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Abstract. In their previous work on large deviations the authors always
assumed the base process to be Markovian whereas here they consider the base
process to be stationary Gaussian. Similar large deviation results are obtained
under natural hypotheses on the spectral density function of the base process. A
rather explicit formula for the entropy involved is also obtained.

1. Introduction

Let {X,}, —oo<k< o0, be a stationary Gaussian process with E{X,}=0 and
E{X,X}=0;= 517; th ¢ £(0)d6. We assume that the spectral density function f(6)
is continuous on [0,27], f(0)= f(2x), and

Z(I)nlog 1(0)d0> — . .1

Let Q= _ IT R; where, for each j, R; is the real line, ie., Q is the space of

=—ow

doubly inﬁnite sequences of real numbers. We specify a point w € Q by v ={x;},
—oo<k<oo, and let w(j)=x; for —oo<j<oo. The process {X,} induces a
probability measure P on . We will denote integration over 2 with respect to P
measure by EF{}.

For each positive integer nand each o € Q,let o™ be the point in Q obtained by
the periodic extension in both directions of the elements x,, x,, ..., x, of w, ie., if
w={x}, —0o<k<oo, then ®™ is the point
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Let T be the shift operator acting on the points of Q. For each w € 2 and each
positive integer n, we define a probability measure on , call it 7,(w), as follows:

1
71.',,(60) = ; (50,(") + 5Tw(n) +...+ 5Tn~ lw(n)) . (12)

In other words, given w € Q and n> 1, n,(w) is the probability measure on Q which
assigns mass 1/n to ™ and to each of its (n— 1) translates. We note that 7,(w) is a
translation invariant measure on €, i.e., a stationary measure on Q. Let M be the
space of all stationary measures on Q and impose on M the topology of weak
convergence. We can use the mapping =, : Q— Mg and the measure P on Q to
construct a probability measure on M by defining, for each n, Q,=n,P ™', ie,if 4
is a set of stationary measures in Mg, then

0,(A)=P{lweQ:n,(w)e A}. (1.3)

The assumptions we made on the Gaussian process {X,} imply that it is an
ergodic process, and it then follows from the ergodic theorem that, for almost all @
(P-measure), the measure 7,(w) converges weakly to the measure P as n—o0, i.e.,

P{oeQ:m(w)=P}=1. (1.4)

Thus, with reference to the Q, measure on M given by (1.3), we expect that if the set
A contains the measure P, then Q,(4)— 1 as n— 00, whereas if P is not in the closure
of 4, we expect Q,(4)—0 as n—o0. In this paper we show that in this latter case
0,(A) approaches zero exponentially fast as n—o00 and we determine the constant
in the exponential rate. To be more specific, let R denote a general element of My,
i.e., a stationary measure on , and recall that f is the spectral density of our basic
stationary Gaussian process {X,}. We define a functional H «(R) which is, in fact,
the entropy of the stationary process R with respect to the stationary Gaussian
process {X,}, and H/(R): Ms—[0, c0] is such that:
If CC My is closed,

=1 .
lim ElogQ,,(C)g — inf H/(R), (1.5)
n— o ReC
and if GCMj is open,
.1 .
lim —logQ,(G) = — inf H/(R). (1.6)
n—wo ReG

Consistent with remarks made above it will indeed be true that H ;(P) =0. We give
an explicit formula for H «(R) in (1.9) below.

Let @ : Ms— IR be bounded and continuous, and let E2»{ } denote integration
over Mg with respect to Q, measure. From (1.5) and (1.6) it follows easily that

1
lim ~10g E2{e"*®} = sup [#(R)—H,(R)]. 1.7
n—> oo ReMg
Since Q,=n,P~?, equivalent to (1.7) is

q

1
lim ;logE” {e"® N} = sup [®(R)—H (R)]. (1.8)
ReMg

n— oo
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The main results of this paper then are (1.5), (1.6), their implication (1.8), and the
formula (1.9) for H «(R) which we discuss now.

Let Re Mgandlet,for ACIR, R(A|w)=R(X,€ A|X -1, X _,,...) be the regular
conditional probability distribution of X, given the entire past. Denote by r(y|w)
the corresponding density. If G(0) is the spectral measure of the stationary process
R, then the formula for H(R) is

Hf(R)=ER{ § ol 1ogr<y|w>dy}

1 2dG(o)
+= lo 27 +- j 50}

where it is understood that H /(R) is defined to be + oo if for any reason we cannot
define any of the ingredients in (1.9).

The authors have developed a theory of large deviations for Markov processes
(see [1, 2], for theoretical results and e.g. [3-5] for some applications thereof). In
theory, our methods should apply to rather general stationary processes, but it is
difficult to see in any great generality what the natural hypotheses to impose on a
stationary process are in order to obtain the analogues of (1.5),(1.6),and (1.8), much
less to obtain the analogue of (1.9) in anything like explicit form. For recent work in
this direction see Orey [6]. In this paper we consider the special case of a Gaussian
stationary process because as seen above the hypotheses needed are natural and
we obtain an explicit formula for the corresponding entropy.

In Sect. 2 of this paper we prove (1.5) and (1.6) but in doing so we must use
properties of H(R) and other entropies which occur in the proofs. So as not to
interrupt the argument we prove these properties in Sect. 3.

+— j log f(6)d0, 1.9

2. Proofs of the Main Theorems
Asin the introduction, let { X, } be a stationary Gaussian process and E{X o X ;} =0;

2n
= % | €°£(0)d0, where we assume that the spectral density function f(f) is
0

2n
continuous on [0,27], f(0)=f(2xn), and | logf(6)d6> — oco.
0

Let {&}, —oo<k<oo, be a sequence of independent Gaussian random
variables each with mean 0 and variance 1. If we let {a,} be the Fourier coefficients

of |/ f(0), ie., |/ f(0) = i a,e™, then we can write

Xo= 3 b= 3 bk @.1)

n=-—oo n=—o

Let N be a positive integer and define

hy(@)= aj<1 — %) e 2.2)

lil<N
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where the a;’s are defined in the preceding paragraph. Since f(6) is continuous and
f(0)=f(2n), we have by Fejer’s theorem,
lim sup2 |hn(0) =/ f(0)|=0. (2.3)

N-w 0£0<

For each N, define the process

N_ 1]
Xk—mZ<Naj<1 N)éf“" 2.4)
If we let fy(0)=h3(0), then fy(0) is the spectral density of the process {X}}.

In the introduction we noted that the process {X,} induces a probability
measure P on Q. Similarly the process {X} just defined induces a probability
measure PV on Q. Indeed, the family {&,} of independent, Gaussian, mean 0,
variance 1, random variables itself induces a probability measure on Q which we
will denote by p. Each of these three stationary measures on Q together with the
mapping 7, : 2— Mg of the introduction generates a probability measure on Mj.
We have already introduced Q,= P, !. Analogously, we define v, = un, * and for
each N, QN =P I, 1.

Ikl

For convenience let bk=ak<1 - TV—) and define the mapping Fy:Q—-Q by

(Fy(@) ()= X bkxj+k > (2.5
lk|<N

so that F is a moving average map of Qinto itself. The mapping F : @ —Q induces
a corresponding map Fy: M~ M.
We also have the mapping F:Q—Q given by

F@) D= 3 axjus, 26)

which exists for almost all w (u measure on Q), since i)‘, a? <o0o. We note that for
sets ACMs: r
0,(A)=P{weQ:n(w)eA}=p{weQ:n, - F(w)e A},
YA =P¥weQ:n(w)e A} =p{weQ:m,  Fy(w) e A}, 2.7
v(A)=p{weQ:m,(w)e A}.

It will be important to introduce also the probability measure O on M given
by Q¥ =v,F, * so that

ONA)=v,{ReMg:Fy(R)e AA=p{we Q:Fy - n,(w) e A}. (2.8)

To deduce the asymptotic behavior of Q, as n— o0, i.e., to prove (1.5) and (1.6),
we first determine the asymptotic behavior of QY as n— o0 and then let N—o00. To
obtain the asymptotics of QY we compare it with Y the asymptotic behavior of
which as n—oo follows from our earlier work and which we state below as
Theorem 2.2. Looking at (2.8) and (2.7) we see that to compare O and QY means
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comparing 7, - Fy(w) with Fy - 7,(w). Now,
Fy-m(w)= %[6FW<">,+5FN(W))+ ceet Oppn 1o s (2.9)
and
n, Fy(w)= % [0 wiwpm T OrEn@ym T -+ 01n- 17 y@pm] - (2.10)
Thus, to compare the two measures Fy - 7, and 7, - Fy, we need to determine when
T/~ (Fy(@)™ =Fy(T’'o™) with 1<j<n. It is clear that the difference of the

two measures 7, - F and F - 7, can be estimated in the variation norm over the
o-field generated by the first L components. We obtain

2N+L
—

17, Fy—Fy - mollp, < 2.11)

In the space M we have the topology of weak convergence. This topology can
be induced by the following metric. Let R, and R, be in M and let L be a positive
integer. Denote by RY and R% the respective L-dimensional measures one obtains
by considering the joint distribution of L successive random variables in the
processes R; and R,. We then define the distance between R; and R, in Mg by

® 1
d(R{,R,)= 1;:1 oL d,(R%, RY), (2.12)

where d; is the Prohorov distance for L-dimensional measures. This metric in M
yields the topology of weak convergence in M. We now can prove the following
lemma.

Lemma 2.1. For any 6>0 and large enough n,
WoeQ:d(n, Fy, Fy-1,)=e=0. (2.13)

Proof. From (2.12), (2.11), and the fact that the variation norm dominates the
Prohorov norm in L-dimensions, we have for n> N,

o]

~ 1 o 1 =
d(nn'FN’Fn'nn)é Z 2_1,”nn'FN_FN'nn”£'L__ z
L=1 nrL=1

Since the infinite series on the right converges, we can make the distance on the left
as small as we please by taking n large enough which implies (2.13).
As noted in (2.8),

ON(A)=v,{ReMs: Fy(R)e A} =p{we Q:Fy-m(w) e A} .

Since u measure on 2 comes from the sequence {&,} of independent Gaussian
variables with mean 0 and variance 1, the results of [2-IV] give us the asymptotics
of v, measure on Mg and hence of QY measure on Mj.
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In the introduction we defined for R € M the density r(y|w) of the regular
condition probability distribution of X, given the entire past. For R € M define

IR)=E* | r(ylw)log —IKM dyt, (2.14)
T = L2
|/2n
and define for R € My
H,(R)= inf  IR). @.15)

R'eMs:R'Fg1=R
Then in Sect. 3, formula (3.21), we show

HfN(R)=ER{ i r(ylw)logr(ylw)dy} + %log2n

1 2 dG(O) |
L ) ToBA(O),

where G(6) is the spectral measure of R and fN(O) (see just after (2.4)) is the spectral
density of the {X}} process.

Thus, from [2-IV] and the contraction principle discussed in that paper, we
have

Theorem 2.2. If CCMj is closed,

lim — logQN(C) <- 1n£ H;.(R), (2.16)

and if GCMj is open,
lim ﬁlogQN(G)> - 1nf H; (R). (2.17)

Using this and Lemma 2.1 we can prove the following theorem.

Theorem 2.3. If CCMj is closed,

Tim - 1ogQN(C)< inf H,,(R), .18)

and if GCMy is open,
lim . IogQN(G)> — 1nf H; (R). (2.19)

n—»oo

Proof. Let >0 and C°= U S(R, 8) where S(R, ) is the ball in M of radius &
centered at R. From (2.7) and (2.8) we see that

(O =p{we:m, Fy(w)e C}
<plweQ:Fy n(0)eCl+u{weQ:d(n, FyF, n,)=8}
=0N(C)+p{weQ:d(n, Fy, Fy-m,)26}.
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Let C? be the closure of C°. Then, from Lemma 2.1 and Theorem 2.2,

{im —logQN(C)< l1m —logQN(C‘j)< - 1nf H;.(R). (2.20)

n—oo

Since C is closed, H (R) is lower semicontinuous, and {R: H, (R) <K} is tight,
(cf. Lemma 3.10) we obtain (2.18) from (2.20) on letting 6—0.

For the lower bound, let G be openin Mgandlet R € G. Pick 6 >0 and an open
set ¥ such that R e VCV°CG. Then, again noting (2.7) and (2.8),

NGz (V)=p{weQ:m, Fy(w) e V’}
ulweQ:Fy-n(w)eV}—u{weQ:d(n, Fy, Fy-m,) =0}
=0 (V)—m{weQ:d(n, Fy, Fy-7,) 20} .
Using again Lemma 2.1 and Theorem 2.2,

lim —logQN(G)> lim —logQN(V)> - mf H,N(R’)> H;(R). (2.21)

n— oo n—>oo

Since inequality (2.21) holds for any R € G we obtain (2.19).
Before proving the next theorem we need some preliminary lemmas.

Lemma 24. Let {X,} and {X}} be defined respectively by (2. 1) and (2.4). There

exists a function &(N)=0(1) as N—o0 such that if 0 <A< ———, then for all n,

2¢ (N)
%ngﬂ {exp {/1 kil (Xk—X,’Q')Z}} <— %log(l —2e(N). (2.22)

Proof. First of all, let {¥;} be any stationary Gaussian process with mean 0,

. 12 . . - . . .
covariance y;= " | €79g(0)d0, and strictly positive definite covariance matrix
0

Yo V1---Vu-1
A = Y1 Y0 Vn-2 .

Yn-1--- Yo

Let c= sup |g(0). We show now that if A< — ! , then

0<0=2n 2c’
E{exp {/1 > Ykz}} <(1—=2c)7"2, (2.23)
k=1
To see this, first observe that if ¢, is the maximum eigenvalue of 4,,
n 1
2 ’ 1
E{eXP {ik; Y, }} l/IA_ (2n)"/2§ “Je p{l Z Yi— YA Y} dy,...dy,

1 1

<(1—24c,)™"?,

B |/|A,,| VA, =20 |/lT—204,
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providing A<1/2¢,. To estimate c,, consider

2n

1
Z Tl = f Z ne™?

which 1mp11es c,,S sup |g(9)| =c. Thus, (1—-2c,) "*<(1—-2ic)™™?* and
A<1/2c implies A< 1/2c,,, so we have (2.23). Now, in particular let

9(9)d9< o Sop lg(0) Z In;l%,

n=X¢—Xi= X% aj<l_%>£j+k_.2 aiiri-
J=—©

lil<N

The spectral density g() for the process {Y;} is now given by

00=| £ e~ 5 o(1-T)erl </ 7@ -nor

Let ¢(N)= sup |g(9)|— sup ||/f(0 —hy(0))?. From (2.3) we see &(N)=o0(1)
as N—oo, and from (2.23) 1f 0<l< 1/2&(N), then we have for all n,

2 logE{exp {,1 3 (xk—x,’f)z}} <~ Liogi =226,
n k=1 2

which is the lemma.

Lemma 2.5. Let o € Q be given by w={x;}, — 0 <k <o and let " € Q be given by
o' ={x;+ &}, —00o<k<oo. Then, there is a constant ¢ such that

d(r(), nn(w3)§c|/8%+—85§i8—5. 2.24)

Proof. By definition [cf. (2.12)],
d(m,(w), T(@) = Z 2L dy([m(o)], [m(@)]D) - (2.25)

Let o and B be two L-dimensional prob distributions and & and f their
characteristic functions. Since uniform convergence of characteristic functions on
compact sets in L-dimensions is equivalent to weak convergence in L-dimensions
which is equivalent to convergence in the Prohorov metric d; in L-dimensions,
we can write

4o f)= X, 75 sup )= fon). (2.26)

In particular, if a=0,, », . <) a0d B=0(x, +¢,,...,xs +er)» WE have from (2.26),

® 1
dL((X, ﬂ) g 2— < |e1<x 'I)_el<x+e n)l
® 1
= Z _S plel<sn>_1|
k= 2 [nl =k
® k
< el ; —==2lle] .
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Thus, from the definition of =,

dy([m(@)1L, [m(@)]1L)

2
§ﬁ(]/8§+8§+...+8f+\/8§+...+8%+L+...+|/£3+...+a,2,+L_1)

where ¢, ;=¢; Using Minkowski’s inequality on this last, we get

dy([my ()], [my(@)]1)

1
gz%[(sﬂ..-+ei)+(s%+-.-+s§+L)+-..+(e.%+---+s,%+L)]

L
=2‘/ﬁ—(af+s§+...+a,f).

Finally, from (2.25) and this last inequality,

2 2 3 5
d(m (), n,,(w'))_ 1 2]/L(81 +’:l..+s,.) 201/;4_ .;l.+gn ‘

Lemma 2.6. Let Fy and F be defined by (2.5) and (2.6) respectively. For any 6 >0,

n N 2 2
u{wc—:Q:d<nn'FN,n,,'F>;a}§u{wesz z@;f—} 2.27)

where c is the constant in Lemma 2.5.

Proof. From (2.1)and 2.4), X;= Y a,&,.,andxY= Y aj<1 - %l) Eip- I we

n=-—ow lil<N

let g, =X, —X¥, then X, =X} +¢&. Thus, from Lemma 2.5,
1 n

d(nn'FNann‘F)écl/ P Y (Xi—x)?,
k=1

Lemma 2.7. For every 6>0,

and (2.27) follows.

lim lim - logu{ws Q:d(n,-Fy,m,- F)=0}=— (2.28)

N-wn-wo

Proof. For fixed N, and 1 < 1/2¢(N), where &(N) is defined above in Lemma 2.4, we
have from (2.27) and (2.24) for any 6 >0,

n 2
ﬂ{weQ:d(nn~FN,n,,~F)_2_5}§,u{weQ:% Z(Xk Xk)2>5 }
k=1

1 x —Zlog(1 —22¢(N))
<E* {expnl (5 Z (X’I:I_Xk)z e—nézllﬂée—nézl/cze 2% £ .
k=1

Therefore, for any § >0 and A<1/2¢(N) with N fixed,

2
fim - log,u{a) €Q:d(n, Fy,m, F)=0} < — c—i ~Liog—2260).  (229)

nooo N
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Since &(N)=o0(1) as N— oo, we get from (2.29) that for all >0 and all 1>0,

2
lim 11m—10gu{a)eQ d(n, - Fy,m,- F)>5}<—%—&

N-ow n-owo H

In this last if we let A— o0 we obtain (2.28).
We are now ready to prove (1.5) and (1.6) of the introduction.

Theorem 2.8. If CCMj is closed, then

'}in; - logQ,,(C)< ml; HyR), (2.30)
and if GCMj is open, then

'}Lrg —10gQ,,(G)> — 1nf H(R), (2.31)

where H «(R) is defined by (1.9).
Proof. Let C be closed in M. Then,
0(0)=PlweQ:n(w)eCl=p{weQ:n, F(w)e C}.

For any >0, we have

0,02 p{weQ:n, F,e Cy+pu{we Q:d(n, Fy,n, - F) 23}
=PMweQ:n(w)eC+u{we Q:d(n, Fy,n,  F)=5}
=0N(C)+pu{we Q:d(n, Fy,m,- F) 20}
S0N(C)+u{weQ:d(n, Fy, 7, F) 25} .

From Theorem 2.3, this last inequality implies

Tim — log 0,(C)<max < - mf H,(R),A N(5)>

n—oo N

where Ay(8)= lim — log,u{a) €Q:d(n,- Fy,n,- F)=6}. From Lemma 2.7 we then
obtain, ot

lim —logQ,,(C)< — hm 1nf H, (R). (2.32)

From Lemma 3.10 below it follows that
lim 1nf H, (R)= 1nf HiR), (2.33)

N—w ReC

where H /(R) is given by (1.9). Using (2.33) in (2.32) we get

lim — logQ,,(C)< - mf H/(R). (2.34)

n—'oo

Since Cis closed and H ;(R) is lower semicontinuous (2.34) implies (2.30) on letting
6—0.



Large Deviations 197

For the lower bound, let G be open in M and let R be any element of G. Pick
6>0 and an open set V such that Re VCV°CG. Then

0.(0)20,(V)=ploeQ:m, Flw)e V’}
cp{weQ:n, - FyeVi—plweQ:d(n,  Fy, 7, - F) =6}
=0 V)—pu{lweQ:d(n, Fy,m, - F)=0}. (2.35)

Without loss of generality we can assume that H ((R) < oo for the R € G we picked.
As before, let

Ay(d)= lim %log,u{weﬂzd(n,,-FN, n,- F)=6}.

From Lemma 2.7 we can choose N so large that Ay(6) < —(H ((R)+ 3), i.e.,, we can
choose N so large that

wweQ:dn, Fy,m, F)=6}<e nHs®+3)+olm) (2.36)
Also, since V is open we obtain from Theorem 2.3,
lim ~10gQ)(V)2 — inf H,(R). 2.37)
n— o R'eV

In Lemma 3.9 below we prove that for an R € M such that H ((R) < oo, there

exists a sequence {Ry} in Mg which converges weakly to R and for which

lim H, (Ry)=H/(R).If welet 0<# <1 be given, then from (2.37) and Lemma 3,
N—-owo

since V is a neighborhood of R, we can take N so large that
lim ~10gQY(V)Z — inf Hy,(R)Z ~H, Ry Z —HAR)—1.
In other words, for N large enough,
Q,I,V(V) > o MHAR) T Fom) (2.38)
Using (2.38) and (2.36) in (2.35) we see that for N large enough

Qn(G) z e—n(Hf(R)+r])+o(n) _ e—n(Hf(R) +3)+o(n) .

Since 5 < 1 the first expression on the right is the controlling asymptotic term and
we get,

1
lim —10g0,(G)z —H (R)~1. (2:39)
Since 7 is arbitrary and R is an arbitrary element of G, we conclude finally that
lim + log0,(G)2 — inf H,(R),
n—w N ReG

which completes the proof of the theorem.
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3. Properties of Entropy

In this section we derive the formula for H ; (R) occurring in Theorem 2.2. We also
prove those properties of H ., (R) and H ;(R) which we called upon in obtaining the
upper and lower bounds in Theorem 2.8.

We will be somewhat more general at first and start with I(R) as defined by

(2.16). Note, that for R € Mg, and with ¢(y)= [/—12_—e—y2/ 2,
T

10 =5 § roiotog(U2)ar}

=5 1 rolontogriony| + Jlog2n+ JB0) . 6

Let {a,}, — 0 <k< oo be any sequence of reals such that 3" |a;| < oo and |h(6)|
j=1

Y ae’®| +£0forall € [0,2n]. Consider the mapping 7 : Q— based on such

==

a sequence {a;} given by (tw) (k)= 3 a;w(j+k). We will call such mappings t
j=—o©

“admissible.”
For 7 such an admissible mapping, define for R € M

H(R)= inf I(R). (3.2)

R':R't~!=R
We prove below that if R has spectral measure G(6), then

. 1 dG(H) _1_21: -1_21z
H(R)=I(R)+ 7 j B~ 4 (j) dG(0) + 5 (j) loglh(0)d0.  (3.3)

Before proving (3.3) we need to examine how I(Rt™!) is related to I(R) for an
admissible map 7. We start with some preliminary lemmas. The first is easy and we
omit the proof. The second is a classic result found in standard references on
matrices.

Lemma 3.1. Let R € Mg and let R,(y4, Y3, ---» V,) be the n-dimensional joint density
for the R process, ie., R,(V1, V2> --os V)dyy...dy,=R{X, €dy,, ..., X, €dy,}.
Define, with ¢(y)= Le‘yz/z,

|/ 2n

In(R)=S'Of)'j.Rn(y19y2" ’yn)IOg M dyldyn
7 j1=—[1 #(y)
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Then, I,(R)—I,_(R) is monotone increasing in n, lim (I,(R)—1I,_(R))=1I(R) so
that also noe
L(R)
n

lim =I(R).

n—> oo

Lemma 3.2. Let D be the determinant of a circulant matrix of order n, i.e.,

d, dy ..d,
| di drds
4, dy ..d d,
Then
D= I] @yttt 4,87, (3.4)

where Z, is the set of n'® roots of unity.

Lemma 3.3. Let f(x) be a probability density in d-dimensions and let g(x) be the

1 -
ze W% Let A be a nonsingular

d-dimensional Gaussian density, g(x)=

matrix. Then, @n)’
f(47 %) (f(A“x)/IAl> f(y)
L( A >1°g G ) LW lee gy
+3 1 (AP =131 S0)dy—loglA. 6.9
Proof. We observe that if a(dx) = f(x)dx, then (a4~ 1) (dx)= f (/‘11;‘1x) dx. Now,

letting x= Ay,

j(f(A | x)>log<f(A x>/|A!) - Lo g( f0) )dx—logIAl

w1 ) 4
= Lsonoe(2 ((y)))dy+ [s010g( 22 )ay-10gia
= [ SOy tog 2 ay 3 (LAY~ 131 5y —oglal.

As a preparatory lemma we consider admissible maps of a special kind — where
only a finite number of the elements in {a,} are different from 0.

Lemma 3.4. For any R € M, let I(R) be defined by (3.1) and let ©: Q—Q be defined
by tw)()= X ayw(k+j), where, for some K, a,=0 if |k|>K and |h(0)|
k=—o0

© .
— Z aketko
k=—o

+0 for all 6 €[0,2x]. Then,

IRt~ Y <I(R)+ % [ER {0?3(0)} — ER{w?(0)} — % 1 loglh(0)ld0. (3.6)
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Proof. Let n>K where K is such that q,=0 if |k|>K. Consider the (2n+1)
X (2n+ 1) circulant matrix
ay Gy...0, G_,...d_
An+1= a_l ao...an_l ...a_2 .
a, a, a_, a

Let E,, ., be (2n+ 1) dimensional space and define a mapping E,, , ;= E,,+;
by x— Ay, 1x. fwe Q,let [, . jo=(0())j<m i€, if ©={x,}, —00 <k <00, then
I, is the section:

x_n,x_n+1, ...,x_l,xO,xl, ...,xnﬁl,xn.
It is easy to see that if |i|<n—K, then
(t0) () = (Azn+ 1120 +10) (). 3.7
Define the density R, . ((V_ps o> Vo» -++» V) DY
R,2n+ 1(y—m cees Vs eees yn)dy—n"‘dyO"'dYH=RT_11—‘2;-}- 1
and similarly define the density R5,,, by
R/2n+ 1(y—-n7 cees Yoo ooy yn)dy—m '~'7dYO"'dyn=RFZ;-I}—IA;n1+1 .
From the definition of I,(R) in Lemma 3.1,

12k+ I(RT_ 1)= .f;".‘. R/2k+ l(y—ka ceey .Vo, LR yk)

R ks oees Vs cees
-log 1 Zk;klg * Y()I kyk) dy_4dyo...dy;. (3.8)
2i=-k

V2

From (3.7) we see that Rt~ 'I,,}, =R} A% I, provided [=>n+K. In
particular, if we choose n=k, I=k+ K, we have

-1p-1 _pr-1 -1 -1
Rz F2k+1_Rr2(k+l()+1A2(k+K)+1F2k+1'

Therefore, from (3.8) we obtain

I Py 1(RT—1)§ j“'“i'z(k+x)+ 1V —k—ks Yoo s Vit K)
-

R/Z(k+K)+ 1V Ktk s Yos o5 Vit &)

log [ \2G+B+1 | <K Ay gAY ik-
(=) el

)/ 2n (3.9)

From Lemma 3.3 and (3.9) we get the estimate
Iy 1(RT™ H= Lyg+xy+ 1(R)— 108|A2(k+x)+ 1l

1
+ EER{”AZ(k+K)+1F2(k+K)+ 160“2_ ”Fz(k+x)+ 10’”2} . (3.10)
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Since R is stationary and a, =0 if |k| > K,

1 ® 2 .
lim -—— E®{[| 45,4 1150+ 0% = ER{ } =E* {0*(0)},
n—o 2 + 1 j=—
and 1 R ) Re 2
lim E—E {113y +10( %} =E*{*(0)} .
1 .. .
Let c= lim pr log|A4,,+ 1], divide both sides of (3.10) by 2k + 1, let k— 00, and

use Lemma 3.1 to obtain
IRt HZI(R)—c+ % [EX H{w?*(0)} — ER{w*(0)}]. (3.11)

Thus, it remains to show that

2n

1
=5 (f) log|h(0)1d6 ,

where h(6) = Z ae™®. Since A,, ., , is a circulant matrix, Lemma 3.2 applies. We
k = -
note that if & GZZ,,.H then & 7/=¢2"+17J, Since q, =0 if |k| > K, we get

J

JLH;Z log|A2,,+1| nhn;2 +110g€e££+1<|1|z<”a§)
— lim —— > log ¥ g "=—1—2fn10g S aedo
n-»oo2n+1~§ezzn+1 j=-w ! 2n o = ’

where, of course, in the last equality we used the properties of roots of unity and
that the last expression is finite since |h(0)|+0 for all 0 € [0,27] by hypothesis.

In the preceding lemma we showed inequality (3.6) under the hypothesis that
the admissible mapping 7 was in fact based on coefficients {a,} only a finite number
of which were different from zero. Using that result we can now show that for any
admissible mapping equality actually holds in (3.6).

Lemma 3.5. Let t be any admissible mapping. Then, for any R € My,

do. (3.12)

IRe™)=I(R)+ 5 [B¥ {070}~ X0 )] 5 log| 3 ae®

Proof. First define the map 7, by (t,0) ()= Y. a,w(k+ j) with the same a,’s as in
k=-—n
the statement of the lemma. We apply Lemma 3.4 to t, so that for any R € M,

I(Re, HSIR)+ l[ER'"_ {0X(0)} — E{w?(0)}]

Z ae™ do . (3.13)

k=-—n

——Ilog
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Since I(R) is lower semicontinuous on Mg, I(Rt~!)< lim I(Rt, !). Moreover,

lim EX% {0?(0)} = EX**{»?(0)}, and e
lim — I log Z ae™® d0— — f log| ¥ a.e™|do
n—o 277: k=—n k=— o0
since E‘, a,e™| =0 for all 0 € [0, 2x]. Thus, from (3.13) we conclude, for R € My,
k=—o

IR Y SIR)+ 5 (B {02 (0)) — B0 (O))]

o -
Z akezkﬂ
k=-o

do (3.14)

L%
Tomg OB

for any admissible mapping 7. Let g(6) = Z a;e”®. By our hypothesis this is an
absolutely convergent Fourier series and g(9) +0 for any 6€[0, 277:] Wiener’s

theorem says that the I?-function 1/g(6) has a Fourier series —— 20 = Z b;e® and
] = — o0

0

Y. |bj<oo. Of course,

j=-w

0 Y
> b

j=—o

*0 for all 6 €[0,2n].

Consider then the admissible map ¢ given by (cw) (j)= % b.w(k+j) and
k=—o0
note that 6 =1""'. Apply (3.14) to ¢ and we get

IR SIR)+ 3 (B (0?(0)} ~ E0?O)}]

1 2n o .
+—[log| ¥ @e™|do, (3.15)
27 o k=—o
where the sign in the last term on the right is now positive since | ¥ a,e™?
k=—o
1 . . . .
=1 . But (3.15) is true for all R € M and, therefore, true in particular if

ik0)|
2 be
k=—o0
1

we replace R in (3.15) by Rt~ ! yielding, since 6=1"",

IR~ = IR SI(Re~") 3 [EM0A(O)) — % {02 (0))]

@© ry
Z aketke
k=—o

dao,

l 2n
+— [ log
27T o
or

IR ZIR)+ 5 (B (02(0)) ~ B0 O))]

Y ae™d. (3.16)

k=— o

1 an
~2n 4108
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Inequalities (3.14) and (3.16) give us (3.12) for any admissible map 7 which is the
lemma. ‘
From the preceding lemma we see that for any admissible mapping 7, I(R) < 0o

if and only if I(Rt~ ') < 0o. Since an admissible mapping 7 is 1 — 1 we observe that

for any 7 in this class, and with o6=1"1,

H®)= il I(R)=IRo™")
R/:R'z~ 1=
=I(R)+ % [ER*™ H{w*(0)} — E*{w*(0)}]+ % zfn log|h(0)|d8, (3.17)

where h(0) = fj a;e”?, and 7 is given by (1) (j) = Z ao(k + j). Note, that in

(3.17) the sign before the last term on the right is + [cf (3 12)]because 6 =1~ ! and
the sequence {a,} belongs to 7.

2n
Moreover if R € Mg has spectral measure G(6), then L | dG(6) = ER{w*(0)}
0

and also since 6 =1~ ! we have E** ™ {w?(0)} = 1 f I(;l?g)elz Hence, we can rewrite
(3.17) in the form
| 2 dG(O)
HY(R)=I(R + —
1
i (f) dG(0)+ E g log|h(0)|d6, (3.18)

which is formula (3.3) at the beginning of this section.
In formula (3.18) which holds for any admissible 7, replace I(R) by the last line

1 2n
in (3.1), using again that ER{w?(0)} = 3 | dG(0), so
0

H’(R)=ER{ T rolw) logr<y|w)dy}

" dG(6)

) h@F T2 jl g|h(0)|d6. (3.19)

log2 +4 j

Now, in particular, consider the mapping Fy: Q- given by (2.5) or more
precisely, its induced map Fy in M. This is an admissible map since

E00= % a(1- 4o,

and therefore at most a finite number of the coefficients defining this map are
different from 0. Moreover, hy(6)= Y ak<1 - %) e defined in (2.2), never
<N

vanishes since by Fejer’s theorem,

)= TV TP wu0-$ds,
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where

_ _M ik0
o=z (1 N)e :

is strictly positive. If as before we let fy(0) = |hy(0)%, then f(6) is the spectral
density of the process {X}}, and so with t=Fy and H (R) = H*(R), we get from
(3.19

HfN(R)=ER{ T rolo) logr(ylco)dy} n %loan

1 Zj" dG(B)
fN(9)
Formula (3.20) is the same as in Sect. 2 just after (2.17).

Finally, we must see in what sense H ;, (R) approximates H ;(R) as defined by
formula (1.9). We begin with the following well known lemma.

I log fy(6)do . (3.20)

Lemma 3.6. Let ¢(x) be a probability density on R with two moments and let *(¢) be
the variance of ¢. Then, for any a>0,

® 1 1
_fw 9(y)logg(y)dy = — 5 log2ma— Zaz(qﬁ) - (3.21)
Proof. Let ¢, ,= ol/lﬁ exp {— (yz—olzt)z} We note

9)
s,u¥)

The first term on the right is nonnegative being the entropy of one probability

T smoepiay= T 90 log( )dy+ ] 90)10gd,. )dy.

density with respect to another. Now, logd, .(y)= —log(c]/2n)— (y w2,

and therefore

I $(v) 108¢(y)dy>—110g(27t62) 52 f G —we(v)dy.

If, in particular, we choose u= | y@(y)dy and ¢*=a we obtain (3.21).

Lemma 3.7. Let t be an admissible map and for R € Mg let
e(R)= | r(ylw)logr(ylw)dy.
If R"=Rzt™ 1, then

e(R’)=e(R)— % 2(;)”1og|h(9)|d9 : (3.22)
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where h(0)= Y. a.’® and {a;}, —o0<j<oo are the coefficients defining the
j=—o

map .
Proof. From (3.12) and (3.1)

HR)=I(R)+ 3 B {00}~ EX{0?(0)1— 5 | loglh(0)do

1 | R 1 2#
=e(R)+ Elog2n+ EE {w*(0)} — 7 g log{h(6)|df .
Using (3.1) on the left of this last equation we see that

1 .
e(R)+ %10g27t+ zER {w*(0)}
=e(R)+ 110 2n+ 1ER/{COZ(O)}— -1—2[“10 |h(0)|d0
se)rploesnT 2wt ’
from which (3.22) follows.
Lemma 3.8. With f(0) and f(6) as in Sect. 2,
2z 2n
lim | log fy(0)d0= | logf(6)d6. (3.23)
N—-w 0 0
Proof. 1t suffices to show, since fy(0)=h3(6), that
2z 2n
lim | loghy(0)d0= | log]/ f(6)do.
N—-w 0 0

Now, hy(0) = W * 1y, where yy is Fejer’s kernel. Therefore, by Jensen’s inequality,

loghy(0)=log()/f *py) = log)/f *py,
so that

2n 2n 2n
g loghy(6)d0 = (I) (log‘/?*tp,v)d9= (f) logl/ f(6)do0,
and hence

2 2n
lim | loghy(0)d0= | logl/f(0)d6.
N-w 0 0

On the other hand, from (2.3) we have that {hy(0)} are uniformly bounded and
loghN(H)alog]/]_’, so that from Fatou’s lemma

. 2n 27
fim | loghy(6)do< | log)/f(6)do.
N—w 0 0
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Lemma 3.9. Let Re Mg such that H(R)<oo; then there exists a sequence
{Ry} € M such that {Ry} converges weakly to R and

P}im H, (Ry)=H/R). (3.24)
Proof. From its definition (1.9)
HyR)=e(R)+ = log2 +1- I dfG(g) jl og f(0)do, (3.25)

where G(0) is the spectral measure of R and e(R) is as defined in Lemma 3.7. From
(3.20), for any R’ e Mg,

1 27 dG/(6)
H, (R)=e(R)+ > 10g2 +—5 70

where G'(0) is the spectral measure of R’. The way we construct the desired
sequence {Ry} is to define Ry =Rty !, where {7} is a suitably chosen sequence of
admissible mappings which first of all will approach the identity map as N— 00, so
that Ry will converge weaky to R. Secondly, {ty} will have to be selected so that
(3.24) holds. Choosing 1, means choosing a suitable sequence of coefficients. Let

+- 51 ogfy(0)d0, (326)

0
gv@= 3 M where {c} are the defining coefficients of the admissible
j=—o
map ty. Taking into account Lemma 3.7 and 3.8, we see that for 7 to satisfy the
necessary requirements, gy(6) must satisfy:

(1) tim T loglgy(@)40=0,
lon ) 2 4G(0)
@ im 500~ o
) fim | lgn(0) — 1124G(0) =0.
N—=ow 0

Condition (1), because of (3.22), guarantees e(Ry)—e(R). Since the spectral
measure of Ry, call it dGy(6) =|gn(0)|*dG(0), we see that (2), (1) and Lemma 3.8
insure that H, (Ry)— H ((R). Condition (3) insures that 7y approaches the identity
because it is the same as requiring E*{|w(0) — (tyw) (0)|*} -0 as N —oo.

Let gy, (0)= ﬁm} We will show
N

ay tim im | loglgn, (0)d0] =0,
, e PPl OFdGO) 3 d6m)]
I§
@ tim tm | 74(0) - 76 |~
and
&) lim lim j lgn. () — 12dG(6)=0.

>0 N—
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This will mean there exists a sequence ey—0 as N — oo such that if we define gy(6)
=gn..y(0), then (1), (2), and (3) imply (1), (2), (3) and hence the lemma. Because of

(2.3), gn,0)=)/f(0)/(/f(0)+e) uniformly for 6e[0,2n]. Also ‘gl}s((g)) i
N
- m uniformly for 6 € [0,27]. Thus,
lim | loglgy (0)d0— 2j"log( /O >d0, (3.27)
N-w 0 ’ 0 f(0) +e¢
2 lgn (O)PdG(O) 2= dG(6)
1 : = , 3.28
EATR® e+ (29
and
11m f lgn,(0) —1?dG(60) = j } f(9 1 2dG(G). (3.29)
+e

In (3.27), since by hypothesis I log f(6)d0 > — oo, we see f(0)>0 almost every-
0
where on [0,2x]. Thus
T )/ 1 (©0)
lim | lo do=0,
g0 0 (|/f(0 )+e

which shows (1)". By the monotone convergence theorem
lim 2“ dG(0) 2§ dG(6)
i (/T@)+e? o fO)°

which shows (2)". Finally by the bounded convergence theorem

im [ JIO
|/ f(6) +e

=0 0
which shows (3)" and completes the proof.
The preceding lemma was needed to complete the proof of the lower bound in
Theorem 2.8. We now prove a lemma providing what was needed for the upper
bound.

2

dG(6)=0,

Lemma 3.10. Let H (R) be given by (3.20) and H ((R) be given by (1.9). Then for
any 1>0,

NC_'] {(ReMg:H, (R)<} (3.30)

is tight in M.
If {Ry} is any sequence in Mg converging weakly to R € M, then

lim H,,(Ry)Z H,(R). (3.31)
N->ow
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Proof. From (2.3) we have that fN(B) — f(0) uniformly in [0, 27]. From Lemma 3.8
we have that hm I log fy(0)d6= I log f(6)d6. Since

HfN<R)=ER{ { rolw) logrcvtco)dy}

74GO)

0 2 | 10800,

1 1
+ 510g2n+ |

and
H®=5 T rototog r(ylw)dy}

1 1 Z"dG(O)
+ 5 log2n+ If(())

5 4= | log /00,
it suffices, in order to show (3.30) and (3.31), to show

U {ReMy: 0pRI<] (3.32)
N=1
is tight in My, and, for any sequence {Ry} converging to R,
lim &5(Ry)2P(R), (3.33)
N-ow
where
@ = dG(6
¢N<R)=ER{ F rol0) 1ogr(y|w>dy} 4 L0
- o fn®)°
and

2®=£*] T rotontogrtiony} + 1 T4,

We start with Lemma 3.6 where the ¢ of that lemma is r(y|w), giving us for any
>0,

© 1 1 1 2zn
ER d > - — ——.—1daG 4
{_{n 7’( V'CO) logr(vla)) V} = 3 10g27t0t 20 21 g (9) . (33 )

Since fy(6)— f(0), there exists a ¢ such that f(0) <c on [0,2x]. Thus, from (3.34)

ER{ [ rl) 10gr(ylw)dy} > %loanoc— 2i sz” fn(0)dG(0)

= 2n o fy(0)
1 1 ¢ 22dG(6)
> ~log2mo— — ~ .
=T R 2 b )

In this last if we let a=c/e for 0<e<1, we get

7 1 2z d
2| T ropoogroions} 2 —gles”s* - TG,
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so that if @ (R) </, then 2me
I+ = 1 og—
12 dG(H)
4r o fN(G) l—s
Since f(0) is bounded by ¢ on [0,2x], this last implies
I+ llo 2ne
L T ac@y<c|—2 it
27 o = 1—
This means
I+ Llog 2%
BN O} s |——,

and since the constant on the right depends only on /and not on N or R, we see that

) {(ReMy: ®x(R)<1} is tight, which is (3.22)
N=1

To prove (3.23) we want to show that if { Ry} converges weakly to R and ®(Ry)
<M, then HR)=M.

We just proved that if @y(R)<![ then E®{w?*(0)} is bounded by a constant
independent of N. Thus if ®y(Ry) <M, we conclude that the second moments of
{Ry} are uniformly bounded which in turn implies the total mass of the spectral

2z
measure of Ry is uniformly bounded, i.e., | dGy(0) is uniformly bounded. Hence,
0

by Helly’s theorem (choosing a subsequence if necessary) {Gy} converges weakly
to G'=G+ G,, where G is the spectral measure of R and G, is nonnegative.
By hypothesis

ou®)=5*{ T ryontosnoionr) + -T2 D <p. a9

In (3.1) if, instead of entropy of R with respect to the stationary process
generated by independent Gaussian, mean 0 variance 1 variables, we let I,(R) be
entropy of R with respect to the same stationary Gaussian process but with
variance A for 1>0, then, of course,

I,I(R)=ER{ T r(ylw)logr(y[w)dy} + = log2n/1+ ER{a)z(O)}

From (3.35), we see that for any 1>0,
*dGy(0)
In(0)

Now, I,(R) is lower semicontinuous on My, and so since Ry=>R, fy(0)— f(0),
Gy=G'=G+ G, we conclude that

2dG/(6)
o f(0)

L(Ry)+ j <M+ —10g2 it 5 ERN{a)Z(O)} (3.36)

L(R)+ <M+ —10g2ni+ e I dG'(0). (3.37)
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Therefore, using the expression for I,(R),

E{ i roi) logr(ylw)}

1 21 dG'(6)
+ = 10g21t/1+ fdG(O) f 70

<M+ 110g27t/1+ I dGg'(6).

. . . .1
Since this last is true for any 4 >0, we let A— oo, after cancelling 3 log2n/ from both

sides, to obtain

=M.

} 1 27dG/(6)

ER {I r(ylw) logr(ylw)dy +—I 70 =

Since G'(6)=G(0)+ G,(0) and G,(0) is nonnegative, we conclude that in fact

®(R)=EX { T r(y|w) logr(ylco)dy} + % Zf:@

Ea » 7@ =M

which completes the proof.
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