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Abstract. Renormalization group equations describing the phenomenon of
intermittency in Hamiltonian systems are presented. All solutions satisfying
certain physical constraints are obtained; they are the complete set of simple
singularities. Further considerations lead to precise predictions for scaling
behavior at the onset of intermittency.

I. Introduction

It has long been known that a Hamiltonian system with one degree of freedom,
H(p, q\ has particularly simple behavior near an elliptic or hyperbolic fixed point. A
canonical transformation achieves Birkhoff's normal form

in the neighborhood of an elliptic fixed point, or the normal form

H(p, q) = apq + b(pq)2 + c(pq)3 + -• (2)

in the neighborhood of a hyperbolic fixed point [1,2]. What is the corresponding
normal form in the limit of marginal stability (a = 0)? An answer to this question is
found in the singularity theory of Arnold [3]. By limiting consideration to a special
type of behavior, called "simple," he obtains a discrete classification of the
possibilities. The results are not widely known or understood by physicists, perhaps
because of the unfamiliar mathematical techniques involved. Presented in this paper
is a physically motivated calculation of Arnold's simple normal forms, based on the
renormalization group for mappings introduced by Feigenbaum [4,5].

Feigenbaum's renormalization group for mappings has been used to study three
phenomena occurring in Hamiltonian systems: infinite cascades of period-doubling
bifurcations, the breakup of KAM tori and tangent bifurcations [6-11,23-25]. The
classification of simple normal forms is obtained through a comprehensive
treatment of the latter. The physical motivation for studying tangent bifurcations is
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that they provide a setting for a theoretical description of intermittency, a behavior
generally characterized by chaotic or irregular interruptions to an otherwise orderly
or regular motion. Pomeau and Manneville have suggested that this behavior may
be intimately tied to the local disappearance of periodic motion which may occur in
such a bifurcation [12,13]. They suggest that trajectories may spend a long time in
the region of phase space from which a periodic orbit has disappeared before finally
wandering away. If there is no attracting region elsewhere, it is reasonable to assume
that the trajectory will eventually return to this special region and orbit in a regular
fashion for another relatively long time. This repeated alternation between nearly
periodic orbiting and disorderly wandering describes qualitatively and quantita-
tively the intermittency observed in some electrical circuits and hydrodynamical
systems [14,15].

Later, it was observed that the calculations of Pomeau and Manneville could be
performed within the renormalization group formalism of Feigenbaum [16-18].
Further research showed that these results for dissipative systems (as represented
by one-dimensional maps) had analogs for Hamiltonian systems (as represented
by area-preserving two-dimensional maps) [9-11]. However, the problem has yet
to be treated in generality sufficient to obtain all solutions. In Sect. II, a derivation
of the appropriate generalization of Feigenbaum's equation will be presented. In
Sect. Ill, the set of all solutions satisfying several physically motivated constraints
are calculated (they turn out to be Arnold's simple singularities). The last section
concerns the physical predictions which follow from the analysis.

It is important to emphasize the differences between the present treatment and
the work of Arnold. While Arnold classified critical points of real-valued functions of
n real variables, the treatment here is formulated in terms of Hamiltonians with one
degree of freedom, which may be thought of as functions of two variables. For this
reason, the result in this paper is less general. However, it is precisely this limitation
which makes a direct calculation possible. It is hoped that Arnold's list of normal
forms will appear less obscure when it arises more naturally in this different setting.

II. The Renormalization Equations

An area-preserving mapping or canonical transformation of one degree of freedom
may be relevant in several physical situations. Such a mapping may arise as the
Poincare section of a Hamiltonian with two degrees of freedom, a description of lines
of magnetic flux in a Tokamak or a model for the beam-beam interaction in a
particle accelerator [19-21]. Integration of a Hamiltonian flow, such as that
induced by H(p, q), for a fixed amount of time also yields a canonical transformation.

In order for a periodic orbit to destabilize and disappear, certain local conditions
must be satisfied. It is sufficient to study the disappearance of fixed points, rather
than periodic orbits, as each element of a cycle of length I is a fixed point of the
mapping iterated I times. The inverse function theorem guarantees that a fixed point
depends continuously on parameters in the system whenever the linear stability
matrix of the mapping has no eigenvalues equal to one. For area-preserving
mappings of the plane, the product of the eigenvalues obtained in a linear stability
analysis is always equal to one. Thus a necessary condition for the disappearance of
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a fixed point of a canonical transformation is that the linear stability matrix have
both eigenvalues equal to one.

The property of a mapping, T, relevant to intermittency can be condensed into a
single quantity whose calculation is the object of theory. This quantity, called τ(p, q\
is defined as the number of iterations for which an orbit passing through (p, q) is
contained inside some small fixed ball around the fixed point, henceforth taken to be
the origin. In the limit p, g -• 0, τ will diverge and may be considered a continuous
function of its arguments. The possible asymptotic behaviors of τ(p, q) in this limit
may be obtained using a renormalization group.

By removing irrelevant information, the repeated renormalization of T yields a
canonical transformation with special properties. The first step in the renormaliz-
ation procedure is to change the scale

T-ΪT'ΞΞLTLΓ1. (3)

Here L is a 2 x 2 matrix of constants whose eigenvalues lie outside the unit circle.
The effect of repeating this operation is to reduce any mapping to a linear one. In the
case of an elliptic on hyperbolic fixed point the linear part provides a good
description of the motion, being a rotation or dilatation, respectively. In the

Ί s

marginal case, however, one renormalizes to the matrix I J (possibly with

A = 0). Too much information is lost in this process, so a compensating step in
the renormalization is necessary. To balance the slowing down of orbits scaled
towards the origin, the map is iterated k times

T -+ (Tf = (LTL- 1)fc = LTkL~\ (4)

The effect of this iteration on the basic quantity τ(p, q) is merely to divide it by k,
leaving details of the dependence on p and q unchanged. A priori, it is not clear that
this simple renormalization (merely a change of scale in phase space and time) will
have interesting fixed points. It turns out to be so. Note that for k = 2 this is precisely
Feigenbaum's functional equation [9-11, 16-18].

If a canonical transformation T is fixed by the renormalization it must also
satisfy the more general relation

T = LnTknL~n. (5)

This means that T has a kn-th root, namely LnTL~n. As kn -> oo this approaches the
identity, encouraging the assumption that it may be written as the exponential of
some vector field. [Area-preserving mappings form a Lie group; divergence-free
vector fields in the plane form the corresponding Lie algebra. In finite-dimensional
Lie groups the exponential map is onto some neighborhood of the identity.
Assuming this result in the infinite-dimensional case at hand results in exponentially
small errors which will not affect the results of this paper which apply in the scaling
limit (p, q) -> 0.] If this /c"-th root is an exponential, n may be considered a continuous
variable, rather than integral. Here lies the difference between intermittency fixed
points and Feigenbaum's fixed points describing period-doubling cascades. The
period-doubling fixed point is a mapping which does not fix the origin, and
consequently, its 2"-th roots map the origin yet further as n increases. Thus these
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transformations do not become infinitesimal in the limit n-> oo, and n cannot be
made continuous.

The continuity of n permits the fixed point equation to be reexpressed in terms
of vector fields rather than diffeomorphisms. This process corresponds roughly to
"taking logs." It is easiest to begin with the correct relation between vector fields and
exponentiate. The interest here is in obtaining the correct infinitesimal form of
Feigenbaum's equation. The precise conditions for the equivalence of the discrete
and continuous formulation will not be discussed. So, let I and v be vector fields in
the plane such that

[*,v] = v, (6)

where the bracket denotes the commutator of vector fields. Differentiation yields
directly that

^-(eslve-sl) = (esl(lv - vl)e~sl) = eslve~sl. (7)

as

Upon integrating with respect to s one obtains

eslve-sl = esv. (8)

By exponentiation and conjugation (the two commute) an analog of Eq. (5) is
obtained

ev = e-
slee'vesK (9)

The analogy is complete with the identifications T = ev and L = eι (the apparent
discrepancy in signs is due to the fact that operators compose differently than
mappings). The property that T is canonical or area-preserving translates into the
requirement that v be divergence-free, therefore of the form

'-ττ-τi
op oq oq dp

for some function H(p, q). By choosing H(0,0) = 0 the origin becomes a degenerate
critical point of the function H(p, q). For L to be a linear transformation with
eigenvalues outside the unit circle, the vector field I must be of the form

δ d
l = (ap + bq)— + (cp + dq)— (11)

op oq

with eigenvalues in the right half-plane.
After the introduction of the function H(p, q)9 whose Hamiltonian flow generates

% another simplifying transformation of the fixed point equation is possible. This
transformation is accomplished by means of the identities

oq
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These relations imply that [/, v] = v if and only if IH = (1 + a + d)H. The fixed point
equation is now written in its final form

IH = (1+ trace l)H = λH. (13)

The meaning of Eq. (9) is that orbits scaled by esl evolve es times more slowly; in terms
of τ(p, q) this means that

) = e-sτ(p,q). (14)

Or, upon differentiation with respect to s,

lτ=-τ. (15)

Combining Eq. (13) and (15) it may be concluded that

l(Hτλ) = 0. (16)

Since τ(p9 q) may depend only on orbits, and not on p and q individually, it must
locally be a function of H(p, q). Thus the formula for τ

τ(p,q)^H{piq)-^\ (17)

Thus the functional renormalization equation has been reduced to a simple
linear form, which involves precisely those variables necessary for the calculation of
the fundamental quantity τ(p, q).

III. The Renormalization Fixed Points

Why should one expect the leading terms of a degenerate Hamiltonian to be the
scale-invariant solutions of Eq. (13)? It is easier to understand when one should not
expect this scale invariance. Imagine that as parameters in H(p, q) were varied, both
the quantities a and b (of Eq. (1) or (2)) tended towards zero simultaneously. Then
the limiting value of the ratio a/b would determine properties of the leading behavior
"at criticality." This quantity would serve to set a scale of length in phase space,
breaking the scale invariance. Thus only those cases where b remains non-zero as a
vanishes may be expected to exhibit scaling. Intuitively, the leading behaviors of
interest are "smaller" than the term with coefficient a while being "larger" than the
term with coefficient b. Note that the canonical (but complex) transformation

\ 1/1 -i

transforms Eq. (1) into Eq. (2) and vice versa. This formal equivalence insures that
the notion of being "between" the leading two terms does not depend on whether
a = 0 is approached from the elliptic or hyperbolic side. This condition on the size of
scaling solutions will lead to the requirement that λ be greater than two.

Before solving Eq. (13), it is useful to study briefly the effects of perturbations.
The question is: how do small perturbations A T to a scaling canonical transform-
ation T grow upon renormalization?

T +Δ T^L(T +Δ TfL'1 = T+ΔV. (18)
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It is difficult to perform this calculation in terms of canonical transformations, but
very simple when formulated in terms of the Hamiltonians whose flows generate
them. In these terms, the renormalization is simply

) EE H'(p9q). (19)

The operator e~sl changes the scale in phase space and the operator esλ changes the
scale of time. By solving

(λ-ϊ)ΔH=ΛΔH, (20)

the eigenperturbations AH and their eigenvalues A may be found. Upon re-
normalization, the perturbation A H grows as esΛ, and hence is said to be relevant,
marginal or irrelevant when A is respectively positive, zero or negative.

Now the scaling equation (13) may be attacked directly. The first step in solution
is the diagonalization of the operator / by a linear canonical change of coordinates,
so that

Then, if

H(p,q)=YjAnmp"qm, (22)
n,m

the scaling equation (13) says that Anm = 0, unless

m + mδ = l+oc + δ = λ. (23)

In other words, the allowed values of m and n lie along a line in the space of pairs
(m, n).

In these coordinates, every monomial pnqm is an eigenperturbation with
eigenvalue A = λ — noc — mδ. In particular, the perturbation p2q2 has eigenvalue
A = λ — 2α — 2(5 = 2 — λ and is irrelevant only when λ>2.

In canonically equivalent coordinates the perturbation p2q2 becomes (p2 + q2)2,
which is therefore irrelevant under the same condition: that λ>2. So whenever
λ > 2, the scaling terms (which are marginal) will be "bigger" than the term with
coefficient b in the Birkhoff expansion (which is irrelevant). This restrictions forces α
and δ to be real. For if α = 5"is complex, then n must be equal to m in Eq. (23). From
this would follow the contradiction λ = n/(n — 1) ̂  2. Since a and δ are real and in
the right half-plane they are positive.

There is one final technical restriction on solutions to the scaling equation. The
flow of H(p, q) must not have curves consisting entirely of fixed points. Such a
Hamiltonian describes a tangent bifurcation in which a non-isolated fixed point
appears. Although theoretically possible, these solutions will be rejected as
unphysical.

The solutions are obtained by drawing lines an + δm = λ in (m, rc)-space. Such
lines divide the quadrant m, n ^ 0 into distinct regions. Lattice points (m, ή) in the
bounded region correspond to irrelevant perturbations (A = λ — an — δm > 0).
Those in the unbounded region correspond to irrelevant perturbations (A =
λ — an — δm< 0). Lattice points on the line an + δm = λ are clearly marginal.
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1 2 3 4 5 6
Fig. 1. Arnold's simple singularities ΛN

m

The restrictions discussed above have simple geometrical interpretations. If p2q2 is
to be irrelevant, the point m = n = 2 must lie in the unbounded region. If the line
p = 0 is not to consist entirely of fixed points, H(p, q) must contain some term pnqm

with n < 2. Similarly, H(p, q) must contain some term with m < 2.
It is now easy to classify the solutions. Acceptable lines in the (m, π)-plane must

contain a point with m < 2 as well as one with n < 2. The points (1,0), (0,1) and
(1,1) must always lie in the bounded region because A =l-\-oc + β-noc-mβ>O
for any oc,β>O. Thus if (2,2) is to be in the unbounded region, the line must pass
through at least one of the points (2,0), (0,2), (2,1), (1,2), (3,0) or (0,3). Since the
problem is symmetric under the exchange m<-+n, it is sufficient to consider lines
containing (2,0), (2,1) or (3,0). This geometrical division into cases corresponds
exactly with the classification of Arnold. Figure 1 shows the lines containing (2,0)

or /r

(24)

Figure 2 pictures those containing (2,1) or p2q

n *

1 2 3 4 5 6
Fig. 2. Arnold's simple singularities DN

m
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n

Fig. 3. Arnold's simple singularities EN

(Dp3 + Ap2q + Bpq2 + Cq\

N^.4, even

N ^ 5, odd '

Figure 3 shows those containing (3,0) or p3

CAp3 + Cq4

(25)

(26)

The list may be simplified via canonical transformation. All terms with
coefficients B or D may be eliminated. The absence of lines of fixed points ensures
that the new values of A and C will not be zero. Another canonial transformation
makes A= ±C9 so that all solutions are a scalar multiple of one of the basic
solutions

H{p,q)=\

P2±qN,
2N

(N-2)

2N

, N^3

p2q±qN, λ = - ^ - , N^3

' — 5

. 3 , ^ 3 η _ 9

(27)

p3+pq\ λ = %

These are the simple singularities of Arnold, called AN, DN and EN [3].

IV. Physical Consequences

A scheme of classification is only valuable when it results in a significant limitation of
possible behaviors. There are two criteria which determine which normal forms of
Eq. (27) are actually relevant to the physical problem of intermittency. The first
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criterion is the existence of a perturbation which eliminates the fixed point. The
condition that two eigenvalues be equal to one was necessary, but as will be shown,
not sufficient to guarantee the existence of such a perturbation. The relevance of a
solution may also be evaluated by counting the number of relevant perturbations to
it. Each of these corresponds to a parameter which must be varied to achieve
criticality. Experimental observation becomes difficult when there are very many of
them. Once the set of relevant solutions is determined, it only remains to describe the
behavior in each case. This is done by calculating the effects of relevant
perturbations on the basic quantity τ.

There is a simple relation between the winding number of a vector field and the
existence of perturbations which eliminate its fixed points. The winding number of a
vector field in some bounded region is l/(2π) times the net change in the argument of
the field along a path enclosing the zeroes of the field [22]. This is an important
characterization because it is invariant under perturbation. For example, the
winding number of a vector field with a single elliptic or hyperbolic fixed point is + 1
or — 1, respectively. The winding number of a field in a region with no fixed points is
equal to zero. Thus only those fields with winding number zero may lose all fixed
points through perturbation.

The winding numbers of the flows defined by the Hamiltonians of Eq. (27) are
easy to calculate. The answer turns out to depend only on the number of branches of
the solution set of the equation H(p, q) = 0. Each branch of the set H(p, q) = 0 is a
trajectory which approaches the fixed origin as ί-> -f oo or as ί-> — oo. Following
a circular path around the fixed origin, the flow direction on each branch is
opposite to that of the previous branch (because the flow is divergence-free). If
there are n branches, the argument changes by (2π — nπ) during one complete
revolution and the winding number is equal to (1 — n/2). So there exist perturbations
removing the fixed points only when H(p, q) = 0 has two branches. In each of these
cases it is easy to find such a perturbation explicitly. The following Hamiltonians
generate flows with no fixed points (when ε > 0)

H(p,q)=

P

P

P

4-

V
3 +

qn

q4

+
ιn-\
+

εq,

-εq,

εp,

n^3,r i odd

i odd

(28)

Thus only these Hamiltonians (with ε = 0) may be the leading behavior when a fixed
point disappears.

The likelihood of observing a given scaling form depends on its codimension,
defined as the number of independent relevant perturbations. There is an exact
correspondence between the codimension defined in this way and that defined by
Arnold in terms of "versal deformations" [3]. The method of calculating the
codimension will be illustrated for the series H(p, q) = p2 ± qN. All relevant
perturbations are included in the perturbed form

H(p, q) = p2±qN + pf(q) + "f w\ (29)
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where f(q) is a polynomial of degree [iV/2], The canonical transformation
(P> Q)-*(p — V2/(g), q) removes the term pf(q) from the Hamiltonian while changing
the coefficients ak. Then the canonical transformation (p,q)^>(p,q — (l/N)aN_ί)
removes the term α ^ . ^ " 1 . Any constant α0 may be removed by the canonical
transformation H(p, q) -• H(p, q) — a0. This leaves the (N — 2) relevant perturbations
q,q2,...,qN~2. The independence of these perturbations may be verified by an
analysis of the effects of infinitesimal canonical transformations. Thus the
codimension is (N — 2). A similar analysis gives the N independent relevant
perturbations p,q,q2,...,qN~1 to the Hamiltonian H(p,q) = p2q + qN, which there-
fore has codimension N. The Hamiltonians H(p, q) = p3 + #4, p3 + pq3 and p3 + q5

have codimension 5, 6 and 7, respectively. If one assumes that experimenters have
at most four independent knobs with which to control parameters, the list of
possible leading behaviors at the intermittency threshold is quite short

H(p,q)=lp2 + q5 (30)

[
These leading behaviors are of codimension 1,3 and 3 respectively. Being of
codimension one, the form p2 + q3 is "generic" and will arise naturally in cases with
no additional symmetry.

The final task for theory is to calculate τ in the presence of perturbations. The
behavior is dominated by the most relevant perturbation. Since A = λ — an — δm
and α ^ δ , this perturbation is ΔH = q and has eigenvalue A =λ-δ = l + a.
(Exception must be made for the case H(p, q) = p3 + q4 + εp where the perturbation
p has eigenvalue A = 1 + δ.) As mentioned earlier, the effect of renormalization is to
fix scaling Hamiltonians while slowing down orbits by a factor es. If ε rescales as eA\
then the perturbed Hamiltonian is also fixed by this renormalization. Since τ
decreases as e~s while ε increases as eM, it must be that

1 ^ . (31)

The most interesting potential application of this theory is to Hamiltonian
systems with many degrees of freedom. When a stable periodic orbit disappears in
such a system, the local behavior splits into two parts (in perturbation theory). One
degree of freedom is marginal, in the sense of this paper, while the others are all
elliptically stable. Thus one might expect the same behavior as in the one degree of
freedom case (modulated by a small quasiperiodic function). Of course, due to
Arnold diffusion, the perturbation theory breaks down on an exponentially long
time scale. Nevertheless the phenomena described, which occur on a shorter power-
law time scale, may be observable.

Note added in proof: I wish to thank Prof. Michael V. Berry for bringing his interesting related work to my

attention [26, 27].
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