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Abstract. We investigate Dyson’s hierarchical vector valued ¢* model at low
temperatures. The case 2 >c¢> 1/5 is considered. The pure phase is constructed,
and the existence of its large scale limit is proved. The limit is Gaussian, but an
unusual normalization has to be chosen. In the direction of the spontaneous
magnetization one has to divide by the square root of the volume, but in the
orthogonal direction one has to divide by a different power of the volume for all
low temperatures.

1. Introduction

In this paper Dyson’s hierarchical vector valued ¢* model is investigated at low
temperatures. First we describe the model we are working with (see [2, 7]).

We define the volumes V, ,, V; ,CZ,Z={1,2,...}as V, ,={j,jeZ,(k—1)2"<j
<k-2"%,n=1,2,..,k=1,2,.... Put V, ,=V,. For i, je Z we set

n(i, j)=min{n, there exists a k such thatie V; ,, je V, ,}.
The hierarchical distance d(i, j), i, j € Z, is defined as
0 if i=j
d@i, j)= - .
@J) {2"0’”—1 if ]

The spins o(i), i € Z, take on values in the m-dimensional Euclidean space R™. The
energy of a configuration o= {a(i), i€V, ,} is defined by the formula

Hy(0)= > UG (@);0(), (1.1)
@), i)
i,jeVi,n
where U(i, j)= —d ™ “(i, j) and (-;-) denotes scalar product. In particular
Hyo)= 3 UG, ))(a();0()). (L.
@ J),i%j

i,jeVn
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The value a, 2 >a > 1, is called the parameter of the model. We assume throughout
this paper that 3/2 > a > 1. We shall often use the quantity c =22 instead of a as it
is done in Dyson’s original paper [8]. Our assumption on a means that ]ﬁ <c<2.
Given a configuration ¢’ on Z—V,_, we define the Hamiltonian of the configur-
ation o= {0(i), i € ¥, ,; under the boundary condition ¢'={0(j), je Z—V, ,} as

Hy ,(0lo)=H (o) + X Z U(l N(a(@); ().

i€Vi,n j¢V

Given a probability measure v on R™ we deﬁne the Gibbs distribution in the
volume ¥, , at inverse temperature  with boundary conditions ¢’ by the formula

exp[ — fHy, .(010)]

pldolfv,0) = =L EETES TT w(do(h), (12)
Bnlov,0) =l exp[— BHi (ol6)] @] T] v(doD). (1)

In this paper we consider the vector valued ¢* model, where the measure v is
defined as

v(dx>=L‘1exp<— 7 07— ("52")> dx,
L= Rfm exp<— %(x; x)?— _(x;x)) dx

Here u >0 is a parameter of the model, and we shall assume that u <u,, where u, is
a sufficiently small positive constant. A measure x on (R™)% is called a Gibbs state
with potential H at inverse temperature f if a u distributed sequence a(i), i € Z, of
random variables has the following property: For all volumes ¥}, and almost all
configurations ¢'={a(j), je Z—V, ,} (with respect to p) the conditional distri-
bution of the random vector o ={0(i), i € ¥, ,} under the condition ¢” is given by
the formulas (1.2) and (1.2"). This is the usual definition of Gibbs states (see e.g. [7]).

We are going to investigate the Gibbs states with the above defined potential H
at low temperatures. We choose the following approach. We consider an external
magnetic field with h=he,, e; =(1,0, ...,0), i.e. we define the potentials

Hi (0)= X UG, j)(0G);0())— Z (h; o(i))

@@, J),i¥j i€Vie,n
LjeVi,n

for a configuration o= {0(i); i€ V;_,}, and then the measures

exp[ — fH,(0)]

(1.3)

ta(dalB, v)= Z6.) i!VInV(dG(i)),
ENB,v) =] exp[ — pH}(0)] 11 W(da(d)),

over (R’”)V" foralln=1,2,...,h=0 and f>0. We shall denote by y,(do|p, v) the
measure u*(ds|B, v) when h 0 We shall prove that the limits

w'(dolB, v)= lim tu(dolB, v) (1.4)
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and
fi(dol|p,v)= }gr(l) 1'(dalB, v) (L.5)

exist. If these convergences are established, it is not difficult to prove that
u" and ji are Gibbs states at the inverse temperature f§ with potentials H"* and H
respectively. We are interested in the measure j constructed in this way.

Our discussion heavily depends on a large deviation result about the
distribution y,(dx) of the average T 2, a(i) of the u,(da|p, v) distributed spins o (i),

ieV,
which will be formulated in Sect. 2. It states in particular the existence of a critical
inverse temperature . such that for >, the measure y, is concentrated
essentially around a sphere of a positive radius. First we shall formulate the
following

Theorem 1. a) Relation (1.4) holds true for all B> ., and h>0.

b) Relation (1.5) holds for all B> f.,.

In both cases the lim is meant as convergence of the finite dimensional
distributions in the variational metrics.

Actually Theorem 1 holds also for f < f., but we shall not prove it. We have
considered the double limiting procedure (1.4) and (1.5), because in this way we
construct the so-called pure phase, i.e. a Gibbs state which cannot be decomposed
into a micture of other Gibbs states. We are interested in the behaviour of the
Gibbs state ji(da|f, v) defined by (1.4) and (1.5).

Let 6(j) = (a)(j), ..., a™(})), j € Z, be a sequence of random variables with the
distribution fi(do|f,v). Introduce the new random variables T"a(j)
=(T"Vj), ..., T"a"™(j)), j € Z,

T"eM(j)=2""2 Z @VP)—-M@PB), jeZ, n=1,2,...

reVijn

T”a(i’(i)=<]§>n > o0p). i=2..m.

peV;n

The quantity M(f) will be defined in Sect. 2. Actually M(B) = Es'"(p). Our main
result is the following

Theorem 2. The multi-dimensional distributions of the random sequence T"o(j),
jEZ, tend to those of a sequence 6(j) j € Z, of Gaussian m-dimensional random
variables. For all k>0 the random vector (6(1), ..., G(2¥)) has the density function

q 2k . 2
3 (2se(3 )
i=1

2k 1 ) 2k j—1 .
P x(" + X Z d(i, l)’“x}‘)x(-”>},
i=1 i=11=

L, exp {

0*
where L, = L,(f, u) is an appropriate norming constant, and q = 257 D(s, B, u)ls=pep)»

where the function @ appears in the large deviation result of Sect. 2. The absove
result holds for all f>f.,.
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Theorem 2 is a central limit theorem for the fi(do|p, v) distributed random
variables. In the direction of the first coordinate, i.e. in the direction of the so-called
spontaneous magnetization, one has to normalize by the square root of the
number of terms. But in the orthogonal direction one has to normalize by a
different power of the number of terms. Such an unusual normalization also
appears in the scalar model, but only at the critical temperature (see e.g. [5-7]), and
not on a whole interval. We emphasize that in our model both the Hamiltonian
function and the free measure are invariant under all rotations. It is believed that in
models with such a symmetry for all low temperatures one has to normalize in the
direction orthogonal to the spontancous magnetization in the same way as at the
critical temperatures. The proof of this conjecture in the general case seems to be
very difficult. Our aim in the present paper is to show its validity in a relatively
simple case. The unusual normalization in our case is connected with the following

Corollary. The correlation function of the j(do|B,v) distributed random variables
satisfies the following relation. For i=2,...,m

2—0)%¢
2B(c—1)(4—c)
The exact order of the correlation function E[(c"(j)—Ec"(j)) (a'¥)(k)

—EcW(k)] can also be determined as d(j,k)—oco. Since it requires tedious
calculations we omit it. We only remark that

Z E(O'(i)(i) _ Eo.(i)(]-)) (G(i)(k) — Eo.(i)(k))

JjeZ

Eo9(j)aO(k) ~ G, ky*=* as d(j,k)—oo.

is convergent for i=1, and divergent for i=2,...,m. This indicates weak
dependence in the direction of the magnetization and strong dependence in the
orthogonal direction. The unusual normalization in our model is due to this strong
dependence.

2. A Large Deviation Result

Let p,(s) =p,(s, B, u) denote the density function of the distribution of the average
spin 27" ¥ o(i), where the spins a(i), i€ V, are p,(da|B,v) distributed. In this
ieV,
section we present an asymptotic formula for p,(s) which we need later. We deduce
it from a more general result.
Introduce the energy function

H,,l0)= 2 UG (e@);0()))

i,jeVn

u . . . .
+ ¥ 5 (00); 00)*+ £ (a(0); (1),

ieV, 4 2
where u>0 and u are real numbers, o ={0(i); i € V,}, and otherwise we use the
notations of the previous section. Put

Zn(57 U, u) ZI 5 <2—n Z J(l) —S> exp{ _Hn,u,u(o-)}

eV,

- T1 do(i), seR™,

ieV,
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and Z,(5, 1,u)

Pn(sa.uau)= = (# M) s

where d(-) denotes the Dirac delta, and Z,(u, u) = | Z,(s, u, u)ds. By substituting o (i)
1
=|/Ba’(i), u= —, pu=— we get that
=1/Bo(i, ﬁz n=gwee

Pu(s, B, u)=P, <V—s PR >1/[7 2.1

Hence we can deduce a good asymptotic formula for p,(s) by first proving it for
Z.(s, 4, u). In order to formulate such a result we introduce some notations.

We say that a function @(r, u) = &(r, u, u), r, u, u € R* belongs to the class S, (we
shall omit denoting dependence on u if it causes no ambiguity) if

u—
2

2 ) . . .
o the function R(r, 1) is even in its first coordinate, and it satisfies
—c

the following conditions:
p IR o't

o(r, u)——r + B %02 4 R, ),

where a, =

R
o e C(K)ifi+j<2, j<1 for all compact sets K CR?, and for i+j=2
1+]
or'op
some multlplymg factor C(K). Moreover C(K) < constu(1 +diam K)?.
itj
11) 6riauj r=0

4 10RO .
R(r,p)= =il : ;,,i’ H r*+o(r*), where O(:) is uniform in p.

and j<1 ——— satisfies the Holder condition of order ¢,=% —a in r and y with

exists if i+2j<4, j<1 and it is continuous in .

2

or?
03R
or*ou

iii) R(0, 4)=0, ‘%—f <C <cu?,

ru,

=Cu?, =Cu,

d*R oR ' <y
r=0

ot o orou| =

where C does not depend on r and p.

If u>0 is sufficiently small, and ® € S,, then

a) there exists a unique “critical point” u,=a,+ O(u) (depending on @) such

0*P
that a7 =0.
r=0,u

b) Let M(,u)>0 be the (unique) solution of the equation ®(M(u),w)

= mrm &(r, ). Then M(u)=0 for u=p. and M(p)>0 for u<p..

Let us fix a function y(x) e C*(R") such that

o (01 i x<0.1
TO=0x it x>0,2

and 0,15y(x)£0,2if 0,1=x=<0,2.



492 P. M. Bleher and P. Major

Since the functions Z,(s, 1), P,(s, 1), p.(s, ) are rotation invariant in their first
coordinate, it is enough to define them in the case s=(r,0, ...,0), r € R*. We shall
denote these functions also by Z,(r,u), P,(r, 1) and p,(r,u), r€ R'. Now we
formulate the following

Theorem A. Assume that2>c> 1/5 and &> 0. There are some constants C=C(c)>0
and uy >0 such that for any 0 <u <ug there exists a function ®(r, u) = D(r, u, u) € S,
(with the bounding constant C in the definition of the class S,) such that in the
domain

U= (=G} with ¢=001-(5)
the following asymptotic expansion holds true:

4
—InZ,(r, p, ) =2"0(r, )+ ¢" 5> 9,2 Lypon_ mln<—

gin2=min(( )

(1, u)+0<2"(“_%”)),

where ay,= o ay=ay+1, and
1e . 2\"* 9% "“l 0P
= — — —J — _ — .
wen=—g g2 (e (57 < mlule (750 )]

2.2
and the O(:) is uniform in r and u. Moreover @2

Zr ) S(1+0ENZ((1 ="M, ) i Irl<(1—e")M(u)
with some £<1.

Theorem A is a multi-dimensional generalization of the result in [3]. We
explain the modifications needed in its proof in the Appendix.
Theorem A and formula (2.1) enable us to give a good asymptotic formula for

p.(s, B, u). In the sequel we write &(s, f, u) instead of (D(Ws ik ﬂ) where @ is
defined in Theorem A.

. . . 0*0(s, B)
Let 8, be the (unique) solution of the equation a2 |~ 0, and for > f_,
s=0
. .. . . 0D(s, p)
M(p) the (unique) positive solution of the equation 25 =0. Put
a
2.0 =00+ L (5] . 3

We write down the estimates on p,(s, ) we need in the sequel. Sometimes we omit
the argument S.
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Let us fix some K> M(f). We claim that
Pu(y, B)=(1+0(E)pu(x, B) exp{ —2"®;(x) (y —x) = 2"~ 1 &}(x) (y —x)*} (2.4)

1/20
with some £ <1if K=x=M(f), |y—x| <2 "?o" w1tha—[m1n<2 2)] . Here
c

the number ¢ <1 and the O(-) are independent of x and y.
The following estimate also holds true:

Pay; BY S (1+0(E))py(x, B exp{ —2"®;(x) ) — %) —2"B(y—x)*} (2.5

with some B>0 if M(f)<x<K, y>M(p)—0,01 <—§—> . Here again B>0, (<1,
and the O(') is independent of x and y. On the other hand

P DS (10, (M(ﬁ) —~0,01- (g) ﬂ) 2.5)

n

if |y| < M(B)—0,01 <§>

To prove (2.4) first we observe that by Theorem A and (2.1)
Pu(¥) = pu(x) (1 +0(&") exp{ — 2"(P,,(y) — @,(x)) — (W, () — wu(X))} -
A Taylor expansion shows that
2'[@,(y) — D, ()] =2"B;(x) (y—x)+2" 1B} (x) - (y—x)*+ O(&"),

because 2'[ () — B4(x)] (y—x) = O(&" if [t —x| <24, and |y—x| <2 """
It remains to show that

Yul) — (%) = 0(&") . (2.6)
Put ,(y) —,(x)= —%(I; +1,) with

— 3 - ,
11 jgoz In s %n+;la—¢()
4T \e x or

I,= 'Z 2” [ln(%zz (y)+< >n+ja1) —ln?,:T;p(xH- <§>n+jal>].

To estimate I, let us observe that

0
re[x 1 ar

and

C 60<D> Zconst(1+|x—y)y'/?,

hence
1 0d(x) 1845(y)

<const(jx—y|+|x—y|2 - y/?).
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This relation together with the relations

ln% <Cla—b| if a=0,1, b20,1

and
Cila—b| = x(a)—x(b)| = Csla—bl/(1 +|a—b|"'?)
imply that
+(2) i 20)
In Z\ 4 c y or
2\"*1 0@
Ha+(5) L5
¢
2 n+j y3/2
< - — Ay —"
=const<c> (Ix—=yl+Ix—yl )1+IX~y|3/2’
hence
2 n 5 y3/2
<c-|=z — 2y
I,=C <c> (Ix—yl+1x—yl )1+|x_y|3,2. (2.7

Since |x —y| <]/2"", hence (2.7) implies that I, = O(¢"). On the other hand since
62
(z)>C>O if z>M(f)—0,01- <2> , hence

62 az
L= S T (0)~In1 5 (9 +0()=0(&".

2
The proof of (2.5) is similar but simpler. Since %r—?(u) = C>0, we have
—2'[@,(y) — B,()] £ —2"}(x) (y —x) —2"C(y—x)*.

On the other hand y,(y) — w,(x) = O(£") (2"(y —x)* + 1), which can be proved
with the help of (2.7). Formula (2.5) follows from these relations.

3. The Idea of the Proof

The proof contains rather tedious calculations. Hence first we explain the main
ideas of the proof in an informal way.

Let u* y(do|B, v), n< N, denote the projection of the measure yh(do|B, v) to the
volume V,. We are going to give a good asymptotical formula for the Radon—

h
Nikodym derivative d"[;—”N Then we briefly explain how Theorems 1 and 2 can be

n
proved by means of this formula. In this section we state and prove our results in a
non-rigorous way. Later we shall prove these statements rigorously.
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We need the following result

Theorem B. Let o(i), i€ V,, be u,(do|B,v) distributed random variables. Put ¢,
1

=, 2 o(i), and let y,(dx)=y, ; ,(dx) denote the distribution of &,. Then

2" i&v,
i n(dolB, v) =L, n(B) £t N(EDuta(da|B,v)
with

f;t':N(x) =Ts1 Tz TNfJ\’/', ~(X); f]\}; n(x)=exp[2VB(h; x)],

where

T.f (x)=exp(Bc™ ' (x; ) f ( )?m 1(dt),

and I% \(P) is an appropriate norming constant.

Theorem B is a slight modification of the main formula in [2]. Its proof goes in
the same way, hence we omit it.

Now we are going to find a good asymptotic formula for £ (x). We omit the
subscript N and superscript 4 if it leads to no ambiguity. For the sake of simplicity
we restrict ourselves during the whole proof to the case m=2. As we shall see the
measure ,u,l v 1s essentially concentrated on such configurations o(i), i € V, for

which 2 Z o(i)~M=(M,0), where M is defined through the equation

dy(M)=h. Hence it is enough to give a good asymptotics for f,(x) in a small
neighbourhood of the point M. By Theorem A the measure y, has the density
function P,(x)=p,(x]), and p,(x)~L,exp(—2"®,(x)) for x~M. Put f(x)
=L, expy,(x), where L, is chosen in such a way that y,(M)=0. We claim that
Pu(x) ~gu(x; — M)+ A4,x3 if x=(x,, x,) ~M, and we give explicit formulas for g,
and A,. This relation can be proved by induction; namely yy(x) =2"Bh(x, — M)
=gn(x; —M)+Ayx3 with gy=2"ph and A, =0. By Theorems B and A

Pu(x)~C,+Infexp [ﬂc"(x R (x;—t) 2"<15,,(t)_ dt. 3.1

The integral in (3.1) is concentrated around its maximum, hence

X+
WuX)~ Gyt sup [W(X D+ Wni1 < > ) 29 n(ltl) : (3.2
This maximum is taken near the point M, but we need a better approximation for
the point ¢t where the right-hand side of (3.2) takes its maximum. To get such an
approximation we are looking for the maximum of y,(x) on the circle |t|= M. The
term 2", (jt|) is constant on this circle, and

x+t X+t Xy 415 \?
o (E29) < (5 ) e (225)
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In such a way we give the following approximation ,(x) for y,(x):

) ’ n X+t X,+t 2
Wn(x)=cn+ltsllf%|:ﬂc (x1t1+x2t2)+g,,+1< 12 1_M>+An+l< 22 2> J,

¥u(M)=0. (3.3)

Let us calculate the place of maximum t=(t,t,) of the expression (3.3) by
Lagrange’s method of multipliers. We get the equations

Bemx, + 92—“ =2,

A
Be"x,+ L (X, +1,) =24,
ti+t5=M?.
We shall solve this system of equations only approximately. Since ¢, ~ M, and x,

~ M, hence 24~ fc"+ In+1 , and we get the following approximate solution for ¢,

2M
. A
and t,: e+ ,.2+1 -
ty= Xy, t=M—-2. 3.4
g n_ n+1 In+1 ? ! 2M 34
b=+
Therefore

P(x)=Cy+ <ﬁc”M+ g"T“>x1+[< por St~ ﬁ'&lxtz)

Ap+s 2 In+1
miif ] (2] |z dnrr,
e e () - %

If we substitute x, by M in the coefficient of x3, then the above formal calculations

suggest that
l»Un(x) ~gn(x1 - M) + Anx§ ’

where g, and A4, are defined by the following recursive formula

=ﬁcmM+%, gy=2YBh, m=N-1,...,0. (3.5)
1 2
"+ -4,
4 = (ﬁc +gm+1> d 27
" 2 4M lgm+l _ A1 +fem
2 M 2
1 2 A
Bt 5 Ay (ﬁc’”+;"“>ﬁcm
Am+1 2 2
+ 1+ +
4 lgm+1_Am+l +Bem gm+1_Am+1 +Bem
2 M 2 2M 2

m2.y (Im
(ﬂc )*+ < S 1 be > m+1
= , m=N—-1,...,0, Ay=0.

Im+1  Amsr
+1 _ Tmt1 m 3.5
M 3 + fc (3.5)
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Later we shall see that these rather rough calculations give an approximation
sufficiently good for our purposes.
In the region where the measure ! y is concentrated we may write

d h n
N (v x@y

n

g 12 O\
~L exp{ z Z xP—M)+ A, (2,, '21 x‘”) } (3.6)

For a fixed h> 0 the first term is dominating in the exponent of the right-hand side
of (3.6), while the second term is negligible. It is easy to see that g,=g,(N,h)
~ Bh-2"4+0(c") as N—oo. Hence the expression on the right-hand side of (3.6) is
almost independent of N. Exploiting this fact, we get, by letting N go to infinity in
(3.6), that the restrictions of the measures p to ¥, have a limit as N—oo. This
implies part a) of Theorem 1. Part b) can be proved by means of a similar but more
careful limiting procedure, when N—oo and h—0 simultaneously. In order to
carry out this limiting procedure first we have to investigate the behaviour of the

A :
sequences g, and 4,. Put g,= and 4,= c" It is not dlfﬁcult to see that g,

In

28 M
25 . if N— oo and h—0. On the other hand 4,—» A= ﬂ—A in this case. It is
natural to expect such a result for the following reason. Because of relation (3.5")

the value A= lim A,(N, h) has to be the solution of the equation

N—- oo
h—0
LB\, (3,38
z(z) +A<§+zz g
é ﬁ ) g—'z_c
2

A=c

g
2 +

2 a

This equation has two solutions: AV =p~——and 4® = DI AW < AP, Since
¢

our iteration starts with 4, =0, the smaller root of this equation must appear as the
limit.
Exploiting the above relations, and carrying out a limiting procedure just as
was done with relation (3.6), we get that the limit lim u* = ji exists, and moreover
h—0
%(Xm, X2
dp,

1 1 20 \?
~ L, exp {gc”M Z (x9 — M)+ Ac" < > x‘2”> }, (3.7
j=1

where fiy,_is the projection of the measure ji to the volume V. Hence Theorem 1 hold
true, and formula (3.7) helps us to prove Theorem 2.
Indeed, with the help of formula (3. 7) and Theorem A we can get a good

approximation for the density function of o > o(j), where the random variables
jeVa
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o(j) are g distributed. This approximation of the density will be of the form
K, exp{gc"M(x, — M)+ Ac"x3 —2"®,(|x|)} = exp{H,(x)} (3.8)

in the vicinity of the point M=(M, 0). Making a Taylor expansion around the
maximum of this density function (the maximum is actually in the point M) we get
the exponent of a quadratic form. This implies that T"s(j) is asymptotically
normally distributed. The multi-dimensional distributions in Theorem 2 can be
calculated similarly.

Let us finally discuss how the normalization in Theorem 2 must be chosen. To
this end we have to determine the variances of the random variables G¢"

Z o¥(j) and ¢ = Z o?(j), where the random variables o(j) = {a'}(j),

2" JjeVn J€Vn
o @(j)} are jidistributed. The vector 6, =(¢'V, ¢'?) is asymptotically Gaussian, and
i

. .. 2H\ !
its density is given by formula (3.8). Therefore DG{"~ — <g—x2— and DG?
02H\ 1 1
~— <W) , and these partial derivatives are taken in place of the maximum of
2
the function H, ie. in M=(M,0). It can be seen that D'V ~const-27" as it is
0P L
expected. On the other hand observe that 6§c’x’) =0, implies that
1 Ix=M

2
(27? =0. Now, since ?,(x)=P(x)+ —— aof <2> x3, the above relations imply
2x=M
HM . .
that THM) ~const - ¢" and Do'® ~const - ¢ ". This fact explains the unusual

0x3
normalization in Theorem 2.

4. Some Preparatory Remarks

In this section we discuss some technical details needed during the proof. First we
give some estimates on the Radon—Nikodym derivative

AN 1) e N @
—dr(x g eeey ) f;, x +...+x ) (41)

d/ln N
du,

+ x‘z").> We formulate two kinds of estimates. Property A(n) states an estimate on

(By Theorem B the Radon-Nikodym derivative —™~ is a function of x*+ ...

Sy in the typical region, and Property B(n) gives an upper bound everywhere.
Later we shall prove that both A(n) and B(n) hold true.

Let M=M(N,h), h>0, N>N, with some N, denote the (unique) positive
solution of the equation

Py(s)=hp, (4.2)
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where the function @, is defined in (2.3). (Since the argument f is fixed during the
whole proof, we shall generally omit it.) Introduce the set

D()=D(n,N,h)= {x = (X1, X2)uX; —M(N,h)| <2 202,x3< c—"oﬁ} (4.3)

1

. . (2 c*\ |0 .
with ¢ = | min Y . Now we formulate the following

Property A(n).

fivx) =L, yexp{g,(N, h) (x, —M(N, h))
+ A,(N, b)x3+ 0(&")}

for x € D(n), where f)\(x) is defined in (4.1), 0<&<1, I% \ is an appropriate
norming constant, and the constants g,(N,h) and A,(N,h) are defined by the
recursive formulas

gn(N, h)=2"hp,

gm(N,h)=ﬁc'”M(N,h)+g—m“§V’—m, m=N—1,...,1, (4.4)
AN(th)=O,
l(ﬁc"‘)2+Am+1(N, h) Im+1 (N, 1) +§ﬁcm
AN, h)="2 SM(N,h) ' 4 N
'"’ o (V) Aper(NR) sl
2M(N, h) 2
(4.5)

Let us introduce the notations R,=M(8)—0,01 <£> and R,=M(p)

2
0,02 (c\" . . L~
-1l . We have chosen R, in such a way that3(R,+R,) =R, +,n=1,2, ....

Now we formulate the following

Property B(n) .Put M =M(N,h),M=(M,0),9,=9,N,h), A,=A,(N,h)and p= g
There exist some L>0, 0<&<1 such that N *
a) For all ye R', x € R? such that |x|<y, y>R, we have

San() = £ (M) exp{g,(y — M) + Lp"(y— M)* + O(&")} .

g 1/2
b) For x| T, |T—M|<d, with d,,=oc”<c—";—n
bl) fin(x) S £ v(VM) exp{g,(x; — M)+ 4, x5+ 0"}, if g,y —T)+A4,x3
= — g—:a”.
c
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b2) fNCOS (M) exp {gﬂ— M) %a"w@")}, i g0 =D+ 4,53
<- g—:oc”.
c
[We could have chosen y=max(|x|,R,) and T=|x| in Property B(n). The
somewhat artificial constants T and y were introduced, because the proofs are
simpler with such a formulation.]
Now we formulate the following

Propeosition 1. If n=n,, N=n and

IM(N, ) [\Y

then Property A(n) holds true. The number £, 0 < &< 1, and the threshold number n,
can be chosen independently of N and hif h<hy with some hy>0. The O(-) is uniform
in N, h and x.

Proposition 2. Under the conditions of Proposition 1, Property B(n) holds true. The
constants L>0, 0< &< 1, and the threshold number n, can be chosen independently
of N and h if h<hgy. The O(-) is uniform in N, h, x, and y.

Later we shall see that under condition (4.6) the constant d, appearing in part b)
of Property B(n) satisfies the inequality M(N, h)—d,> R,. Property A(n) describes
the asymptotic behaviour of f" y(x) in the typical region where the average of the
ub v distributed spins are concentrated, and Property B(n) gives an upper bound
on f;y everywhere. The typical region is around the point M= (M(N, h), 0) and its
size is 2~ ™2a(n), with some a(n)— oo in the direction of the magnetization; In the
orthogonal direction its size depends on A, but under condition (4.6) it is always
smaller than ¢ ~"2«(n). Condition (4.6) was imposed in order to guarantee that yf: y
is concentrated in a small region. In Property B(n) we have distinguished the cases
a) and b) because in the case |x| ~ M(N, h) a sharper bound is needed. The cases b1)
and b2) were separated because in the case x~ (T, 0) [this is case bl)] a sharp
bound is needed. We shall see that under condition (4.6) g,(N,h)(x,—T)
+ A,(N, h)x3 is negative for |x| < T, and its absolute value is small only if x ~ (T, 0).

In the sequel we shall omit the arguments N and 4 if it leads to no ambiguity.
The letter & will denote a real number between zero and one. In different formulas it
may denote different numbers. What is important for us is that there exists an ¢ >0
suchthat ¢ <1—eforalln, N and h, 0 <h < h, with some h, >0, and the O(-) in O(&")
is uniform in all variables of the formulas.

Now we shall investigate the behaviour of the sequences g, and A4,. Put g,

_ A
= c"g]'(/I and 4,= c—"n By formulas (4.4) and (4.5) the relations

m 2y, 2p AN
g"_M<Z>+2_C<1_<§> >, n—N, N—l,...,l,

1/B)? 38\ -
R
A,=c , Ay=0, N=N-1,..,1

" g-n+1 Zn+1 E
2 2 e
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hold true. We shall prove the following

2
Lemma 1. a) If relation (4.6 ) holds then gy=gy 12 ... 2§, 2gwithg= Z_—BF’ and
— - - - 2\"
0=AySAy_<...SA, <A with A= ﬁ—~ The inequality §,> }]tf; < also
holds.

2n
b) If moreover N = N(n), h< (% é) with some 0 <& <1, then there exist some

0< ¢ <1and C>0 (independently of nand N > N(n)) such that|g,(N, h)—g| < C&™
and |A,(N,h)— A| < CE™

Lemma 1 has the following

Corollary 2. For all 0<n<1 and n there exist some constants N =IY (n,n) and
p=p(n), 0<p<1, such that for h<p" and N>N(n,n), |A,(N,h)—A|<y" and
|gu(N, B)—gl=n".

Proof of Corollary 2. Choose some integers K >0 and j>0 such that n< ¥ and
2(nK + j)
C&<1.Putp= <§ 5) and N(n,n)=N(Kn+j). Then we get, by applying

the monotonicity of the sequence A, together with part b) of Lemma 1 for
ii=Kn+j that

Az A,

HV

4;

[1\%

A-CeP2d—n.

The corresponding statement for g, follows directly from (4.7).
We remark that the condition h < p" is consistent with (4.6) if N is sufficiently
large.

Proof of Lemma 1. It follows immediately from (4.7) that the sequence g, has all
properties stated in Lemma 1. Define the function

)

T(o, g)=c .

and the transformation T,:R'—>R', T(0)=T(a,g). Let T, denote the n-fold
iteration of the transformatlon 1. Clearly, Ap=T(Ap+1> Gns1)- The idea of the
proofis the following: We estabhsh some monotonicity properties of the function
T(o, g), and we deduce part a) from them. The sequence 7;'(0) tends exponentially
fast to the smaller solution of the equation T,(«)=c. Combining this fact with the
monotonicity properties of the sequences A, and §, and the exponentially fast
convergence g, to § we show that A, tends exponentially fast to the smaller

2—c -
solution of the equation «= T,a. This equation has two solutions o, = /3 —— =4,

B

7o and o <o,

Oy =77
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A simple calculation shows that

ﬁ 2
4—+2a>
0T(a,g) c <C <0
2 =

% <8§ —4cx+4g>

,B 2
oT(g) __ (4]

2
0a <8§ —|—4g+4a>

and

0.

v

Hence in the domain {(a, 9; O§cx<g+2§} the function T(«, g) is continuous,

and it is monotone decreasing in the argument g and monotone increasing in the
argument a. Let a,,,, N =2m =1 denote the smaller (positive) solution of the equation
a=T(x, g,)- Since the sequence ,, is monotone increasing g,,= g, T(4, §)= A and
T(0,g) =0 for g =0, the monotonicity properties of the function T(«, g) imply that
0<Zay=...Za,;<A. Moreover, a simple induction gives that 0<A4,<

m=N,...,1. Indeed, 4,,=T(Ap+1> G+ 1) S TOms 15 Gt 1) =+ 1 =0y and Am
= T(Am+19 Im+1) 2 T(O Im+1)20. Since a=<T(®,gu+) for 0<°‘<°‘m+ 1> the
relation A4,,=T(A4, 1, Gms+1)=Ams+, holds, ie. the sequence A, is monotone

decreasing. Part a) is proved.
2n

If h< (% f) , then ¢, <g+0(L™) for n<m<=2n. The relation T;'(0)=a(g)

+ O(&™) holds true for all g = g, where a(g) is the smaller solution of the equation
T(x, g) =0, and the error term O(¢™) is uniformly bounded for g<g<g+e.Ifg=g
+O0(&™), then a(g)=A+0(£™). Hence the already proved properties of the

2n
sequences 4, and g, and the function T(«, g) imply that for h< —f)

AZ A, 2T, (A2) 2 T 0em(0) Z A+ 0(E™).

Lemma 1 is proved.
We shall prove Propositions 1 and 2 by induction, namely we shall prove the
following

Lemma 3. If n>n,, and relation (4.6) holds, then Properties A(n+ 1) and B(n+1)
imply Property A(n).
Lemma 4. If n>n,, and relation (4.6) holds, then Properties A(n+1) and B(n+ 1)
imply Property B(n).

Since fy y(x)=Lyexp(Bh2¥x,) Properties A(N) and B(N) hold true, and
Lemmas 3 and 4 imply Propositions 1 and 2. We postpone their proofs to Sects. 7
and 8. We conclude this section by verifying the relations

@;(M):% for M=M(N,h) and n<N, (4.8)

n
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and
M(N,h)—2d,>M(B)—2 "?a?", 4.9)

if relation (4.6) holds.
Relation (4.8) holds for n= N by the definition of g5 and M(N, h). Then we get,
by induction from n+1 to n, that

P (M)=2, +1(M)+ aoﬂ( )M =2_"<g"2$ +ﬁC"M> =2""gy,

as we claimed.
To prove (4.9) we write

P(M(N, b)) =hf—aof (g) M(N, h)=f(h—ho),

N
with h, = w (g) . By (4.6) h— hy =0, hence the relation @”(x) = const >0,
if x> T, implies that M(N, h) = M(f8), and moreover
M(N,h)ZM()+ K(h—h,) with some K>0. 4.10)

It follows from (4.7) that there exists some K’>0 such that %g Bh—hy)

, (¢ .
K <§> , and since }/x+y <J/ 2x+]/5 for x<0, y=0, hence

g, \172 h—h, C\12
= n < n ’
d,=u <2n n) b <ﬁ o +K-27"
/2 _ 2n
[( P - h0)> 2K’~2_"] gca"<ha2f° +°‘C—,,+z-"/2>

K
2

|I/\

< -(h—ho)+§oc2”~2‘”/2.

The last relation with (4.10) imply (4.9).
Since M(N, h)= M(f}), we can rewrite formulas (2.4) and (2.5) with the choice
x=M(N, h) and with the help of (4.8) in the following way:

Pu(x) =(1+0(E")pu(M) exp{ — g,(x — M) =2""1&/(M) (x— M)*}, (4.11)
if [x— M| <27 "2,
o) (1 4+ 0(E)p(M) exp{ —g,(x — M) —2"B(x —m)*} , (4.12)
with some B>0 if x>R,,
Pa(X) =(14+0(E)Pu(R,) , (4.12)

if [x| <R,.
We shall need the above estimates on p, in the sequel.
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5. Proof of Theorem 1

We prove Theorem 1 with the help of Propositions 1 and 2 in this section and
Theorem 2 in the next one.

Part a). Let us fix some k=0 and choose an n> k. We assume that n is sufficiently
large, n>ny(h). Let %, denote the natural o-algebra in (R?)?". Given a set A € %,
define the cylindrical set

Am)={(xD, ..., x®), xPeR?, j=1,...,2", (xV, ..., x¥)) e 4}.

Sometimes we shall write uj(A) instead of uy(A(N)). We have py(A4) = uh v(A(n)),
hence

du!
I(A)=pi(A) = X dy, .
(4)=p(A) A}"n) dp,

Put
D(n)=D(n, N, h)={x=(x1,X,), |x; —M(N, h)| <2~ "?q"? x3<2 "a"?},
D(n)=D(n, h)={x=(xy,x,), [x; — M(h)| <% 27"2a"?2, x3 <2 "q"?}
and
~ 12
D,(n)= {(x‘”, ey X2, ?ng xW e D(n)} ,

where M(h) is the solution of the equation @'(s) = fh. [ The difference between the
sets D(n) and D(n) defined in (4.3) is that x2 is bounded by 2~ "&"? in D(n) and by
¢ "¢"?in D(n). We shall work with the set D(n) instead of D(n), because it does not
depend on N.] We define the integrals

dn
I,(4)= 2 du,,
1) AmADymy Ay H
and
dﬂﬁN
I,(A4)= = du, .

Ay iy,

Then I(A)=1,(A)+1,(A). We shall estimate I,(A4) with the help of Proposition 1
and I, with the help of Proposition 2. By Proposition 1

o (1) @ _1 L3 0
N " "M — O_ M
d,u,, (X seees X )Eln,N exp C gn 2n jgl (xl )

§1+0(5")+0<<§>"a">=1+0(5") with M=M(N,h), (5.1
if

1 2n ) _ ) 1 on . 2 ¢ n
— > xWeD(mn), since A4,(= > x§) =0((=] a"?
2"j=1 2" j=1 2
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in this case. Moreover (5.1) remains valid if

log(2¢)

n
2 b
logl Z

and the terms g, and M(N,h) are substituted by g, and M(h), where g,

N>N,(n)=2

= 1\/75,) < ) + ——22'8 [Our aim with this substitution is to give a good estimate

on I,(A) whose main term does not depend on N.] Indeed, M(N, h)— M(h)
N
=0<<§) ) because of (4.2) and the definition of M(h),

ot (=) 522G —o(6))

oM, £ 0w -emin: £ - mon |

=0 <exp <c"2" <§>N . 2‘"/2oc”>> =0(¢&".

Moreover for N > N,(n), D(n)C D(n). Hence we can write for N >N, (n),

Hence

2n

L(A)=01+0¢") [ Ly {CXP "M (h)g';% 2 9 —M (h))} dpy - (5.2)

A D)
Put I =1,((R*)?") and I}, =1,((R?)?"). We are going to show that
I =Iiexp(—¢7"). (5.3)

First we prove that (5.2) and (5.3) imply part a) of Theorem 1. Since I, <1, (5.3)
implies that I, <exp(—¢&7"). Hence we get, by applying (5.2) with the choice of
A=(R»* that

1=I{+I;=(1+0(¢")L, N 5 eXP {( > M(h) Z ("~ M(h))}dun‘

Hence there exists some constants I such that L",,, v=L(1+0(£"), and the
relations (5.2), (5.3) together with the inequality I5(A4) £ I imply that

n 2n
)= [ Dexp {@ M) 3 (x&f)—M(h))} i +0E)  (54)

A(n)nDy(n)

for N> N,(n). Here the constant £ < 1 does not depend on 4 € #,. By relation (5.4)

|uh(A)— b (A)| = 0(&™ for all A e % if N>N,(n) and N'> N,(n). Letting N tend

to infinity we get from this relation that u*(4)= lim p%(A4) exists, and pf(4)
N-w

=u"(A)+O(&"). The limit y" is a probability measure, hence part a) is proved.
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Now we turn to the proof of (5.3). The relations
I'= | f()p.(x)dx,
D(n)

I= JaX)pa(x)dx

R2-D(n)

hold true. It follows from (4.11) and Property A(n) that f,(x)p,(x)= Cf,(M)p,(M)
with some C>0 if |[x—M]| <22, where M=(M(N, h),0). Hence

11=2C-27"f,(M)p,(M) (5.5
if N> N,(n). Obviously
I,= Jl JuX)pu(x)dx + Ffz Ju(X)pu(x)dx , (5.6)
with
Fi={xeR? |x|<M—%1-27"2¢"2 or |x|>M+%.27"2q"?},
F,={xeR* M—%.-27"2q"> <|x| <M +%-27"2"? x3>27""?} .

Put t(u) =max(u, R,). It follows from (4.12),(4.12") and part a) of Property B(n) with
the choice y=t(x) that

Pa() (%) < po(M) f,(M) exp{ — 2"~ ' B(t(Ix]) — M)*}
for x € F,. Therefore

g Pu(X) fu(X)dx < p(M) f,(M) exp(—a"'?). (5.7)

If x € F, then we can estimate f,(x) with the help of part b) of Property B(n) with
2 2

. _XZ XZ .
= L =—=—--—= =2"
the choice T=|x|. We have x,; —|x|< I =AM and g,=2"hf. Therefore, if
hp
_ 2 < In 2 T n/2
n>ngy(h), then g,>8A4,M, and g,(x;, —T)+ 4,x3= M 2= et Hence
either bl) or b2) implies that
J(x) = fu(M) exp{g,(|x| —M)— &7}

Then by (4.12)

Ff Pu(%) fu(x)dx = p,(M) f,(M) exp(—£ 7). (5.8)

Relations (5.5)+5.8) imply (5.3).
Partb). Let us fix againa k=0 and n= k. Let N > N ,(n), where N ,(n) = N,(n), and
N,(n)is solarge that Corollary 2 can be applied with = —2—1&. Leth<4 "and h<p",

where p=p(#), and p() is defined in the corollary of Lemma 1.
We claim that

[9,(c1 — M) + A,x31— [c"gM(B) (x; — M(B)) +c"Ax3] = O(") (59)
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2 _
for x € D(n) if N> N,(n), where = 2—;/% and A= 2c—c B. Relation (5.9) follows

from the following estimates: By Corollary 2,
AXE—c"Ax3<27",
gn—C gM(N, h)=0(2 cn)’
and
c N
M(B)—M(N,h)=0 <h+ <§> ) =027"),
if N> N,(n), x € D(n). Formula (5.9) follows from the above relations. Put
Dy(n)={x=(x1,%y), Ix; —M(B)l <7-27"2a"?, x3<c™"a"?},
D,(n)= {(x(” . x(z")) Z xW eDz(n)}

and define the integrals

. du
b= [ Mg ga)= Pl g Ae g

AmADym Ay, Am)\Dyw) Ak

Now we argue similarly to part a). Obviously p!(4) = #,(A)+ #(A). Since D,(n)
CD(n), it follows from (5.9) and Property A(n) that

AD=(1+0ENL, y |

An)nD2a(n)

- exp {c gM(ﬁ) ) (x(" M(/?))+c"A< Z x‘”)z} du,. (5.10)
Put #{=#((R?*)*) and f£=fz((R2)2k)~ Then

A= I e, A= T p S0
It can be proved similarly to (5.3) that

Fr=Aexp(—¢7). (5.11)
The only difference is that now we have to define the set F, as
Fo={xe R*, M —32""2¢"2 < |x| < M +527"2¢"? x2>c "q"?} ,
and we have to carry out the estimates in F, in the following way: For x € F,,
Gnlxy —IxD) + A,x3

-2
< c"[GM(N, ) (x; —[x)) + Ax3] < c” ( - %M(N, h)+2x%>

§c"x§<—(1 —8)% +Z> < —Bc"xi< —Bo?,
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with some appropriately chosen ¢>0 and B>0. Then (5.11) can be proved
similarly to (5.3). Relations (5.10) and (5.11) imply that there exists some L, such
that

and n N— (1 + 0(€n))Ln ) (512)

u(A)= | Lexp {c gM(ﬁ)— Z (' —=M(B))

A(n)nDa(n)

2n
+ c"Z( '21 % x‘{’) } du,+0(&", (5.13)
=
if N>N,(n), h<p", h<4~" and h satisfies relation (4.6). These relations can be
proved similarly to their analogues in part a). Let us emphasize that the main term
on the right-hand side of (5.13) depends neither on N nor on h.

Then we can carry out a limiting procedure similarly to part a). Letting first N
tend to infinity we get that [u"1(A4) — u*2(A)|=O0(E") if hy, hy <4 " and hy, h, <p".
Then letting h tend to zero we get that the limit g(4) = ,l,i“é wH(A) exists, and p*(A4)

-1
= fi(A)+ O(&%) with & =log% . (max (log4, log ;—))) . The number £ <1 and the

O(-) in the last relation does not depend on the set A. Hence it implies part b) of
Theorem 1.

6. Proof of Theorem 2 and the Corollary

Let u¥, and fi, denote the projection of the measures p” and fi to V,. We claim that
the Radon-Nikodym derivatives

‘iiﬂ_lf’: Y, ..., X" = Fh (% ;:v:l xu)) , (6.1)
and

%(x‘“, X =F <21” ng x“’) (6.2)
exist.

Indeed, the convergence of the measures, ! y to uf in variational metric,
established in Theorem 1, is equivalent to the L1 convergence of fiy to (the
existing) F*. Then the convergence of the measures uV to fiy, in variational metric
implies the convergence of F* to F*. Moreover, these convergences help us to show
that Properties A(n) and B(n) remain valid for F*(x) and F(x).

To be more precise, let us first define

0=+ 2L e ).

It is easy to see from (4.7) that
gn(h) _gn(Na h) = O(CN . 2n—N) .
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By Corollary 2 there exists a +>p, >0 such that if h<p} and N > N(p,, n), then
N
A(N, p)— Ac"= 0(&"). Clearly (M (N,h)—M(h)=0 (%) > It can be seen with the

help of these facts and formula (5.12) that properties A(n) and B(n) hold for F’(x) if
h<p%, g.(N, h) is substituted by g,(h), A,(N, h) by Ac", M(N, h) by M(h) and L,
by L,. Then letting h go to zero we get that Properties A(n) and B(n) hold also for
F,(x) if M(h) is substituted by M(f) and g,(h) by c"gM (). Thus we get with the
notation of Properties A(n) and B(n), the following relations:

F,(x)=L,exp{c"gM(B) (x; —M(B))+ c"Ax3+ O({")} for x€Do(n),

Do(n) = {x=(x1,x,), Ix, — M(B)| <2 7", x} < """}, 6.3)
122%’[)) <exp{gc"(y—M(B)+Lp"(y—M(B))*+0(¢"} for xeR?,
yeR', |xl<y, y>R, and M=(M(),0). (6.4)
For |T—M(B)| <}/ -27"a", |x|>T, x € R%,
Fux) <exp{c"§(x,— M)+ Ac"x3+0(¢"} if Glx,—T)+Ax3= — 0‘_: 2
F, (M) ¢ (6.5)
and .
———2”((1\32) <exp{c"g(T—M)—o"+0(&"} if gx;,—T)+Ax3< — Z_g -(6.5)

To prove Theorem 2 still we need a theorem to be formulated below. Let us fix
some integer k>0, and define the transformation Q,=Q,(k): (R?)*" - (R?)*":
1 g
Qux®, . xF =W,y = Y X,
" 2= Dan+1

j=1,...,2% x®PeR?, p=1,..,2"*k

Given a probability measure v over (R?)%""*, we denote by Q,v the measure over
(R*)** induced by the above transformation Q,; i.e. Q,v is the distribution of the
random vector Q,(n(1), ...,n(2"*¥)), where (y(1), ...,(2"*¥)) is v-distributed. Now
we formulate the following

Theorem C. The measure Q,p, .= Q.U +(do|B, V) has a density function of the
form

I, yexp{— BH,(c"*xV, ..., c"?x9)}
2k
' 1_[ pn(lx(j)l’ﬁ)’ x(j)ER2’ j=1,.”,2k,
j=1

where H, is defined in (1.1)’, p, is defined at the beginning of Sect. 2 and L%, , is an
appropriate norming constant.

Theorem C follows from Theorem 1 of [2].
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It follows easily from (6.2) and the definition of the transformation Q, that

dQnﬂV k 1 2 ;
n+k(x(1) x(Z )) Fn Z xW V.
deu'n+k T j=

This relation together with Theorem C imply that the measure Q,fy, ., has the
density function

Gy (X, ..., x)

1 2 . 2k .
=L Furi <§ -21 x‘”) exp{ — BH(c"*x™, ..., c"?x?9)} H1 (X7}, B) -(6.6)
Jj= 7=

First we give a good asymptotic formula for G, , in the case when x € Dy(n),
=1,...,2% [The set Dy(n) is defined in (6.3).]
We claim that for x € Dy(n),

pullxh =C,exp { 9P (o ) 2 g, —M)2+0<é")}, 6.7)
where M =M(f), and q=®"(M). Indeed, we get from (2.4) with x = M(p) that
pallx) =(1+ 0(E)p,(M)
- exp{ — oM (lx|— M)~ (e~ My — P (- M)Z},

. . a a
and the expression in the exponent can be written as Lﬂc"Mz—Lﬁc"lxlz

2
2
— 2" 1g(lx|— M)?, and since |x]——M~x1-|—2xTz—M=x1—M+O(c‘"oc"/2) for
1
x € Dy(n), these relations imply (6.7).
By (6.3), (6.6) and (6.7)
Gn(x(l)a LRRE) x(Zk)) = Ek,n{eXpPk,n(x(l): LRRS) x(ZR)) + O(én)} s (68)
with
Py (xD, ... ‘2"))
k+n-M z (x(j) M)+ck+nA (Z x(Z)J)
2k i—1
+he' % 4G X+ )
i=1j=1
2 af , 0P 4 xD?) 4 2n~ 1 () 2
- Zl > "(xP +x3)+2" q(x? —M)*, (6.8)
=

ifx;€ Do(n),j=1, ..., 2*. We rewrite the quadratic polynomial P, , as a polynomial
of xX{?— M and x¥. To this end let us first observe that for all i=1, ..., 2%

C
=3

2 2" k=1
S d7G )= Y d1, )= X 20t-9=
=t i=1 j=0
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Then a simple calculation shows that

PG, ..., x(9)

; =0 forall j=1,...,2%,
6x‘1” ™M,...,M)

where M= (M, 0). This means that the linear terms x“" M disappear when we
rewrite P, , as a polynomial of x{’—M and x¥. Moreover, since x,—M
=02 "?a"?) if x € Do(n), the terms Bc"d(i, j) (x{ — M) (x{ — M) and %ﬁc"(x({’

—M)? are negligible in P, ,, and we get
P, ,,(x(”, . x<2"))

et (£ a) e £ Sy

i=1j=1
- Z < A ) )*’ 0,
lf XJEDO(H), j=1,...,2k. (6.9)

A calculation similar to that in Theorem 1 shows with the help of relations (6.4),
(6.5), and (6.5") that

| Fo,(x)dx=0(exp(=¢") | Fo,(x)dx.

xe R2\Do(n) xeDo(n)

This means that the measure Q,fiy, ., is essentially concentrated in the set
{(x=x",...,x%),xD e D,(n),j=1,...,2¢} .

Hence, after an appropriate rescaling, formulas (6.8) and (6.9) imply Theorem 2.

Proof of the Corollary. It follows from the symmetry properties of the model that
Ea'®(i)c'?(j) depends on i and j only through d(i, j). Hence, if d(i, j)=n, then

EdP(i)c®(j)=c "ET"ec@(1)T"6?(2).
On the other hand

AV
lim ET®o®(1)T"0(2) = E§2(1)6(2) = 2/3(c(i 1)6()4 —o)

where 6(i) is the same as in Theorem 2. These relations imply the Corollary.

7. The Proof of Lemma 3

In this section we prove Lemma 3 together with some formulas which will be useful
in the proof of Lemma 4. By Theorem B,

)= Ty fy 109 =] €xP(BE 5 ) 1 ("jt>p,.<t)dt .0
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Put

A
ﬂcn+___112+1 2
S, =28,(x)= Xy, S;=8¢(x M——
2 2( ) gn+1 _An+1 +Bc” 2 1 1( ) 2M
2M 2

where M = M(N, h). We have chosen the point s =(s,, 5,) as a good approximation
of the maximum point in the integrand in (7.1). Put

Dy(x)= {t=(t13 £5); [ty —s4l <(l/§_ 127722, ltz_szlézgcﬂ/zanm} ,

L= [ exp(Bees )y (x“)p,.(t)dt

teDa(x
and
x4+t
L= | exp(fc(x; t))fn+1( )p,.(t)dt
te R2\D3(x)

We shall estimate I, with the help of Property A(n+1) and I, with the help of
Property B(n+1). We claim that if x € D(n), then

I, =L, exp{g,(x; — M)+ A,x5+ 0(&"}, 7.2)
with
L,=(2""'0,q,)” *afy+ (M)p,(M) exp(Bc"M?), (7.3)
where
M=M(N,h), q,=P,(M),
M=(M,0),  0,= S - At
and
I,=exp(—O(E™™M)I, . 7.9
Formulas (7.2), (7.3), and (7.4) imply Lemma 3 together with the relation
M) =L,=Q2""'m,,) " *af, . (M)p,(M) exp(Bc"M?). (7.5)

To prove (7.2) let us first observe that if te Dy(x) and xe D(n), then
XT-HGD(n+ 1). Indeed, in this case
x1+t1
2

1
"M‘§ §(|x1“M|+lS1"M|+|t1_S1|)

1 s2
< [ n—ni2,n/2 2 _ —n/2,n/2
=2<2 o +—2M+(ﬂ 1)2 "2 )

n+1 l s2 n+1 n+1
2

—9 T2 2 2 P2 <o T2 52
2 o +24M=2 o,
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since s2<x3<c "a"?, and

1 s C—l _n+1 _n+tl n+1
<=1+ |x2|+Lc‘”/2a"/4§c 2 glh<e 2o 4,
2 X, c

since by Lemma 1 and the monotonicity properties of the function Egig )

X,+1,
2

Therefore, we can estimate I; by means of Property A(n+ 1) and Theorem A. (We
put slightly more general estimates which we will need in the proof of Lemma 4).

We get with the substitution t=1(x)=t—s that
I =(1+0(&)L, exp(I4, 1(s)) - D{ exp(ly,»(7))dz, (7.6)

eD3(x)—s

X1 +s X, +5,\
1 =5 9=00es (M52 <) e (252

2
n+1

A
Iy 5(v) = Pc(x; T)+gn+1 3 +An+1 4 ) Ty(xX3+55)

with

_(logpn(|s+ Tl) _logpn(M)) )
L,= for :(M)p,(M). (7.7)

Now we give a good asymptotic formula for I, ,(s) and I, ,(r). We recall that

|x; —M|<2 "2 x2<c o2, siZc "M,
S2 C—nan/Z
|51_M|=ﬁ§ M [0 |£2-27"2aM2, oy S2e ™" 202

4
and ||s| —M|= 85—;/1 if x € D(n) and t € D4(x). We have

s x,+M s}
I;,1(s)=Bc" <x1 <M“ Z—ZM—> +X252> +Gn+1 <1—2— — ﬁ —M>

2
+ 4,41 <—'—x2+82> =X <,BC"M+ g"2+1> - g"2+1 M

2

() o

An+s 53\ M—x,
iy e}
Ty <+x2 ATV
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The coefficient of x, in the last expression is fc"M + g,,2+ L —g,, and that of x3 is
1(gus1  Awsr n An1\S2 | Ants
2<2M SR L A Ui o S
2 .2n gn+1 E n
U s Ane\ 2, Aues ¢ *A"“<4M *3#)
=3 Be"+ 5 )yt 4= . =4,.
2 ﬁ — A, 1+2pc"
. M— _ .
Since fic" M sZ—O(é") if x2 =0(c " "a") and |x, — M| £ 2d, [the quantity d, was

defined in Property B(n)], hence
I 1(8)=gu(x; — M)+ A, x5+ pc"M*+0(&" if xeD(n), (7.8)
or, more generally, if x3=0(c "«") and |x; — M|=0Q(d,). Now we turn to the

estimation of I, ,(t). We estimate logp,(|s + t[) —logp,(M) by mens of (4.11). We
have

1 12
|s+r|—M=M{|:<W(2slrl+23212+tf+r‘2"+(ls|2—M7‘)) +1] - 1}

1 4
2M(2$ T +25,0,+ i+ 5+ :—&)

S4 2
- W<25271 +2s,7,+ 1303+ 41\}2>

+0(t3+s3t3 +15+532).

Hence (4.11) implies that

10gpn(ls + ‘Cl) - 10gpn(M)
2, 2 ST
= =G 251T1+25272+T1+72_W
52

_2n lan2

242"0(t3 + 15+ st + 1,13+ 117,8,) .

Therefore

A S
11,2(7)—_‘ <BC"X1 gg —Gn M)T + <ﬁc X+ 2+1 (52+x;)— gMz)Tz

1 S2 n—1 S% 2 gn An+1 2
<g"<2M 2M3)+2 Dy )i\~ g )"

+2"0(t3 + 15+ 55+ 1,13 +1,1,8,) . (7.9)
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Let us consider the coefficients of t,, 1,, and 72 in (7.9).

n S
(o252 310

= (ﬂc"(xl —M)—i-g,,(l — Sﬁ)) 7, =0(c"(x; — M)t +2"x37,), (7.10)

An+1

Be"xy+ —5— (x5 +5,) —

_ gn+1_An+1 An+1_& _
_(—2M 2 +ﬂc> < > M)SZ—O, (7.10)

1 SZ . 2
gn<2M 2M3> +2 qn<M2>‘Cl

—on1g g2 53 _on+1 s 5 on=3 53
- an1+ 2M3gn anz 8M5gn+ an4

and

=2""1q,73+ 0(2"x37%). (7.107)
The above estimates imply that
- n An n
I ,(1)=—-2" 1‘1#%‘(534_%)7%‘*'0(5 ) (7.11)

if xe D(n) and 1 € D4(x), or more generally if x3=0(c™"o"), 12=0(c "a"), 1,
=0(2""*a") and |x, — M| £ 2d,. Observe that the coefficients of 2 and 72 in (7.11)
are positive. We get, by integrating (7.11), that

[ exply ,(D)dr=(1+0(&") (2" 'q,0,) 2. (7.12)

teD3(x)—s

Relations (7.2) and (7.3) follow from (7.6), (7.7), (7.8), and (7.12).
Now we turn to the proof of (7.4). We need a good upper bound on

A%, ) =exp{fe(x; t)ml("“) ).

Given an x € R?, ||x|— M| =d,, we define the sets

X+t x|+t
Fi(x)= {tz(tth); gn+1<% 5

X, +1t, \? ntl
+An+1< 22 2> >_iniia +1>||t|_Ml§(‘/§_1)dn}a

and

Dy(n)={te R |lt|— M|<()/2—1)d,} .
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First we estimate _Z(x,t) in the case ||x|—M|<d, and te F,(x). In this case
A <x7+t) can be estimated by means of part bl) of Property B(n+ 1) with the

choice T= hathd

. [Observe that |T—M|<d,.,, because |T—M|Zi[(|t|— M|

+(x|—-M)]= l/~d,,§d,,Jr1 by Lemma 1.:| We get that

Ful%,8) S po(M) f, 11 (M)
cexp{ly, (s)+1; ,(t)+0(&")} if teF(x). (7.13)
In order to estimate the expression in (7.13), we prove that
x3=0(c"""), |xl-x;=0(c"") if [|Ix|-M|<d,,
and F,(x) is non-empty. (7.14)
2=0(c """, |t|—t,;=0(c ") if teF(x). (7.14)
Indeed, if there exists some ue R?, Te R, [u/<T<M+d,, ,; such that

In+1
then gn+1(u1 T)+An+1u2> — C:+1 ot ,

i::; 1 2g, (T—uy)— 4,4 1”2_(gn+1 —2T A, 1) (T—uy).

We have by Lemma 1, g, —2TA,,,>Kg,,, with some K >0. Hence T—u,
. t
=0(c ™ "a"). By applying this result to the case u= %, teFi(x), T= i —; il ,
get that x;—t; —(|x|+]{)=0(c""o"). Hence |x|—x;=0(c™"a"), and |t|—t¢,
=0(c™"a"). Then the inequalities x3 < 2|x|(|x| —|x,|), £3 <2|t|(|t| —t,) imply (7.14)
and (7.14").
We claim that

I, ,(t)=—2"B,;11—"B,13+ 0(¢"), (7.15)

with some B, >0, and B, >0if x3 = O(c ~"o"), t3 = 0(c ""a"), |t; — M| < 2d,, |x; — M|
<2d,.

Indeed, we can verify (7.15) similarly to (7.11), only we have to estimate
logp,(Is+t])—logp, (M) by formula (4.12) instead of (4.11). We get a relation
similar to (7.9), only we have to write lnequality instead of equaity, and g, must be
substituted by B in the coefficient of t2. Then it remains to bound the error terms in
(7.9), (7.10), and (7.12). The term 2"z,7,s,, €.g. can be estimated in the following
way: Since 7= O(c™"?"?) and 1, =0(d,)=0(c™"?a"), (1;=t;—s;(x)); hence
2"7,1,8, < 2" 30"+ 2" 355 = (2" + 1) - O(&M).

By relations (7.14) and (7.14’) the relations (7.9) and (7.15) hold if ||x| — M| < d,
and ¢ € F,(x). [Observe that in this case |x; — M| <|x, —|x||+||x|]— M|=0(d,) by
(7.14) and |t, — M|=0(d,) similarly.] Hence by (7.13)

%x(xa t) é pn(M)f;l + I(M)
-exp{Bc"M?*+g,(x;, — M)+ Anx§ —2"Bit3—c"B,73},  (7.16)
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if ||x|— M| <d,, and t € F,(x). Moreover by (7.11),
%l(xb t) = pn(M)fn + I(M)
-exp{fc"M? +g,(x, — M)+ A4,x3 = 2" 1¢q,1} — 0,75+ 0(&")} , (7.16)
if ||x|— M| <d,, t € Fi(x) and 7, =02~ "2a"). Put F,(x)=D,(n)—F(x).

Now we estimate #,(x,t) in the case ||x| —M|<d,, t € F,(x). In this case the
function f, , , (%) can be estimated by part b2) of Property B(n+ 1) and p,(t) by
(4.12). Moreover by using the inequality (x; ) <|x]| - [t], we get that

%ﬂ(xb t) é pn(M)f;t + I(M) CXp{Gn(X, t)} s

with Ny
X
Gn(-xa t):ﬁc"|x| : |t|+gn+1< 2 _M>
— gu((tl— M) —2"B(jt| — M)? — It Lgn+1
Clearly ¢
G(x, t) = Pc"M?*+ g,(Ix|— M) + Bc"(|Ix| — M) (Jt| — M)
—2"B(jt|— M)*— %am .

We have

BC"(IXI—M)(Itl—M)=0<%oc2">=O<é”%cx"> if teD,mn),

and ||x|—M|<d,. On the other hand by Lemma 1, ———g:ﬂa"“;g_:anﬂ
c c
= %“”(1 +2K) with 2K =0—1>0. Hence

(%, 1) S L, exp {gn(lx|—M)—%a"—K%a"}, (7.17)

with some K >0 if||x| — M|<d, and t € F,(x). [The constant L, is defined in (7.3).]
If x2 =0(c "a"?), and this relation holds if x € D(n), then

gn<|x|—M>=gn(x1—M)+0(g,.x%>=g,.(x1—M)+o<%a"/2>.

Hence
F(x, ) S L, exp{g,(x; — M)+ A4,x5 — Ka"}, (7.18)

with some K >0if x € D(n) and t € F,(x). Since 2"B, 1%+ c"B,713 = Ko"/?if t ¢ D3(x),
hence (7.16) and (7.18) imply that
Fu(x, )dt < L, exp{g,(x; — M)+ 4,x5—0( ™™}, (7.19)
teDa(n) — D3(x)

if x € D(n).
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Now we turn to the estimation of £(x,t) in the case ||x|—M|<d,, te R?

. . . t
—D,(n). In this case we get, by estimating f,, % by means of part a) of
x|+ max(|z], R,)
2

A%, ) S(1+0(Epu(M) fo 1 1(M) exp G,(|x], u(t)) ,

Property B(n+1) with y= , and by using (4.12) with (4.12’), that

with
G"(v’ Z)=ﬁcnvz_gn(Z_M)_2nB(Z—M)2+gn+1(ZTH —M>
n+1 _Z_ﬂ_ 2_ n 2 _ e, B
2
+Lp"+1<i.;_v_M> —Z”B(Z—M)Z, (7.20)

where u(t)=max(|t|, R,).
Clearly, (u(t)— M)?=(]/2—1)?d2, hence

—2"B(u(t)—M)2+ﬁc"(|x[—M) (u(t)—M)+Lp"+1 <&)2+_x —M)Z

< =27 'B(u(t)— M)*— T gn
As a consequence ¢
Fu(x, 1) S L, exp {gn(IXI —M)— %a”—Z”_ZB Y(max(|¢l, R,) —M)? —fx”} )

7.21
if ||x|— M| <d, and t € D, (n). (7.21)

If x € D(n), then x3=0(c ™ "«"?); hence g,(|x| —M)=g,(x; —M)+0 (% oc"/2> ,
and
fn(xa t) é Ln exp{gn(xl - M) + Anx§ -2 ZB(max(t, Rn) - M)Z} ’ (722)

if x € D(n), t ¢D,(n). Relation (7.4) follows from (7.19), (7.22), and (7.2). Lemma 3 is
proved.

8. The Proof of Lemma 4

We have to give a good upper bound for the function f,(x) defined by the integral
(7.1). First we prove part b) of Property B(n). We shall use the estimates of the
previous section, and we also preserve its notations. We can write f,(x)=1;+1,

+ 15, with
Li= | Axuondt, L= | Ax0dt,

teF(x) teFa(x)

d
. L= [ gxoni.
)

teR2—Dy(n
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We get, with the help of (7.16), (7.16"), and (7.5) that
I, = f(M)exp{g,(x, — M)+ 4,x3+0(&")}, (8.1
if ||x| — M| =d,. On the other hand, by (7.17), (7.21), and (7.5)

IL+I3= f,(M)exp {gn(IXI M)— g" o f‘"}- (8.2)
If the conditions of part bl) are satisfied then, since T=|x|,
gn((xX|— M) — 2o < g, (x| — M) +g,(x, — Ix[) + 4,%3

=gu(x1 — M)+ 4,%3.
Hence (8.2) implies that
I + I3 = f,(M) exp{g,(x, — M) + A,x3 &7},
and the last relation together with (8.1) imply Part b1). If the conditions of part b2)
of Property B(n) are satisfied, then relation (8.1) has the consequence

< fi(M)exp {gn(T— M)— %a“r O(é”)} .

The last relation together with (8.2) imply part b2). _
Now we turn to the proof of part a) of Property B(n). Let |x|<y, y=R,. Since
part b) is already proved we may restrict ourselves to the case |y— M|=d,,.

. . t .
We get, by estimating f, . <§i> by means of part a) of Property B(n+ 1) with

y +2 u() as upper bound for—;— (u(t)=max(Jt|, R,)), and by using (4.12) and (4.12")
for the estimation of p,(t) that

Hx, ) S(1+0EP (M) fr+ (M) exp G, (y, u(t)) , (8.3)

where the function G,(v,z) is defined in (7.20). We have to bound the integral
| #(x, t)dt. By integrating the right-hand side of (8.3) first on the concentric circles
|t|=2z, and then by integrating with respect to z, we get that

Ji) =(1+0(ENpu(M) £, 1 1(M) O(f 2nz exp(G,(y, u(2)))dz . (8.4)

Given afixed y, let z, = z,(y) denote the maximum point of the polynomial G,(y, z).
Then

G_n(ya Z) = Gn(ya ZO) (2”3 4 n+ 1> (Z ZO)2
hence

jf 212 exp{Gy(y, u(2)}dz= 0(1) (z9+ 1) exp Gyl 20)
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and by (8.4)
() S Cpu(M) £, (M) (20 + 1) exp G(y, 2) - 8.5)
We claim that

Gy, z0) S pc'M 2+gn(y—M)+Lp"§(y—M)2 (8.6)

if L and n, are chosen sufficiently large. (First we chose L and then the threshold n,,
depends on L in Propositions 1 and 2.)
Indeed, a simple calculation yields that

L
ﬂcn+ Epn+1
29-M=—""7—(—M).
2n+ lB_Epn+1

Hence
L n
|zo—M|§§(§) y—Ml.
"L
ﬁC”(y—M)(zo—M)éﬁC"‘@) -E(y—M)Zébp”%(y—M)z,

i1 Zot 2_.p,
Lp “("Ty—M) §L§p(y—M)2,

and

2
Gy 20) = Be"M+,(y— M)+ Be"(y— M) (20— M) + Lp" ! (# —M)

—2"B(zo— M)* SP"MP+4,(y— M)+ Lp2 (y—M)? .

Since p"(y—M)?> =", a>1,if |y— M| =d, and p <2, hence relations (8.5), (8.6), and
(7.5) imply that part a) of Property B(n) holds true. Lemma 4 is proved.

Appendix: The Proof of Theorem A

Theorem A is the multi-dimensional generalization of the result in [3]. The proof
goes on the same line with slight modifications. We outline the proof briefly. Our
main goal is to explain the necessary modifications. For the sake of simpler
notations we restrict ourselves to the case m=2.

The following recursive relation holds for Z,,:

Z,(s, ) =4J exp{2"®"(s; 5)— (v; VYI} Z, (s — v, WZ,(s+ v, Wdv,

Z (s, ,u)=exp{— %(s; )2 — g(s; s)} .
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This is a simple multi-dimensional generalization of formula (3.1) in [3]. Put

Zn(S’ .u') =CXp { - a_é)' - 2m2 _a)(S; S)} Sn(Ss I't) P o= 2—35 . (AI)

Then Sy(s, u) =exp {— %(s; 5)2— ,u—2a0 (s; s)} and

Sus1(s, W) =4[ exp{—2"2"%;, (v; V)}S,(s—v, )
S (s+v,dv,  a;=ay+1. (A2)
This formula differs from the convolution because of the kernel
exp{—2"?"9a,(v; v)}. This kernel term however has a very strong influence. We
shall see it by considering two special cases. Introduce the notation
0.f(s)=4[ exp{—2"*"%a,(v; )} f(s—v) f(s+v)dv, s,veR.

Then S, ; =0,(S,), and we are interested in 0,0, _{, ..., @:(S,). We consider the
asymptotic behaviour of the functions Q,,, ..., Q,(f) for two types of functions f.

Type 1. The Gaussian Density
ls|?

1
If f=G(s,y)= En—yexp<— 5) is a Gaussian density, then f,=Q,, ..., 0,(f) is

also Gaussian, f,=const - G(s, y,) with y,=2""y. This behaviour is stable in the
following sense. If f is a small perturbation of the Gaussian density G(s, y), then f,
is asymptotically Gaussian when n— co.

Type 2. The “Craters”

We call a function f(s), s € R? a “crater” if it is rotation invariant and -shaped
near some |s|=m> 0 along the radius. The crater is concentrated near the sphere
|s|=m, and has a width

d=L(sl=m)*>* 2 =[[ (Is|—m)*f (s)ds/[ (s)ds]"/* .
The Gaussian craters are defined by the formula

a2
B(s, m, X)=exp<— (lslTXm)->

2
Choose y=x,=2""xo, r;z_ > 1, and compute Q,(B) with B=B(s, m, x,). We have
0

for s=(r,0), r>0,

0.B) () =41fexp{ LY/ Fo7 T od—m+/ om0

—2m2-9g. (p2 4 vﬁ)} dv,dv, . (A.3)
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This integral is sharply localized around the minima of the function

¢(v1,vz)=zl [/ (r+0,)* +v5—m)>+()/ (r—v,)* + 0] —m)*]

+2"279(p2 +v3).
If we substitute the maximum of the integrand, we get with the help of some
calculation the approximate equation,

Qn(B) (7‘) ~ {B(l’, m, Xn+1) lf rgr*
QB)(m) ~ leysrexp(=2"2(*2—r) if r=r*, (Ad)
m
7’*

with y,=2""x0, &,41=B(*, m, y,+,). We shall call the function appearing at the
right-hand side of (A.4) a “special crater”. Estimations similar to the one above
show that Q, maps a special crater to another special crater with a small
perturbation.

Thus there are two different types of asymptotic behaviour for the iterations
Jfur1=0,(f,); the Gaussian and special “crater” behaviour. They are stable with
respect to small rotation invariant perturbations. The Gaussian asymptotic
behaviour corresponds to the single phase region of the hierarchical model, the

crater one to the multiphase region. For large u the function S (s, u) =exp { — %54

- #—_2‘1—032} is close to the Gaussian density, and so is the function S,(s, pt). For

. . . . T
small p the function Sy(s, 1) is close to the Gaussian “crater” with m= > Yo

=(21)" !, where = — (u—a,). In this case S,(s, u) is close to a special “crater.” The
critical point y, separates these two cases.
Now we turn to the rigorous considerations. Put S,(s, u) =exp(—2"¢,(s, u)). By

A.2),
(A.2) s )= =270V fof exp(~2 0, (0.)

=2, (s+v, ) =2, (s —v, ﬂ)}dv} ; (A5)

Bos, 1) = 55392+ E5 255 9).

Let us emphasize that the functions p, and ¢, are rotation in variant, i.e. they
depend on s only through |s|. First we are going to give a local expansion for ¢,(s)
around the point s in the coordinate system whose coordinates are either parallel
with or orthogonal to the vector s. Because of the rotational invariance of the
function ¢,, we can restrict ourselves to the case s=(r,0), r=|s|. Put

h2
B+ k)= 40O, 1)+ RGO 1)+ 5 4700 )

k2
+ 5 80P m e ko). (A.6)
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We remark that, because of the symmetry property ¢,(r+h, k, u)=¢,(r +h, —k,
W), in the above formula and also in the subsequent expansions of the function
¢,(r+h,k, u) all polynomials are even in their coordinate k. The following
formulas are a straightforward adaptation of those in [3]. It follows from (A.5) and
(A.6) that

h2
Gur 1+, k1) =%V, 1)+ b D, )+ ERLL 2, 1)

k2
+ 7¢f,°+’%)(r, ﬂ)+@n+ I(h: k: 7’, ,Ll) B
with
BELO D=0, FEV ) =40 w),
¢& P, =92 (r, ),

(1) (2)
0D 1) = 40O, g+ 2 I VA AT ). (A7)

n+1
Y[

) )
grarlhkr )= —2""11n {A——(—’%(—’i) [ exp{— A0, @}
Rz
- 2“512)("9 ﬂ)vg - 2nQn(h + Vs k + Uy, 1, I't)
—2",(h—vy,k—v,, 7, ,u)}dvldUZ} , (A-8)
where
)’gl)(r’ :u') = alcn +¢512’ 0)(7'3 ,U,) 2" s
and
A2, W=a,c"+ ¢, 1) - 2"

In linear approximation for g, , ¢,~@,, and

: TG, I,
R T

=420, W3l@u(h— vy, k—va, X, p)dvidv, . (A9)

For fixed x and yu we have in (A.9) a multi-dimensional Gaussian operator. For a
fixed 6 =(c'V, 6?), 6'V>0, 6@ >0 define the Gaussian operator A4,

v 03
| exp — 0,0 f(h—vy, k—v,)dv,dv, .

1
Af )= — s |

For fixed m=(my,m,) and y=(y,,y,) define the function G,(h,k,7y)

=G,,,(h,71)G,,(k, ;) with G, (x,7)= (4) H, (%), where H,(x), m=0,1, ...

are the Hermite polynomials with weight function exp(—x?) and leading
coefficient 1. We have (see e.g. [1])
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Proposition A.1. (i) 4,,4,,=A4,,+4,
(ll) Ao'Gm(h> ka 7) = Gm(ha k:» Y— O')‘

This proposition motivates the following expansion of the remaining term g,
by Hermite polynomials:

o ko= ¥ @8I, p) +R,(h k7, 1),

35i+js4

,(h, vﬁ”) Gk, i)
J!

A.10
and the term R, satisfies the following orthogonality relations, (A-10)

[l exp(—yiPn* —y Pk G(h, )G, (k, ¥P)R,(h k7, p)dhdk =0 (A.10)

for i+j<4. N
By the evenness in k, ¢¢*?(r, u) =0 when j is odd. The choice of the parameters
D, 92 is motivated by Proposition A.1. Namely by this proposition

. 1
(i) @a_ -
Ynr1="Vn A9(r, W)

in the linear approximation (A.9). Thus it is natural to define

YO =99, p) = Z i=1,2, (A11)

with

K, 1) =2"C"%a, + 27420 r, ),
and

K =272, 4270 )

The definition (A.11) is correct if ¢ O (r, u) =0, ¢>?(r, u)=0. The second
condition is violated in the narrow strip {M,>r>M,—¢,}, where M, is the
minimum point of the function ¢,. To overcome this difficulty we introduce a
regularization of the quantity y{®(r, u) in this strip. Define the functions

A (8)=2"2"9g +2nt, (A.12)
© 2M(a 1) -1
n= 3 |:S"'(2"“)a1+2'”tx< ; )] , (A.13)

= 1

where y(t) e C °°(R ) is an arbitrary function such that y(£)=0if t< — 1, y(t)=1if
t=—1+(4a,)~ ", 0<x(t) £1 otherwise. We shall write 72 =7y,(#>?(r, 1)) as the
continuation of the relation (A.11) into the domain {r<M,} (cf. [3]).

We need an expansion of the starting function

u —a
do(x, i) = 3 (P + 32+ ES20 (x4 y2)
in the form (A.6), (A.10). We shall choose
RO(h> ka r, ,Ll) = 0 ’ yg)l) = y(¢£’.)2’ 0)(X, lu)
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and

767 =95 2(x, ).
Then the coefficients ¢9(x, u) satisfy the equations

#6O0c, my=6u, P Vs, m)=6u, P& (x, W=2u,

¢6 V0, Wy =6ux, P52 (x, p)=2ux,
3
450, ) = p— a0+ Sup(@F VAx, 1))
+ 5782, )+ 3ux?,
u
PP (x, W)= p—ao+ Ev(aﬁ%”(’)(x,u))
3 (2,0) 2
+ 5“)’@50 Ox, @) +ux?,
3
$6 O (x, 1) = (u—ao)x +ux>+ 3 uxy(9 2(x, 1))
u (0,2)
+ Exv(% (x, )
(0,0) ___.u'O—aO 2 E 4___3_ (2,0)
#o(x, ) Xy 6“?(¢0 (x, 1))

3
— (g e, )?

1
- guv(tﬁ‘oz’ O(x, W)@ > (x, ) .

525

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

In (A.16) and (A.17) we have a set of equations for ¢§® and ¢-%). After solving
them we find the remaining coefficients ¢$*? by a simple substitution to the other

relation. The following result holds true.

Proposition A.2. There exists au, > 0 such that for all0 <u<ug, x € R' pe R* there
is a unique solution ¢, ¢ 2 of the equations (A.16) and (A.17). This solution

satisfies the estimates

95 O(x, 1) — (u—ao) —3ux?| < Cu,  |¢§2(x, u)—(u—ao) —ux?| < Cu,

<Cu, lizﬁg"z)(x,u)—l‘ <Cu,

0
(2,0) _
’a# ¢0 (X, :u) 1 6/1

<Cux, ‘% AL D (x, p) —2ux

ja% #2001 — 6

<Cu’x.
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The proof of Proposition A.2 is based on the contractive properties of the

mapping 3
u

(%), w(x))— (M—ao +3ux?+ F WP + 2 7(p(x)),

B g+ + 5 1G9 + %uv(w(x»)

It goes on the same line as the proof of Proposition 4.2 in [3]. We omit the details.

Now we formulate the inductive hypotheses we need for ¢,. For a set QC R* let
14 200 2
+ R(r, u), where R(r, p) is the restriction to Q of a function R € S, The class S, was
defined in Sect. 2.

S,(Q) denote the set of functions which have the form &(r, u)= —r +

Inductive Assumption I™

1) For any function ¢,(r, u), n=0,1, ..., N there is a critical point u™ and a
continuous monotone function M,(u) (the spontaneous magnetization) on the
half-line {u< pu™} such that

Po Y, 0P

r=r=M,.(p,)=0a .u'éiui'n)

ar2 r=0
The function p= u,(r) which is the inverse of the function r= + M, () belongs
to C*(R), and satisfies the inequality

1 pa(r) = et — (= 1 (7) = 8~ Dl 1y < CuPJr| -2 =g

with g=2°"3%%2<1, n=0,...,N
2) Define the domains

U ={(r, p), pZ p.— A-2"" "9 or r2 M, (1) (1 = B-2"* ")},
with
A=a,—%, B=2u"-wa,(1—-u*?, n=0,..,N

and U Y=R2 Then U V2UP>...oUM, and ¢,(s, eSS, (U™ 1).
3) For (r,))eU" Y, n=0,1,...,N the expansions (A.6), (A.10) hold true
together with the orthogonality relation (A.10°), where

P =n@E ), P =00, w) .

The coefficients ¢? and the error term R, satisfy the inequalities:
i") For (r, )eU"™ Y, n=1,

‘ ot R 037520 DiI(AD )il2 2"
SC270, 21 (A2 (A2 Y ( )
oh'okiou TR )
a;+1+l B B . ) 2n
I—ahiakjau, R{7| £C27"n, 10371 )1)'/2(/1(2)1)’/2</1<) )
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where
- 2"u

_na—3/2+e¢ (i, J) —

q—2 < l s én V= (lf,l))i(lf,z))j’

2™ur

=gy Ge=G

R, (h,k,r, i) =R, (h,k,r, u)+ R, (h, k,r, u) is the decomposition of R, into its even
and odd parts in h. The above estimates hold for i, j<5, [=0, 1 and |h| <5 ,, |k
<6@,, where 69 | = In-

n—1— /1(1) and @n 1= (/1(1) )
i) For (r,m)e U™~ 1 ngl, I£1,

((1),,_1+’L',%_1)2, i=4, .]:0
wn—l(wn—l'i'rr%——l)a i=2, ]=2
(U,z,_l, i=0, j=4
Ty (@ +721),  i=3, j=0
o . _ 2m ! Ty 1Oy 1, i=1, j=2
\a—ﬂxqﬁs’”—qﬁm) <C-2 <W> S !
II 1+21(”2) ) l=2, j:O
CO,,_I, i=0, j=2
n,ﬁza))" T i=1, j=0,
d 0,0) _ 4(0,0) -n 4 1) 72) y1/2
S| =4~ G0 )
2n 1 2"
s () g
2"u

where @, = 1@ Ty 1=, 1T
n
i), For (r,u)e U™ Y, nx1

Y=g Pl Cu?, gD — g5 P Cru?,

I 0.2 402
a—u,«(%’ —45"7)

|¢512,0)-¢(02’0)|§Cu2> écua .]=Oa 1 s

<Cru*, j=0,1,

)5 =)

<Cu?.
r=0

‘ @O — 9
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The inductive assumptions IV are similar to those of paper [3]. Properties i
—i{” enable us to control the function ¢,(r, u) in the domain U®~ 1,

Since the integration in formula (A.5) goes in the space v € R?, we also need an
estimate on ¢,(r, ) in the domain B™ = R* — V™, We call it external estimate. Its
formulation is motivated by the analysis of the “crater” densities.

External Estimate J™. For u<u™ the estimate

eXp{ - 2n(¢"(r .u) - ¢n(Mn(:u), M)} é Bs(r’ Mn(.u')s Xn(/‘))

holds true, where ¥, (1) = 2|u— u)2~"(1 —u®?), and B, s the special crater defined
at the right-hand side of (A.4).

In the proof of the assumptions I™ and J™ we shall need the following three
types of estimates A®, B®, C™. Put ¢=2°"%%2<1 and

A, 1) =2""a, + (p—pl +ur?)2",
AP(r, w)=2">"Ya, +u(r® — Mz (w) - 2".
In all subsequent estimates the quantity C>1 is an absolute constant.

A™aP). For (r,u) € U™ and p<ul"~ Vg2 Or, 1) >0.
a$’). For (r, ) € U™ 4A0(r, 1) 2 A0(r, 1) 23 A0(r, ), 1=1,2.

B™). For (r,pn) e U"™ 1),

o u 2" \J ,
( ¢n ¢(2 0)> A(Z) <A$,2)> H r—_—o ) J =O, 1 s
o whrn (om0
o () <C<A<»>s( 7). o

o (0,2) __ ~ 4(1,0) 2" Y i=0,1
o P ¢ @\ 4@ ) J=91.

C™). For (r,u) e U®™ 1.

=C

29n
ur<2
). —ar <1,
n
n/2
(n) n
C57). >q.
2 ) A:lz) =4

The central part in the proof of Theorem A is the following lemma. We say that the
inductive assumptions I™ and I®, N < M are consistent if the functions ¢{*?, R?),
R, coincide in I™ and I™ if n < N, and the conditions i{” —i{" hold with the same
constant C.

Lemma A.3. There exists some uy >0 such that for any 0<u<uy,and n=0, 1, ... the
assumptions I™ together with the estimates A™, B™, C™, J™ hold true, and the
assumptions 1™ for different n are consistent.

The proof of this lemma is rather tedious, and we omit it. It applies the same
method as the papers [3, 4]. Now we prove Theorem A with the help of Lemma

A3.Put= () U™.

n=0
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Lemma A.4. In the domain (s,u) € % the functions ¢ (s, 1) tend to the limits
¢& s, ), i=1,2, as n—00, and the estimates

2
w2 |Ttoms i=1
469 — ¢ 0 < C 2w A
" FOET AP | v
ag =
o > )2
\E(¢;l’0)_¢$,0)) §C<(A(2))7> uzr’
1 Cu
510’2)—;¢5k1’0) <Af,2)'

Proof. According to condition i,

P20 g2 <C . 2"? r2+-—-1—
n n—11= (A;Z))z ASIZ) :

Aoy tends to zero exponentially fast, lim ¢{*=¢2 % exists, and
n n—oo

2"y 1
I¢£12’0)_ ¢£k2,0)| é C . (A;Z))Z <r2 + F) .

The other relations can be proved similarly.

Since

Lemma A.S. In the domain (r, ) € % the limit lim ¢,(r, ) = S(r, 1) exists, and for
j=0,1,2 the estimates

K
oW

{¢,.<r, W0+ S 2-m1n%<zf.”z;2>>”2}

on on Jj
NG
e
hold true. Moreover
0 . .
ﬁdj(ryﬂ):ﬂ?("aﬂ)a l=192~

Proof. By the relations i,
iy —_—.k
auf{ (0,00 _ 40,00 _p=njy [;(15,1_’1/15,2_) 1)”2]}

on on J
soe g (4, ) |
Relations (A.6) and (A.10) imply with the choice h=k=0 that
G, 1) = 30O, 1)+ 3 [0S B O, 1)+ 29D P, )
+ D)0 D, W1+ RO, 7, 1) — 37RO, 7, 1)
+350) RO, 7, 1)+ Ry (0,0,7, 1) .
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By applying relations i{? —i{’, we get from this relation that

i VAR
<Cu?*—r—— | ——1.
=" U@ <A;2_’1>

0
5 00—

Hence

aJ —n 4 (1) (2) \1/2
Tuj ¢n_¢n-—1_2 In ;(An—l;{nfl)

om on \J
<C? [ ).
=M@ )y <Aﬁfll>

Summing up the last relation in n we get the convergence of ¢,(r, 1) to a limit

&(r, 1) together with the desired estimate on ¢, — ®. The formulas 507 D(r,u)=¢
¥

9(r, u) follows from the estimates B™.

Lemma A.6.

¢n(r9 ﬂ) - (D(r’ ,Lt) + %mi‘::n 27"In I:% (Am*(n ,u)lf,ﬂ(r, :u))UZ:I

éc.z—nu'znua—m’

where
a *o(r,
’133:('3 :u) = ZM(Z )al + 2"1 652 u) 3
i:fi(r’ H) — 2m(2 —a)a1 + zml 6d5(r, ,U) )
r or

Proof. By Lemmas A4, A.5

2m(¢(2,0)_¢£’%,0) om 2'"u2
Ilniﬁi—ln1$)|= 1n<1 +_*ET éC-AT"}).(Agnz))z

1 2™u
(44 sea

hence
3 27 (nd) —In ) < C(A;LZ))2 <C.27my. 223,
Similarly

§C . 2—nu . 2n(2a73)~

3 2"(1A2) — 1nA®)
m=n mx

These estimates together with Lemma A.5 (with the choice j=0) imply Lemma
A.6.
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Lemma A.7. &(r,u) €S,

Proof. Let || < 5(AM) = /2, By differentiating the identity (A.6) and (A.10) twice by
the variable h, and exploiting I we get that

2¢,.

5 (r+h, p)—

[ I i TIPS
§C<(A(1))1/2 +—m AD +1g 2 - yP

0°R

1\
8ol )

@[ f(1N1/22~ D)
with ¢g=2—a. On the other hand by Lemmas A.4 and A.5

2 2" 1 .
$l2,0) (3 <C(A(2))2< 2 F) §C1U(A$nl)) °,

hence

O*d(r+h, 0*d(r, s
FULRt) PO <Catagry e

Apply this result for (A1) ™12 <|h| <5(AL) 12, Then we obtain

|52‘p(7‘+h, 1) 52@(7‘ ,u)[
or? or? =

Since the above estimate holds for all n (the length h depends on n), we get by
covering the interval [r—hg, r+hg], ho=(A§’)~1/* appropriately that the last

estimate holds for any |h|<h,. Thus the Holder condition is satisfied for the
i+j

function R. The Holder conditions for ——— FRE can be proved similarly. Part ii) and
iii) of the definition of the class S, can be proved with the help of i{.

Lemma A.6. implies the asymptotic formula for InZ,(r, 4, u) in Theorem A. On
the other hand ¢ €8S,

This completes the proof of the asymptotic formula in the domain

Culhl®.

U= () U™. Now we briefly explain how it can be extended to the domains U™,

n=0
n=0,1,2,.... Let us observe that in the domains U\U"*YV, n=0,1,2, ..., we
have to consider the asymptotic formula for the functions In Z,(r, u) only for k<n,
hence the function @(r, u) is not uniquely defined in these domains. We defined
&(r, ) in the domain U as &(r, ) = lim ¢,(r, 1). Due to Lemma A.5 the expression

(1, ) +(1/2) i 2°mp [%(iﬁ,}’lff’)”z]

yields a good approximation for &(r, u). Thus it is natural to define

O i) =gu(r, ) +(1/2) 3 2-'"1n[ (Aﬁ,:.W))“Z]
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in the domain U™ \U®* V), where
K=, 4027, IDma 0D 2%,

In this case the asymptotic formula for In Z,(r, 1) holds in the domain U™\U®* 1
for k<n. However this definition of the function &(r, 1) has a defect: &(r, u) has
jumps on the boundary of the domains U™, n=1, 2, .... To get rid of this defect we
smooth the function &(r, u). For this purpose we use a decomposition of the unit
connected with the domains U\U"* Y, n=0, 1,2, .... Namely, let us consider a
set of non-negative functions y,(r, u) =0 such that

X nm=1, gop=0 if (,up¢U" NU"*?
n=0
and

. —@i+)) . .
waria#jxn(r,u) <C-d "V, i+j=4,
where C is an absolute constant and d = g(x, U" " ?) + o(x, U™), x = (r, p), o(x, V)
is the distance between x and V, and U™* is the component to U™. The set of
functions y,(r, u), n=0, 1, ..., is called a decomposition of the unit connected with

the domains U™\U®"* 1, Using these functions we put

‘ai+j

0.0 = 3 10,1 {qs,,(r, W+12) ¥ 27" [; (zs,%,zzi.%,zrﬂ]} :

A slight modification of the proof given above shows that this definition of the
function @(r, u) satisfies all statements of Theorem A. This completes the proof of
Theorem A.
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