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Abstract. A formulation of massless QED is studied with a non-singular
Lagrangian and conformal invariant equations of motion. It makes use of non-
decomposable representations of the conformal group G and involves two
dimensionless scalar fields (in addition to the conventional charged field and
electromagnetic potential) but gauge invariant Green functions are shown to
coincide with those of standard (massless) QED. Assuming that the (non-
elementary) representation of G for the 5-potential which leaves the equations
of motion invariant and leads to the free photon propagator of Johnson-Baker-
Adler (JBA) conformal QED remains unaltered by renormalization, we prove
that consistency requirements for conformal invariant 2-, 3-, and 4-point Green
functions satisfying (renormalized) equations of motion and standard Ward
identities lead to either a trivial solution (with eψ = 0) or to a subcanonical
dimension d=% for the charged field.

1. Introduction

The search for a conformal invariant quantum field theory (QFT) is one way to
look for a (critical) renormalization group fixed point (see, e.g., [S2] where the
essential equivalence between the two problems has been spelled out). It is,
therefore, intimately related to the existence problem for a local relativistic QFT
(see [A3, F5, MS]).'

The study of conformal quantum electrodynamics (QED) [Jl, Al,2, El, M4,
F6, Bl] (see also Chap. VII to [Tl]) differs in at least two points from a parallel
investigation of a nongauge , Yukawa-type QFT (see [M2,3, D3,4, F4, Tl] and
references therein). First, current conservation and the Maxwell equations imply
that the dimension of one of the basic fields, the 4-potential Aμ(x), is canonical
(while the dimension of the charged field Ψ(x) is gauge dependent). Secondly,
although conformal invariance of the classical (vacuum) Maxwell equations has
been known since the time when application of group theory to physics was a
novelty (see [Cl, B2]), the problem of finding a conformal invariant gauge fixing
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term has been treated only recently (starting with [M7, B3]. The non-invariance of
conventional (local) gauges poses problems in exploiting conformal symmetry for
gauge dependent Green functions like the photon propagator.

It was gradually realized that the electromagnetic potential should transform
under a non-elementary representation of the conformal group G = SU(2,2)
(extended by space reflections) or its Euclidean counterpart Spin (5,1) (otherwise
the invariant photon propagator comes out purely longitudinal). The most
attractive approach, in our view, uses non-decomposable representations of G and
leads to a 5-potential (see the evolution of these ideas in1 [S3, B4, Zl, F7]).
Alternatively, direct sums of irreducible subrepresentations and factor represen-
tations of exceptional elementary representations for Aμ have also been tried
([F3,P2]).

The present paper studies possible conformal invariant solutions of the model
of massless QED, put forward in [FT]. We prove that if renormalization does not
change the transformation law for the 5-potential (which leaves the classical
equations of motion invariant and leads to a free photon propagator as in the JBA
approach), then the only conformal solution of the model corresponds to the

vanishing of a product of the type eCψZ(d) ~—^, where e is the electric charge,

Cψ is a normalization constant of the (renormalized) electron propagator, and Z(d)
is the finite part of the electron field renormalization constant Z2, d being the scale
dimension of the (interacting) electron field. From the analysis of the (re-
normalized) Sch winger-Dyson form of the Dirac equation and the small distance
behaviour of the 3-point Sch winger function (Aμ(xί)Ψ(x2)Ψ(x3)yE

 we deduce (in
Sect. 4) that this consistency condition amounts to

It will be made clear in Sect. 3 that if we do not allow a logarithmic behaviour for
the Euclidean 2-point function of φ, then its conformal invariant Wightman
function vanishes for d— f =0,1,.... Thus Eq. (1.1) means that either e = 0 (a result
asserted in [Kl] for the model of [F3, P2]) or ψ = 0, or else the (gauge dependent!)
scale dimension d takes the subcanonical value d = \. Thus finite conformal
electrodynamics with a free (JBA) photon propagator is either trivial or only exists
for a particular class of gauges that imply a = \ for e φ 0. Strictly speaking, we only
verify that the Schwinger-Dyson equations and Ward identities involving 2-, 3-,
and some 4-point functions are consistent with the conformal postulate provided
that Eq. (1.1) is satisfied. The existence proof for a non-trivial model for d = \ is a
challenging open problem. In any case, it is already clear that a more careful
argument is needed to justify recent claims [Kl, M6] that finite charge
renormalization in QED is impossible. We also point out that conformal
invariance does not necessarily lead to free photon propagators. The possibility of
using more complicated operator transformation laws (including non-
decomposable representations of the subgroup of dilations [Dl, Fl] that lead, in

1 The last three papers contain essentially equivalent sets of equations for a 5-potential
interacting with a conserved (external) current. However, it is only in [F7] that a non-singular
conformal action is proposed which also includes charged (spinor) fields
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particular, to a logarithmic term in the transverse part of the photon propagator)
has not been fully explored.

We start in Sect. 2 with a new concise derivation of the equations of motion
(and the Lagrangian) of the model within the classical framework. We give a
formal argument in Sect. 2C (based on Feynman path integration) that in spite of
the presence of non-conventional terms in the equations involving two dimension-
less scalar fields the gauge invariant Green functions coincide (at least within the
framework of perturbation theory) with those of standard massless QED. Section
3 is devoted to the "conformal quantization" of the model (in which some of the
canonical commutation relations are traded for the assumption that renormalized
Green functions are conformal invariant). Ward identities are studied in detail. It is
demonstrated that they imply a deformation of the charged field transformation
law (with deformation parameter e). Section 4 is devoted to the renormalization
program. The discussion is based on combined use of conformal in variance and
Wilson (operator product) expansions (together with a systematic application of
Euclidean symmetric integration) see [S6, PI, D5].

Notational Conventions

Minkowski space metric: xp = xμημvp
v = xp — x°p°; [yμ, y^]+=2ημv (the physical

time variable is ί = x°, the energy is E= — p0).
Euclidean (Schwinger) functions and their Fourier transforms. Scalar field of

dimension δ:

4 V pίpx

Spinor field ψ of dimension d:

= - i ί ( p - d d*P> ( W = CψSd(x))Λ = y»pμ , (1.3)

_ d4p 2_ 2 2 _ - 0
d^p — — —£ , x — x + %4 , x4 = — ix ,

\LTl)

y* = iyo , (CΨ = Cψ(d\ Cv(|) = 1) . (1.4)

2. Conformal Electrodynamics Involving a Non-Decomposable 5-Potential

A) Nonsingular Conformal Lagrangian for the Electromagnetic Potential from a
Manifestly Covariant Connection Form

The most natural way to introduce a non-trivial conformal 5-potential is to use
Dirac's manifestly covariant formalism [D2, Ml].
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Compactified Minkowski space M is realized as the projective quadric:

R* = ]R\{0},

ξ2 = ξ°ηabξ
b = -^ + ξ2 + £f-£i =

Identifying the points at infinity with the projective 3-cone

we imbed (real) Minkowski space M into M by setting

(M3)x"=-e, μ = 0,l,2,3, for κ( = ξ5

K

thus M

The 5-potential is defined as a homogeneous (in ξ) real valued 1-form on the
quadric Q:

ξa for ξξ* = 0 = ξξ*.

In the local coordinates (x, K) on Q\Q^ we can write

= Aμ(x)dx» + A - (x) — , (2.1)
tc

where sfμ(x) = κs/μ(^ + (^p(ξ)-^5(ξ))ζμ and ^l_(x) = ίβ^β(ί) are /c-
independent Poincare covariant vector and scalar fields with the following
transformation properties under dilations x^ρx, ρ>0 and (infinitesimal) special
conformal transformations

x^->/x'l = ω(xμ + xV)(«x'l(l-2c x) + xV for c"->0),
2x2, (2.2)

, Av(x)-+ρAv(ρx); (2.3)

where N = v, — and

[4_(x), CJ = (2xMx3-x23^_(x), (2.4a)

- xv^μ(x) - ημvA _ (x)) . (2.4b)

The crucial property is the appearance of A_ in the right-hand side of (2.4b), which
is responsible for the non-vanishing of [Av(x),Cμ]\x=Q. As a consequence the
Maxwell tensor Fμv = dμAv — dvAμ is also transformed under a non-elementary
non-decomposable representation of the (local) conformal group, together with
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3V^4_; we have

ldμA.(x)9 CJ = [2xλ(l + xd)-x2dλ-]dμA.(x)

+ 2(ηλμxd-xμdλ)A_(x), (2.5)

ίFμv(x), C J = [2xΛ(2 + xδ) - x2dλ~]Fμv(x)

- x^F λv] + 7/^ ,̂4 _ ) , (2.6)

where ηλ[μFκv] = ηλμFκv-ηλvFκμ, etc.
Taking the divergence dv of both sides of (2.6) and the d'Alembertian of (2.5), we

deduce that only the combination

j» = dvF
μv-^ΠdμA_ (2.7)

transforms as a conformal 4-vector. Therefore, if Jμ is identified with the
electromagnetic current of a charged field, setting, e.g.,

Jμ = ieψγμψ, (2.8)

then Eq. (2.7) can be regarded as a conformal extension of the standard Maxwell
equation. On the other hand, applying D 3V to both sides of (2.4b), we obtain

[ Π dA, CJ = [_2xμ(3 + xd) - x2dμ-] Π3A + 2dvFμv - D dμA _ . (2.9)

Hence, the equation

J+ (2.10)

can be regarded as a covariant complement of the conformal Maxwell equation
(2.7) provided that (Jμ, J+) transforms as a 5-current; in particular,

2JΛ(0)'
0

so that we can not use the simple conformal gauge condition D dA = 0 (of refs. [M2,
B3]) in the interacting case.

It follows from the properties of conformal representation spaces (see [P3])
that the integral

(2.12)

is convergent and, according to (2.10) and Gauss theorem, it is expressed in terms
of the asymptotic values of D^4μ at infinity. Current conservation

Q (2.13)

guarantees its conformal invariance. As we shall see (in Sect. 2.C below), it is also
gauge invariant.

Assuming that (JN) = (JV, J+) is a given conserved external 5-current, we can
write the following canonical Lagrangian for the 5-potential AN which yields the
conformal invariant equations of motion (2.7), (2.10), and (2.13):

L(A, J) = ±Fμ*QFμv - dμAv + dvAμ) -±A_

2 + J+A_+JμAμ. (2.14)
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It is non-singular; in particular, each independent field variable Aμ and A_ has a
non-vanishing conjugate momentum:

The results of this section can be summarized as follows.

Proposition 2.1. // the electromagnetic 5-potential AN = (AV,A_) obeys the non-
decomposable conformal transformation law (2.3) (2.4) (derived from the invari-
ance of the homogeneous connection form (2.1) on the 5-dimensional quadric Q),
then the Lagrangian (2.14) gives rise to the conformal invariant field equations

^μWffί ~ίfπ

Π

2VfSWfS) (2 15a)

that describe the interaction of a conserved (external) (5-) current with AN. Current
conservation (2.13) implies the generalized free field equation

D 2 ΛL=0, (2.15b)

which yields β-ίndependence of the equations. The Lagrangian is non-singular, the
(Euclidean) p-space matrix Jί(ip) being invertible for pή=0 whatever the value of
the gauge parameter β. (Jί~l(ip) will be identified with the propagator matrix in
Sect.SB.)

B) Construction of J+. Conformal Dirac Equation

The fifth component J+ of the 5-current cannot be expressed in terms of a
conventional (charged) Dirac field Ψ only. An economic way to construct J+,
proposed in [S3, F7] uses a longitudinal 5-potential coming from the closed form

dK
dS(ξ) = dμS(x)dxμ + q — , where q is a constant. (dμS,q) spans an invariant

K
subspace of the non-decomposable space of 5-potentials (Aμ,A_) (obeying the
same transformation law (2.3), (2.4) which could be also deduced from the
following law for the dimensionless scalar field S(x) :

[S(x)9 C J = 2xμ(xdS(x) -q)- x2dμS(x)

see [SI, Dl, Fl]).

Proposition 2.2. Ifjμ is a conserved conformal vector current and S obeys (2.16), then

Jμ = qjμ and J+ = -jvdvS + ocJvdvA_ +α2D
2S (2.17)

transform as a 5 -current for any values of the (real) parameters oc1 and α2.

Proof. Equation (2.16) and the infinitesimal conformal transformation law forj v

imply [J+(x),Cμ] = (2xμ(4 + xd)-x2dμ)J++2Jμ(x) in accord with (2.11).
In the classical theory we could set q = l. We shall see, however, that

quantization forces us to regard q as a (constant) dynamical variable. It seems,
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nevertheless, consistent to assume at both the classical and the quantum level that

Jv(x) = ie : ψ(x)yvιp(x) : = q Jv(x) . (2.1 8a)

We shall also restrict our attention to the choice α1=0 = α2 i
n Eq.(2.17), thus

having
J+(x) = -J\x)dvS(x) . (2.18b)

Combining (2.14) with (2.8) and (2.18) and adding (massless) conformal
invariant kinetic terms for ψ and S, we end up with the following Lagrangian for
conformal electrodynamics:

L(A,S,ψ,ψ) = L(A,J)-^ϊιp+^(US)2, 9=dμγ". (2.19)

It reproduces Eqs. (2.7) and (2.10) (with JN expressed in terms of \p and S) and
implies in addition the (modified) Dirac equation

[0 - ie(4 -A_ 0S)] Ψ = 0 (2.20)

and a 4th order equation for S

ιp. (2.21)

In order to verify the conformal in variance of Eq. (2.20), we use the infinitesimal
laws (2.4) (2.16) and

), CJ = {2xμ(f + xd) - x2dμ +i[yμ, f]}ψ(x) , (2.22a)

. (2 22b)

[They imply, in particular, that (4 — A_$S)ψ has the same conformal transfor-
mation law as

Remark 2.3. Clearly, the Lagrangian (2.19), and hence, the equations of motion are
invariant under the discrete y5 transformation ψ-+iy5ψ, ψ-+iψy5ι (JN^JN> AN

->AN, S->S). Moreover, the equations of motion imply that the axial current
J» = ie:ψyμy5ψ: is also conserved; this allows us to decouple the left and right
handed Weyl spinors in the Dirac equation.

C) Gauge Properties. Relation to a Non-Local Gauge Fixing

The action integral jLΛc, and hence the entire set of Eqs. (2.18), (2.15), (2.20),
(2.21) are invariant under the (restricted) gauge transformations

Aμ-+Aμ + dμA ,

S-+S + C for D 2A(x) = 0( - dμb = dμC) .

The above gauge freedom allows us to introduce a more general conformal
transformation law for the basic fields which still respects the equations of motion.
We shall use, in particular, a pure imaginary anomalous dimension for the spinor
field (cf. [F7] and[B3(b)]):

U(Q)ψ(x) I7(ρ) ~ 1 = ρϊ + ieδψ(ρx) ,
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It leads to a special conformal transformation law (for hc: x
μ^>'xμ = ω(xμ + cμx2),

where ω"1 = l+2xc + c2x2) that differs from the standard one, ψ->'ψ9 by a gauge
transformation:

U(hc)ψU(hcΓ
1 = ωieδ'ψ = exp{-ίeδln(l+2cx + c2x2)}'ιp; (2.25a)

it should be accompanied by an additive gauge transformation of the "compensat-
ing" (transformed) 4-potential Άμ\

= '4.-2*, .SΓΛ-α (2 25b)

Note that Λ(x) = δ Inω satisfies the restriction D 2A = 0 of (2.23) for ω~\x9c)> 0.
We shall now demonstrate in a formal way (within the framework of the

Feynman path integral - see, e.g., [P4]) that the non-conventional (^4_-and S-
dependent) terms in the Lagrangian (2.19) play the role of a gauge fixing.

We start with a modified form of the corresponding part of the action

(2.26)

where "α" is a constant dynamical variable ("the value of A_ at infinity"). We
define the generating functional

.-a) f da

K=$h(x)d4x, (2.27)

where /i(x) and #(:x) are external sources, J+ = —JμdμS [see (2.18b)], AT and AT!

are (infinite!) normalization constants; —y is the integral operator defined by

* f w = J ln (2'28)

[It is independent of / on the subspace f~0 of functions / with vanishing integral; it
appears reasonable to assume that the external source H(x) belongs to '" "
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The average of (2.27) over the (local) gauge group gives

A _
N2e

(2.29)

where C is a constant. We can choose the normalization constant N (respectively,
#! and N2) in such a way that C = 1. We see, in particular, that for vanishing
sources

ί Fo,o(Aμ + 8μΛ9 r)DA = C( = 1) , (2.30)

which is (according to [P4]) precisely the condition that the contribution (2.26) to
the action is a gauge fixing term. Moreover, it follows from (2.29) that the
expectation value of a time-ordered product of gauge invariant fields (say, Fμv and
Jλ) and a number of fields A _ and S factorizes into a product of the standard gauge
invariant expectation values (of T-products of Fμv's and J/s) with generalized free
type τ-functions of A, and S that can be evaluated from (2.29). We have

= <ΓJ1'(x1)...F/ίnVn(xm+n)>o/ίn

1

(2.32a)

~ς In . (2.32b)

We see that the τ-functions of A _ are only real for pure imaginary α's [i.e. for a
complex action (2.26)]. As we shall see [in Eq.(3.16) below] the 2-point function
(2.32a) that is related by conformal invariance to the normalized transverse photon
propagator corresponds to

α--8π2/. (2.32c)

We shall take the above heuristic argument as a justification for postulating
(2.31), (2.32).

3. Quantization

A) General Requirements. Ward Identities. Electron Propagator

The construction of a quantum field theory corresponding to a given set of
classical field equations requires new postulates that include a choice of certain
operator properties of the basic quantized fields (commutation relations, prop-
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erties of vacuum expectation values), and a proper definition of the (re-
normalized) composite fields (products of local field operators) which appear in the
non-linear terms of the field equations. Looking for a conformal QED, we replace
the canonical commutation relations of the standard (perturbative) approach by a
number of requirements the most important of which is the conformal in variance
of renormalized Green functions. This basic requirement implies that we are
looking for a renormalization group fixed point (at least in the case when
elementary representations of the subgroup of dilations are involved, leading to
power laws for vertex functions) - see, e.g. [S2, M3, Al,2].

The conformal quantum postulates involve some freedom related to the choice
of representations for renormalized Green functions. We shall start in this section
with those basic properties, which, in our view, should take place in any conformal
QED [related to the classical Lagrangian (2.19)] leaving the more debatable
requirements to Sect. 3B. The postulates within each section are also arranged in
decreasing generality.

We first assume that the classical field equations remain valid at the quantum
level provided that the encountered composite operators are renormalized by
using operator product expansions. We shall not attempt to formalize this
requirement in general; its precise meaning in the context of the present model of
massless QED will be made clear in Sect. 4. We shall write the equations for
Euclidean (Schwinger) functions which inherit the properties of time-ordered
(τ-)functions. They include differentiation of the 0-function and use the equal time
commutation relations for fields (like Jμ and A_) whose dimensions remain
canonical in the interacting case. Therefore, we find it convenient to set our basic
postulates for (Minkowski space) time-ordered products of local field operators.

Rather than devising clumsy general formulations we shall write down an
implication of the Maxwell equation (2.7), (2.15) for the time-ordered product of
two gauge invariant fields.

Example 3.1. If Fμv and dμA_ transform under the non-decomposable 10-
dimensional representation of SO(4,2), described in Sect. 2, then we demand the
validity of the following quantized form of the Maxwell equation:

-̂ T(Fλρ(x)Fμv(y))- l- ΏxT(dλA-(x)Fμv(y))

= (ηιμ3v-ηλvdjδ(x-y) + T(Jλ(x)Fμv(y)). (3.1a)

The ^-function term is a covariant reflection of the equal-time commutation
relations between Fλ0 and Fμv.

Similarly, Eq. (2.15) applied to the Euclidean photon propagator should read

jt(d)M

N,(AN'(x)AN(o»E=δM

Nδ(x)+< jM(x)AN(0)yE. (lib)
We shall assume throughout that we are working with the covariant (T*- or

Wick-) time-ordered product. The extension of a relation like (3.1) to products of
several fields uses the standard algebraic properties of T-products. These include
anticommutativity for any pair of local Fermi fields and commutativity of a local
Bose field with any other local field as well as an associativity property which we
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shall write down in a special case to appear in our analysis of the Ward identity
(WI) below:

;)). (3.2)

A central postulate of local QED is the operator WI

d '- "' n ^"n— - ^=-eδ(x-y)ψ(x), (3.3a)

= 5(x° -y°) [J°(y), ψ(x)] = e<5(x-y)ψ(x) . (3.3b)

The equal-time current-field commutation, incorporated in (3.3), is the only trace
of the canonical anticommutation relations [φ(ί,x), φ*(ί,y)]+ =δ(x — y) (for
J0(x) = ze:ΐp(x)φ(x): = e:t/)*(x)φ(x):). (These anticommutation relations will not
be assumed for interacting fields, which will be allowed to acquire an anomalous
dimension, while the property (3.3), characteristic for a current-charge density, will
be retained.)

As a consequence of (3.3) we have the following standard WI relating the
Euclidean 3- and 2-point (Schwinger) functions

where

[The difference in the /-factor between (3.3) and (3.4) comes from the relation
(d4p)M<->/(d4/?)£ between Minkowski and Euclidean momentum space volume
elements for

Proposition 3.2. The field equations (2.15) and the WI (3.3) together with the
assumption that A_(x) behaves like a constant at infinity and that ψ(x) has .an
appropriate asymptotic behaviour, consistent with its conformal properties, imply the
relations

oπ

Similarly,

13 14

Proof. The divergence of .Pv in the conformal Maxwell equation

=Jμ (3.8)
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does not contribute to the local charge density (see [F2, S5]). It then follows from
(3.3) and (3.8) that

* T(ψ(x)A _ GO) = ieδ(x - y)ψ(x) ,

= -ieδ(x-y)ψ(x) -

Equations (3.6), (3.7) are an (Euclidean) integrated version of (3.9) that takes into
I2

account the asymptotic conditions and the identity D 2 In -^ = (4π)2δ(x) (where D
is the Euclidean Laplacian). x

Remark 3.3. Equation (3.9) corresponds to the following Minkowski space
commutation relations:

eε(x°— v°}
2π θ(-(x-y)2)ιp(y) ,

(3.10)

where the coefficient in the right-hand side is related to the Pauli- Jordan
commutator function 3>(x) by

^^(x^^ (3.11)

We shall first use in an essential way the conformal invariance in determining
the Dirac propagator.

Cl. The 2n-point Schwinger functions <vK*ι) VK*n)v(yι) VGO>E are 7s"
invariant and invariant with respect to the tensor product of (2ri) elementary Dirac-
type representation of the Euclidean conformal group Spin(5, 1) corresponding to a

(real) dimension d.

The general form of the conformal electron propagator (3.5) is given by (1.3).

Remark 3.4. The 2-point Wightman function

3J(-P2)V5/W)(P°-Λ PXPXP (3-12)
2)

related to (1.3) is positive definite for d^f, Cv>0. The vanishing of ww* for
d-f = 0, 1, ... is related to the assumption that Sψ is dilation invariant at these
points. The anomalous dimension d— f of the charged field is gauge dependent. A
standard renormalization group analysis using second order calculations gives

(For a similar computation in the framework of conventional massless QED see
[A2, El, F6].) We shall not exploit here the WFs associated with the conserved
axial current.
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B) Conformal QED with a Free Photon Propagator

Proposition 3.5. The general conformal invariant 2-point function (AM(x)AN(Q)yE

for the Spin(5, ^-representation, characterized by the infinitesimal law (2.4), is a
multiple of the free photon Schwίnger function

I C4V(OM-(0)) > = Ie ί p x A A (p)d 4 p , (3.14a)
\\Λ_W/

w/iere

-2π2c5(p)
v

satisfies (for M defined in (2.14})

» = i, soίto Λr(d)Λx(x) = <5(;c). (3.15)

A proof of this statement based on the manifestly covariant formalism is given
in Appendix B to [F7].

Remark 3.6. Equation (3.15) does not determine the coefficient to δ(p) in the right-
hand side of (3.14b). One way to verify that our choice ( —2π2) fits the requirement
of conformal invariance is to exploit the infinitesimal law (2.4) and the condition
Cμ|0>=0. The result is

(3.16)
on

in accord with (3.14).

Corollary 3.7. Equation (3.14) together with the Euclidean Maxwell equations
(3.1b) lead to trivial current-field and current-current 2-poίnt functions:

VM(X)AN(Q)>E = J?(d)M

M,AA(x)M'N-δM

Nδ(x) = 0 (3.17)

(where J~ = J+) and hence

(JM(x)J (0)^ =0 (3 18)

Remark 3.8. The current-current Wightman function evaluated in second order
perturbation theory (using the free electron propagator (1.3) for d = f ) is non-trivial
and consistent with conformal invariance:

2 (3.19a)

(3.19b)

(3.20)
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However, its Euclidean counterpart is only covariant under a non-decomposable
(logarithmic) representation of the dilation subgroup. Indeed, defining the finite

part of —ϊ by
1 \ r d ( ε , ,v

— ) = lim — I-4! —

we find
e2 ( 1

<J/i(x)Jv(0)>£- -r^r-T (<5?D -dμdv) -T
12π \x jt

e2 ,. a

= ϊέ* (1ΠF) Wpv-P^eto'dtf (3.21)

(where the "subtraction point" μ is proportional to - 1. More troublesome, the
\ */
invariant 2-point function < Jμ(x)J+(y)yo is inconsistent with current conservation
in that case. It is nevertheless clear that the vanishing of the 2-point functions
(3.17), (3.18) is representation dependent.

Equation (3.18) was adopted as a unique possibility in the conformal QED of
Johnson-Baker-Adler (JBA) (see [Jl, Al,2, Bl]). Although we leave open the
possibility that (a modified) conformal invariance is still consistent with the more
realistic ansatz (3.19), we shall only explore in this paper the simplest possibility
(3.18).

C2. The photon propagator is invariant under the standard (non-decomposable)
conformal law (2.3), (2.4).

As a consequence of Proposition 3.5 and of Corollary 3.6, this postulate leads
to a JBA-type model of conformal QED.

C3. The Schwinger functions

are conformal and γs-invariant with respect to the tensor product of the standard
elementary representation for ψ (with dimension d) and Jμ (with dimension 3) .

Corollary 3.9. It follows from (3.3), (3.10), and C3. that

^π x

where B is an arbitrary (real) constant (see Eq. (IV.48) of [T1]J.

(3.22)
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Remark 3.10. It should be noted that the 3-point function

ln + C j (3.23a)
oπ x13 /

(obtained from (3.6) for n= 1) is not invariant under the standard transformation
law (2.22), (2.4) for ψ and A_. However, there exists a more general law which
relates S_ and

Sv(x1? x2; x3) = <^p(x1)ψ(x2)Av(x3)yE (3.23b)

with the longitudinal 3-point function

/V(x1? x2 x3) = (ψ(xι)ψ(x2)dvS(x3)yE , (3.23c)

and
(3.23d)

(In the last equation we have used the ansatz ψψq = ψψ - cf. (2.18a).) A compact
x

form of this general law is given in terms of the conformal inversion Irx = —^ (cf.

[Tl,2]). The Euclidean picture fields would transform as follows under Ir for
elementary representations of the (extended) Spin(5,l):

(3 24a)

(3.24b),

etc., (3.24c)

where rj(x) is given by (3.20). Only /_(x 1 ?x 2) is invariant under this elementary
law:

£>(*!, x2) = {^^(Xi^^x^)^ = L(x l9 x2) ( = Sv(x12)) . (3.25a)

The non-decomposable representation spanned by dvS and q implies the following
non-elementary co variance property for lv :

2x
/tr)(x1? x2; x3) + — ̂  /_(x1 ? x2) - /V(x1? x2; x3) . (3.25b)

X3

It is straightforward to verify that the pair of functions S_ (3.23a) and /_ (3.23c)
satisfy the /r-covariance law,

S(:)(x1,x2;x3)-^/_(x1,x2)ln^=S_(x1,x2;x3). (3.26a)

The law for Sv (proposed in [F7]) combines together the last two formulas:

Sv (Xι,X 2 ;X3)— T— 2 'v(^l?X2? : ) C3)ln^^ ~J 2~ S-(Xl>X2:>X3>)
oTC X2 X3

= Sv(x1,x2;x3). (3.26b)
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C4. The Schwinger functions of ψ, \p; AV9 A^; dvS, q are related among themselves
via the conformal inversion according to Eqs. (3.25), (3.26) (and their extension to
higher point Green functions) .

There is a more complicated transformation law for the fields which makes all
3-point functions of the 5-potential invariant. For the dilation and the /r-in version
of Euclidean picture spinor fields it reads [S3, F7]

U(Q)ιp(x) U(β) - ' = ρ3/2 : Q

(3.27b)
'OC \X* ' ' ^ ' '

while the 5-potential obeys the standard non-decomposable law,

T1ί T \ A (v^ T1 ( T i — A ί T v^ i — A v/f γ\\
\J \JL γl/~L \ Λ'J U \ί γί — .ΛL I L γ λ*) \ — -ίl \ ™)) ?

(3.28)

U(QAv(x)V(lrr
1 = A?(x) +^A.(x).

Here the normal products are defined as usual:

: ρίe*ψ(x): = ρίeδ( + }ip(x)Qied( ~}, (3.29)

where

= 0=<0|(5(+), δ(~} = δ(+r. (3.30)

Although local fields either strictly anticommute (for a pair of Fermi fields) or
strictly commute (otherwise) under the sign of an Euclidean expectation value,
positive and negative frequency parts, in general, do not commute with the fields.
Thus, in order to apply the operator law (3.27) to the evaluation of Schwinger
functions, we should define the commutation relations of δ(±) between each other
and with the local fields.

We shall set
ieb

(4π) (3.31a)
ieb

so that

ρ~ieδ(+)ψ(x)ρieδ(+) = ρ (4 π)2ψ(χ) etc., (3.3Ib)

[(5(:F),ΛL(x)] = ± ̂ 2 9' [<5(T) AO)] = ± A dμs(x>> (3 32)

The electron propagator (1.3) is now reproduced from (3.26-3.28) provided that

'-l+(4» <3 33)
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Comparing with (3.13), we see that b plays the role of an overall gauge parameter.
Furthermore, if we require

ψ(x)ψ(y)q = qφ(x)ψ(y) = ψ(x)ψ(y) (3.34)

(in accord with (2.18)), we rederive the expression (3.23a) for S_ (up to a
normalization constant) from the invariance requirement under the above
operator law. In order to reproduce also the covariance property (3.25b), we
demand that

[5(±),3μS(x)] = 0 = [5<±>,9]. (3.35)

Proposition 3.11. Under the above assumptions the general conformal invariant 3-
point Schwinger function of dμS, consistent with (2.16) and (3.34), is

= Sψ(xί2) - + + *λμ . (3.36)
\ ^13 X23 J

Equations (3.32) and (3.36) imply

d _ ί l 2 ( x y , (3.37)
x13 x23

where the coefficient to the last term is chosen to agree with (3.22); here Δδ is given
by (1.2) and

X13μ x23μί 1 xi3\
λμ=~^2 --- Γr~ I =ό^3μln-2-|. (3.38)

*13 Λ23 \ Z Λ13/

The proof of this proposition is straightforward.

C) Sub space of Physical 0- Charge States

Assumption C2 that leads to a free photon propagator allows an explicit
construction of the physical subspace (of the indefinite metric space for the local
gauge under consideration) at least in the zero-charge sector.

We define the submanifold & of physical states of the field domain 3) as a
maximal conformally invariant linear subspace of vectors Φ, Ψ of 2 such that

<ΦM_(x)|!P> = 0 = <Φ|5vS|!P> = <ΦM!P>. (3.39)

Remark 3. 12. Equation (3.39) excludes from 3)' vectors of the form ^4_|0> or
δvS|0 > that would have violated the non-negativity of the inner product. The
positivity violation for A, |0 > is manifest from (3.16); for dvS it is derived from the
expression for the 2-point Wightman function (cf. (2.32))

(3.40)
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Let 2fQ be the part of the 0-charge sector of 2'9 generated by the action to the
vacuum of polynomials of local fields smeared by test functions with compact
support.

Proposition 3.13. 3t'0 is generated by polynomials of Fμv, dvA_ and D 2S, the states
dvA_\Q>, dvF

μv\0> and D2S|0> having zero norm.

The proposition follows from the factorization postulate (2.31) and from the
properties of (free) 2-point functions of the encountered (Rose) fields. (We note that
Eq.(3.39) does not contradict our assumption (2.18a) because of the vanishing of
the current matrix elements in 2>\ which follows from (3.18) - see [S4].)

4. Renormalized Schwinger-Dyson Equations (S-D Eqs)

A) Equations Involving 2- and 3-Point Functions

We follow here the standard scheme of defining the renormalized S-D Eqs - see
[S6, B5] (as well as [Z2]).

Let F be an arbitrary polynomial in the fields AN, dμS, φ, φ and their
derivatives: Eqs. (2.15), (2.18b), (2.20), (2.21) imply the following set of renormalized
S-D Eqs for Schwinger functions (since we only deal with Euclidean Green
functions in this section, we skip the subscript E in the expectation values):

JJ 17

i ) x - —
\Oδ(X

where

The normal products N(. . .) will be determined in a non-perturbative way as finite
parts of Wilson expansions inserted in conformal invariant Schwinger functions.
The remaining freedom will be restricted by the requirement of gauge in variance.

Proceeding to the study of the Dirac equation (4. la) we shall use (and extend)
some of the techniques of [F4, PI] (devised for the study of the 2-dimensional
Thirring model). We define the smeared composite field ψ^x.ε) by

= ieZ2(s) J dΩ,<fi(x + &y<P(x)F> ~ (Z2(e) ~ W<ψ(x)F> > (4.2)
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where dΩz is the normalized measure on S3 :

J dΩJ(z) = ί δ(z2 - \}f(z)d*z . (4.2b)

The field hμ = qAμ — A_dμS transforms "homogeneously" [i.e. under an
elementary representation of Spin (5, 1)]. The factor q can be dropped [as in
(4.1a)] when multiplied by a pair of conjugate spinor fields [see (3.34)].

The renormalization constant Z^(ε) does not appear, since we have set Zλ = Z2

as required by gauge invariance.
Setting F = ψ(y) we can rewrite Eq.(4.1a) in the form

(The <5-function, which fits the free field limit for e->0, is cancelled by a similar term
in the right-hand side (RHS) in the case when Ψ acquires anomalous dimension.)
The 3-point function </ιμ(x + εz)φ(x)t/;(y)> [which appears in (4.3) if we insert \p1

from (4.2)] is obtained from (3.37) by deleting the logarithmic term and replacing
1 4- B
— — and A by two arbitrary constants g1 and g2. It is clear [taking into account

the composite character of the second term in hμ (4.1a)] that one should actually
deal with the 4-point function

in the limit x12->0.
The small ε behaviour of the spherically smeared 3-point function2

G(x, p ε) = J d4y J dΩ,<fi(x + sz)ψ(x)ψ(y)ye ~ **> (4.4)

involved in (4.3) is analysed in the Appendix. The final expression (A.7) contains
two terms of the type appearing in the left-hand side of (4.3), where we insert the
conformal invariant 2-point function (1.3). In this way we obtain the following
relations between the anomalous dimension λ = d— f, the tp-field renormalization
constant Z2 and the free parameters g^ and g2 in the conformal invariant
expression for G:

(4 5)

g2\λ

-\ (Z2(e,0)=z(0) = l for Cv(0) = l,e2 = 0), (4.6a)

where the product of z(λ) with the normalization constant Cψ of the electron
propagator (1.3) is

2 Note that a similar analysis of the Dirac equation in the framework of [F3, P2] is hindered by
the non-local character of the photon 3-point function
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Remark 4.1. The Euclidean counterpart of the more complicated action (2.26)
leads to a somewhat modified system of equations. In particular, a term
<α^S(x1)φ(x1)φ(x2)) is added to the RHS of the Dirac equation (4.3). The new
system includes one more equation, obtained by varying with respect to a:

•ίΛcQϋ,

(We have used that j D2<4_(x)F>J4x = 0 according to (4.1a) and the Ward
identities.) Combined with (4.1b) this equation leads to the relations

1

As a result, the Dirac equation (4.3) remains unchanged.
Turning next to the definition of the current, we set

= ieZ2(ε,

- <{ ί̂J(ε, d)A\x) + &ϊ(ε, 8)A _ (x) + @$(ε, d)S(x)}Fy , (4.7a)

where
-

(4.7b)

According to our assumption C2 about the conformal transformation properties
of the photon propagator and Proposition 3.5, the charge renormalization
constant Z3 is finite and can, therefore, be set equal to 1. We should like to give
meaning to the current Jμ(x) in the Maxwell equation (4.1b) as a limit for ε-»0 of
(4.7a). Taking the divergence of (4.1b) for F = F(y) = Av, A_ or dvS and using
current conservation, we find the free field relation

which is satisfied by the conformal invariant 2-point functions (3.14). It follows
that momentum space 2-point functions satisfy

= lim J e-iw<J*(x, s)F(y) ><Py . (4.8)
ε-»0

The left-hand side of this equation vanishes identically for our choice of the photon
propagator. Before studying the implications of this fact to the RHS we shall make
a few comments.
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Remark 4.2. Finite subtractions appear, as discussed in [B5], in order to maintain
the properties of the current functions dictated by gauge invariance which is
destroyed by our regularization procedure. The type of the operators 3){ is
restricted by the asymptotic behaviour of the first term in (4.7a). More subtractions
are possible in principle, e.g. cubic terms of the type ί$μQyσ AQ(x — εz)Aγ(x)Aσ(x + εz)
[B5]. We neglect them since in our case they factorize in the average and do not
give new structures.

Remark 4.3. The definition (4.7-4.8) of the current applies only if F is a polynomial
of basic fields. If F includes composite operators, additional (contact) terms are
needed in general (see, e.g., [Z2]). (This remark applies of course to all composite
operators in the model.) We shall give only an example of functions involving two
current operators:

= lim {(Jμ(xl9 ε)Jv(x2)F> - J dΩ2[D^vyρ(ε? x12)
ε-»0

• (A\x2 + εz)^(x2)F> + Z)2

vy(ε, x12) <^X2)F>

+ Dμ

3

v(ε,x12)<F>]}. (4.9a)

In particular, for F = 1, we have

DμVyβ=yιημyηveδ(x2) , Dlv = [y2dμdv + γ3(d,jdv-ΠηlJ]δ(x1J. (4.9b)

The asymptotic behaviour of the 3-point functions involved in the RHS of (4.8)
as well as the contribution of the subtraction terms are evaluated in the Appendix.
We write here only the expression for the 3-point function of Aμ [see (3.37) with

ieZ2(ε, >

β2cφz(A)rg+2)
(2π)2 Γ(1-A)

ί-4 1+ΰλp^

ε2 p4 V 4 4 p2

vln +0(ε2). (4.10)

Here α0 is a numerical constant [see (A. 11)]. All terms in (4.10) except the last one
are compensated by the contribution of the subtractions in (4.8) leading to some
relations for the arbitrary constants in (4.7). These constants are completely
determined when the other two equations in (4.8) (for F = A _ or dμS) are also taken
into account. There is no way, however, to cancel the finite transverse last term in
(4.10) unless

i.e. either B= -f or e(\ -λ2)(2-λ) = 0.
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Remark 4.4. Concerning the first possibility (B= -f), we notice that it is not
available in the framework of [F3, P2, Kl]; as compared to this framework we
have a second independent transverse structure in the 3-point function (3.37). The
above result can also be obtained from the Maxwell equation for <^4μ/v> [see
(A. 12)]. The finite contribution of the current 3-point function (3.22) to the
Maxwell equation has been evaluated earlier in [M4] where a similar condition for
B has been put forward. [It is, however, incorrectly assumed in [M4] that the
conformal invariant current Green's function (TJμ(x)Jv(Q)y0 is proportional to
the associate homogeneous distribution (3.21).] A number of the above formulas
(as well as those of the Appendix) have been obtained in an inconclusive earlier
attempt [D5] to tackle conformal QED3).

Regarding the current as an elementary conformal field we easily analyse also
the last two equations (4.1c, d) for the various 2-point functions (dμS(x)F(y)y and
<^4_(x)F(y)> and prove (exploiting current conservation) their consistency with
the (free) expressions (2.32), (3.14). The implications of the composite structure of
Jμ (4.7) is further discussed in Sect. 4B.

B) Equations Involving 4-Point Functions

The Maxwell equations (4.1b) with F-+Fψψ and F = AV, dμS or A_ together with
the corresponding Ward identities imply the equations:

1 2

(4.12)

In agreement with Proposition 3.2 we have the following

Proposition 4.1. Let F be either Aμ, dμS or A.. Then

In
°π *41/

*i)v(*2)> <ΛL(x4)F(x3)> . (4.13)

The last term is present only for F = Aμor A_.

One can check that no finite part of ̂ F survives when x2-*xί,x4-^x1. Hence
there is no contribution to the R.H.S. of Eq.(4.1d) for F = Aμ9 dμS or ^4_. This
shows that the composite character of the current does not affect the conclusion of
the preceding section.

We let x4-+x3 in (4.13) for F = dμS thus getting

<A.(x3)dμS(x3)ψ(x1)ψ(x2)y = IC + jr-2 In -p 1 <dμS(x3)φ(xι)v>C*2)> . (4.14)

If we choose α=0 in the expression (3.36) for <dμSιpt/>>, (4.14) has the general form
of the 3-point function (3.37) with 1 + B = 0 = A. Hence, as discussed in Sect. 4A, it

3 The model in [D5] reproduces the standard 3-point current function and an expression for
(Aμψψy which differs from (3.37) by purely longitudinal terms. However, the normal product in
the Dirac equation requires an unconventional subtraction, which is avoided here
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just cancels down the contribution of the inhomogeneous term in (3.37) in the
Dirac equation. Then we finally have in (4.4)

92 = A. (4.15)
Δ

Combining (4.15) with (A. 13), we obtain

-—-y (β + const). (4.16)
(4πr

The fact that (4.14) does not contain the standard transverse part of (3.37) leads
us to the following important conclusion.

Proposition 4.2. The Maxwell equation (4.1b) with F = A_(xί)dμS(x3) (or
F = (Aμ — hμ) (x$)) is not satisfied unless

The proof concerning the 3-point function (4.14) repeats the derivation of
(4.10), (4.11).

Thus, the only way to cancel the Iogp2-term is to have either a trivial theory
(with eψ = 0 - see the discussion in the Introduction) or a special gauge in which
the anomalous dimension has the (negative) value Λ,-> —1.

Appendix A. Small Distance Expansions of 3-Point Functions

Our objective in this appendix is to evaluate the leading terms for ε-»0 of smeared
3-point functions of the type of G(x,p; ε) (4.4). Using the identity

X ι (i * 2Λ4 = hm — 0X"
x2 <5->o \2δ J

we can write the general conformal invariant expression of the integrand in (4.4) as
the limit of

_ feCv~

for ^0. (A.1)

Setting x x =x, x3 = x + εz, and taking the Fourier transform in x2 = y, we obtain

(A.2)
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where λ = d— f is the anomalous dimension and

I(κ,λ;z,p)

eipx

(x-y)
1

Z2J ό
K-λ

(cf. Eqs. (F.I, 2) of Appendix F to [D4]); here Kv is the modified Bessel function:

2Kv(ζ) = Γ(v)Γ(l - v) (/_ V(C) - /v(0) ί A.4a)
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We can use the general formula (A.5) instead of (A.10) to obtain (4.10). Then we
need an intermediate analytic regularization (l/x^xia^ίV^ia^ia)1"1"*- The

operator lim — -δ which does not change the initial expressions then recovers a
δ-+odδ

finite part which differs from (4.10) by the value of α0. The subtraction term
involving the constant α3 in (4.7) accounts for this arbitrariness. Similarly, we find
using (A. 10)

where αo is a numerical constant. Comparing (A. 12) with (4.9a, b), one determines
the constants y{ and reproduces the relation (4.11). (The finite transverse part of
(A. 12) coincides with the second order expression for the photon self-energy.)

Evaluating the contribution of the subtraction terms in (4.9) for F = Aμ, A_.
dμS, we get the following values for the subtraction constants:

(2π)2Γ(l-λ)ie
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result

yields (4.5) and (4.6).
Proceeding now to the implication of the Maxwell equation (4.8) for

F(y) = Av(y) or A _ (y), we first replace the log- terms in the 3-point functions (3.23),
(3.37) by

2

and use the general integration formula

(2κ)!'

(A.9)
In studying the small ε behaviour of

ieZ2(ε, λ) J ΛΩZ I d4ye-">\ψ(x + εz)y"ψ(x)Av(y)y

ί i
and representing the Fourier transform of ~γ-yμ^-γ- in (3.37) as

X1 3 X23

we need the expansion

which gives
/(/c, -/c;z,

= _ «

Γ P2^
• \n^—

) L (A.10)
J

where (a)n = —=—-—. A straightforward (though rather lengthy) computation
Γ(d)

leads to (4.10) with

1 -4- R / 1 \ 1 / S\
(A.11)
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We can use the general formula (A.5) instead of (A.10) to obtain (4.10). Then we
need an intermediate analytic regularization (l/xίsxis^OAisxia)1**5- The

operator lim — δ which does not change the initial expressions then recovers a
δ-+QUθ

finite part which differs from (4.10) by the value of α0. The subtraction term
involving the constant α3 in (4.7) accounts for this arbitrariness. Similarly, we find
using (A. 10)

ieί dΩz J d V~'w<V(*ι +εzyrμψ(Xi)Jy(y)yZ2(ε, λ)

where αό is a numerical constant. Comparing (A. 12) with (4.9a, b), one determines
the constants yt and reproduces the relation (4.11). (The finite transverse part of
(A. 12) coincides with the second order expression for the photon self-energy.)

Evaluating the contribution of the subtraction terms in (4.9) for F = Aμ, A_.
dμS, we get the following values for the subtraction constants:

2e2Cψz(λ)Γ(2 + λ) a, (I \ a,= — =

2~ (2π)2Γ(l-λ)ie - 2

In dealing with 4-point functions, we only work in x-space and use in addition
to (A.6) the relation (A.9).

Acknowledgements. We would like to thank Dr. V. Dobrev and Dr. A. Ganchev for making
available their unpublished calculations and Dr. E. Nissimov for valuable discussions.

Note added in proof. Equation (2.21) [or (4. Id)] is consistent with the commutation relations

(3.32), (3.35). To amend the

Lagrangian (2.19), (2.14) by

(3.32), (3.35). To amend the situation we should add a trilinear term, -A^^S, replacing the

-A^Π2S. (1)
4
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The Maxwell and the Dirac equations (2.7) and (2.20) remain unchanged while the gauge fixing
equations for dA and 5 assume the form

^ΠdA + dμSJμ=^A.\32S; ΌΠ2S + dμA-J't + ̂ Π2^2- =0. (2)

The new set of equations has the virtue of being invariant with respect to the 1 -parameter family
of field transformations

. (3)

It is straightforward to verify [using (3.7) and (3.23a)] that

_(3)>0 (4)

so that [according to (2)] υΠi<φ(l)vH2)S(3)>0 = 0 in agreement with (3.36).
The argument of Sect. 2C is not directly applicable to this modified Lagrangian, however a

calculation based on a power series expansion in the new trilinear term indicates that it does not
affect gauge invariant matrix elements.
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