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Abstract. For a 2 + 1 strongly coupled (β = 2/g2 small) Wilson action lattice
gauge theory with complex character we analyze the mass spectrum of the
associated quantum field theory restricted to the subspace generated by the
plaquette function and its complex conjugate. It is shown that there is at least
one but not more than two isolated masses and each mass admits a
representation of the form m(β) = — 4 In β + r(β\ where r(β) is a gauge group
representation dependent function analytic in β1/2 or β at β = 0. For the gauge
group SU(3) there is mass splitting and the two masses m± are given by

m± (β) = - 4 In β + In 16r4 + \{2 ± ί)β + (d± (β) Ξ j ^ c±,

where r = 3 is the dimension of the representation and d±(β) is analytic at
β = 0. c* can be determined from a finite number of the β = 0 Taylor series
coefficients of finite lattice truncated plaquette-plaquette correlation function
at a finite number of points.

1. Introduction

In [1] the low lying energy-momentum spectrum of the quantum field theory
associated with the 2 + 1 strongly coupled lattice gauge theory with Wilson action
A' is analyzed. Formally A' = β £ χ{gp\ where χ is the real character of an ir-

P

reducible representation of a compact gauge group. gp is the oriented product of
group elements around the border of the plaquette P. It is shown that for β > 0
and small the energy-momentum spectrum in the gauge invariant subspace
generated by the time zero plaquette functions χ(gPx), x = (x1= 0,x)eZ 3 consists
of an isolated dispersion curve ω(p) ̂  ω(0), real analytic in pe(— π , π ] 2

? which is
identified as a glueball. Furthermore the glueball dispersion curve and mass m = ω(0)
satisfy

l i m — — - — = 1 , lim = 1 ,
^o — 4 m p βi0 m

uniformly in pe(— π,π] 2 .
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The above results follow from decay and β analyticity properties of the truncated
plaquette-plaquette correlation function (hereafter abbreviated cf) and the faster
xί (imaginary time) decay of its convolution inverse. In [2] it is shown that A' is
a quasi-analytic perturbation of a non-degenerate level in the sense that m =
— 4 In β + r(β\ where r(β) is a group representation dependent function analytic
at β = 0. cM, the nth β = 0 Taylor series coefficient of r(β), can be computed by a
finite algorithm.

Similar results for spin systems can be found in [3], Numerical calculations
of glueball masses can be found in [4, 5].

Here we consider the mass spectrum for the case of a complex character (also
denoted by χ = χr + iχ^ with the formal Wilson action βYjReχ(gp\ restricted to

p

the subspace generated by χr{gPx) and Xi{gPx), x = (0, x). We state our main results
concerning the mass spectrum as Theorems A and B. In what follows there exists
a constant d > 0 such that the results hold in the mass interval (0, - 5 In dβ\
dβ < 1.

Theorem A. For β>0 and small there is at least one but not more than two isolated
points in the mass spectrum and each mass admits a representation of the form
m(β) = - 4 In β + r(β), where r(β) is an analytic function of β1/2 or β at β = 0 and
dependent on the representation of the gauge group.

Remarks. 1. Here we are dealing with a quasi-analytic perturbation of an asymp-
totically degenerate level.

2. Similar to [1, 2] the theorem follows from decay and analyticity properties
of a 2 x 2 matrix-valued truncated plaquette-plaquette cf and the faster x1

(imaginary time) decay of its matrix-valued convolution inverse.
3. For an abelian group r(β) is analytic in β.
By a more detailed analysis we obtain information on β analyticity (rather

than just β1/2 analyticity) and mass splitting. Define nD, nD = 0,l,2,... by

nD(nD) = the number of times the representation (complex conjugate
representation) of the gauge group occurs in the decomposition
of the Kronecker product of the representation with itself
(see Lemma IV.la and b).

We have

Theorem B. Ifn + nB> 0, then there are two distinct masses, m ± , given by

n = 2

oo

where £ rf βn are analytic at β = 0. In particular, for SU(3)
« = 2

m± (β) = - In β4 + In 16r4 - i(2 + ί)β + 0(β2\ r = 3.

c j are group representation dependent constants that are determined from a finite
number of the β = 0 Taylor series coefficients of finite lattice two-point cf's at a
finite number of points.
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Remark. 1. The determination of c^ is a finite problem. The Taylor series
coefficients of the two-point cf can be obtained from differentiating In Z'A with
respect to parameters where Z'A is an appropriate partition function for a finite
lattice A. By using the polymer expansion of [7] only a finite number (dependent
on n but not on A) of polymers are needed in In Z'A. In this way the troublesome
problem of cancellation of A dependent terms is avoided.

2. For an abelian group nD = nD = 0. However, we can show that there are
masses m±(β) (not necessarily distinct) with

and d±(β) analytic. Thus if mass splitting occurs it is at least of order β2.
3. Ύhe mass splitting can be interpreted as "parity" splitting since a reflection

oϊone space component in space dimension two inverts the orientation of plaquettes
perpendicular to the imaginary time direction.

We describe the organization of the paper. In Sect. II we obtain a spectral
representation for the Fourier transform of the cf and give a criteria for a point
to belong to the mass spectrum. In Sect. Ill we establish an implicit equation for
the mass and prove Theorem A; in Sect. IV we prove Theorem B. Decay and β
analyticity properties of the cf and its convolution inverse used in Sect. II-IV are
established in Sect. V. Section VI is devoted to some concluding remarks.

As many of the proofs are adaptations of those of [1, 2] we will be rather
sketchy. \β\ will be assumed to be small throughout and c, c', c l 9 . . . will denote
strictly positive constants.

II. Spectral Considerations

We consider the 2 x 2 matrix-valued truncated plaquette-plaquette cf G(x, β) with
matrix elements

GJx,β) = Gaγ(y;z,β) = lim GAJy;z,β)9 x = y-z,x9y.zeA c Z 3 ,
A\ZZ

oc,y = r, ί. Here

where χ = χr + iχ£ is a complex character of an r-dimensional irreducible unitary
representation of the compact gauge group. Px is the translation by x of the
plaquette Po located at x = 0 and perpendicular to the 1-direction (which is taken
as imaginary time). The < > Λ are finite lattice averages in the Gibbs ensemble
with Boltzmann factor exp(j8^Reχ(^)) and measure dgΛ the product of Haar

P

measures dμ of the gauge group, one for each bond of A. The oriented product
of #'s in the Boltzmann factor and in the definition of G Λ α y is taken in accordance
with the right-hand rule which by definition is called positive. We point out that
g'1 corresponds to the product with the opposite orientation of gp and that
unlike the case of a real character where χr(g~x) = χr{gp) a complex character
satisfies χ^g ~x) = — Xi(gp). Thus some convention is necessary in the definition of
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GΛay. The existence, β analyticity and translation in variance of the ΛfZ 3 limit
is established in [6] (or see [7]) for small \β\. We denote points x e Z 3 by

d

x = (x l5 x), x = (x2, x3) and |x| = £ KΊ = l*i I + lχl Let ~ denote the

Fourier transform, i.e. G(p,β) = Yje
ipxG(x,β\ where px= £ ptxh p = (plfp). We

x ί = l

denote by Γay(x, β) = / ^ ( y; z, β\ x = y — z, the matrix elements of the convolution
inverse, i.e. Γay(x;y) = Gβ"/(x; y) orΣ Γαp(*; z)Gpγ(z; y) = δxyδx y δ Λ y .

G, 7" can be interpreted as matrix operators in the sequence Hubert space

l2 with elements f=Xfaχ{x)el2 and norm | / | ={YJ\f0Lχ{x)\2Ϋ12. We let

|| i| denote the l2 operator norm.
The lattice quantum field theory Hubert space, with inner product denoted by

(,), the energy-momentum and field operators are constructed as in [7, 8]. We
denote by

E(λ±) and F(λi) = f\Fi(λi), λ =

the spectral resolution of the self-adjoint evolution operator (renormalized transfer
"matrix") and unitary space translation operators, respectively. As in [1] we have
the Feynman-Kac formula

where

fl, Ω)(Ω, χy{gPo)Ω).

and χa(gpo)Ω(Ω) is the Hubert space vector associated with χ{gPo) (1). [0,1) can
be replaced by [0, e+4rlncβ) using the falloff of Gαy(x = (x1? 0)) given by Lemma 5.2.
Adapting the proof of the results of [8] we have

Lemma 11.1. For each β>0 and pe(—π,π] 2 there exist signed finite measures

dPayttuP), positive for oc = γ, such that

where

ω σ σ ( p ) Ξ l i m - - ( Σ
xi->oo Xi \ x

^ ω σ σ (0) = lim - — I n Gσσ(x = (χlt 0)) = mff<7 > - 4In c β
*l-> oo X χ

ωαy(p) = min{ωαα,ωyy} for ot^=γ. Furthermore for a product of intervals Δ1 x Λ9

J dpjλuΐ)
Δ
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is continuous in p e ( — π , π ] 2 and

A A\

Remarks. 1. The importance of the above formula is that it relates the energy-
momentum spectrum, i.e. the support of dμαα, to the support of the measures

dρJλi>P)
2. Formally dpay(λup) = J δ{λ - p)dμ a y{λ uλ).

(-π,π]2

From the above lemma we see that to locate the mass spectrum it is enough
to determine the support of the measures dpaa(λl9 p = 0). From now on we suppress
the p dependence and take p = 0. We now express Gay(p) in a more convenient
"resolvent" form by introducing the spectral parameter a and measures dvay(a)
defined by

^ » = 1 Γ j f f dpxy(λ(a)),
Lλ\a)

a(λ) = (1 - λ)2/2λ, a{e-m«β) = cosh maβ - 1,

so that G(p) = F(z = cospί — 1), where we define

J ^
coshm — 1 a Z

Faγ(z) is analytic in zeC - [coshmαy - 1, oo) and we have set mαy = ωαy(0).
We recall the well-known inversion formula in

Lemma 11.2. // c, d(c < d) are points of continuity of dvαα, then

vαα(d) - vαα(c) = l i m - j IFJυ + is) - F^v - iεftdv.

Remark. The representation of F(z) and the inversion formula can be used in the
spectral analysis of [J, 2, 8, 9] making the representation theorem for Herglotz
functions unnecessary. In the non-matrix case I m i 7 ( z ) " 1 < 0 for I m z > 0 since
Im F(z) > 0 for Im z > 0 from the representation for F{z). Furthermore for Im z = 0,
Rez sufficiently negative, ImF(z) = 0 so that ImF{z)~1 = 0 and using the Cauchy-
Riemann equations we conclude that F~1 is monotone. Thus in the F~ * analyticity
region F~x has at most one zero. F~x analyticity is used in the inversion formula
by setting

F(υ + is) - F(υ - iε) =
F(υ + is) x F(v — lε) λ

Let H(z) be the matrix inverse of F(z\ i.e. HF = /, and Faa{z) = Hyy(z)/det H(z\
QLφy. Note that H(z = cosp1 - 1) = Γ(p1,γ> = 0) and that by Lemma 5.3 Γ(pl9

p = 0) and detΓ(/71?p = 0) are analytic in 0 < ( I m p 1 ) < - 51ncr^ so that by
Fa(X = Hyy/dctH and Lemma 11.2 we conclude that the mass spectrum is discrete
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in (0, — 5 In c'β). We give criteria for a point px = im to, or not to, belong to the
mass spectrum σ(M).

Lemma 11.3. Let 0 < m < - 5 In c'β.
a) // det Γ(p1 = im) φ 0, then mφσ(M\
b) // det Γ(p1 = im) = 0, and Γ(Xa{p1 = im) ^ 0, α = i or r ίferc meσ(M).

Remarks. 1. It can't happen that detΓ1(p1) = 0 and /^α(Pi)7^0> α = r or i, for
0 < Imp1 < - 5 In c'β, |Re p j < π, but Re p t ^ 0 since Gαα = Γyy/det Γ,
α ^ 7, is analytic at these points.

2. In the case of an n-fold asymptotically degenerate level the spectral analysis
is similar with Faa = H^1 = Lαα/det H, where Lαα is the cofactor matrix of H.

In the next section we introduce an implicit equation for the zeroes of det ΓiPx)
and prove Theorem A.

III. Implicit Mass Equation and Proof of Theorem A

We obtain a β = 0 Taylor expansion of Γ(puβ) = Γ(p 1 ? p = 0,/0 with the terms
up to and including β5 made explicit by first obtaining an expansion for G(pu β) =
G(p1?p = 0, β). From the expansion for Γ(p^β) we introduce an implicit equation
for the mass which is used to prove Theorem A. We define

Γ s, Gs and Γs are defined similarly. We have

Theorem III.l. For l l m p ^ -41nc/?, G(puβ) is jointly analytic and has the
β = 0 Taylor expansion

j +••• gj5 + (j^μ + *jή (e~ipί + e*1) + Gjίp* β),

- a5β
5 + aβ

Furthermore

det S(pu β) = Gjpu β)Gh(Pl, β) - Gri(Pι, βf

= i + AJ + • • • A5β
5 +1 ^ + yβ5 Ue-"" + eiPί) + 0(β6).

Here

γ = | (a f + a,) + ^ 4 (θn + QiJ,

9n = ί Xr dμ, gh = j χf χr dμ, aγ = J χ^r

2 dμ,
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gα., ax are group representation constants and

Ax = ϊ{gh + gri)l Λk = Ak(grk,..., grι; gik,..., gh; ak_γ... α ^ , 2 ^ /c ̂  5.

Remarks. 1. To prove Theorem A only a fourth order expansion is needed, but
the fifth order expansion is used in the proof of Theorem B.

2. The unexplicited constants can be made explicit as in [2] but will not be
needed here.

Proof. Follows from Lemmas V.I and V.2.
For n = 0,1,2,... define

and

5 βrn Am

ΣΓsxy{n, β) = Γxy(n, β)-Σ

m=omι

Theorem III.2. For | I m P l | < - 51nc'β \Γsay(n,β)\ < c\β\\ \ΓsJn,β)\ ^
c\c'β\5n and Γsaγ(n,β) is analytic, Γ(puβ) is jointly analytic and has the β = 0
Taylor expansion

Σ Γsrr(n,l
n=ί

e«p.) + rsiι{n = 0,β) + f Γsh{n,
n=l

Γsri(n = 0

d) det Γ(Pu β) = 4Ϊl-I±β + I2β
2 + I5β

5

where Iί = 2(gii + grι); Ik = Ik(grk,...,gri; gik,...,gίι; αk.l9...9αx)9 2^k^5,bb ch

dt are group representation dependent constants.

Proof. The above is the Taylor expansion for Γ(pl9β) and the coefficients of the
order βm terms, 0 ^ m ^ 5 , are determined from Γ(puβ)G{puβ)=l using
Thm. III.l. The analyticity properties and bounds follow from Lemma V.3.
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Introduce the auxiliary complex variable w and 2 x 2 matrix function H(w, β)

such that Hay(w = 2 - 0 ? 4 / 8 r V i p \ β ) = Γjpuβ) where

Hrr(w,β) = w- 12griβ + 4grιwβ + cr2β
2 + ... cnβ

5

, κ ,... β)64r8(2-w) 16r8(2-w)

Hu(w, β) = w- 4(2gn + gh)β + 4gn wβ + Bhβ
2 + ... BJ5

β8 9rJ9

" 64r8(2 - w) ~ 16r8(2 - w) + K " * W ' ̂ '

# H(W, $ = - 12aJ + 4Λ I W/? + A2β
2 + .. .,45j3

5 - - ^16r 8 (2-w) ' " ' * " " ' "

and we have set

' 8 r 4 ( 2 - w ) V / j84

y \^8r4(2 —w)

The implicit equation we are trying to solve is now F(w, β) = det H(w, jS) = 0.
Concerning F(w, β) we have

Theorem III.3. For |w|, \β\ small
a) F(w, β) is jointly analytic in w, β,
b) F(0,0) = 0, δF/dw(0,0) = 0, d2F/dw2{0,0) = 2,
c) F(wJ) = (A0(β) + A1(β)w + w2) M(w,β), where A0(β\ Λ±(β) are analytic,

Ao(0) = A^O) = 0; M(w, β) is jointly analytic and M(w, β) φ 0.

Proof, a) Using the bounds of Theorem III.2 and the ratio test the infinite series
converge absolutely, b) Similar to a), c) follows from a), b) and the Weierstrass
preparation theorem (see Thm. 3.10 of [10]).

We now give the proof of Theorem A. From Theorem IΠ.3c it is seen that the
zeroes of F(w,β) are given by the zeroes of A0(β) + A^)w + w2. From [10] there
are two possibilities:

1) There is only one zero given by w(β\ where F(w(β), β) = 0, w(0) = 0 and w(β)
is analytic.

2) There are two zeroes given by w^β), w2(β) with w1(0) = w2(0) = 05 where
F(wi(β%β) = F(w2(β),β) = 0 and both w^β) and w2(β) are analytic functions of β
or β1'2.

As F(w = 2-(β4βr*)e~ip\β) = detΓ(p1Jl and using Lemma II.3 the zero or
zeroes of det Γ{puβ) corresponding to / ? 1 = i m > 0 , are given by m(β) =
- 4 In β + r(β) = - 4 In β + In 8r4 + In (2 - w(β% where w(β) satisfies 1) or 2) above.
In the case of two zeroes we are not asserting that both are given by px pure
imaginary and positive. However, there must be at least one zero as the mass
spectrum is not empty since limmαα/ — 4Inβ = 1 by Lemma V.I.

We remark that for an abelian group Grί = 0 and hence Gri = Γri = Hri = 0.
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The implicit equations for the masses are Hrr(w, β) = Hu(w, β) — 0. There are unique
analytic w±(β) such that Hrr(w+(β),β) = fl^w_(/}),/?) = 0 by the ordinary analytic
implicit function theorem. However we don't know if mass splitting occurs, i.e. if w ±(β)
are distinct.

IV. Mass Splitting and the Proof of Theorem B

Here we obtain more detailed information on mass splitting and β analyticity of the
mass (rather than just β112 analyticity) by an analysis of the terms quadratic in w, β of
the implicit mass equation F(w, β) = det H{w, β) = 0. We express various constants
occurring in F(w, β) in terms of nD and nD in

Lemma IV.l.

c) gri = i J ft + Z)3 dμ = i(nD + 3nD),
d) gh = -

We have

Theorem IV.l

F(w,β) = detH(w9β) = (w- a+β)(w - α_jS) - T(w,β\

where

α± = (2 ± \)nD + (8 + ϊ)nD,α+ - α_ = 2fe + n j

τ(w,β)=

is jointly analytic in w, jβ.

Proof. As det ff(w, ]8) = w2 - 4(5^ri + g^wβ + [48ffri(2flfΓ1 + ftl) - UAa2ψ -
T(w,β) the result follows using Lemma IV.l.

Theorem IV.2. IfnD + nD>0 there exist two distinct analytic functions w±(β) = a±β
+ 0(β2) such that det H(w±(β% β) = 0.

Proof The roots of the quadratic form in Thm. IV. 1 are distinct by assumption. For
simplicity we write (see p. 97 of [12])

det Jϊ(w, j8) = w2 + alxβw + a20β
2 - T(w,β) = 0. (*)
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Then a\γ— 4 α 2 0 ^ 0 and 2α+ + axl ={a\γ — 4α2o)1 / 2 = α + ~ α - ί®- Make the
transformation w+ = β(ot+ +t>). Then, with w = w+, (*) becomes

= Σ %

and cancelling β 2 gives

(α 2

+ +2α + ί ; + ί;2) + ^ 1 1 ( α + + t ; ) + fl2o= £ ajkβ
j+k~2((x+

or

(2 + + ) ( — α_ + u)

with L(β, ϋ) jointly analytic. Let K(j8, ϋ) = v(oc+ - oc_ + v) - βL(β, v). Then R(0,0) = 0,
dR/dv(Q, 0) = α + — α_ ^ 0, so by the analytic implicit function theorem there exists
a unique analytic υ(β\ v(0) = 0, such that det H(w+(v(β))9 β) = 0. Similarly we make the
transformation vv_ = β(α_ + u) and get a unique analytic u(β).

We now give the proof of Theorem B. Note that

and Hrί(w,β) = Σ dyfiW, so that from Lemma IV. 1 and Theorem IV.2

Hrr(w+(β\β) = 0 ( A HH(w+(β),β) = (α+ - α_ 2

Hu(w-(βlβ) = 0 ( A Hrr(w4βlβ) = (α- - α +

ίiiίw+ίiS), j8) ̂  0andiίrr(w_(jβ), j8) ̂  Ofor small β > 0, we have
two distinct masses m±(β) given by β4em±(β)βr4 = 2- w±{β) or

For SU(3), as 3 x 3 = 6 + 3*, nD = 1.
The determination of the {cn} follows along the lines of [2, 3]

V. Decay Properties of G(x9β) and Γ(x,β)

In this section we establish jS-analyticity and decay properties of G(x, β) and Γ(x, β),
which follow from the corresponding properties of the finite lattice GΛ(0;x,β) and
i"Λ(0; x, β). We also determine the coefficients of the β = 0 expansion of G(x, β) up
to and including order β5. We use the complex coupling parameters and notation
of [1]. In what follows we repeatedly use the Peter-Weyl group orthogonality
relations (P-W) for representations for complex character, i.e.

U = 0,

ί\xλg)\2dμ = I\χM2dμ = i liMxtiW = o,

where D^g) denote the matrix elements of the unitary representative of the group
element g. Note also that for a complex character χ(g) = χ(g~% so that χr(gp) =
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"*) but Xi(gp) = — Xi(gp *) and gp * is the plaquette oriented border product
in the opposite sense to that of gp. We give only the proofs that don't require
major modifications of analogous ones in [1,2].

Lemma V.I

a) Gαy(x,β) is analytic in β and \Gaγ(x,β)\ ^ cx\cβ\^xΛ + ̂ \

b) For β>0 and small Gaa(xux = 0,β)>c3\c4β\4lxi[

c) mαα = lim In Gαα(x = (xl9 0), β) exists and lim —jf—- = 1.
x!->oo xx βi0 - 4 m p

Proof. Similar to [1] except that in b) the integral over the sides of an elementary
cube is performed as in the proof of Lemma V.2b.
Lemma V.2. Set Gw(x, 0) = (l/m\)(dm/dβm)G{x, β = 0). Then for

a) x = 0:

a° — i a1 — Γ v 3 An

b) x = (l,0):

"" 3 2 r 4 ~~ ~"

c) x = (l,0):

5 1 5 1
rr 4r4 ̂  " 8r4

Proof. The G ŷ results follow from the /? = 0 expansion of GΛay(O;x,β). Note
that <χα(^p)>yi =(1 —δai)β/2 + 0(β2) and that the denominator of < }Λ is
1 + 0(/?2). a) The G ŷ and G ŷ values follow from expanding the numerator of
{ V ifl \ V Γ/7 ^ \ A ίiΓlH ΠS1ΠP1 "P W^
\/Cαvί/po/ Aγ\ypo)/Λ α i l u UMiig JΓ vv .

b) As in [1] write < >Λ in terms of duplicate variables and expand the
numerator to get

for m = 4 and m = 5. For m = 4 the only plaquettes that contribute are the ones
forming the 4 sides of a cube containing P o and Px. We denote them by Pfl, 1 rg α ^ 4.
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All the cross terms vanish so that, counting the 4! permutations of the Pα, we have

4

G\(xy{χ^) = \χ(igpo)χy{gPx) Π xλgPa)dgA.
a=ί

We integrate over the group variables of the four bonds parallel to the 1-direction in

(J Pα, successively in the positive sense, to get, by P-W,
a

R (ήjfa))

Substituting in G*y(x,0) gives

By using χXg^1) = χr(gPx\ xig^) = - Xi{gPx) and P-W the result follows.
c) For m = 5 the only plaquettes that contribute are the four Pfl's and a fifth

plaquette, call it P 5 , which can be a Pa or Po or Px. Again no cross terms contribute.
If P 5 is a P o or Px we integrate as before to obtain the contribution (for 1 term in the
sum Σ )

Pί Ps

5ϊTβ^$χ?dμ ΐorc(y=rr>

Taking into account permutations there are 2-5! terms.
If the fifth plaquette is a P" then we integrate over the 4 bonds around the

sides of the cube not containing P" to get (for 1 term)

^ d

There are 2-5! such terms and summing these contributions with the contributions
above gives the result.

Lemma V.3. Γay{x,β) is analytic in β and \Γay(x,β)\ ^ c 2 k ' β | 5 | x l l + |xΊ, x ^ ( ± l , 0

or x = ( + 1,0), α Φ γ; for x = ( + 1,0) and a = y replace the 5 by 4.

Proof. The existence and β-analyticity of Γ(x,β) follows from that of ΓΛ(x;y,β)
which follows as in Lemma 4.9 of [1], remembering that here ΓΛ stands for the
operator with matrix elements ΓΛ(xγ(x;y,β). The proof of the bound on Γaγ(x,β)
follows that of Theorems 4.11 and 4.12 of [1] except that we append indices α, γ
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to G and Γ and products include 2 x 2 matrix multiplication. In more detail, for
x1 ^ p < yl9 Uγ^p <vx and 0 ^ m ^ 3,

ir-z:GΛay(u;v)\w =o =-z—z;ΓΛav(u;v)L =0 = 0,
3 w δ w

and

4!

4 4 Ί

Π ^rfep") + Π Xiβ'pύ
i=l b=l bJ

Γ f N-i Ί

L pepi r r q=-N Q peP\\ * J

Here CP>Λ denotes the collection of elementary cubes between the planes xx =p
and xί = p + 1 and p£, 1 ^ b ^ 4, are the plaquettes in the four faces of the cube
a parallel to the xx direction.

Integrating over the group variables parallel to the one-direction of {PI}
as in the proof of Lemma V.2b gives

4 1

b=ί of

Here P< (P>) is the plaquette in the face of the cube a (between the planes x1 = p
and x1 = p + 1) perpendicular to the 1-direction in the xx=p (xί=p+i) plane;
Qp^iQp0^) is the positively (negatively) oriented group element product around
the border of the plaquette P < (P >). Substituting in the above, remembering that
GΛ α y is defined with positively oriented plaquettes and that χigp}) = — xh
gives

d4 _ 4!

Thus

5 4 , v-

41 4!

or tl=p or

from which the bound follows as in Theorem 4.12 of [1].

VI. Concluding Remarks

In the context of Theorem A the question arises as to the β analyticity of the mass
or masses. In the case of the β-analytic 2 x 2 matrix eigenvalue problem Rellich's
theorem says that if the matrix is self-adjoint for β real then the eigenvalues are



442 M. O'Carroll and R. S. Schor

analytic in β (see [11]). Does an analogue of Rellich's theorem hold here? Is there
mass splitting in the abelian case? Also our results should generalize to dispersion
curves.

There is also the question of what happens in 3 + 1 dimensions, i.e. how is the
glueball mass spectrum affected by taking into account χ and χ? Last but not
least what happens for β large?
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Note added in proof. Theorem A can be strengthened to r(β) is analytic at β = 0. By remark 3 after
Theorem B it is easy to show that for p = 0 Grί(pί) = 0 so that det/Xpj) factors, i.e. det Γ(pί) =
^rr(Pi)^u(Pi)' The mass spectrum is contained in Γrr{pu β) = 0 and /^(px, β) = 0, Im pt > 0, which can be
solved by the methods of [2,3]. However, there are multi-component classical lattice spin systems where
detfXpi) does not factor, i.e. an anisotropic rotor in a uniform magnetic field and the mass spectrum is
contained in detf(Pi) = 0, Imp1 > 0 (see O'Carroll, M. J. Stat. Phys. Vol. 37, 439-449 (1984)).




