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Abstract. In their previous work on large deviations the authors always
assumed the base process to be Markovian whereas here they consider the base
process to be stationary Gaussian. Similar large deviation results are obtained
under natural hypotheses on the spectral density function of the base process. A
rather explicit formula for the entropy involved is also obtained.

1. Introduction

Let [Xk}> — oo<fc<oo, be a stationary Gaussian process with E{Xk} = 0 and
1 2π

E{X0XΛ = ρ. = — J eίjθf(θ)dθ. We assume that the spectral density function /(θ)
2π o

is continuous on [0,2π], /(0) = /(2π), and

flogf(θ)dθ>-oo. (1.1)
o

oo

Let Ω = Π ]R7 where, for each j, R, is the real line, i.e., Ω is the space of
./=-oo

doubly infinite sequences of real numbers. We specify a point ω e Ω by ω = {xj,
— oo<k<oo, and let ω(j) = Xj for — oo<j<oo. The process {Xh} induces a
probability measure P on Ω. We will denote integration over Ω with respect to P
measure by Ep{}.

For each positive integer n and each ω e Ω, let ω(M) be the point in Ω obtained by
the periodic extension in both directions of the elements x l 5 x2,..., xπ of ω, i.e., if
co = {xfc}, — oo<fc<oo, then ω(π) is the point
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Let T be the shift operator acting on the points of Ω. For each ωeΩ and each
positive integer n, we define a probability measure on Ω, call it ππ(ω), as follows:

/• \ -̂  / ζ . ς i , P \ /<< /^\

n <°n Γω n "' ω "

In other words, given ω e Ω and n ̂  1, πn(ω) is the probability measure on Ω which
assigns mass l/n to α>(w) and to each of its (n — 1) translates. We note that πw(ω) is a
translation invariant measure on Ω, i.e., a stationary measure on Ω. Let Ms be the
space of all stationary measures on Ω and impose on Ms the topology of weak
convergence. We can use the mapping πn:Ω-»Ms and the measure P on Ω to
construct a probability measure on Ms by defining, for each n, Qn = nnP~1, i.e., if A
is a set of stationary measures in Ms, then

Qn(A) = P{ω e Ω: πn(ω) e 4}. (1.3)

The assumptions we made on the Gaussian process {Xk} imply that it is an
ergodic process, and it then follows from the ergodic theorem that, for almost all ω
(P-measure), the measure πn(ω) converges weakly to the measure P as n->oo, i.e.,

P{ωeβ:πΛ(ω)=>P} = l . (1.4)

Thus, with reference to the Qn measure on Ms given by (1.3), we expect that if the set
A contains the measure P, then Qn(A)^> I as n-»oo, whereas if P is not in the closure
ofA9 we expect Qn(A)^0 as rc->oo. In this paper we show that in this latter case
Qn(A) approaches zero exponentially fast as n-»oo and we determine the constant
in the exponential rate. To be more specific, let R denote a general element of Ms,
i.e., a stationary measure on Ω, and recall that / is the spectral density of our basic
stationary Gaussian process {Xk}. We define a functional Hf(R) which is, in fact,
the entropy of the stationary process R with respect to the stationary Gaussian
process {Xk}, and Hf(R): Ms-»[0,oo] is such that:

If CC MS is closed,

ΠS -logβκ(C)^ - inf H^R), (1.5)

and if GcMs *s open,

lim -logβn(G)^ - inf Hf(R). (1.6)

Consistent with remarks made above it will indeed be true that Hf(P) = 0. We give
an explicit formula for Hf(R) in (1.9) below.

Let Φ: MS-»]R be bounded and continuous, and let EQn{} denote integration
over Ms with respect to Qn measure. From (1.5) and (1.6) it follows easily that

lim -log£Q"{enΦ(K)} = sup [Φ(Λ)-£ΓχK)] . (1.7)
n-»ooW ReMs

Since Qn = πnP~1, equivalent to (L7) is

lim-log£p{βnφ(π«(ω))}= sup [Φ(#)-#/£)]. (1.8)
n->ooft ReMs



Large Deviations 189

The main results of this paper then are (1.5), (1.6), their implication (1.8), and the
formula (1.9) for Hf(R) which we discuss now.

Let R e MS and let, for A C R, R(A \ ω) = R(X0 e A\X _ 1, X _ 2,...) be the regular
conditional probability distribution of X0 given the entire past. Denote by r(y\ω)
the corresponding density. If G(θ) is the spectral measure of the stationary process
R, then the formula for Hf(R) is

r(y\ω)logr(y\ω)dy\

(1.9)

where it is understood that Hf(R) is defined to be + oo if for any reason we cannot
define any of the ingredients in (1.9).

The authors have developed a theory of large deviations for Markov processes
(see [1, 2], for theoretical results and e.g. [3-5] for some applications thereof). In
theory, our methods should apply to rather general stationary processes, but it is
difficult to see in any great generality what the natural hypotheses to impose on a
stationary process are in order to obtain the analogues of (1.5),(1.6),and (1.8), much
less to obtain the analogue of (1.9) in anything like explicit form. For recent work in
this direction see Orey [6]. In this paper we consider the special case of a Gaussian
stationary process because as seen above the hypotheses needed are natural and
we obtain an explicit formula for the corresponding entropy.

In Sect. 2 of this paper we prove (1.5) and (1.6) but in doing so we must use
properties of Hf(R) and other entropies which occur in the proofs. So as not to
interrupt the argument we prove these properties in Sect. 3.

2. Proofs of the Main Theorems

As in the introduction, let {Xk} be a stationary Gaussian process and E{X0Xj} = ρ7
1 2π

= — J eijθf(θ)dθ, where we assume that the spectral density function f(θ) is
2π o

2π

continuous on [0,2π], f(0)= f(2π), and j \ogf(θ)dθ> -oo.
o

Let {ξk}9 — oo<fe<oo, be a sequence of independent Gaussian random
variables each with mean 0 and variance 1. If we let {an} be the Fourier coefficients

of j/7 (0), i e., J/7 (0) = Σ anέ
nθ> then we can write

n= — oo

00 00

Xk= Σ an.kξk = Σ anξn+k. (2.1)
n= — oo π= — oo

Let N be a positive integer and define

^-,ί. '(ι-s) w (2 2>
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where the α/s are defined in the preceding paragraph. Since f(θ) is continuous and
/(0) = /(2π), we have by Fejer's theorem,

lim sup M0)-J/7(Θ)I = 0. (2.3)
ΛΓ-»oo 0^0^2π

For each N, define the process

<2 4)

If we let fN(θ) = hχ(θ), then /N(0) is the spectral density of the process {X%}.
In the introduction we noted that the process {Xk} induces a probability

measure P on Ω. Similarly the process {X%} just defined induces a probability
measure PN on Ω. Indeed, the family {ξk} of independent, Gaussian, mean 0,
variance 1, random variables itself induces a probability measure on Ω which we
will denote by μ. Each of these three stationary measures on Ω together with the
mapping πn: Ω->MS of the introduction generates a probability measure on Ms.
We have already introduced Qn = Pπ~1. Analogously, we define vn = μπ~ * and for
eachJV, QS = PNΠ~1.

For convenience let bk = ak I 1 — — 1 and define the mapping FN: Ω->Ω by

(FN(ω))(j)= Σ bkxj+k, (2.5)
|*| <JV

so that FN is a moving average map of Ω into itself. The mapping FN:Ω-*Ω induces
a corresponding map FN: MS^MS.

We also have the mapping F: Ω->Ω given by

Σ akXj+k, (2.6)
k= - oo

which exists for almost all ω (μ measure on Ω), since Σ an < °° We note that for
n — — oo

sets AcMs:

Qn(A) = P{ω E Ω : πn(ω) ε 4} = μ{ω ε Ω : πn - F(ω) ε }̂ ,

β?μ) = P^{ω e Ω : πB(ω) ε A} = μ{ω 6 Ω : πn - F^ω) ε A} , (2.7)

It will be important to introduce also the probability measure Q% on Ms given

fiί(X) = vn{R E MS : FN(R) eA}=μ{ωεΩ:FN πn(ω) e A} . (2.8)

To deduce the asymptotic behavior of Qn as rc-»oo, i.e., to prove (1.5) and (1.6),
we first determine the asymptotic behavior of Q% as n-κx) and then let ΛΓ-κx>. To
obtain the asymptotics of Q% we compare it with Q% the asymptotic behavior of
which as n-κx) follows from our earlier work and which we state below as
Theorem 2.2. Looking at (2.8) and (2.7) we see that to compare Q^ and Q% means
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comparing πn FN(ω) with FN - πn(ω). Now,

1
FN ' πn(ω) = - L<>FN(a>W) + <>FN(Tω(n)} + . . . + δpN(Tn- lω(n))] , (2.9)

. . . + δτn- ι(F^(ω))(n)] . (2.10)

and

πn FN(ω) = - [<5(ίv(ω))(n)

Thus, to compare the two measures FN - πn and πn FN9 we need to determine when
Γ /'~1(FΛr(ω))(II) = FJV(T /"1ω(Il)) with l^j^n. It is clear that the difference of the
two measures πn - FN and FN πn can be estimated in the variation norm over the
σ-fϊeld generated by the first L components. We obtain

(2.11)

In the space Ms we have the topology of weak convergence. This topology can
be induced by the following metric. Let Rί and R2 be in Ms and let L be a positive
integer. Denote by R{ and R2 the respective L-dimensional measures one obtains
by considering the joint distribution of L successive random variables in the
processes Rλ and R2. We then define the distance between R1 and R2 in Ms by

d(RM=Σ^dL(RίR%9 (2.12)

where dL is the Prohorov distance for L-dimensional measures. This metric in Ms

yields the topology of weak convergence in Ms. We now can prove the following
lemma.

Lemma 2.1. For any δ > 0 and large enough n,

. (2.13)

Proof. From (2.12), (2.11), and the fact that the variation norm dominates the
Prohorov norm in ^dimensions, we have for n>N,

~ °° 1 ~ 1 °° 2JV + L
d(πn F^Fn πn}^ Σ ̂  \\πn' FN-FN πn\\rL^ - Σ ?LL = i ^ n L = i £

Since the infinite series on the right converges, we can make the distance on the left
as small as we please by taking n large enough which implies (2.13).

As noted in (2.8),

ffl(A) = vn{ReMs: PN(K) e A} = μ{ω e O : FN - πn(ώ) e A} .

Since μ measure on Ω comes from the sequence {ξk} of independent Gaussian
variables with mean 0 and variance 1, the results of [2-1 V] give us the asymptotics
of vn measure on Ms and hence of Q^ measure on Ms.
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In the introduction we defined for ReMs the density r(y\ω) of the regular
condition probability distribution of X 0 given the entire past. For Re Ms define

(2.14)
I"0 0 I_!_e-Λ2|

and define for R e Ms

HfN(R) = inf W (2-15)

Then in Sect. 3, formula (3.21), we show

+ T-4π 0

where G(0) is the spectral measure of Λ and /N(θ) (see just after (2.4)) is the spectral
density of the {X&} process.

Thus, from [2-IV] and the contraction principle discussed in that paper, we
have

Theorem 2.2. If CcMs is closed,

BE -logβ^(C)^ - inf HfN(R), (2.16)
«->oo n ReC

and if GcMs is open,

lim -logβ?(G)^ - inf Hflί(K). (2.17)
«-»oo n ReG

Using this and Lemma 2.1 we can prove the following theorem.

Theorem 2.3. // CcMs is closed,

and if GcMs *5 open,

lim - logβ^(C)^ - inf Hfιr(R), (2.18)
n-^oo n ReC

lim - logβ?(G)^ - M Hfκ(R). (2.19)
«->c» n ReG

Proof. Let δ>0 and Cδ= (j S(R, δ) where S(jR, δ) is the ball in Ms of radius δ
ReC

centered at 1̂ . From (2.7) and (2.8) we see that

QN

n(Q = μ{ωeΩ:πn FN(ω)eC}
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Let Cδ be the closure of Cδ. Then, from Lemma 2.1 and Theorem 2.2,

- inf H/w(jR) . (2.20)

Since C is closed, HfN(K) is lower semicontinuous, and {.R : HfN(R)^K} is tight,
(cf. Lemma 3.10) we obtain (2.18) from (2.20) on letting <5->0.

For the lower bound, let G be open in Ms and let R e G. Pick <5 > 0 and an open
set V such that ReVcVδCG. Then, again noting (2.7) and (2.8),

: π

Using again Lemma 2.1 and Theorem 2.2,

Km -logρn

N(G)^ Urn - logβ^(F)^ - inf HfN(R^ -HfN(K) . (2.21)
n-^oo n «->oo n R'eV

Since inequality (2.21) holds for any R e G we obtain (2.19).
Before proving the next theorem we need some preliminary lemmas.

Lemma 2.4. Let {Xk} and {X*} be defined respectively by (2.1) and (2.4). There

exists a function ε(N) = o(l) as JV->oo such that if 0<λ< , then for all n,

-logE* jexp \λ Σ (Xk-X%A} ^ - ilog(l -2λe(JV)) . (2.22)
n [ [ k=ί J J 2

Proo/. First of all, let {1 }̂ be any stationary Gaussian process with mean 0,
1 2π

covariance y.= — J eijθg(θ)dθ, and strictly positive definite covariance matrix
2π o

Let c= sup |̂ (θ)|. We show now that if λ< — , then
2C

ί Γ » 11

E<Qxp<λΣ Yk

2 n ̂  (1 - 2/lc) ~M/2 . (2.23)
I I *=ι JJ

To see this, first observe that if cn is the maximum eigenvalue of An,
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providing λ < l/2cB. To estimate cn, consider

j,k=l

Λkθ g(θ)dθ= sup |0(0)| Σ W 2 ,

which implies CM^ sup \g(θ)\ = c. Thus, (l-2/lO"M/2^(l-2/lc)-M/2 and
0^0^2π

λ < l/2c implies λ < l/2cn, so we have (2.23). Now, in particular let

The spectral density 0(0) for the process {1£} is now given by

9(0) = Σ a,
-

*-

Letε(JV) = sup |0(0)|= sup |j//(0) -hN(θ)\2. From (2.3) we see ε(JV) = o(l)

as JV->oo, andίrom (2.23) if 0~<λ< l/2ε(JV), then we have for all n,

/I

- logE exp λ fc ^ - log(l -

which is the lemma.

Lemma 2.5. Let ωeΩbe given byω = {xk}, — oo < fe < oo and let ω' e Ω be given by
ω'={xk + εk}, — oo<fe<oo. Then, there is a constant c such that

Proof. By definition [cf. (2.12)],

d(πn(ω),πn(ω'} )= 4([πn(cυ)]i, [π.(ωO]i) .
L = l 2

(2.24)

(2.25)

Let α and /? be two L-dimensional prob distributions and α and β their
characteristic functions. Since uniform convergence of characteristic functions on
compact sets in L-dimensions is equivalent to weak convergence in L-dimensions
which is equivalent to convergence in the Prohorov metric dL in L-dimensions,
we can write 00 1

dL(^ β) = Σ ^ sup lαfa) - β(η)\. (2.26)
fc= 1 -̂  |ί/| ^fc

In particular, if α = <5(JClf:C2f...MjClί) and j8 = δ(Λl+eι,...,Λl<+βI.), we have from (2.26),

dL(*,β)= Σ
k = l 2

= Σ
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Thus, from the definition of πn,

; 2 (

n

where εn+j = 8j. Using Minkowski's inequality on this last, we get

. . . .

Finally, from (2.25) and this last inequality,

Lemma 2.6. Lei FN and F be defined by (2.5) and (2.6) respectively. For any δ >0,

n (XN — X \2

" k) >-^}, (2-27)
(, fc= 1 1

where c is the constant in Lemma 2.5.

Proof. From(2.1) and(2.4),Xk= Σ anξn+kandx%= Σ M 1"^
«=-oo |y|<^ V A',

let εk = Xk — X%, then Jffc = X^-hεfc. Thus, from Lemma 2.5,

d(πn-FN,ππ F)^c|/- Σ (Xk~*k}2 ?

and (2.27) follows.

Lemma 2.7. For every δ>0,

lim ϊίm - logμ{ωε Ω: d(πn - FN, πn F)^ δ} = - oo . (2.28)
N-*ao n->oo Π

Proof. For fixed N, and Λ, < l/2β(ΛΓ), where ε(JV) is defined above in Lemma 2.4, we
have from (2.27) and (2.24) for any δ >0,

Therefore, for any (5>0 and λ< ί/2ε(N) with N fixed,

ϊim -logμ{ω e Ω: d(πn FN,πn F)^δ}^ Γ - -log(l —2λε(N)). (2.29)
w—> oo ft C Z,
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Since ε(JV) = 0(l) as JV->oo, we get from (2.29) that for all δ>0 and all /l>0,

lim lim - logμ{α> e Ω : d(πn - FN, nn-F)^δ}^ -- γ
N-XX> n-+co ft C

In this last if we let λ->oo we obtain (2.28).
We are now ready to prove (1.5) and (1.6) of the introduction.

Theorem 2.8. If CCMS is closed, then

Em - logβn(C) ̂  - inf Hf(R) , (2.30)
H->OO n ReC

and if GcMs is open, then

lim - log<2M(G)^ - inf Hf(K) , (2.31)
«->oo n ReG

where Hf(R) is defined by (1.9).

Proof. Let C be closed in Ms. Then,

Qn(C) = P{ω e Ω : πn(ω) e C} =μ{ω εΩ:πn F(ω) e C} .

For any δ>0, we have

= PN{ωεΩ:πn(ω)eCδ}+μ{ωεΩ:d(πn'FN,πn F)^δ}

From Theorem 2.3, this last inequality implies

ίίm" - logρπ(C) ̂  max / - inf H/H(R), AN(δ)\ ,
«->oo n \ ReCδ J

where AN(δ) = lim - logμ{ω e Ω : d(πn - FN, πn F)^δ}. From Lemma 2.7 we then
obtain, "^ °° n

ΠS - logβπ(C) ̂  - lim inf HfN(R) . (2.32)
«->oo n ΛΓ^oo ReC0

From Lemma 3.10 below it follows that

lim MHf(R)= inf Hf(R), (2.33)
ReC0

where Hf(R) is given by (1.9). Using (2.33) in (2.32) we get

Em - logβn(C) ̂  - inf Hf(R) . (2.34)
n->oo n ReCδ

Since C is closed and Hf(R) is lower semicontinuous (2.34) implies (2.30) on letting
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For the lower bound, let G be open in Ms and let 1? be any element of G. Pick
<5>0 and an open set V such that R e Vc VfCG. Then

βn(G) ̂  Qn(V9) = μ{ωeΩ:πn F(ω) e Vδ}

^μ{ωeΩ:πn FNeV}-μ{ωeΩ:d(πn FN,πn F)^δ}

= QN

n(V)-μ{ωeΩ:d(πn FN,πn F)^δ}. (2.35)

Without loss of generality we can assume that Hf(K) < oo for the RG G we picked.
As before, let

AN(δ) = ίiϊn - \ogμ{ω e Ω : d(πn FN, πn F)^δ}.

From Lemma 2.7 we can choose N so large that AN(δ) ^ — (Hf(K) + 3), i.e., we can
choose N so large that

>. (2.36)

Also, since V is open we obtain from Theorem 2.3,

lim - log<2?(F) ϊ; - inf Hflf(Rf) . (2.37)
H - > o o f t R'eV

In Lemma 3.9 below we prove that for an R e Ms such that Hf(K) < oo, there
exists a sequence {RN} in Ms which converges weakly to # and for which
lim HfN(RN) = Hf(K). If we let 0 < η < 1 be given, then from (2.37) and Lemma 3,

JV->oo

since V is a neighborhood of R, we can take N so large that

- inf H

In other words, for N large enough,

β^(F)^^~M(^w+ί/)+0(M) . (2.38)

Using (2.38) and (2.36) in (2.35) we see that for N large enough

0 (G) >e~ n(Hf(K) + ̂  + 0(π) — e ~ n(Hf(R) + 3) + 0(n)

Since ^ < 1 the first expression on the right is the controlling asymptotic term and
we get,

lim I logβn(G) ̂  - Hf(K) - η . (2.39)
H-»OO ll

Since η is arbitrary and Λ is an arbitrary element of G, we conclude finally that

which completes the proof of the theorem.
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3. Properties of Entropy

In this section we derive the formula for HfN(R) occurring in Theorem 2.2. We also
prove those properties oϊHfN(R) and Hf(R) which we called upon in obtaining the
upper and lower bounds in Theorem 2.8.

We will be somewhat more general at first and start with I(R) as defined by

(2.16). Note, that for R E Ms, and with φ(y)= -^=~2

2π

= ER\ J r(y\ω)logr(y\ω)dy\ + ^Iog2π + ̂ E*{ω2(0)} . (3.1)
(-co ) L L

Let {0J, — oό < k < oo be any sequence of reals such that Σ \aj\ < °° and \h(θ)\

oo

Σ Qj4ij

j=-oo
Φ 0 for all θ e [0, 2π]. Consider the mapping τ : Ώ->Ω based on such

a sequence {αj given by (τω) (k) = Σ ap(j + k). We will call such mappings τ
j = - o o

"admissible."
For τ such an admissible mapping, define for R e Ms

Hτ(R)= inf /(#'). (3.2)

We prove below that if R has spectral measure G(0), then

(3.3)

Before proving (3.3) we need to examine how I(Rτ x) is related to I(R) for an
admissible map τ. We start with some preliminary lemmas. The first is easy and we
omit the proof. The second is a classic result found in standard references on
matrices.

Lemma 3.1. Let R e Ms and let Rn(yι,y2, ...,yn)be the n-dimensionaljoint density
for the R process, i.e., Rn(yly y2,...,yJdyι...dyn

Define, with φ(y)= , e~y2/2,
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Then, /„(#) — /„_!(#) is monotone increasing in n, lim (In(R) — In_1(Ry) = I(K) so
that also

Lemma 3.2. Let D be the determinant of a circulant matrix of order n, i.e.,

d1 d2 ...dn

dn dί d2...dn-1

Then

D = (3.4)

where Zn is the set of nth roots of unity.

Lemma 3.3. Let f ( x ) be a probability density in d-dimensions and let g(x) be the

d-dimensional Gaussian density, g(x)= .d/2 e~ ( 1 / 2 ) H*H 2 . Let A be a nonsingular
matrix. Then, ^ π*

(3.5)

-dx. Now,

+ ~ I (\\Ay\\2-\\y\\2)f(y)dy-log\A\.
2 Rd

Proof. We observe that if u(dx) = f(x)dx, then (aA~1)(dx) =
letting x = Ay,

J (\\Ay\\2- \\y\\2) f(y)dy-loe\A\.

As a preparatory lemma we consider admissible maps of a special kind - where
only a finite number of the elements in {ak} are different from 0.

Lemma 3.4. For any R e Ms, let I(R) be defined by (3. 1) and letτ:Ω-+Ωbe defined

by (τω)(/)= Σ akω(k+j), where, for some K, ak = 0 if \k\>K and \h(ff)\
fe=-oo

= Σ fy
k= -oo

Λkθ Φθ/orα//θe[0,2π]. Then,

(3.6)
2π o
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Proof. Let n>K where K is such that ak = Q if |fc|>JK. Consider the (2n+l)
x (2n+1) circulant matrix

Let £2«+1 be (2n +1) dimensional space and define a mapping E2«+1 ~^2« +1
by x->42n+pc. If ω ε Ω, let Γ2n+lω = (ω(j))^n, i.e., if ω = {xj, - oo < k< oo, then
Γ2n+ί is the section:

It is easy to see that if \i\^n — K, then

(τω) (ί) = (A2n+ίΓ2n+ίω) (ί). (3.7)

Define the density R'2n+1(y-n, ...9y0, ...,yn) by

and similarly define the density R2n+ί by

From the definition of In(R) in Lemma 3.1,

00

y_kdy0...dyk. (3.8)

From (3.7) we see that ^τ~1Γ2;i1-JRΓ27+1

1^2/1

+1Γ2;|1 provided l^n + K. In
particular, if we choose w = /c, l = k + K, we have

Therefore, from (3.8) we obtain

exp -
(3.9)

From Lemma 3.3 and (3.9) we get the estimate

+i\

. (3.10)
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Since R is stationary and αfc = 0 if
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lim
1

n + 1Γ2n+1ω\\2}=E

ER{\\Γ2n+1ω\\2}=ER{ω2(0)}.
and

Let c= lim log\A2n+ i l , divide both sides of (3.10) by 2k+1, let &-κx>, and
n ~* oo **n I 1

use Lemma 3.1 to obtain

(3.11)

Thus, it remains to show that

oo

where h(θ) — Σ αfc£lfcθ Since A2n +1 is a circulant matrix, Lemma 3.2 applies. We
k=~00

note that if ξ e Z2n+± then ξ J = ξ2n+ί J, Since ak = 0 if \h\ > K, we get

1
lim _

w^oo 2fl +

= lim

log\A2n+ί\= lim Π ( Σ

1
Σ log JΣ a£j= .Σ aje

j= -oo
dθ,

where, of course, in the last equality we used the properties of roots of unity and
that the last expression is finite since |Λ(Θ)| φO for all θ e [0,2π] by hypothesis.

In the preceding lemma we showed inequality (3.6) under the hypothesis that
the admissible mapping τ was in fact based on coefficients {ak} only a finite number
of which were different from zero. Using that result we can now show that for any
admissible mapping equality actually holds in (3.6).

Lemma 3.5. Let τ be any admissible mapping. Then, for any R E Ms,

A r- -̂ -, D~ — 1 r

- — f log
2π o fc=-oo

dθ.(3Λ2)

n

Proof. First define the map τn by (τnω) (/) = Σ akω(k+7) with the same αfe's as in
k=-n

the statement of the lemma. We apply Lemma 3.4 to τw so that for any R e Ms,

I(Rτ~ *) ̂ R^ 1 {ω2(0)} -

'2^ Jo

n

Σ
k=-n

dθ. (3.13)
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Since I(K) is lower semicontinuous on Ms, I(Rτ *)^ Km I(Rτn *). Moreover,
lim ERτ» 1{ω2(0)} = £Λτ"1{ω2(0)}, and

2π

lim — j log
n^ oo 2π 0

1 2π

dθ=—!log
2,71 o

Σ ake
k= -oo

ikβ

since
k= — oα

φ 0 for all 0 e [0,2π]. Thus, from (3.13) we conclude, for R e MS,

1
'"' {ω2(0)} - E*{

1 2π
Λkθ (3.14)

for any admissible mapping τ. Let gf(0) = Σ fl/e1-7'*. βy our hypothesis this is an
j=-oo

absolutely convergent Fourier series and 0(0)φO for any 0e[0,2π]. Wiener's
1 °°

theorem says that the L2-function 1/0(0) has a Fourier series ——- = Σ bijβ and

\bj\ < oo. Of course, Σ V
7"= -oo

Φθforall0e[0,2π].

Consider then the admissible map σ given by (σω)(j)= Σ bkω(k+j) and
fe=-oo

note that σ = τ~[. Apply (3.14) to σ and we get

/(tfσ-1)^
1

2π

" ' 2{ω2(0)} -

Γ ί log rtίfc0
k=-oo

dθ, (3.15)

where the sign in the last term on the right is now positive since
00

'C-l

fe= -oo

Λkθ

. But (3.15) is true for all R e Ms and, therefore, true in particular if

Σ
fe=-oo

we replace β in (3.15) by Rτ'1 yielding, since σ = τ~1,

or

2π

- f l o g
0

I-
1 2r\

Σ ^fe^ίfe

fc= -oo
dθ,

Σ <
fc=-oo

îfeθ (3.16)
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Inequalities (3.14) and (3.16) give us (3.12) for any admissible map τ which is the
lemma.

From the preceding lemma we see that for any admissible mapping τ, I(K) < oo
if and only if I(Rτ~*) < oo. Since an admissible mapping τ is 1 — 1 we observe that
for any τ in this class, and with σ = τ~1,

Hτ(R)= inf

= I(R)+-[ERσ~1{ω2(Q)} — E*{ω2(0)}] + — f log|/ι(0)|d#, (3.17)
2 2π o

00 00

where A(0) = Σ afije

9 and τ is given by (τω) (j) = Σ ^kω(k+j\ Note, that in
j= — oo fe = — oo

(3.17) the sign before the last term on the right is + [cf. (3.12)] because σ = τ ~1 and
the sequence {αj belongs to τ.

J 2π
Moreover if R e Ms has spectral measure G(0), then —- J dG(θ) = ER{ω2(0)}

2n o

and also since σ = τ x we have E*σ '{ω2(0)} = — J |L/^ |2. Hence, we can rewrite

(3.17) in the form

- ̂  TdG(0)+ ̂  Tlog|fc(0)|d0, (3.18)

which is formula (3.3) at the beginning of this section.
In formula (3.18) which holds for any admissible τ, replace I(R) by the last line

1 2π
in (3.1), using again that £Λ{w2(0)}- — f dG(θ\ so

2π o

f r(j;|ω)logr(;μ|ω)dy
-oo J

+ ̂ log2π+-ί-?^| + -̂  f log\h(θ)\dθ. (3.19)

Now, in particular, consider the mapping FN\Ω^Ω given by (2.5) or more
precisely, its induced map FN in Ms. This is an admissible map since

(*»(/)= Σ ^ i -
| fe |<N \

and therefore at most a finite number of the coefficients defining this map are

different from 0. Moreover, hN(θ)= Σ a k l - )^, defined in (2.2), never
\k\<N N

vanishes since by Fejer's theorem,
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where

= Σ 1-τr *".
\k\<N\ NJ

is strictly positive. If as before we let fN(θ) = \hN(θ)\2, then fN(θ) is the spectral
density of the process {X%}, and so with τ = FN and Hfκ(R) = Hτ(K), we get from
(3.19)

r(y\ω)logr(y\ώ)dy+±loS2π

I 2π

J logfN(θ)dθ. (3.20)

Formula (3.20) is the same as in Sect. 2 just after (2.17).
Finally, we must see in what sense HfN(R) approximates Hf(R) as defined by

formula (1.9). We begin with the following well known lemma.

Lemma 3.6. Let φ(x) be a probability density on JR. with two moments and let σ2(φ) be
the variance of φ. Then, for any α>0,

0 0 1 1

-oo ~~ 2 2α

1 Γ ( Λ 2 ")

Proof. Let φσ = —p=exp \ —~—>. We note
σ|/2π ( 2σ J

00 oo / <^(ιΛ \ °°

ί ^(y)log^(y)d);= J ^(y)log -—rτMy+ ί ^C)7)1^ ,̂̂ )^-
-oo -oo \Φσ,μ(y)/ ~»

The first term on the right is nonnegative being the entropy of one probability

density with respect to another. Now, logφσ^μ(y)= — log(σ]/2π)— —-^(y — μ)2,

and therefore

oo 1 1 oo

J φ(y) logφ(y)dy^ — -log(2πσ2) — —^ J (y — μ)2φ(y)dy.
— oo 2 2(7 — oo

GO

If, in particular, we choose μ= j yφ(y)dy and σ2 = α we obtain (3.21).
— oo

Lemma 3.7. Let τ be an admissible map and for R e Ms let

00

e(R)= J r(y\ώ)logr(y\ώ)dy.
— oo

If R'=Rτ-\ then

= e(R)- ^~]π \og\h(θ)\dθ, (3.22)
2π o
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00

where h(θ) = Σ apljQ an^ {flj}> — oo<j<oo are the coefficients defining the
j= -oo

map τ.

Proof. From (3.12) and (3.1)

- log\h(θ)\dθ
2n o

Using (3.1) on the left of this last equation we see that

= e(R)+ I

from which (3.22) follows.

Lemma 3.8. With fN(θ) and f(θ) as in Sect. 2,

lim \ogfN(θ)dθ= \ogf(θ)dθ . (3.23)
N-^oo 0 0

Proof. It suffices to show, since fN(θ) = h^(θ), that

lim

Now, hN(θ) = |/7 * ψN, where ιpN is Fejer's kernel. Therefore, by Jensen's inequality,

loghN(θ) = log(]/7 * ΨN) ^ l°g 1/7 * V>jv 5

so that

2π 2π 2π

I \oghN(θ)dθ^ J (logl//*φ^)dθ= J
0 0 0

and hence

lim J
Λ^-> oo 0

On the other hand, from (2.3) we have that {hN(θ)} are uniformly bounded and

log/ίN(0)-»logJ/7, so that from Fatou's lemma

lim J
N-»oo 0
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Lemma 3.9. Let Re Ms such that Hf(R)<oo; then there exists a sequence
{RN} € Ms such that {RN} converges weakly to R and

limHfN(RN) = Hf(K). (3.24)

Proof. From its definition (1.9),

1
Hf(R) = e(K) + -Iog2π + —

1 2π

— J (3.25)

where G(θ) is the spectral measure of β and e(R) is as defined in Lemma 3.7. From
(3.20), for any R'eMs,

1 1 2π dGf(ff\ 1 2π

f —
4π o

(3.26)

where G'(0) is the spectral measure of R. The way we construct the desired
sequence {RN} is to define RN = Rτ^ 1, where {τN} is a suitably chosen sequence of
admissible mappings which first of all will approach the identity map as JV->oo, so
that RN will converge weaky to R. Secondly, {τN} will have to be selected so that
(3.24) holds. Choosing τN means choosing a suitable sequence of coefficients. Let

= Σ *, where are the defining coefficients of the admissible

map τjy. Taking into account Lemma 3.7 and 3.8, we see that for τN to satisfy the
necessary requirements, gN(θ) must satisfy:

(1)

(3)

0

tin. T lg

lim J
Λί-oo 0

lim f*|flfΛ(β)-l|2dG(θ)=0.
JV^oo 0

Condition (1), because of (3.22), guarantees e(RN)-+e(R). Since the spectral
measure of RN, call it dGN(θ) = \gN(θ)\2dG(θ\ we see that (2), (1) and Lemma 3.8
insure that HfN(RN)^>Hf(R}. Condition (3) insures that τN approaches the identity
because it is the same as requiring ER{\ω(Q) — (τNω)(0)\2}-^0 as N-+OO.

Let . We will show

(1)'

(2)'

and

(3)'

2π

->0 N-+OO 0

lim lim

lim lim J* \
ε->0 N-+OO 0

= 0,

= 0,

- 1 | = 0 .
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This will mean there exists a sequence ε^-^O as JV->oo such that if we define gN(θ)
= gN BN(Θ), then (I)7, (2)', and (3)' imply (1), (2), (3) and hence the lemma. Because of

, , in.. rmi2

(2.3), gN,ε(θ)^yf(θ)/(\/f(θ) + ε) uniformly for 0e[0,2π]. Also
1

uniformly for θ e [0,2π]. Thus,

2π 2π

lim f Iog|0κ..(0)d0 = ί log
Λf-oo 0 0 \f(ff)+e

dG(θ)

(3.27)

and

"lim f|?ΛΓfί(0)-l|2dG(θ)= -1 (3.29)

2π

In (3.27), since by hypothesis J logf(θ)dθ> — oo, we see /(θ)>0 almost every-
o

where on [0,2π]. Thus

which shows (1)'. By the monotone convergence theorem

dG(θ) _ 2? dG(θ)
~

which shows (2)'. Finally by the bounded convergence theorem

2π

lim f
ε->0 0

-1 dG(θ) = 09

which shows (3)7 and completes the proof.
The preceding lemma was needed to complete the proof of the lower bound in

Theorem 2.8. We now prove a lemma providing what was needed for the upper
bound.

Lemma 3.10. Let HfN(R) be given by (3.20) and Hf(K) be given by (1.9). Then for
any />0,

(3.30)

is tight in Ms.
If {RN} is any sequence in Ms converging weakly to Re Ms, then

N-+OO
(3.31)
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Proof. From (2.3) we have that /#(0)->/(0) uniformly in [0, 2π]. From Lemma 3.8
2π 2π

we have that lim J logfN(θ)dθ= f Iog/(0)d0. Since
JV^oo 0 0

HfN(R) = ER\ J r(y|ω)logr(y|ω)dyj
(-00 J

2π

and

it suffices, in order to show (3.30) and (3.31), to show

0 {ReMs:ΦN(R)^l} (3.32)
N=l

is tight in Ms, and, for any sequence {RN} converging to R,

(3-33)
ΛT- oo

where

4π o

and

Γ oo ) 1 '2π

Φ(R) = ER I J^ r(y|ω) logr(y|ω)dy| + ̂  J

We start with Lemma 3.6 where the φ of that lemma is r(y\ω), giving us for any
α>0,

ER r(y\ω)logr(y\ω)dy^-log2πa--~dG(θ). (3.34)
(-00 J 2 2α 2π o

Since fN(ff)-+f(θ), there exists a c such that fN(θ) ^ c on [0, 2π]. Thus, from (3.34)

f
1, . 1 c 2,"ίίG(θ)

In this last if we let α = c/ε for 0 < ε < 1, we get

| f^--log— -- J -̂
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so that if ΦN(K) ^ I, then ! 2πc

4π,/ J V (0) = 1-ε '

Since fN(θ) is bounded by c on [0, 2π], this last implies

This means

and since the constant on the right depends only on / and not on N or R, we see that
00

(J {R e MS : ΦN(R) <; /} is tight, which is (3.22).

To prove (3.23) we want to show that if {RN} converges weakly to jR and ΦN(RN)
^M, then Φ(R)^M.

We just proved that if ΦN(R)^l then ER{ω2(0)} is bounded by a constant
independent of N. Thus if ΦN(RN) ^ M, we conclude that the second moments of
{RN} are uniformly bounded which in turn implies the total mass of the spectral

2π
measure of RN is uniformly bounded, i.e., j dGN(θ) is uniformly bounded. Hence,

o
by Helly's theorem (choosing a subsequence if necessary) {GN} converges weakly
to G'=G + Gi, where G is the spectral measure of jR and GL is nonnegative.

By hypothesis

C oo ") 1 2πJ/7 (ff\

ΦN(RN) = ER» j rN(y\ω) logrN(y\ω)dy + — f —^ ̂  M . (3.35)
I -oo J 4π o M#)

In (3.1) if, instead of entropy of R with respect to the stationary process
generated by independent Gaussian, mean 0 variance 1 variables, we let Iλ(R) be
entropy of R with respect to the same stationary Gaussian process but with
variance λ for λ > 0, then, of course,

— oo

From (3.35), we see that for any /l>0,

*
(3.36)

o /ΛfW

Now, 7Λ(jR) is lower semicontinuous on Ms, and so since RN=>R,

1? we conclude that

1 2ndG'(ff\ 1 1 2π

4Ϊ ί -ffi SM+ S'082"^ SI ί
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Therefore, using the expression for Iλ(R),

ERJ r(y\ω)logr(y\ω)

^ M + Iog2τd + --j. Λ?'(0) .
2 4π/t o

Since this last is true for any λ > 0, we let λ-> oo, after cancelling - Iog2π/l from both

sides, to obtain

Γ oo Ί 1 2π

ER\ f r(y\ω )logr(y\ω)dy\ + ̂ I
(-00 J 4π o

Since G/(Θ) = G(Θ) + G1(Θ) and G^fl) is nonnegative, we conclude that in fact

1

Φ(K) = ER f r(y|ω) logr(y|ω)dy — f — g M ,
4π o

which completes the proof.
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