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Abstract. The problem of characterising those quantum logics which can be
identified with the lattice of projections in a JBW-algebra or a von Neumann
algebra is considered. For quantum logics which satisfy the countable chain
condition and which have no Type I, part, a characterisation in terms of
geometric properties of the quantum state space is given.

Introduction

Quantum logics, as defined below, are o-complete orthomodular lattices. They have
been vigorously investigated in recent years. In most mathematical formulations of
the foundations of quantum mechanics the lattice of “questions” associated with a
physical system is a quantum logic.

Important examples of quantum logics are, in order of successive generalisation:

(a) The lattice of all closed subspaces of a separable Hilbert space.

(b) The lattice of all projections in a von Neumann algebra.

(c) The lattice of all projections in certain Jordan operator algebras known as
JBW-algebras.

Characterisation of those quantum logics isomorphic to (a) have been obtained
by Piron, in 1964, (see [8]), and by Wilbur [9], in 1977. Can one characterise those
quantum logics isomorphic to the lattice of all projections in a von Neumann
algebra, or in a JBW-algebra, by geometric properties of the quantum state space
of a quantum logic?

We obtain a partial solution to this problem by restricting our attention to
quantum logics which satisfy the countable chain condition and which have no
Type I, part (see below for definitions). We show that, when Q is such a quantum
logic, there are three geometric properties which will be satisfied by the quantum
state space of Q if, and only if, Q is isomorphic to the lattice of all projections in
a JBW-algebra.

We also, as a corollary, give a geometric characterisation of those orthomodular
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lattices which are isomorphic to the projection lattice of a countably decomposable
von Neumann algebra with no Type I, direct summand.

Let L be an orthomodular lattice with orthocomplementation x+>x*. A
probability measure, ¢, on L is a non-negative real valued function, ¢: L—->R_,
such that ¢(0)=0, ¢(1)=1, and if (x,) is a sequence, in L, of mutually disjoint
elements for which v x, exists, then ¢( v x,) = X ¢(x,). (The sequence (x,) is said to be
mutually disjoint if x, < x;,, for every m,n, with m # n.) The set of all probability
measures on L is a convex set which we shall denote by K; .

The convex set K is said to be strongly full if the following three properties are
satisfied.

(1) For x,yeL we have x < y if

{peKpd(x) =1} = {peK :d(y) =1}.

(2) Whenever x, yeL and ¢eK,; with ¢(x) = ¢(y) =1, then ¢(x A y) = 1.

(3) Whenever ¢ lies in a proper norm-exposed face of K;, then ¢(x) = 0 for some
non-zero element x of L. (A face F of K| is said to be norm-exposed if there exists a
bounded affine function, b, on K, such that b>0 on K;\F and b=0 on F))

The orthomodular lattice, L, is said to satisfy the countable chain conditions
(abbreviated c.c.c.) if every family of mutually disjoint elements in L is at most
countable. It is said that Lis a quantum logic if v x, exists in L whenever the sequence
(x,), of elements of L, is mutually disjoint. It is easy to see that a quantum logic which
satisfies the c.c.c. is a complete orthomodular lattice.

Consider the orthomodular lattice L and let x be an element of L. The order
interval, L[0,x] = {yeL;y <x}, is an orthomodular sublattice of L with the
complementation y— x A y*. The element x of L is said to be abelian if L[0, x] is
distributive. The elements y and z of L are said to commute if y and z generate a
distributive sublattice of L. The set of all those elements of L which commute with
every other element of L is said to be the centre, Z(L), of L. It is said that L is factor if
Z(L)={0,1}.

If L is a complete orthomodular lattice, then so is Z(L) ([5], [8]) and,
consequently, for each x in L we can define the central support of x in L:

ox) = A {yeZ(Lyx < y}eZ(L).

We say that the complete orthomodular lattice, L, has Type I, part if there exist,
in L, disjoint non-zero abelian elements x, y such that x v y = ¢(x) = ¢(y); is disjoint
abelian elements x,y can be chosen so that x v y=c(x)=c(y)=1, then L is
said to be of Type I,.

Recall that the convex set, F, is said to be spectral if it is the base of a base-norm
space, (V, F), and (V, F) is in spectral duality (see [1, Sects. 6, 7]) with A%(F) ~ V*,
where A%(F) represents the bounded affine functions on F. The spectral convex set F
is elliptic if P(Q — Q")P' =0 for all P-projections P,Q of A%F) (Q' represents the
quasi-complement of the P-projection Q, [1]).

Tochum and Schultz [6] have shown that a convex set is (affinely isomorphic to)
the normal state space of a JBW-algebra if and only if it is spectral and elliptic.
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Theorem. Let L be a quantum logic satisfying the countable chain condition with no
Type 1, part. Then L is isomorphic to the lattice of all projections in a JBW-algebra if
and only if K, is strongly full, spectral and elliptic.

Proof. Suppose that K = K| is strongly full, spectral and elliptic. Given an element
x in L, define the element £ of A°(K)™*, by £(1¢ + (1 — AW) = Ap(x) + (1 — H(x),
2€[0,1], ¢, YyeK. Notice then that condition (1) in the definition of strongly full
implies that the map L— L = {%:xeL} is an order isomorphism and that L is an
orthomodular lattice, isomorphic to L, with the lattice operations defined by X v ) =
(x v Y)Y, £ A P=(xAY);®R)" =(x"). We may therefore suppose that L is contained
in A%K)" and that x = X, for each x in L. Observe that (with the above identification)
1 is the order unit of 4%(K), and that for x,y in L,
xt=1-xxvy=x+y ifxZ<yhxayt=x—y ify<x

Furthermore, since K is spectral and elliptic, we can identify 4%(K) with a JBW-
algebra, M, which has normal state space K, by the result of Iochum and Schultz,
[6, Theorem 1.5], mentioned above.

Let ¢ K. The condition (2), in the definition of strongly full, implies that the set
{xeL; ¢(x) =1} is downward directed. Since L is a complete lattice, this means that
@(s(9)) = 1, where s;($) = A {xeL; ¢(x) = 1}, the support of ¢ in L. Let (¢;);.; be a
maximal family in K for which the s;(¢;) are mutually disjoint. If I is infinite, then we
can take I = N, since L satisfies the c.c.c.. It is easy to check that condition (1) implies
that for each non-zero y in L there exists ¥ in K such that y(y) = 1. It follows from
this that X's;(¢,) = 1. Now with ¢ = X(1/2"¢,, we see that s,(¢) = 1 (when I is finite,
the proof of the existence of such ¢ is similar). Observe now that condition (3) implies
that ¢ is a faithful normal state on M. In addition, since a JBW-algebra has a faithful
normal state if and only if its lattice of projections satisfies the c.c.c. (the proof is
similar to the usual W*-proof, see [7, 11.3.19]), it follows that every projection in M
is the support projection of some normal state on M.

The range projection, (a), of an element a in M * is the projection in M which is
the unit element of the hereditary JBW-subalgebra of M generated by a. We note
that for each x in L, 1 — r(1 — x) < x £ r(x). In addition, since ¢(a) = 0 if and only if
¢(r(a))=0,aeM™*, ¢ = K, it follows from (1) that the following three conditions are
equivalent for elements x, y of L: (i) x < y; (ii) r(x) < r(y); (iii) x < r(y). In particular, for
x in L, r(x) =1 if and only if x = 1.

Let now p belong to P, the projection lattice of M, such that p+#0, 1. By the
above remarks, there exist ¢ in K such that p = s(¢p)—the support projection of ¢ in
P. Since ¢ then lies in a proper norm exposed face of K, there exists x in L, x # 1, with
¢(x)=1. But then, ¢(1 —r(l —x))=1,and so p=s(¢p) <1 —r(1 —x) < x.

It follows that L < P. Indeed, let yeL. Then r(y) r(1 — y)# 1. Suppose that
q=r(y)r(1 —y)#0. Then, it follows from the preceding paragraph that there
exist a non-zero x in L such that x < g < (), r(1 — y). Consequently, x <y and
x < 1—y, implying that x=0, a contradiction. Hence, r(y)r(1 —y)=0, which
implies that y(1 — y) =0. Therefore y is a projection.

Let v denote lattice suprema in P. Then, for x,yin L, x v y < x v y. On the
other hand, given ¢ in K, if ¢(x v y) =0, then ¢(x)=¢(y)=0, so ¢(x v y)=0,
by (2). Hence, by (1), x v y < x v y. It follows that L is a sublattice of P.
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Finally, since, as we have seen, given peP, p # 0, there exist non-zero elements of
L dominated by p, we can choose a maximal mutually disjoint family {x,} in L
dominated by p. Then, for each ¢ in K, ¢(V x,) =Zp{x,} = $Zx,). So, v x,=
Xx, < p and hence v x,=p, by maximality. Consequently, L = P.

To obtain the converse we shall make essential use of the results of [3] which
generalizes the work of Christensen [4] and Yeadon [10, 11].

Let us now suppose that L is isomorphic to the projection lattice P, of a JBW-
algebra, M. Then K = K is affinely isomorphic to the set of probability measures (as
defined here) on P, also denoted by K. From [3, Lemma 3.5(iii) ], for example, we see
that M has no Type I, direct summand. Therefore, since P satisfies the c.c.c., it
follows from [3, Corollary 5.5] that K can be identified with the normal state space
of M. Therefore, as can be seen from the results of [ 1], K is strongly full for P and, by
[6, Theorem 1.5], we know that K is spectral and elliptic. This completes the proof.

By [6, Theorem 2.9], the normal state space of a JBW-algebra M has the global
3-ball property if, and only if, M is the self-ajoint part of a von Neumann algebra.

This observation and the above theorem gives the following corollary.

Corollary. A quantum logic L which satisfies the countable chain condition and with no
Type I, part is isomorphic to the projection lattice of a von Neumann algebra if and
only if Ky is strongly full, spectral, elliptic and has the global 3-ball property.

References

1. Alfsen, E. M., Shultz, F. W.: Non-commutative spectral theory for affine function spaces on convex
sets. Mem. Am. Math. Soc. 172 (1976)
2. Alfsen, E. M., Shultz, F. W.: On non-commutative spectral theory and Jordan algebras. Proc.
London Math. Soc. 38, 497-516 (1979)
3. Bunce, L. J., Wright, J. D. M.: Quantum measures and states on Jordan algebras. Commun. Math.
Phys. (to appear)
4. Christensen, E.: Measures on projections and physical states. Commun. Math. Phys. 86, 529-538,
(1982)
5. Holland, S. S. Jr.: A Radon-Nikodym theorem in dimension lattices. Trans. Am. Math. Soc. 108,
67-87, (1963)
6. Tochum, B., Schultz, F. W.: Normal state spaces of Jordan and von Neumann algebras. J. Funct.
Anal. 50, 317-328 (1983)
7. Takesaki, M.: Theory of operators I. Berlin. Heidelberg, New York: Springer 1979
8. Varadarajan, V. S.: Geometry of quantum theory. Vol. I. Amsterdam: van Nostrand 1968
9. Wilbur, W. J.: On characterising the standard quantum logics. Trans. Am. Math. Soc. 233, 265-282
(1977)
10. Yeadon, F. J.: Measures on projections in W*-algebras of Type II. Bull. London Math. Soc. 15, 139
145 (1983)
11. Yeadon, F. J.: Finitely additive measures on projections in finite W*-algebras. Preprint

Communicated by H. Araki
Received February 1, 1984





