|+4JlN1<<p<baf>))+sff1<qo<baf’))]}

yx(f) =(b{), ph)e SmyH (p(bl(f))e‘ll(yl(f’)
b{H(int)CW

-exp { —p [%J olG @) +37o|GY*(@(bY))]

+3 3, N B+ 47N, o)+ 060 |

Furthermore
ERGVIB,0)
= 2 > -exp{—B[3Jo—p e F]
71(f)=(b‘(f),ph)esmy(f) GCW
b (int) CW GicW
“(IGI+1G D} - 2 -exp{—ce - |G, |}

Po(b) CAD(BN)
G(ver) (o) =G
Gl(vcr)((po) =G,

-exp{ —5[4J1N1(¢0(baf>»+5 5 IN o) +Jf]}

exp {—ﬁ S n(o()- ai} .
n=0

o6 eUGD | 9o(b{))
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Here n(p(b{”)) is the number of e.d. of type i of configuration @(b{") (see
Sect. 1) and ¢ is an absolute constant,

0<c<min (|G, (|G| +]|G,]).
G,Gy
Let v(@o(b{")) be the set of points x € b (int)\G,, where the spin-flip changes the

energy &;.
Then

4 4
ZCXP{—ﬁ 2 nisi} <X 1 Cpiye o
i=o

{myi=0
~ exp ino |v;| In(1 +eXp(—ﬁ€i))}
~expl|vol exp(— Beo) + ([v4]+[v,) exp(— fe,)).
It is easy to see that
bolgol= 5, N0l (ol = . 1N (0ol

[v2(@o)l =[Nf21)(§00)|.

We remark that every configuration @,(b{”) can be uniquely extended to
V(b)\GuG, and different configurations will have different extensions. As a result
we can write

Z5618.0)
< 3 exp(—(Blo—e (GG} T

Gcw oo(V (b))
G CW G(ver)(pg) =G
G{ver)(go) = Gy

expl=ce MIG1}xp{ —| 471N, ooV B
+5 3 N VONAB e P T NI
Bt S INZ Ao VBN e
(INO(@(V(B) AW |+ V.s.0. [W— G|+ %1}} ‘
Remember that 286 —2e#%+ 3¢ % is v.s.n..We have
B3 3 INO(po VBN

2ry
— e 5 INPpoVENNbI—e " 3 N7 poV BN
— e PN o VBNINbl = (85 -2 ) N oo VBN
He S NV O

—e PD\Gyl+e " T IN go(VB)NDI.
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As y=(b, ph) is the contour we have
2ry

ze P 3 INP A @o(V(B)nb(int)| +(Bd —2e ™ *)

r=3
A INSX@o(V(B))Nb(int) > de ™ P*1|b(int)\G,|
and
INP @o(V (D)) (D\b(int)U G,)| > d,|b\b(int)U G,

where d, d, are absolute constants. Also

e PN @o(VBN)N(V(B)\D)N W)

+e PN 2 (@o(VONN(V(D)\b)n W)
Se PV (b\b)WI.

If the sets G and G, are fixed, then the number of ideal configurations ¢,(V(b)) is

not more than const!¢! 161!,
Thus

ERGVIB,0) = G%V exp{ —(BJ o —const) (|G| +1G,])}
GCW
-expi{e P |V (b)) nA(bUGUG))|
+de P [b(int)\(GUG, )| —d, e 7 [b\b(int)[} ,

where d, d, are positive constants and 0<d < 1.

Lemma 2. Put e~ 6707 = ZCXP{— <§ Jo-00n5t> 1G|}- Then
G

e Gl(f)(}’(f)) . Z exp {_ (g. JO _ Const> (IGI + IGI |)}

¢, G
Zexp{v.s.n.|V(b)}.

We shall give only the sketch of the proof. We decompose GuUG, onto
connected components and get a usual contour model (see [6]). We remark that
the statistical weights of the least components are v.s.n. because we excluded e.d.
The needed estimate follows by a direct application of the method of correlation
equations (see [6]).

Thus we get the desired result.

7. Solution of (5) and (6) and Final Remarks

Now we return to Egs. (5), (6). We look for the solution FY)=F{)4 F{) FG&-3
=F¥+F83. From the very beginning we put F{(y)=G{'(y), FE3(;)
=G33(y33). Assumption 1 follows easily from Theorem B. Equations (5), (6) for
F, can be rewritten in the following form:
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G(zf)('y(f)) — F(zf)(y(f)) _ A(cr)(y(f)IF(f)) + Z A(OSIF("‘)) ,

G(23,3)(y(3,3))=F(23,3)(y(3,3))__ﬂ(h(f)_h(3,3)) . Ib,
_AGEIFGI) LS A0, F®). (17)

Let us put
G§IG) = GE ) 4 B ) - [b].
Then (17) means that
(GY, G§N =(FY, F&N) + T(FY, F§Y). (18)

It follows from Theorem B that GY) > —dV exp{— Be,} - |b|, % is some absolute
positive constant independent of B, d" < 1. For G$* we have

GPIZ[~3e P +(1—dP)e T,
with the same d%". From the other side
> exp{—F(6b"")}

ve To(2)
yFy(®

is v.s.n. In the case of f-phase N =1and exp{ — F(y?)} =e#¢1,in (3,3)-phase, N=6
and

1
ﬁexp{ —F(y)} =2exp{—Pey} +v.s.n.

Thus the conditions of Theorem A are valid for sufficiently large f.

It follows from the proof of Theorem B that if a contour consists of several
components then the values of GY’, G are sums of values of different
components, i.e. Assumption 4 for contour models is true.

In the space of pairs (FY?, F$¥) we introduce the norm

I(FS, F&2) || =max (| FS[, | F&]) .

Then in (18) the operator T is a contraction and the contraction coefficient is a
v.s.n. as one can easily check. Thus we get the solution of (5), (6). It will satisfy also
Assumptions 4, Sect. 3 because G satisfies it and it remains valid under iterations.

Assumption 3 of the contour functional follows from the estimates of the
partition function Z§)y|B, §) in Theorem B and from the fact that for any smooth
contour y, =(b,, ph) and contour y e Sm(y,) we have

4“7y | F)l+ ;A(OS(V)IF)) svsn. [by].

Having F, F®-3 we find § using the equation a®3 —a)=24.

Peierls’s method in principle does not give any possibility to approach a
critical point. However, it is apparently possible to estimate the number of values
of ¢ where the set of limit Gibbs states is discontinuous as a function of .
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