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Abstract. For a 2 + 1 strongly coupled (8 = 2/g> small) Wilson action lattice
gauge theory with complex character we analyze the mass spectrum of the
associated quantum field theory restricted to the subspace generated by the
plaquette function and its complex conjugate. It is shown that there is at least
one but not more than two isolated masses and each mass admits a
representation of the form m(8) = — 41n § + (B), where r(f) is a gauge group
representation dependent function analytic in /2 or f at § = 0. For the gauge
group SU(3) there is mass splitting and the two masses m, are given by

m,(f)=—4lnf+Inl6r*+12+ 1)+ <di(ﬁ)5 i c,:—rﬁ"),
n=2

where r =3 is the dimension of the representation and d, (f) is analytic at
B=0. ¢ can be determined from a finite number of the f =0 Taylor series
coefficients of finite lattice truncated plaquette—plaquette correlation function
at a finite number of points.

1. Introduction

In [1] the low lying energy-momentum spectrum of the quantum field theory

associated with the 2 + 1 strongly coupled lattice gauge theory with Wilson action

A’ is analyzed. Formally A'=f) x(g,), where y is the real character of an ir-
p

reducible representation of a compact gauge group. g, is the oriented product of
group elements around the border of the plaquette P. It is shown that for f>0
and small the energy-momentum spectrum in the gauge invariant subspace
generated by the time zero plaquette functions x(g, ), x = (x; = 0,x)eZ> consists
of an isolated dispersion curve w(p) = w(0), real analytic in pe(— =, ] which is
identified as a glueball. Furthermore the glueball dispersion curve and mass m = ©(0)
satisfy

lim—————=1, lim@=1

uniformly in pe(— n, 7]

b
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The above results follow from decay and f§ analyticity properties of the truncated
plaquette—plaquette correlation function (hereafter abbreviated cf) and the faster
X, (imaginary time) decay of its convolution inverse. In [2] it is shown that A’ is
a quasi-analytic perturbation of a non-degenerate level in the sense that m=
—41n B+ r(B), where r(f) is a group representation dependent function analytic
at f=0. c,, the nth =0 Taylor series coefficient of r(f), can be computed by a
finite algorithm.

Similar results for spin systems can be found in [3]. Numerical calculations
of glueball masses can be found in [4, 5].

Here we consider the mass spectrum for the case of a complex character (also
denoted by y = y, + ix;), with the formal Wilson action B} Rex(g,), restricted to

p
the subspace generated by x,(g,.) and x(g,_ ), x = (0,x). We state our main results
concerning the mass spectrum as Theorems A and B. In what follows there exists
a constant ¢’ >0 such that the results hold in the mass interval (0, — 5Inc’'f),
cp<l.

Theorem A. For f§ > 0 and small there is at least one but not more than two isolated
points in the mass spectrum and each mass admits a representation of the form
m(B) = — 41n B + r(B), where r(B) is an analytic function of B'* or B at f=0 and
dependent on the representation of the gauge group.

Remarks. 1. Here we are dealing with a quasi-analytic perturbation of an asymp-
totically degenerate level.

2. Similar to [1, 2] the theorem follows from decay and analyticity properties
of a 2 x 2 matrix-valued truncated plaquette—plaquette cf and the faster x;
(imaginary time) decay of its matrix-valued convolution inverse.

3. For an abelian group r(f) is analytic in f.

By a more detailed analysis we obtain information on § analyticity (rather
than just f'/? analyticity) and mass splitting. Define np, n;=0,1,2,... by

np(n;) = the number of times the representation (complex conjugate
representation) of the gauge group occurs in the decomposition
of the Kronecker product of the representation with itself
(see Lemma IV.1a and b).

We have

Theorem B. If n+ n;> 0, then there are two distinct masses, m ., given by

m, ()= —Inf*+ln16r* —1[Q2 + Dny+ B + Dnplf+ 3 ¢,
n=2

where Y. c¢if B" are analytic at = 0. In particular, for SU(3)
n=2

m,(f)=—Inp*+Inl16r*—32+1)B+0(8%, r=3.

cZ are group representation dependent constants that are determined from a finite
number of the f=0 Taylor series coefficients of finite lattice two-point cf’s at a
finite number of points.
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Remark. 1. The determination of ¢} is a finite problem. The Taylor series
coefficients of the two-point cf can be obtained from differentiating In Z’;, with
respect to parameters where Z', is an appropriate partition function for a finite
lattice A. By using the polymer expansion of [7] only a finite number (dependent
on n but not on A) of polymers are needed in In Z’,. In this way the troublesome
problem of cancellation of A dependent terms is avoided.

2. For an abelian group n, =n;=0. However, we can show that there are
masses m, (B) (not necessarily distinct) with

m,(B)= —4lnﬂ+ln16+< Y cfﬁnsdi(ﬂ)>
n=2
and d, (B) analytic. Thus if mass splitting occurs it is at least of order 2.

3. The mass splitting can be interpreted as “parity” splitting since a reflection
of one space component in space dimension two inverts the orientation of plaquettes
perpendicular to the imaginary time direction.

We describe the organization of the paper. In Sect. II we obtain a spectral
representation for the Fourier transform of the cf and give a criteria for a point
to belong to the mass spectrum. In Sect. III we establish an implicit equation for
the mass and prove Theorem A; in Sect. IV we prove Theorem B. Decay and f8
analyticity properties of the cf and its convolution inverse used in Sect. [I-IV are
established in Sect. V. Section VI is devoted to some concluding remarks.

As many of the proofs are adaptations of those of [1, 2] we will be rather
sketchy. |B| will be assumed to be small throughout and ¢, ¢/, c;,... will denote
strictly positive constants.

II. Spectral Considerations

We consider the 2 x 2 matrix-valued truncated plaquette—plaquette cf G(x, f) with
matrix elements
Guyl%, ) = Goy(y; 2, B) = lim G (132, B), x=y—2zx,y,26A = Z?,

A2

o,y =r,i. Here

GAay(y; z, B) = <Xa(gpy)Xy(gpz)>A - <Xa(gpy)>A<Xy(gpz) > A

where y =y, + iy; is a complex character of an r-dimensional irreducible unitary

representation of the compact gauge group. P, is the translation by x of the

plaquette P, located at x = 0 and perpendicular to the 1-direction (which is taken

as imaginary time). The {-) , are finite lattice averages in the Gibbs ensemble

with Boltzmann factor exp(8) Rey(g,)) and measure dg, the product of Haar
p

measures du of the gauge group, one for each bond of A. The oriented product
of g’s in the Boltzmann factor and in the definition of G 4,, is taken in accordance
with the right-hand rule which by definition is called positive. We point out that
g, ' corresponds to the product with the opposite orientation of g, and that
unlike the case of a real character where y(g, ') =x,(9,) 2 complex character
satisfies (g, ') = — xi(g,). Thus some convention is necessary in the definition of
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G 4 The existence, f analyticity and translation invariance of the A1Z? limit
is established in [6] (or see [7]) for small |f]. We denote points xeZ3 by
d

x=(xy,X), X=(x,,x3) and |x|= ) |x;|=I|x;|+[x]. Let ~ denote the

i=1
Fourier transform, ie. G(p, ) = Ze P*G(x, ), where px = Z DX, D =(p1,p) We

denote by I',,(x, B) = I,,(y;z B), x =y — z, the matrix elements of the convolution
inverse, ie. I, (x;y)= ayl(x y) or

zz;; rap(X; Z)pr(Z; y) = 5xy5ay

G, I' can be interpreted as matrix operators in the sequence Hilbert space
I, with elements f=Xf, (x)el, and norm |f|=(}|f, (x)»)"* We Ilet

|-l denote the [, operator norm.

The lattice quantum field theory Hilbert space, with inner product denoted by
(,), the energy-momentum and field operators are constructed as in [7, 8]. We
denote by

E(y) and F()=[[FiG) A= ds)e(—naT%
i=2

the spectral resolution of the self-adjoint evolution operator (renormalized transfer
“matrix”) and unitary space translation operators, respectively. As in [1] we have
the Feynman—Kac formula

Gay(xa ﬂ) - j. j Alxlleil‘x d:uay(/lla A’),

[0,1) (= m,m]?

where
Bay(A1s A) = (19 p0)€2 E(A1)F(A)1,(9,)2) — ({9 p0) 62, 2)(£2, 7(9,,)€2).-

and £,(9,,)62(R2) is the Hilbert space vector associated with x(g,,) (1). [0,1) can
be replaced by [0,e**"F) using the falloff of G,,(x =(x,,0)) given by Lemma 5.2.
Adapting the proof of the results of [8] we have

Lemma 11.1. For each B> 0 and pe(— =, 7]* there exist signed finite measures
dp,,(A1,p), positive for o=y, such that
1-42
G,,(p)= !
w?) [0,65 won |1 —24; cospy + At

] dpuy(/l‘la p)a

where
1 .
Wgq(p) = lim — x—ln(Z Gyl = (x4, x))ellrx)
X120 1 X

= w,0)= lim — iln G,o(x =(x4,0)) =m,, > — 4Incp,

X1
,(p) = min{w,,, w,,} for a #7y. Furthermore for a product of intervals A; x A,

j dpoza()'b p)
Ay
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is continuous in pe(— n, n]? and
“au(Al X A) = _‘AI[J dpaa(j'l’ p)] dp'

Remarks. 1. The importance of the above formula is that it relates the energy-
momentum spectrum, i.e. the support of du,, to the support of the measures
dpaa(lb p)'

2. Formally dp,,(4,,p) =, [} . O(A —p)dpt, (A, 4).

—Mm,T

From the above lemma we see that to locate the mass spectrum it is enough
to determine the support of the measures dp,,(4,, p=0). From now on we suppress
the p dependence and take p=0. We now express Gw(p) in a more convenient
“resolvent” form by introducing the spectral parameter a and measures dv,,(a)
defined by

)‘ 2
dva) == ((‘)’)

a(A)=(1—A)*/2), a(e ™) =coshm,;—1,

dp,,(Ma)),

so that G(p) = F(z = cos p; — 1), where we define

° dv,(a)
Fu@)=puy({A=00)+ |
cosh my, = 1 4a—2Z
F,,(2) is analytic in zeC — [coshm,, — 1, c0) and we have set m,, = w,,(0).
We recall the well-known inversion formula in

Lemma 11.2. If ¢, d(c <d) are points of continuity of dv,,, then

vaa(d) awz(c) - hm j [F aa(v + 18) aa(v - 18)] dv.
le

Remark. The representation of F(z) and the inversion formula can be used in the
spectral analysis of [1, 2, 8, 9] making the representation theorem for Herglotz
functions unnecessary. In the non-matrix case Im F(z)"! <0 for Imz >0 since
Im F(z) > 0 for Im z > 0 from the representation for F(z). Furthermore for Imz =0,
Re z sufficiently negative, Im F(z) = 0 so that Im F(z) ! = 0 and using the Cauchy—
Riemann equations we conclude that F~! is monotone. Thus in the F ~! analyticity
region F~! has at most one zero. F~! analyticity is used in the inversion formula
by setting

1 1
Fo+ie)™' Flv—ie) ©

Fv+ie)— F(v—ig)=

Let H(z) be the matrix inverse of F(z),ie. HF =1, and F,,(z) = H,,(z)/det H(z)
a#7y. Note that H(z=cosp; —1)=I'(p,,p=0) and that by Lemma 5.3 I'(p,,
p=0) and detI'(p,,p=0) are analytic in 0 <(Imp,)< —5Inc'f so that by
F,,=H, /det H and Lemma 11.2 we conclude that the mass spectrum is discrete
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in (0, — S1nc'p). We give criteria for a point p; =im to, or not to, belong to the
mass spectrum o(M).

Lemma 11.3. Let 0<m < — 5Inc'p.
a) If det I'(p, =im) # 0, then m¢a(M),
b) If detI'(p, =im) =0, and I, (p, =im)#0, a =i or r then mea(M).

Remarks. 1. It can’t happen that det'(p,)=0 and I (p,)#0, a=r or i, for
0<Imp, < —S5Incf, |Rep,/<m, but Rep,#0 since G, = fw/det I,
a F# Y, is analytic at these points.

2. In the case of an n-fold asymptotically degenerate level the spectral analysis
is similar with F,,= H_' =L, /det H, where L, is the cofactor matrix of H.

In the next section we introduce an implicit equation for the zeroes of det I'(p;)
and prove Theorem A.

III. Implicit Mass Equation and Proof of Theorem A

We obtain a =0 Taylor expansion of I'(p,, )= I(p;,p=0,p) with the terms
up to and including B° made explicit by first obtaining an expansion for G(p,, f) =
G(p,,p =0, f). From the expansion for I'(p,, f) we introduce an implicit equation
for the mass which is used to prove Theorem A. We define

5 ﬁs oG
Gy(x, )= G(x,f)— },

w=oml O™

I, G, and I, are defined similarly. We have

(x:ﬁ =0);

Theorem IIL1. For [Imp,| < —41Incf, G(p,,p) is jointly analytic and has the
p =0 Taylor expansion

Cups D=3+ B+ - 9.5+ (3’;
Grlps P =a:B+ - asP® + ap>(e™ " + &) + Gyulpy, B).
Furthermore
det G(py, B) = G,.(p1, HGilp1, H) — G.p1, B

4

T+ A+ AP+ (W’L vﬂ5>(e‘”“ + e?1) 4 0(5°).

+ aaﬁ5>(e‘“’1 + )+ Goolpy, B,

Here

1
Y =%(ai + O‘r) + W(grl + gil)’

g =I22du, g, =[x} xdu a =[xt du
g

1
t=y =gy e, a=al/drt;
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gdi’ a; are group representation constants and
A1=%(gi1+gr1); Ak=Ak(grk’---’grl;gik""’gil;ak—l"'al)a 2§k§5

Remarks. 1. To prove Theorem A only a fourth order expansion is needed, but
the fifth order expansion is used in the proof of Theorem B.
2. The unexplicited constants can be made explicit as in [2] but will not be

needed here.

Proof. Follows from Lemmas V.1 and V.2.
Forn=0,1,2,... define

ray(na [))) =Zray(x1 = n,x,ﬁ)

and

5 m Jm

rsuy(na B) = Fay(nz B) _m=0wwra}'(n’ﬂ = O)
Theorem IIL2. For Imp,| < —5IncB, |, (m,B)| < clBI°, [T g, (m, B)| <

c|cdB)’" and I (1 B) is analytic, I'(p,,p) is jointly analytic and has the p=0
Taylor expansion

a) rrr(plbﬁ)=2_4gr1ﬁ+02ﬂ2 + csﬁs +<_8ﬁ7—4<ar_8g;:t>ﬁ5>:

(e + e+ T, (n=0,p)+ Y. Iy,n,p)le” 1" + €17,
n=1

4 .
.(e—im + eip1) + Fsii(n =0, .B) + Z Fsii(ns ﬁ)(e'i’“" + eip"'),
n=1
I 2 5 a1\ ps(,—i i
C) rri(plaﬁ)‘: "4a1,3+d2ﬁ + dsﬂ —4<o(—§r_4>ﬁ (e P14 oiP1)
+ Loin=0.8)+ 3, Lol B + 7,
n=1
d) detf(pl,ﬁ)=4[1 LB+ LB+ [
B4 5 —ipy ip1 6
| —ga A4y )BT+ e |+ 0(8%),
where I, =2(g;, + 9,); It =LGr>- 19013 Giss- > 9115 Gr—15---501), 2S5k <5, b, ¢

d; are group representation dependent constants.

Proof. The above is the Taylor expansion for I'(p,, §) and the coefficients of the
order ™ terms, 0<m<5, are determined from I'(p,,P)G(py,f)=1 using
Thm. IIL.1. The analyticity properties and bounds follow from Lemma V.3.
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Introduce the auxiliary complex variable w and 2 x 2 matrix function H(w, f§)
such that H,,(w=2— (B*/8r*)e ", B)=I,,(p1, f) where

H,,(W, ﬂ) =w-—- 129r1ﬂ + 4grlwﬁ + Crzﬁz + ... cr5ﬁs
A

64r82 —w) 16r82—w)

H(w, ) =w —4Q29,, + 9:,)B + 49, wp + B,,f* + ... B;,p°

B gP
64r82 —w) 16r%(2 —w)

+ Krr(wﬂ ﬁ)’

+ K;i(w, B),

a, P
16r8 (2 —w)

Hri(w> ﬂ) - lzalﬂ + 4611Wﬁ + Azﬁz +. Asﬁs Kri(w, ﬁ)>

and we have set

Kw(w, b) =Fw(n =0,p)+ 21 Fsuv(n, ,B)I:<8L%:—W)>n + <%>"]

The implicit equation we are trying to solve is now F(w, ) =det H(w, ) =
Concerning F(w, f) we have

Theorem IIL.3. For |w|, |f| small

a) F(w, p) is jointly analytic in w, B,

b) F(0,0)=0, 0F/ow(0,0) =0, 6?F/ow*(0,0) = 2,

c) F(w,B)=(AyB) + A,(B)w + w?) M(w, B), where AyP), A,(p) are analytic,
Ao(0) = 4,(0) = 0; M(w, ) is jointly analytic and M(w, ) + 0.

Proof. a) Using the bounds of Theorem II1.2 and the ratio test the infinite series
converge absolutely. b) Similar to a). c) follows from a), b) and the Weierstrass
preparation theorem (see Thm. 3.10 of [10]).

We now give the proof of Theorem A. From Theorem III.3c it is seen that the
zeroes of F(w, B) are given by the zeroes of Ay(B) + A{(B)w + w?. From [10] there
are two possibilities:

1) There is only one zero given by w(f), where F(w(B), ) = 0, w(0) = 0 and w(f)
is analytic.

2) There are two zeroes given by w(f), w,(f) with w;(0)=w,(0) =0, where
F(w,(p), B) = F(w,(B), ) =0 and both w,(f) and w,(f) are analytic functions of f
or B2
As F(w=2—(p*/8r*)e P!, p)=detl (p,,f), and using Lemma IL3 the zero or
zeroes of det I(p,,f) corresponding to p, =im >0, are given by m(f)=
—4InB+r(f)= —41np +In8* + In(2 — w(B), where w(p) satisfies 1) or 2) above.
In the case of two zeroes we are not asserting that both are given by p,; pure
imaginary and positive. However, there must be at least one zero as the mass
spectrum is not empty since llm m,/—4Inf=1by Lemma V.1.

We remark that for an abehan group G,;=0 and hence G,,=I",,=H,,=0.
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The implicit equations for the masses are H,(w, §) = H;(w, f) = 0. There are unique
analytic w(B) such that H,(w (), B) = H;(w_(B), ) = 0 by the ordinary analytic
implicit function theorem. However we don’tknow if mass splitting occurs, i.e.ifw , (f)
are distinct. B

IV. Mass Splitting and the Proof of Theorem B

Here we obtain more detailed information on mass splitting and f analyticity of the
mass (rather than just $/2 analyticity) by an analysis of the terms quadratic in w, § of
the implicit mass equation F(w, ) = det H(w, f) = 0. We express various constants
occurring in F(w, f) in terms of ny and n; in

Lemma IV.1.
a) np=[x*rdu=[1ydp
b) ny=[y du=[7dp,
) gr, =3 (0 + 7 du =155+ 3np),
d) gi, = =[x — 0+ D du= —(ny — np),
€) g, — i, = 3(np + np),s

(1) @y = — g [0 — Do+ 0 die= ~ gl + mp = np — ) =0.

We have

Theorem 1V.1
F(w, f) = det H(w, B) = (w — o, f)(w — o ) — T(w, B),
where
oy =2+ Dns+ @ L Dnp, o, —o_ =2ns+ np)
and

T(w,p) = z aijﬂiwj

3Z1+j

is jointly analytic in w, .

Proof. As det Hw, f) = w? — 4(5g,, + g;,)wp + [484,,(2g,, + g;,) — 144a?]p* —
T(w, B) the result follows using Lemma IV.1.

Theorem IV.2. If nj, + n; > Othere exist two distinct analytic functionsw_(f) = o,
+ 0(?) such that det Hw (B), ) = 0.

Proof. The roots of the quadratic form in Thm. IV.1 are distinct by assumption. For
simplicity we write (see p. 97 of [12])

det H(w, B) = w? + ayfw + a,of> — T(w, B) =0. (%)
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Then a?, —4a,,#0 and 2o, +a;; =(a?, —4da,))'*=a, —a_ #0. Make the
transformation w, = B(ec, + v). Then, with w=w_, (*) becomes
BAoy +0) + ay B +0) +arof’= ) apffios +0),

3<j+k

and cancelling 2 gives

@4 + 20,0+ 0" +ay (e +o)+ay= ), apf Aoy +0)f

3Sj+k

or
U200, +ay; +0) =v(e, — o +0) =LA ),

with L(B, v) jointly analytic. Let R(8, v) = v(e, — o + v) — BL(f, v). Then R(0,0) =0,
O0R/0v(0,0) = o, — a_ # 0, so by the analytic implicit function theorem there exists
aunique analytic v(f), v(0) = 0,such thatdet H(w . (v(8)), f) = 0. Similarly we make the
transformation w_ = f(e_ + u) and get a unique analytic u(f).

We now give the proof of Theorem B. Note that

Hrr(W,ﬂ)=W—O(+ﬁ+ Z bijﬁiwja Hii(W,ﬂ)=W—Ol_ﬁ+ z cijﬂiwja

2<i4j 2<i+j

and H,(w,f)= ). d;;#'w’, so that from Lemma IV.1 and Theorem IV.2

Hrr(;h(ﬁ), B)=0(8%, Hyw.(B),B)= (s —a_)B +0(8?),
Hyw_(B),B)=0(8), H,(w_(B),B)=(x— — )8 +0(B>).

Thusby Lemmall.3,as H,(w . (B), f) # 0and H, (w _(B), B) # Oforsmall § > 0,wehave
two distinct masses m_ (f) given by p*e™#/8r* =2 —w (p) or

m,(® =1n[8ﬁi4(2— wi(ﬁ))].

For SU(3), as 3 x3=6+3* n;=1.
The determination of the {c,} follows along the lines of [2, 3]

V. Decay Properties of G(x, ) and I"(x, )

In this section we establish S-analyticity and decay properties of G(x, f) and I'(x, B),
which follow from the corresponding properties of the finite lattice G ,(0; x, 8) and
I ,(0; x, B). We also determine the coefficients of the § = 0 expansion of G(x, ) up
to and including order #3. We use the complex coupling parameters and notation
of [1]. In what follows we repeatedly use the Peter—Weyl group orthogonality
relations (P—-W) for representations for complex character, i.c.

_ 1
fDij(g)Dkl(g) du= ‘,,“5ik5jl, jDij(g)Dkl(g) dp =0,

flx@Pdu=flxd)Pdu=%, [x(9)xlg)du=0,

where D,(g) denote the matrix elements of the unitary representative of the group
element g. Note also that for a complex character x(g) = 7(g '), so that y(g,) =
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%9, ) but xi(g,) = —xlg, ') and g, ! is the plaquette oriented border product

in the opposite sense to that of g,. We give only the proofs that don’t require
major modifications of analogous ones in [1,2].

Lemma V.1
a) G,(x, B) is analytic in B and |G, (x, B)| < cqlcp|*+ ™,
b) For >0 and small G (x;,x =0, ) > cjlc, BI*™,

1
C) my,= xlll—l»noo —x—ln G (x =(x1,0), B) exists and I;g)l “41np

Proof. Similar to [1] except that in b) the integral over the sides of an elementary
cube is performed as in the proof of Lemma V.2b.
Lemma V.2. Set G™(x,0) = (1/m!)(d™/dB™)G(x, B = 0). Then for

a) x=0:
Gh=1%  G,=[xdu
Gi=%  Gi=[rixdw
G?i =0, Gr}i = insz du,
b) x=(1,0):
1
Gt=—7=G} =0,
rr 32r 1244 Grl
c) x=(1,0):

G, = 445xrdu, G = 84(f[xr+x,xr]dﬂ G} = 44Ixrxldu

Proof. The Gy, results follow from the f=0 expansion of G,,,(0;x, ). Note
that (x9,)> 4 =1 —06,)B/2+0(f*) and that the denominator of { >, is
1+0(%). a) The G?, and G, values follow from expanding the numerator of
<Xa(gpo) Xy(gpo)>A and USing P-W.
b) As in [1] write { ), in terms of duplicate variables and expand the
numerator to get
Ghuy(,0=3 Y [ (tldp0) = %d50) 0:(95.) — 1:95.))

Pi...Pm
: l__[1 (g5 + %A95)) dg 4 dgs

for m=4 and m=S5. For m =4 the only plaquettes that contribute are the ones
forming the 4 sides of a cube containing P, and P,.. We denote them by P%, 1 < a £ 4.
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All the cross terms vanish so that, counting the 4! permutations of the P%, we have
4
Giav(x’ 0) = an(gpo)Xy(gpx) l:[l Xr(gpa) dgA
We integrate over the group variables of the four bonds parallel to the 1-direction in
U P?, successively in the positive sense, to get, by P-W,
1 R -1 1 -1 -1
37 Re(U9p0)100,.)) = g 2 Lirl9p0)1495.) — %9 po)1i0p.) )
Substituting in Gj,(x, 0) gives
Aazy(x O) 8 4 _[Xa(gpo)Xy(gpx) [Xr(gpo)Xr(gp ) Xl(gpo)Xi(gp—xl)] dgA

By using x,(9,.1) = 1:49,.), x49,.") = — 2:(9,,) and P—-W the result follows.

¢) For m =5 the only plaquettes that contribute are the four P*s and a fifth

plaquette, call it P>, which can be a P? or P, or P,.. Again no cross terms contribute.
If P*isa P, or P, we integrate as before to obtain the contribution (for 1 term in the

sum Y )
Pi1...Ps

1 3
e 4jx,du for ay =rr,
11 ..
5—,ij?xrdu for oy = i,
1
G 4jxrx,d,u for ay =ri.

Taking into account permutations there are 2-5! terms.
If the fifth plaquette is a P° then we integrate over the 4 bonds around the
sides of the cube not containing P* to get (for 1 term)
1 y
16 Ax,du, oy =rr or ii,

1
51167

There are 2-5! such terms and summing these contributions with the contributions
above gives the result.

4jXerdH’ O(')/’—rl

Lemma V.3. I",(x,p) is analytic in B and |I,,(x, f)| < c,|¢/BPPX1HH, x #(£1,0
or x=(+1,0), a #v; for x=(=+1,0) and o=y replace the 5 by 4.

Proof. The existence and f-analyticity of I'(x, ) follows from that of I",(x;y, f)
which follows as in Lemma 4.9 of [1], remembering that here I" , stands for the
operator with matrix elements I" ,,,(x; y, f). The proof of the bound on I',.(x, )
follows that of Theorems 4.11 and 4.12 of [1] except that we append indices «, y
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to G and I" and products include 2 x 2 matrix multiplication. In more detail, for
X Sp<ypu=p<vyand 0=mg<3,

0 o
WGAay(u;v)lwp=0 _6 m rAay(u U)|wp—o _0

p

and

o* 41
—G 30) | = -
6wf; Aa?(u v)l i 0~ 2Z2 IwP—O aeC

H (Xl9.) — Xal.))
4
“009p,) — %095p,))" [;ﬂ Xgpe) + bD1 x(g;,;)]

'expl:z Z (Xr(gp) +Xr(gp))+ Z Wq Z (Xr(gp)-l_Xr(gp))]dgAdgA

pepL q=— peP ;
#p

Here C, 4 denotes the collection of elementary cubes between the planes x; = p
and x; =p+1 and p§, 1 <b <4, are the plaquettes in the four faces of the cube
a parallel to the x; direction.

Integrating over the group variables parallel to the one-direction of {Pj}
as in the proof of Lemma V.2b gives

4 1
] bD1 149790 = ¢ 5106, 1952 — 1ildp2. )29, ].

Here P% (P%) is the plaquette in the face of the cube a (between the planes x; =p
and x; = p+ 1) perpendicular to the 1-direction in the x; =p (x; =p + 1) plane;
gpe (e ) is the positively (negatively) oriented group element product around
the border of the plaquette P% (P ). Substituting in the above, remembering that
G gy is defined with positively oriented plaquettes and that y(gps ) = — xdgpe),
gives

o* 4!

ow 4GAay(u U)!WP—O 8 Q4 Z GAap(u t)lwp—OGApy(t +e13 v)lwp—o

Thus

o* *G
4 Aay(x y)|wp—-0 - Z FA(X;u)lwp=0 4(u’ v)lwp=0rA(U;y)|wp=O
ow ow, -

u,veA

41
87‘4 Z 5xt t+ey, yé ay W5x+e1,y5x1,116“?

t1=p

from which the bound follows as in Theorem 4.12 of [1].

V1. Concluding Remarks

In the context of Theorem A the question arises as to the § analyticity of the mass
or masses. In the case of the f-analytic 2 x 2 matrix eigenvalue problem Rellich’s
theorem says that if the matrix is self-adjoint for f real then the eigenvalues are
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analytic in f (see [11]). Does an analogue of Rellich’s theorem hold here? Is there
mass splitting in the abelian case? Also our results should generalize to dispersion
curves.

There is also the question of what happens in 3 + 1 dimensions, i.c. how is the
glueball mass spectrum affected by taking into account y and %? Last but not
least what happens for f large?
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Note added in proof Theorem A can be strengthened to r(B) is analytic at f=0. By remark 3 after
Theorem B it is easy to show that for p=0 G,,(p )=0 so that det I'(p,) factors, ie. det I'(p,)=
I,(p)T(p,). The mass spectrum is contained in I’,(p;, §) = 0 and I’ (p;, f) = 0, Im p, > 0, which can be
solved by the methods of [2, 3]. However, there are multi-component classical lattice spin systems where
det"(p,) does not factor, i.e. an anisotropic rotor in a uniform magnetic field and the mass spectrum is
contained in detI"(p;) =0, Imp, >0 (see O’Carroll, M. J. Stat. Phys. Vol. 37, 439-449 (1984)).





