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Abstract. We investigate Dyson's hierarchical vector valued φ4 model at low

temperatures. The case 2>c> j/2is considered. The pure phase is constructed,
and the existence of its large scale limit is proved. The limit is Gaussian, but an
unusual normalization has to be chosen. In the direction of the spontaneous
magnetization one has to divide by the square root of the volume, but in the
orthogonal direction one has to divide by a different power of the volume for all
low temperatures.

1. Introduction

In this paper Dyson's hierarchical vector valued φ4 model is investigated at low
temperatures. First we describe the model we are working with (see [2, 7]).

We define the volumes Vk>n, Vk ncZ,Z={l,2, ...}as Vktn = {j,jeZ9 (k— l)2n<y
^k - 2"}, n=l,2, . . . , fc= 1,2, — Put VlιH = Vn. For i, j e T L we set

n(ίj) = min{n, there exists a k such that i e Vktn, j e Vk>n} .

The hierarchical distance d(i,j\ i, y eZ, is defined as

fO if i=j
(U)-ι if

The spins σ(ί), i e Z, take on values in the m-dimensional Euclidean space Rm. The
energy of a configuration σ = (σ(ί), i e Vktn} is defined by the formula

ff*»= Σ t/(U)(σ(0;σ(/)), (1.1)

where U(i,j)= —d~α(ij) and (•; •) denotes scalar product. In particular

Hn(σ)= Σ U(i9j)(σ(i);σ(j)). (1.10
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The value α, 2 >a > 1, is called the parameter of the model. We assume throughout
this paper that 3/2 > a > 1. We shall often use the quantity c = 22 ~a instead of a as it

is done in Dyson's original paper [8]. Our assumption on a means that j/2 < c < 2.
Given a configuration σ' on TL— Vk>π we define the Hamiltonian of the configur-
ation σ = {σ(i), i e FksM} under the boundary condition σ' = {σ(j\ je% — Vk>n} as

HktH(σW = HktH(σ)+ Σ Σ V(i,j)(σ(ί) 9σ(j)).
iεVk,njφVk,n

Given a probability measure v on Rm we define the Gibbs distribution in the
volume VktH at inverse temperature β with boundary conditions σ' by the formula

Π XΛKO), (1.2)
isF f c > n

(σ)] Π v(dσ(0), (1.20
i eF n

In this paper we consider the vector valued φ4 model, where the measure v is
defined as

(1.3)

L =

Here u > 0 is a parameter of the model, and we shall assume that u < u0, where u0 is
a sufficiently small positive constant. A measure μ on (Rm)z is called a Gibbs state
with potential H at inverse temperature β if a μ distributed sequence σ(i), i e Z, of
random variables has the following property: For all volumes Vhtn and almost all
configurations σ'={σ(j), jeZ—Vkftl} (with respect to μ) the conditional distri-
bution of the random vector σ = {σ(ί)9 ί e V k ί t t } under the condition σ' is given by
the formulas (1.2) and (1.20. This is the usual definition of Gibbs states (see e.g. [7]).

We are going to investigate the Gibbs states with the above defined potential H
at low temperatures. We choose the following approach. We consider an external
magnetic field with h = heίy el =(1,0, ...,0), i.e. we define the potentials

#*>)= Σ U(i,j)(σ(ί);σ(j))- Σ (h σ(i))
( i , j ) , i Φ 7 iεVk,n

ί,JeVk,n

for a configuration σ = {σ(i); ίe Vktn}9 and then the measures

j8/ί;(σ)] Π v(d«r(0),
ieFn

over (Λm)F- for all n= 1,2, . . . ,Λ^O and j8>0. We shall denote by μn(dσ\β,v) the
measure μ*(dσ\β, v) when /i = 0. We shall prove that the limits

μh(dσ\β,v)=]imμ*(dσ\β9v) (1.4)
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and

μ(dσ\β9v)=]ΐmμh(dσ\β9v) (1.5)
h->0

exist. If these convergences are established, it is not difficult to prove that
μh and μ are Gibbs states at the inverse temperature β with potentials Hh and H
respectively. We are interested in the measure μ constructed in this way.

Our discussion heavily depends on a large deviation result about the

distribution yn(dx) of the average — Σ σ(ι) of the μn(dσ\β, v) distributed spins σ(z),
2 ίeVn

which will be formulated in Sect. 2. It states in particular the existence of a critical
inverse temperature βcτ such that for β>βcτ the measure yn is concentrated
essentially around a sphere of a positive radius. First we shall formulate the
following

Theorem 1. a) Relation (1.4) holds true for all β>βcr and h>Q.
b) Relation (1.5) holds for all β>βcτ.
In both cases the lim is meant as convergence of the finite dimensional

distributions in the variational metrics.

Actually Theorem 1 holds also for β ̂  βcr but we shall not prove it. We have
considered the double limiting procedure (1.4) and (1.5), because in this way we
construct the so-called pure phase, i.e. a Gibbs state which cannot be decomposed
into a micture of other Gibbs states. We are interested in the behaviour of the
Gibbs state μ(dσ\β,v) defined by (1.4) and (1.5).

Let σ(j) = (σ(1)(/), . . ., 0"(m)0))>7 e Z, be a sequence of random variables with the
distribution μ(dσ\β,v). Introduce the new random variables Tnσ(J)

j e Z , n=l,2, . . .

peVj,n

The quantity M(β) will be defined in Sect. 2. Actually M(β) = Eσ(V}(p). Our main
result is the following

Theorem 2. The multi-dimensional distributions of the random sequence Tnσ(j),
j e Z, tend to those of a sequence σ(j) j e Z, of Gaussian m-dimensional random
variables. For all k>0 the random vector (σ(l), ..., σ(2fc)) has the density function

i = ι j=2\C'
2^ 1 2^ i-1

Σ — xf+ Σ Σ

fe = Lk(β, u) is an appropriate norming constant, and q = -r-^ Φ(s, β, u)\s=M(β),

where the function Φ appears in the large deviation result of Sect. 2. The absove
result holds for all β > βcΐ.
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Theorem 2 is a central limit theorem for the μ(dσ\β, v) distributed random
variables. In the direction of the first coordinate, i.e. in the direction of the so-called
spontaneous magnetization, one has to normalize by the square root of the
number of terms. But in the orthogonal direction one has to normalize by a
different power of the number of terms. Such an unusual normalization also
appears in the scalar model, but only at the critical temperature (see e.g. [5-7]), and
not on a whole interval. We emphasize that in our model both the Hamiltonian
function and the free measure are invariant under all rotations. It is believed that in
models with such a symmetry for all low temperatures one has to normalize in the
direction orthogonal to the spontaneous magnetization in the same way as at the
critical temperatures. The proof of this conjecture in the general case seems to be
very difficult. Our aim in the present paper is to show its validity in a relatively
simple case. The unusual normalization in our case is connected with the following

Corollary. The correlation function of the μ(dσ\β, v) distributed random variables
satisfies the following relation. For z = 2, ...,m

The exact order of the correlation function E[(σ(1)0')-£σ(1)(/)) 0(1)(/c)
— Eσ(1)(fc)] can also be determined as d(j,k)^>ao. Since it requires tedious
calculations we omit it. We only remark that

(σ(ί\k) - E

is convergent for z'=l, and divergent for i = 2, ...,ra. This indicates weak
dependence in the direction of the magnetization and strong dependence in the
orthogonal direction. The unusual normalization in our model is due to this strong
dependence.

2. A Large Deviation Result

Let pn(s) = pn(s, β, ύ) denote the density function of the distribution of the average
spin 2~" X σ(z), where the spins σ(i), z e Vn are μn(dσ\β,v} distributed. In this

ieVn

section we present an asymptotic formula for pn(s) which we need later. We deduce
it from a more general result.

Introduce the energy function

#„,„»= Σ U(i,j)(σ(ι);σ(j))
ίJeVn

Σ (σ(/);σ(0
iεVn

2

where u>0 and μ are real numbers, σ = {σ(ι); ie Vn}, and otherwise we use the
notations of the previous section. Put

seRm,
ieVn
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where δ( ) denotes the Dirac delta, and Ξn(μ, u) = \ Zn(s, μ, u)ds. By substituting σ(ι)

θ, u= j, μ= we get that

(2.1)

Hence we can deduce a good asymptotic formula for pn(s) by first proving it for
Zn(s,μ,u). In order to formulate such a result we introduce some notations.

We say that a function Φ(r, μ) = Φ(r, μ, ύ), r^μ.ueR1 belongs to the class Su (we
shall omit denoting dependence on u if it causes no ambiguity) if

where α0 = - - , the function R(r, μ) is even in its first coordinate, and it satisfies
Zs C

the following conditions:
dί+jR

i) . .. . e C(K) if i +j ^ 2, j <; 1 for all compact sets K C R2, and for ί+j = 2
or oμj

dί+jR
and 7^ 1 . . satisfies the Holder condition of order ε0 =f — a in r and μ with

or oμj

some multiplying factor C(K). Moreover C(K)^ const w(l +diamK)2.
dί+jR\

ii) 0 .^ . exists if i + 2; < 4. / < 1 and it is continuous in μ.
drldμj\r=0 ~ ~

R(r,μ)= Σojj

iii)

drl ), where 0( ) is uniform in μ.

dr2

δr4 dr2dμ

where C does not depend on r and μ.
If u > 0 is sufficiently small, and Φ 6 Su, then
a) there exists a unique "critical point" μc = α0 + O(M) (depending on Φ) such

that
θr2 =o.

b) Let M(μ)^0 be the (unique) solution of the equation Φ(M(μ),μ)
= minΦ(r, μ). Then M(μ) = 0 for μ^μc and M(μ)>0 for μ<μc.

Let us fix a function χ(x) eCco(R1) such that

0,l if x<0,lX ( ) ~
x if x>0,2

andO, l^
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Since the functions Zn(s9 μ), Pn(s, μ), pn(s, μ) are rotation invariant in their first
coordinate, it is enough to define them in the case s = (r, 0, . . . , 0), r e jR1 . We shall
denote these functions also by Zπ(r,μ), Pπ(r, μ) and pn(r,μ), reR1. Now we
formulate the following

Theorem A. Assume that 2>c> J/2 and ε > 0. There are some constants C = C(c) > 0
and u0 > 0 such that for any 0<u<u0 there exists a function Φ(r, μ) = Φ(r, μ, u) e Su

(with the bounding constant C in the definition of the class Su) such that in the
domain

with

the following asymptotic expansion holds true:

n\a- — +ε

=
j/π.

where a0 = , aί=a0+l9 and
2 — c

>M(r,μ)=--Σ 2 7 Ί l n ( α 1 + ( - ) ^-yj + l n ί χ
4;to L V W Sr2 J V

and the 0( ) is uniform in r and μ. Moreover

some ξ < 1 .

if

2\n+jldΦ
- —Γ"cj r dr

(2.2)

Theorem A is a multi-dimensional generalization of the result in [3]. We
explain the modifications needed in its proof in the Appendix.

Theorem A and formula (2.1) enable us to give a good asymptotic formula for

pn(s, β, u). In the sequel we write Φ(s, β, u) instead of Φ ( ]/βs, —, — L where Φ is

defined in Theorem A.

Let βcr be the (unique) solution of the equation —r-̂ -1 = 0,andfor/?>βc r

s=0

M(β) the (unique) positive solution of the equation — . =0. Put
OS

(2.3)

We write down the estimates on pn(s9 β) we need in the sequel. Sometimes we omit
the argument β.
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Let us fix some K>M(β). We claim that

Pn(y, β) = (l + 0(ξn))pn(x, β) exp{ - 2"Φ;(x) (3; - x) - 2" - 1 Φ£(χ) (y - x)2} (2.4)

Γ /2 c2\Ί1/2°
\y-x\ ^2~n/V with α- min - — . Here

L V 2/J
the number ξ < 1 and the 0( ) are independent of x and y.

The following estimate also holds true:

pm(y, /O ̂  (1 + 0(f))Pll(x, /O exp{ - 2"Φi(x) (y - x) - 2«B(y - x)2} (2.5)

with some £< 1 if K^x^

with some 5>0 if M(jβ)<x<K,y>M(j8)-0,01 [-j . Here again 5 > 0, £<1,

and the 0( ) is independent of x and y. On the other hand

pn(y, β ) Z ( l + 0(ζ"))pn ^M(β) - 0,01 "̂, /?^ (2.5')

if M<M(/9- 0,01(0".

To prove (2.4) first we observe that by Theorem A and (2.1)

AϋO = P« W (i + θ(f )) eχp{ - 2"(Φn(y) - *.(*)) - (ψnίy) - v» W)>
A Taylor expansion shows that

2"[ΦI,GO - Φ.(x)] = 2-Φi(x) (y - x) + 2" - X(x) (y - x)2 + 0(£") ,

because 2"[Φί(ί) - ΦJ(x)] (y-x)2 = 0(^") if |ί-x| <2~"/2α" , and |y-x| <2~"/2α".
It remains to show that

(2-6)
Put v»(y)-v.W= -i(Λ +/2) with

j=o

and

\n+j \ 32(f) /r\n+J

To estimate I± let us observe that

3

hence

sup
r

x dr y dr
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This relation together with the relations

a
if

and

imply that

In

er ,.3/2

hence
3/2

(2.7)

Since |x — y\ <|/2"α", hence (2.7) implies that Iΐ = 0(ξn). On the other hand since
d2Φ

ifz>MO?)-0,01 (-J , hence

The proof of (2.5) is similar but simpler. Since w)^ C>0, we have
dr

On the other hand ψn(y)-ψn(x) = 0(ξn)(2n(y-x)2 +1), which can be proved
with the help of (2.7). Formula (2.5) follows from these relations.

3. The Idea of the Proof

The proof contains rather tedious calculations. Hence first we explain the main
ideas of the proof in an informal way.

Let μ^N(dσ\β, v), n^N, denote the projection of the measure μh

N(dσ\β, v) to the
volume Vn. We are going to give a good asymptotical formula for the Radon-

dμh

Nikodym derivative - Ί

n'N. Then we briefly explain how Theorems 1 and 2 can be
dμn

proved by means of this formula. In this section we state and prove our results in a
non-rigorous way. Later we shall prove these statements rigorously.
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We need the following result

Theorem B. Let σ(ί), i e Vn, be μn(dσ\β, v) distributed random variables. Put ξn

= ™ Σ σ(0> and let yn(dx) = yn β v(dx) denote the distribution of ξn. Then
' '

μh

n,N(dσ\β, v) = ύn^(β)tiN(ξn)μn(dσ\β, v)

with

(/ι; x)] ,

where

and ΰn^N(β) is an appropriate norming constant.

Theorem B is a slight modification of the main formula in [2]. Its proof goes in
the same way, hence we omit it.

Now we are going to find a good asymptotic formula for /„%(%). We omit the
subscript N and superscript h if it leads to no ambiguity. For the sake of simplicity
we restrict ourselves during the whole proof to the case ra = 2. As we shall see the
measure μ^N is essentially concentrated on such configurations σ(z), ie Vn for

which — Σ σ(i)~M = (M,0), where M is defined through the equation
2 i e Vn

Φ'N(M) = h. Hence it is enough to give a good asymptotics for fn(x) in a small
neighbourhood of the point M. By Theorem A the measure yn has the density
function Pn(x)=pn(\x\), and pB(x)~£nexp(-2"Φn(x)) for x~M. Put /„(*)
= Lnexpψn(x), where Ln is chosen in such a way that ψn(M) = 0. We claim that
Ψn(χ)~9n(χι — M) + AnX2 if x = (xί, x2)~M, and we give explicit formulas for gn

and An. This relation can be proved by induction; namely ψN(x) = 2Nβh(x1 — M)
= 9N(xι—M}+ANxl with gN = 2Nβh and AN = Q. By Theorems B and A

φn(x)~Cn+lnf e x p ( x ; ί) + Ψ π + 1 -2»Φn(tdt. (3.1)

The integral in (3.1) is concentrated around its maximum, hence

ψn(x)~Cn+ supV(x; t) + ψn+1?± -2MΦπ(|ί|) . (3.2)

This maximum is taken near the point M, but we need a better approximation for
the point t where the right-hand side of (3.2) takes its maximum. To get such an
approximation we are looking for the maximum of ψn(x) on the circle |ί| = M. The
term 2nΦn(\t\) is constant on this circle, and

+ ίι Λλ , λ

2^~ J
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In such a way we give the following approximation ψn(x) for ψn(x) :

sup ^ ^ .
\t\=M\_ \ 2 J \ 2

0. (3.3)

Let us calculate the place of maximum t = (tί9t2) of the expression (3.3) by
Lagrange's method of multipliers. We get the equations

We shall solve this system of equations only approximately. Since tl ~M, and x t

~ M, hence 2λ ~ βcn + "** , and we get the following approximate solution for tί

andί2: R n . Λι+ι
PC + -j— 2

(3.4)
n „ ιt+1

_ r 2 2M
Therefore

If we substitute x1 by M in the coefficient of x29 then the above formal calculations
suggest that

where gn and An are defined by the following recursive formula

(3.5)

2 4MJ\ lgm+1 Am+l

(3.50
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Later we shall see that these rather rough calculations give an approximation
sufficiently good for our purposes.

In the region where the measure μ^N is concentrated we may write

dμn

Σ (x(ιj) - M) + An (I Σ ̂  } }. (3.6)
j=ι \^ j=ι

For a fixed h > 0 the first term is dominating in the exponent of the right-hand side
of (3.6), while the second term is negligible. It is easy to see that gn = gn(N,K)
~βh - 2" + 0(c") as N-*oo. Hence the expression on the right-hand side of (3.6) is
almost independent of N. Exploiting this fact, we get, by letting N go to infinity in
(3.6), that the restrictions of the measures μjj to Vn have a limit as ]V-»oo. This
implies part a) of Theorem 1. Part b) can be proved by means of a similar but more
careful limiting procedure, when JV->oo and fι->0 simultaneously. In order to
carry out this limiting procedure first we have to investigate the behaviour of the

a - A
sequences gn and An. Put gn = -^— and An = -£. It is not difficult to see that gn

2β c c - - 2-c
-»- if ΛΓ-»oo and ft-»0. On the other hand An-+A = β in this case. It is

natural to expect such a result for the following reason. Because of relation (3.5")
the value A= lim Άn(N, h) has to be the solution of the equation

. __ 2β
. — c

g__A β_ ' y 2-c'
2 2+ c

2 — c β
This equation has two solutions: A(1} = β - and A(2}= — —, A(ί}<A(2\ Since4 _ ^ c 2-c
our iteration starts with An = 0, the smaller root of this equation must appear as the
limit.

Exploiting the above relations, and carrying out a limiting procedure just as
was done with relation (3.6), we get that the limit lim μh = μ exists, and moreover

.,
dμn

(3.7)

where μVn is the projection of the measure μ to the volume Vn. Hence Theorem 1 hold
true, and formula (3.7) helps us to prove Theorem 2.

Indeed, with the help of formula (3.7) and Theorem A we can get a good

approximation for the density function of — Σ σOX where the random variables
2 jeVn
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σ(/) are μ distributed. This approximation of the density will be of the form

KH exp{gc"M(Xl - M) + Ac»x2

2 - 2"Φn(\x\)} = exp{#π(*)} (3.8)

in the vicinity of the point M = (M,0). Making a Taylor expansion around the
maximum of this density function (the maximum is actually in the point M) we get
the exponent of a quadratic form. This implies that Tnσ(j) is asymptotically
normally distributed. The multi-dimensional distributions in Theorem 2 can be
calculated similarly.

Let us finally discuss how the normalization in Theorem 2 must be chosen. To
this end we have to determine the variances of the random variables σ^1}

- — Σ tf(1)0') and σ(2} = Σ σ(2)(/), where the random variables σ(/) = {<τ(1)0')>
2 jeVn jeVn

σ(2)(/)} are μ distributed. The vector σn = (σ£\ σ(2}} is asymptotically Gaussian, and
ίd2H\~1

its density is given by formula (3.8). Therefore Dσ(

n

ί}~ — I -r-̂ - ) and Dσ(2}

\vχί J
1 ' S2H\ ~ 1

-T— 2~ 1 , and these partial derivatives are taken in place of the maximum of
CX2J

the function H, i.e. in M = (M,0). It can be seen that DσJ,1^ const 2~", as it is
dΦ(\x\)

expected. On the other hand observe that = 0, implies that

d2Φ
x = M

= 0. Now, since Φn(x) = Φ(x) + -r- hr I x\, the above relations imply
2 \2

d2H(M)
that—r—2—^ const cn and Dσ(2}~ const -c n. This fact explains the unusual

(3X2
normalization in Theorem 2.

4. Some Preparatory Remarks

In this section we discuss some technical details needed during the proof. First we
give some estimates on the Radon-Nikodym derivative

(4.1)Vv , ..., ^v j Jn

dμn

dah

 NBy Theorem B the Radon-Nikodym derivative , is a function of x(1)+...
dμn

+ x(2n). I We formulate two kinds of estimates. Property A(n) states an estimate on

f n t N in the typical region, and Property B(n) gives an upper bound everywhere.
Later we shall prove that both A(n) and B(n) hold true.

Let M = M(N,h), h>0, N>N0 with some N0, denote the (unique) positive
solution of the equation

Φ'N(s) = hβ, (4.2)
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where the function ΦN is defined in (2.3). (Since the argument β is fixed during the
whole proof, we shall generally omit it.) Introduce the set

Ό

(4.3)

/2 cΛΊ^o
with α = min -, — . Now we formulate the following

V 2/J

Property A(n).

/„%(*) = Lh

n, N e*p{0n(N, *) (*ι ~ M(N9 h»

for xeD(n), where f£N(x) is defined in (4.1), 0<£<1, I?n?N is an appropriate
norming constant, and the constants gn(N,h) and An(N,h) are defined by the
recursive formulas

gm(N,h) = βcmM(N,h) + 9m+1J""', m = N-l,...,\, (4.4)

AN(N,h) = 0,

J m \ r > - / A T 7 \ A / A T 7 \gm+1(N,h) Am+1(N,h)

2M(N,h) 2 P

(4.5)

ίc\"
Let us introduce the notations Rn = M(β)-0,Ol l-\ and Rn = M(β)

0 02 /cV
-- ^—r - . We ha ve chosen Rn in such a way that ΐ(Λn + ΛJ^J?π+ l 5 n = l, 2,....

c — 1 \2/
Now we formulate the following

Property B(n) .Put M = M(N, h), M = (M, 0), gn = gn(N, h), An = An(N, h) and p=-.
There exist some L>0,0<ξ<l such that a

a) For all ye R1, x ε R2 such that \x\^y, y>Rnwe have

/„%(*) ̂  fn

h

>N(M) exp{gn(y - M) + Lp"(y~M)2

/2

b) For \x\ ̂  T, |T- Λfl g d, with dn = α" ±-

bl) fn

h,N(x)^fn

h

N(M)exp{gn(Xl-M)+AnX

2

2 + 0(ξ")}, if

>-^α".
~ c"



500 P. M. Bleher and P. Major

ί
Λ

0π(Γ-M)-^χ + 0(Γ)j, if gn(Xl-T) + Anx
2

2

~ n

[We could have chosen y = max(\x\,Rn) and T=|x| in Property B(n). The
somewhat artificial constants T and y were introduced, because the proofs are
simpler with such a formulation.]

Now we formulate the following

Proposition 1. If n^.nθ9 N^n and~
then Property A(n) holds true. The number ξ, 0 < ξ < 1, and the threshold number n0

can be chosen independently of N and hifh<h0 with some ft0 > 0. The 0( ) is uniform
in N9 ft and x.

Proposition 2. Under the conditions of Proposition 7, Property B(n) holds true. The
constants L > 0, 0 < ξ < 1, and the threshold number n0 can be chosen independently
of N and ft if ft<ft0. The 0( ) is uniform in N, ft, x, and y.

Later we shall see that under condition (4.6) the constant dn appearing in part b)
of Property B(n) satisfies the inequality M(N, h) — dn>Rn. Property A(n) describes
the asymptotic behaviour of fntN(x) in the typical region where the average of the
μh

nίN distributed spins are concentrated, and Property B(n) gives an upper bound
on f£N everywhere. The typical region is around the point M = (M(N9 ft), 0) and its
size is 2~π/2α(w), with some α(n)->oo in the direction of the magnetization; In the
orthogonal direction its size depends on ft, but under condition (4.6) it is always
smaller than c~n/2u(n). Condition (4.6) was imposed in order to guarantee that μ*tN

is concentrated in a small region. In Property B(n) we have distinguished the cases
a) and b) because in the case |x| ~ M(N9 ft) a sharper bound is needed. The cases bl)
and b2) were separated because in the case x^(T^O) [this is case bl)] a sharp
bound is needed. We shall see that under condition (4.6) gn(N9 ft) (x1 — T)
+ An(N, h)xl is negative for |x| < T, and its absolute value is small only if x ~ (T, 0).

In the sequel we shall omit the arguments N and ft if it leads to no ambiguity.
The letter ξ will denote a real number between zero and one. In different formulas it
may denote different numbers. What is important for us is that there exists an ε > 0
such that ξ < 1 - ε for all n, N and ft, 0 < ft < ft0 with some ft0 > 0, and the 0( ) in 0(ξn)
is uniform in all variables of the formulas.

Now we shall investigate the behaviour of the sequences gn and An. Put gn

= -^- and An= 4r By formulas (4.4) and (4.5) the relations

N~n

(4.7)+^u,1
+c
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hold true. We shall prove the following
2B

Lemma La)// relation (4.6) holds then g^gN__^...^g^g with g = , and
2 — c

- - - - , - Λ2-c , , hβ ίAn ,Ό = AN^AN_l^... ^A1 ^A with A = β . The inequality gn> — \-\ also
c M \c/

holds.
V 2 n

b) // moreover N ̂  N(ή), h<l-ξ\ with some 0 < ξ < 1, then there exist some

0 < ξ' < 1 and C > 0 (independently of nandN> N(n)) such that \gn(N, h)-g\< Cξ'n

and\Άn(N,h)-A\<Cξ/n.

Lemma 1 has the following

Corollary 2. For all 0<η<l and n there exist some constants N = N(n9 η) and
p = p(η^ 0<p<l, such that for h<pn and N>N(n,ή), \Άn(N,h) — Ά\^ηn and

n , - .

Proof of Corollary 2. Choose some integers K > 0 and j > 0 such that η<ζ'κ and
/c \2(nK + j)

Cξ'j < 1 . Put p = ( - ξ ) and N(n, η) = N(Kn+j). Then we get, by applying

the monotonicity of the sequence An together with part b) of Lemma 1 for
= '

The corresponding statement for gn follows directly from (4.7).
We remark that the condition h<pn is consistent with (4.6) if N is sufficiently

large.

Proof of Lemma 1. It follows immediately from (4.7) that the sequence gn has all
properties stated in Lemma 1. Define the function

and the transformation Tg\Rl^Rv, Tfl(α) = Γ(α, g\ Let Tg" denote the w-fold
iteration of the transformation Tg. Clearly, Άm = T(Άm + ί, gm+1). The idea of the
proof is the following: We establish some monotonicity properties of the function
Γ(α, g), and we deduce part a) from them. The sequence Tg(Q) tends exponentially
fast to the smaller solution of the equation Tg(a) = α. Combining this fact with the
monotonicity properties of the sequences An and gn and the exponentially fast
convergence gn to g we show that An tends exponentially fast to the smaller

2 — c
solution of the equation α = T^α. This equation has two solutions α t = β - = A,

, and aί < α2.
2* c
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A simple calculation shows that

and \ c

\2

Hence in the domain s(α, g); 0^α<#+2—> the function Γ(α, g) is continuous,
I c)

and it is monotone decreasing in the argument g and monotone increasing in the
argument α. Let αm, N ̂  m ̂  1 denote the smaller (positive) solution of the equation
α = T(α, #m). Since the sequence #m is monotone increasing gm ̂  g, T(A, g) = Ά and
T(0, g) ̂  0 for # ̂  0, the monotonicity properties of the function Γ(α, #) imply that
0^α ]V^...^α1^A Moreover, a simple induction gives that O^Am^am,
m = N,...,l. Indeed, Am=T(An+i9 ffw+ι)^71(αw+1, ffm+1) = αw + 1^αw, and lw

= Γ(>4m+ι_9 ^m+O^T(0,^w+1)^0. Since α^Γ(α,^w + 1) for 0^α^αm + 1, the
relation Άm=T(Άm+ί, gm+1)^Am+ί holds, i.e. the sequence Am is monotone
decreasing. Part a) is proved.

fc \2«
lϊ h<(-ξ) , then gm^g + 0(ξ'n) for n^m^2n. The relation

\2 7
5/fl) holds true for all g^g, where α(0) is the smaller solution of the equation

T(α, g) = α, and the error term 0(ξ'n) is uniformly bounded for g ̂  g ̂  ̂  + β. If g = g
+ 0(ξ'n), then u(g) = Ά+0(ξ'n). Hence the already proved properties of the

(c '
sequences An and gn and the function Γ(α, g) imply that for h< I - ξ

Lemma 1 is proved.
We shall prove Propositions 1 and 2 by induction, namely we shall prove the

following

Lemma 3.1fn> n0, and relation (4.6) holds, then Properties A(n +1) and B(n + 1)
imply Property A(n).

Lemma 4.1fn> rc0, and relation (4.6) holds, then Properties A(n 4- 1) and B(n + 1)
imply Property B(n).

Since f^N(x) = LNexp(βh2Nx1) Properties A(N) and B(N) hold true, and
Lemmas 3 and 4 imply Propositions 1 and 2. We postpone their proofs to Sects. 7
and 8. We conclude this section by verifying the relations

= for M = M(N,h) and n^N , (4.8)
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and

M(N, h) - 2dn > M(β) -2~n/2a2n , (4.9)

if relation (4.6) holds.
Relation (4.8) holds ίorn = N by the definition of gN and M(N, h). Then we get,

by induction from n + 1 to n, that

as we claimed.
To prove (4.9) we write

Φ'(M(N, h)) = hβ- a0β (^ J M(ΛΓ, ft) = β(h - ft0) ,

with h0 = ^ ' ^ ί ̂  ) .By (4.6) h-h0^0, hence the relation Φ"(x) ^ const > 0,
2 — c \2J

if x > Tn implies that M(N9 h) ̂  M(β\ and moreover

M(N, h) ̂  M08) + K(h - Λ0) with some K > 0 . (4.10)

It follows from (4.7) that there exists some K'>0 such that ~^^β(h-ho)

/cγ / _ ^_ /_
-h Kx ( -) , and since |/x + y ̂  |/2x + y2y for x^O, j ^O, hence

/2 / h — h V / 2

K2/J V/ 2 Ί /h-h α2" \
-^(h-ho)} +}/2K' -2~n ^CαΊ—2^" + —r+2~"/ 2)

The last relation with (4.10) imply (4.9).
Since M(N, h)^M(β\ we can rewrite formulas (2.4) and (2.5) with the choice

= M(N, h) and with the help of (4.8) in the following way:

M)2}, (4.11)

if |x-M|^2-"/2α",

pa(x) ^ (1 + 0(ξn))Pn(M) exp{ - gn(x - M) - 2«B(x - m)2} , (4. 1 2)

with some B>0 iϊ x>Rn,

(4.120

We shall need the above estimates on pn in the sequel.
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5. Proof of Theorem 1

We prove Theorem 1 with the help of Propositions 1 and 2 in this section and
Theorem 2 in the next one.

Part a). Let us fix some k ̂  0 and choose an n > k. We assume that n is sufficiently
large, n > n0(h). Let 3Fk denote the natural σ-algebra in (R2)2k. Given a set A e J ,̂
define the cylindrical set

)̂ = {(χω?_?;c(2»)^

Sometimes we shall write μh

N(A) instead of μh

N(A(N)). We have μh

N(A) = μ'ίttN(A(rij),
hence

A(n) μn

Put

nl2an/2, x2

2<2~V12} ,

and

where M(h) is the solution of the equation Φ'(s) = βh. [The difference between the
sets D(n) and D(n) defined in (4.3) is that x\ is bounded by 2~nan/2 in D(n) and by
c~nun/2 in D(rc). We shall work with the set D(n) instead of D(n), because it does not
depend on JV.] We define the integrals

_
A(n)nDι(n)

and

I2(A)= ί_
A(n)\Dι(n)

Then I(A) = Iί(A) + I2(A). We shall estimate I^A) with the help of Proposition 1
and 1 2 with the help of Proposition 2. By Proposition 1

- «
2 j=ι

f) with M = M(JV,/ι), (5.1)
\W /

if

/ 1 2" \ 2 //A" \

π), since An - Σ 4 j )) =0((- α«/2

V2 J = l / \\2/ /
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in this case. Moreover (5.1) remains valid if

*•;

and the terms gn and M(N9h) are substituted by g'n and M(ft), where g'n
hβ (2\n 2β

= — — I - I + - - . [Our aim with this substitution is to give a good estimate
M(h)\cJ 2-c'

on Iι(A) whose main term does not depend on AT.] Indeed, M(N,h) — M(h)

= 0 ( 1 - 1 I because of (4.2) and the definition of M(ft),

., _ /2V/J 1__\ _ 2β (C\N-"_

Hence

» ^nΣι(xψ-M)-c"M(h)^ Σ (xψ-M(h))

ί f ίc\N

= 0(exp^c"2"y 2-»>2

Moreover for N>N1(n), D(n)cD(ή). Hence we can write for N>Nl(ή),

Put /Ί = I1((R2)2") and Γ2 = l2((R2}2k). We are going to show that

Γ"). (5.3)

First we prove that (5.2) and (5.3) imply part a) of Theorem 1. Since /ί ̂  1, (5.3)
implies that Γ2^Gxp(-ξ~n). Hence we get, by applying (5.2) with the choice of

^ expί^Y^M(ft) Σ (xψ
DM (\2J j = ι

Hence there exists some constants ΰn such that Iίn )N = ύn(l + 0(ξn)), and the
relations (5.2), (5.3) together with the inequality Γ2(A)^Γ2 imply that

μh

N(A) = J Lh

n exp i ^ M ( f t ) Σ (xψ ~ M(h))l dμn + 0(ξ") (5.4)

for N>N1 (n). Here the constant ξ < 1 does not depend on ^4 e JV By relation (5.4)
\μh

N(A)-μh

N,(A)\ = 0(ξn) for all A e ^kiϊN>Nί(n) and ΛΓ> JV^w). Letting N tend
to infinity we get from this relation that μh(A)= lim μh

N(A) exists, and
JV-»oo

= μh(A) + 0(ξn). The limit μΛ is a probability measure, hence part a) is proved.
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Now we turn to the proof of (5.3). The relations

I'ι= J /»(*)P»(*>fr,
£>(»)

r2= ί. fJMp»(χWχ
R2-D(n)

hold true. It follows from (4.11) and Property A(n) that fn(x)pn(x) ^ Cfn(M)pn(M)
with some C>0 if |x-M|<2""/2, where M = (M(JV,Λ),0). Hence

if N>N1(ri). Obviously

I2 ί ί fn(x)pn(x}dx + j fn(x)Pn(x)dx , (5.6)
Fί F2

with

Put t(u) = max(u, Rn). It follows from (4.12), (4.12') and part a) of Property B(n) with
the choice y = t(x) that

pn(x)fn(x) £ Pn(M)fn(M) exp{ - 2" - *B(t(\x\) - M}2}

for X E F 1 . Therefore

ί pn(x)fn(x)dx^pn(M)fn(M)Qχp(-^2). (5.7)
Fi

If x E F2 then we can estimate fn(x) with the help of part b) of Property B(n) with
— x2 x2

the choice Γ= |x|. We have xί - \x\ ̂  — ^- and gn^2nhβ. Therefore, if

n > fio(ft), then gπ > 8/lnM, and g,(Xl - T) + ̂ πx^ ̂  - jL x^ _ α«/2. Hence

either bl) or b2) implies that

Then by (4.12)

ί pπ(x)/π(xXx^(M)/n(M)exp(-Γ") (5.8)
F2

Relations (5.5)-(5.8) imply (5.3).

Part b). Let us fix again a k ̂  0 and n^k.LQtN> N2(n), where N2(n) ^ NΊ(n), and

N2(n) is so large that Corollary 2 can be applied with η=—. Let h<4~n and /z < p",

where p = p(η), and /?(;?) is defined in the corollary of Lemma 1.
We claim that

[_gn(Xl - M) + Aj& - [_c»gM(β) (Xl - M(β)) + c"Ά^ = 0(ξ") (5.9)
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for x E D(n) iϊN>N2(ri), where g= — - and A = β . Relation (5.9) follows
2 — c c

from the following estimates: By Corollary 2,

and

M(β)-M(N,h} = θ(h+ (^\\ =0(2-»),

if N>N2(ri), x E D(ή). Formula (5.9) follows from the above relations. Put

D2(n) = (x^\ . . ., x<2">), Σ χ«> E D2(n)
(. L j= ι

and define the integrals

AG4)= ί. ^dft,, Λ(A)= J. ̂
A(n)nD2(n) uμn A(n)\D2(n) Ctμn

Now we argue similarly to part a). Obviously μ*(A) = /1(A) + /2(A). Since D2(ri)
CD(ri), it follows from (5.9) and Property A(n) that

• exp c"gM(β) (x« - M(0)) + c«l Σ x«> dμπ . (5.10)
(. 2 j =ι

Put /ί=/1((£2)2") and /2 = /2((K2)2k). Then

Λ'=J p,(x)f,(x)dx
D2(n)

It can be proved similarly to (5.3) that

Λ'=J p,(x)f,(x)dx, /2'= I P»(x)f,(x)dx.
D2(n) R2\D2(n)

Γ"). (5.Π)

The only difference is that now we have to define the set F2 as

and we have to carry out the estimates in F2 in the following way: For x e F2,

, Λ) (Xi - |x|) + Ixi] ̂  c" - M(JV, Λ) + ̂
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with some appropriately chosen β>0 and B>0. Then (5.11) can be proved
similarly to (5.3). Relations (5.10) and (5.11) imply that there exists some Ln such
that

LK, (5.12)

μh

N(A) = J _ Ln exp \cngM(β) I Σ (xψ -M(/0)
A(n)nD2(n) ( έ j= 1

, (5.13)

if N>N2(n), h<pn, h<4~n and /z satisfies relation (4.6). These relations can be
proved similarly to their analogues in part a). Let us emphasize that the main term
on the right-hand side of (5.13) depends neither on N nor on h.

Then we can carry out a limiting procedure similarly to part a). Letting first N
tend to infinity we get that \μhί(A)-μh2(A)\ = 0(ξn) iίhί,h2<4~n and hl9 h2<pn.
Then letting h tend to zero we get that the limit μ(A) = lim μh(A) exists, and μ\A)

h-+0

= μ(A) + 0(ξδ) with δ = log - - ( max ( Iog4, log - ) ) . The number ξ < 1 and theh V V P//
0( ) in the last relation does not depend on the set A. Hence it implies part b) of
Theorem 1.

6. Proof of Theorem 2 and the Corollary

Let μγn and μVn denote the projection of the measures μh and μ to Vn. We claim that
the Radon-Nikodym derivatives

2"
(1)

and

"fiVnfad) γ(2»)\_p M y γ(j)) //: 2^
dΛ(x , ..,x )-^w^.Σ^ J, (6.2)

exist.
Indeed, the convergence of the measures, μj| N to μlγn in variational metric,

established in Theorem 1, is equivalent to the I}μn convergence of f £ N to (the
existing) Fj. Then the convergence of the measures μyn to μVn in variational metric
implies the convergence of Fh

n to Fh. Moreover, these convergences help us to show
that Properties A(n) and B(n) remain valid for Fh

n(x) and Fn(x).
To be more precise, let us first define

It is easy to see from (4.7) that
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By Corollary 2 there exists a^>p1>0 such that if h<p*[ and N>N(pl9 ri), then
cN

A(N, p) - Ac" = 0(<Γ). Clearly ( M(N, h) - M(K) = θ(-} j. It can be seen with the

help of these facts and formula (5.12) that properties A(n) and B(n) hold for Fh

n(x) if
h<pnι, gn(N, h) is substituted by gn(h), AH(N, h) by Ac\ M(N, h) by M(h) and L*M>N

by Ln. Then letting h go to zero we get that Properties A(n) and B(n) hold also for
Fn(x) if M(Λ) is substituted by M(β) and g^h) by cngM(β). Thus we get with the
notation of Properties A(n) and B(n), the following relations:

for xeD0(n),

(6.3)

^ cxp{gcn(y - M(/?)) + Lp\y - M(/J))2 + 0(ξn)} for x e R2 ,

yεR1, \x<y, y>Rn and M = (M(j8),0). (6.4)

For \T-M(β)\<]/j 2-"2of, \x\>T,xeR2,

if X

(6.5)
and

if g(x1

To prove Theorem 2 still we need a theorem to be formulated below. Let us fix
some integer fc^O, and define the transformation Qn = Qn(K):(R2)2n+k-+(R2)2k:

O fvd) x(2n+k)]-(v(1) v(2k) v =— ^ x(ί)

^nVΛ j j Λ ) — \y ?•••?/ j /; on Z^ Λ ?
^ / = (j-l)2"+l

/ _ 1 7/c. (p) c- Ώ2 1 Λ W + / C7— ι , . . . , z , Λ e xc , p— ι, . . . ,z

Given a probability measure v over (^2)2n+k, we denote by Qnv the measure over
(R2)2k induced by the above transformation Qnι i.e. Qnv is the distribution of the
random vector Qn(η(l), ...,η(2n+% where (η(ί)9 ...,(2w+fc)) is v-distributed. Now
we formulate the following

Theorem C. The measure Qnμn+k = Qnμn+k(dσ\βτV) has a density function of the
form

-Πpnd^lβ), *ωe£2, ;=l,...,2 f c,
7=1

where Hk is defined in (LI)', pn is defined at the beginning of Sect. 2 and lSk>n is an
appropriate norming constant.

Theorem C follows from Theorem 1 of [2].
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It follows easily from (6.2) and the definition of the transformation Qn that

(1)
{ ,,,d<2nμn+k \2 7 = 1

This relation together with Theorem C imply that the measure QnβVn+k has the
density function

^^ 7=1

First we give a good asymptotic formula for Gk n in the case when x0) e D0(n),
7 = 1 , . . . , 2k. [The set Z)0(V) is defined in (6.3).]

We claim that for x e D0(ri),

(6.7)

where M = M(β), and q = Φ"(M). Indeed, we get from (2.4) with x = M(β) that

and the expression in the exponent can be written as -^—c"M2 -- ^-c"|x|2

x2

-2"-^(|x|-M)2, and since |x|-M-x1 + -̂ - -M = x1-M+0(c-"<xn/2} for
2X!

x e ί>0(n), these relations imply (6.7).
By (6.3), (6.6) and (6.7)

Gπ(x(1>, ...,x<2V4>xpn,n(*(1), ...,x(2k)) + 0(ξ»)}, (6.8)

with
Pt>,(X™,...,x<2**)

i = l 7=1

- Σ c-(xy)2 + xya) + 2"-1

g(xy>-Af)2 , (6.80
7=1 ^

if Xj e D0(n)J = 1 , . . ., 2k. We rewrite the quadratic polynomial Pkn as a polynomial
of xψ — M and x(

2

j). To this end let us first observe that for all ί== 1, ...,2k,

2k 2k fc-1

Σ j — a /' \ v~ι j — Λ /1 \ x~ι '
d 0,j)= Σ ^ (!,;)= Σ -

7=1 7=1 7=0
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Then a simple calculation shows that

-0 for all j = l,...,2*,
Uχί (M M)

where M = (M,0). This means that the linear terms xψ — M disappear when we
rewrite Pkn as a polynomial of xψ — M and xψ. Moreover, since x±— M

= 0(2 ~"> V2) if x E D0(n), the terms βcnd(ί, j ) (x(? - M) (xψ - M),

— M)2 are negligible in Pk n, and we get

p / γ(l) (2k)\
^k,n\X 5 . . > X )

2k \ 2 2k i-1

2k

- .Σ

if XjED0(n)9. j=l, . . . ,2*. (6.9)

A calculation similar to that in Theorem 1 shows with the help of relations (6.4),
(6.5), and (6.50 that

, !
xeR2\D0(n) xeD0(n)

This means that the measure QnβVn+k is essentially concentrated in the set

Hence, after an appropriate rescaling, formulas (6.8) and (6.9) imply Theorem 2.

Proof of the Corollary. It follows from the symmetry properties of the model that
Eσ(2\ί)σ(2}(j) depends on i and j only through d(ίj). Hence, if d(ij) = n, then

On the other hand

im EΓ<"V2>(1) W2>(2) = Eσ<2>(l)σ<2>(2) =

where σ(ί) is the same as in Theorem 2. These relations imply the Corollary.

7. The Proof of Lemma 3

In this section we prove Lemma 3 together with some formulas which will be useful
in the proof of Lemma 4. By Theorem B,

= ί exp(j8c-(x; ί))/n + 1 P,(ί)Λ - (7.
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2M 2

where M = M(JV, h). We have chosen the point 5 = (sx, s2) as a good approximation
of the maximum point in the integrand in (7.1). Put

teD3(x)
pn(t)dt ,

and

I2 = J exp(/?c"(x; t ) ) f n + 1
teR2\D3(x)

Pn(t}dt .

We shall estimate 7X with the help of Property A(n+l) and /2 with the help of
Property B(n+ 1). We claim that if x e D(n), then

! = Ln expίfcίjc! - M) + Λ

with

where

and

(7.2)

(7.3)

= M(N,h),

72=exp(-0(Γ"))/ι. (7.4)

Formulas (7.2), (7.3), and (7.4) imply Lemma 3 together with the relation

M2) . (7.5)

To prove (7.2) let us first observe that if t e D3(x) and x 6 D(rc), then
x-f-f

1). Indeed, in this case

/2 + - +0/2-κ2M
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,2-Γ^2 -"/2α"/4<c 2 α"/4^

since by Lemma 1 and the monotonicity properties of the function - - — ,
(cx+d)

_
x2 gc Ac

22-.
c

Therefore, we can estimate 1^ by means of Property A(n + 1) and Theorem A. (We
put slightly more general estimates which we will need in the proof of Lemma 4).
We get with the substitution τ = τ(x) = ί — s that

ί exp(/lf2(τ))dτ,

with "Dί(x)-

(7.6)

π(|S + τ|)-logpn(M)),

(7.7)

Now we give a good asymptotic formula for Iltί(s) and /I j 2(τ) We recall that

and I |s| -M| ̂  -̂ - if x e D(w) and ί G D3(x). We have

— +

+ •
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The coefficient of xx in the last expression is βc"M+ ^~^- =gn, and that of x2 is

lί A \s AA"+l ) ά2 , Aι,

2

M

M — X i
Since βcn si = 0(ξn) if x2 = 0(c~ V) and \x1 — M\ ̂ 2dn [the quantity dn was

defined in Property B(n)], hence

ϊ" if xeD(n), (7.8)

or, more generally, if X2 = 0(c~nan) and |x! —M| = Q(dπ). Now we turn to the
estimation of/ I i 2(τ). We estimate logpn(|5 + τ|)-logpw(M) by mens of (4.11). We
have

1/2

-i

8M3 2 J 2 2 J 2 4M

Hence (4.11) implies that

π(|s + τ|)-logpπ(M)

2M:

Therefore

(7.9)
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Let us consider the coefficients of τ l 5 τ2, and τf in (7.9).

Si

(7.10)

and

" V 2 M 2M3

). (7.10")

The above estimates imply that

(7.11)

if xeD(n) and τeD3(x), or more generally if X2 = 0(c~Mαπ), T2 = 0(c~V), T!
- 0(2"n/2α") and ̂  -M| ̂ 2dn. Observe that the coefficients of τ? and τf in (7.11)
are positive. We get, by integrating (7.11), that

f exp/1>2(τ)dτ^(l + 0(e))(2M-1^ωπ)-1/2. (7.12)
τeD3(x)-s

Relations (7.2) and (7.3) follow from (7.6), (7.7), (7.8), and (7.12).
Now we turn to the proof of (7.4). We need a good upper bound on

Given an x e R2, \ \x\ — M\ ^dn, we define the sets

and

DM = {te R2, 1 |f I - M| g (|/2 - 1)4} -
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First we estimate /n(x,f) in the case ||x| — M\^dn and teF^x). In this case

fn+11 ~^τ~ 1 can be estimated by means of part bl) of Property B(n +1) with the

choice Γ= ' ' ' ' '. | Observe that \T-M\^dn+l, because |T-M|^
l[< i+ (\x\-My]^—=dn^dn+l by Lemma 1. We get that

1/2 J

if ίeF^x). (7.13)

In order to estimate the expression in (7.13), we prove that

x| = 0(c-V), |x|~x1 = 0(c"πα11) if \\x\- M\^dn,

and Fi(x) is non-empty. (7.14)

ίi = 0(c-"α"), lίl-ί^Oίc-V) if ίεF^x). (7.140

Indeed, if there exists some ue R2, TeR1, \u\<^T<^M + dn+1 such that

then

We have by Lemma 1, # π +ι— 2TAn+1>Kgn+ί with some ^>0. Hence Γ— W j

= 0(c~ V). By applying this result to the case M= — , ί e F^x), T= , we

get that x1-ί1-(|x| + |ί|) = 0(c~V). Hence (xl-x^OCc'V), and \t\-t ̂
= 0(c~V). Then the inequalities xl^2|x|(|x|-|x1|), ^^2^1(1^-^) imply (7.14)
and (7.140.

We claim that

with some JB 1>0,aridB2>Oifxl = 0(c~V),ίl = 0(c"V),|ί1-M|<2dll,|x1 -M|

Indeed, we can verify (7.15) similarly to (7.11), only we have to estimate
logpπ(|s + ί|) — logpw(M) by formula (4.12) instead of (4.11). We get a relation
similar to (7.9), only we have to write inequality instead of equaity, and qn must be
substituted by B in the coefficient of τ\. Then it remains to bound the error terms in
(7.9), (7.10), and (7.12). The term 2"τ1τ2s1, e.g. can be estimated in the following
way: Since τ2 = 0(c~"/V/2) and τ1 = 0(dB) = 0(c~π/V), (τ^-s/x)); hence
2nτίτ2s2^2nτ2

ίa-n + 2nanτ2

2s
2

2 = (2nτ2

± + 1) 0(ξn).
By relations (7.14) and (7.140 the relations (7.9) and (7.15) hold if | |x| -M| <dπ

and ί e F^x). [Observe that in this case |xx - M| ̂  \x1 - |x| | + 1 |x| - M| = 0(dn) by
(7.14) and l^-M^Oίd,,) similarly.] Hence by (7.13)

(7.16)
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if \\x\- M\<dn, and f ef^x). Moreover by (7.11),

}, (7.160

if \\x\- M\<dn, teFt(x) and τ1 = 0(2~M/V). Put F2(x) = D4(n)-F1(x).
Now we estimate /n(x, t) in the case | |x| — M\ ^dn, t e F2(x). In this case the

function /„ + 1 ( — — ) can be estimated by part b2) of Property B(n + 1 ) and pn(f) by

(4.12). Moreover by using the inequality (x; t)^\x\ 14 we βet that

/Λ(x, O^Pw(M)/M + 1(M)exp{Gn(x, ί)} ,

with

Clearly c

G,(x, ί) = /9c"M2 + g,(\x\ - M) + j8c"(|x| - M) (|ί| - M)

We have

|-M) = θ α 2 " = θ α " i f teD4(n),

and ||x|-M|^dΛ. On the other hand by Lemma 1, fα" + 1^

- ̂  απ(l + 2K) with 27C = α - 1 > 0. Hence

(7.17)

with some K > 0 if | |x| — M | ̂  dn and t e F2(x) [The constant Ln is defined in (7.3).]
If X2 = Q(c- v

/2), and this relation holds if x e D(n), then

flfn(|x| - M) = gn(Xl - M) + 0(gnx
2

2) = gn(Xl - M) + 0 (^ α"/2") .

Hence

/M(x, ί) ̂  Lπ expί^Xi - M) + ̂ Mx2 - Kα"} , (7.18)/M(x, ί) ̂  Lπ expί^Xi - M) + ̂ Mx2 - Kα"} , (7.18)

with some K > 0 if x e D(ή) and ί e F2(x). Since 2"^^? + cMB2τ^ ̂  Kαw/2 if ί # D3(x),
hence (7.16) and (7.18) imply that

ί /M(x?OΛ^Lnexp{^(x1-M) + ̂ x2-0(Γ")}, (7.19)
teD4(n)-D3(x)

if x e D(n).
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Now we turn to the estimation of /n(x,t) in the case ||x| — M\^dn, teR2

— D4(n). In this case we get, by estimating fn+ί I -— — I by means of part a) of

Property B(n+l) with y= \x\ + ma*W>Rn\ and by using (4 12) wjth (4.120, that

Λ+ ι(M) exp GB(|x|, u(t)) ,

with

2-2M£(z-M)2, (7.20)

where u(t) = max(\t\,Rn).

Clearly, (w(ί)-M)2^(]/2- l)2d2, hence

-M

.
As a consequence c

/n(x, ί) ̂  LM exp |Λ(|x| - M) - ̂  α" - 2" - 2B 7(max(|ί|, ΛJ - M)2 - α" j ,

if I |x| - M| ̂  dn and ί e D4(n). '

If x eD(n), then xi = 0(c~V/2); hence ^(|x|-M) = ̂ (x1-

and

f^X! - M) + ̂ wx2 - 2" - 2fl(max(i, KM) - M)2} , (7.22)

if x e D(n), ί φD4(n). Relation (7.4) follows from (7.19), (7.22), and (7.2). Lemma 3 is
proved.

8. The Proof of Lemma 4

We have to give a good upper bound for the function fn(x) defined by the integral
(7.1). First we prove part b) of Property B(n). We shall use the estimates of the
previous section, and we also preserve its notations. We can write /n(x) = /ι + /2

+ /3, with
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We get, with the help of (7.16), (7.160, and (7.5) that

/! = /Π(M) exp {gn(Xl -M) + Anx\ + 0(ξ«)} , (8. 1)

if ||x|-M|^dπ. On the other hand, by (7.17), (7.21), and (7.5)

(8.2)

If the conditions of part bl) are satisfied then, since Γ^|x|,

Hence (8.2) implies that

and the last relation together with (8.1) imply Part bl). If the conditions of part b2)
of Property B(n) are satisfied, then relation (8.1) has the consequence

The last relation together with (8.2) imply part b2).
Now we turn to the proof of part a) of Property B(n). Let |x| ̂  y, y ̂  Rn. Since

part b) is already proved we may restrict ourselves to the case \y — M\^dn.

We get, by estimating fn+1( —^— 1 by means of part a) of Property B(n + 1 ) with

as upper bound for ~-, (u(t) = max(|ί|, Rn)), and by using (4.12) and (4.120

for the estimation of pn(t) that

/„(*, ί) S 0 + 0(ξ"))pn(M)fn+ X(M) expGn(y, u(t)) , (8.3)

where the function Gn(v, z) is defined in (7.20). We have to bound the integral
?n(x, f)dt. By integrating the right-hand side of (8.3) first on the concentric circles

|ί| = z, and then by integrating with respect to z, we get that

00 _

MX)^(1 + 0(ξn))pn(M)fn+1(M) J 2πzexp(Gn(j;, u(z)))dz. (8.4)
o

Given a fixed y, let z0 = z0(y) denote the maximum point of the polynomial Gn(y, z).
Then

_ / ^ -, ί n L +1\Gn(y,z) = GII(y,z0)- ̂ --pw ^(z-Zo)2;

hence

00 _

ί 2πzexp{Gn(y, u(z))}dz = 0(1) (z0 + 1) exp Gn(y, z0),
o
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and by (8.4)

/„(*) ̂  Cpn(M)fn + t(M) (z0 + 1) exp GH(y, z0) . (8.5)

We claim that

Gn(y,z0)^βcnM2 + gn(y-M) + Lpn^(y-M)2 (8.6)

if L and nQ are chosen sufficiently large. (First we chose L and then the threshold nQ

depends on L in Propositions 1 and 2.)
Indeed, a simple calculation yields that

z0-M = - - - (y-M).

Hence

" L

B 1

-M)(z0-M)+Lp"+1fep-MY

and

Since p"(y - M)2 ̂  α", α > 1, if \y - M\ ̂  dn and p < 2, hence relations (8.5), (8.6), and
(7.5) imply that part a) of Property B(n) holds true. Lemma 4 is proved.

Appendix: The Proof of Theorem A

Theorem A is the multi-dimensional generalization of the result in [3]. The proof
goes on the same line with slight modifications. We outline the proof briefly. Our
main goal is to explain the necessary modifications. For the sake of simpler
notations we restrict ourselves to the case m = 2.

The following recursive relation holds for Zn :

-fl'[(s; s)-(»; v) }}Zn(s-υ,μ)Zn(

Z0(s, μ) = exp j - ̂  (s; s)2 - | (s; s) j .
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This is a simple multi-dimensional generalization of formula (3.1) in [3]. Put

Zn(s9 μ) = exp { - ̂  2«<2 - >(s; 5)} SΛ(s, μ), a0=-^. (A.I)
I L ) L c

Then S0(s,μ) = exp - (s; s)2- (s; s) and

υ9μ)dv, α 1 = α 0 + l . (A.2)

This formula differs from the convolution because of the kernel
exp{ — 2w(2~α)α1(ί;; v)}. This kernel term however has a very strong influence. We
shall see it by considering two special cases. Introduce the notation

Qnf(s) = 4 ί exp{ - 2"(2 -%(!?; ι>)}/(s - ι;)/(s + v)dv , s, t; e ,R .

Then SΛ+ ! = Qn(Sn), and we are interested in QnQn-ι, . . ., 61(^0)- We consider the
asymptotic behaviour of the functions Qn, ..., Qι(f) for two types of functions /.

Type I. The Gaussian Density

If f = G(s,γ)= — -expί - — - I is a Gaussian density, then fn = QΛ9 ...,Qι(/) is

also Gaussian, /„ = const G(s,yn) with yn = 2~nγ. This behaviour is stable in the
following sense. If / is a small perturbation of the Gaussian density G(s, 7), then /„
is asymptotically Gaussian when rc->oo.

Type 2. The "Craters"

We call a function /(s), 5 e R2 a "crater" if it is rotation invariant and δ-shaped
near some \s\ = m > 0 along the radius. The crater is concentrated near the sphere
|s| = m, and has a width

The Gaussian craters are defined by the formula

2*

m2

Choose χ = χn = 2 "χ0, — > 1, and compute Q«(fi) with B = B(s, m, χn). We have
lo

fors = (r,0

(A.3)
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This integral is sharply localized around the minima of the function

, 1

If we substitute the maximum of the integrand, we get with the help of some
calculation the approximate equation,

(r,m,χH + 1) if _

&(B)(m)~U1+1exp(-2"<2-e>(r*2-r2)) if r^r*, (A4)

r* = J^ ,
with χn = 2~nXo, εn+1=B(r*,m,χn + ί ) . We shall call the function appearing at the
right-hand side of (A.4) a "special crater". Estimations similar to the one above
show that Qn maps a special crater to another special crater with a small
perturbation.

Thus there are two different types of asymptotic behaviour for the iterations
fn + 1 = Qn(fn); the Gaussian and special "crater" behaviour. They are stable with
respect to small rotation invariant perturbations. The Gaussian asymptotic
behaviour corresponds to the single phase region of the hierarchical model, the

crater one to the multiphase region. For large μ the function S0(s, μ) = exp < — - s4

— a 1 ( . ^
r-^s2 > is close to the Gaussian density, and so is the function Sn(s9 μ). For

J Γ
small μ the function S0(s, μ) is close to the Gaussian "crater" with m« ]/-, χ0

= (2τ) ~1, where τ = — (μ — α0). In this case Sπ(s, μ) is close to a special "crater." The
critical point μc separates these two cases.

Now we turn to the rigorous considerations. Put Sn(s, μ) = exp( — 2nφn(s, μ)). By

{4 f
I *2

- 2*φn(s + υ,μ)- 2»ψn(s - υ, μ)}dv\ , (A.5)

Let us emphasize that the functions pn and φn are rotation in variant, i.e. they
depend on s only through |s|. First we are going to give a local expansion for <^n(s)
around the point s in the coordinate system whose coordinates are either parallel
with or orthogonal to the vector s. Because of the rotational invariance of the
function φw we can restrict ourselves to the case s = (r,0), r = |s|. Put

(A.6)
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We remark that, because of the symmetry property φn(r + h, k, μ) = φn(r + h, —k,
μ), in the above formula and also in the subsequent expansions of the function
φn(r + h,k,μ) all polynomials are even in their coordinate k. The following
formulas are a straightforward adaptation of those in [3]. It follows from (A.5) and
(A.6) that

^ + 1(r + M,μ) = ̂ ?^

k2

+ ~2ΦΆl\r9 μ) + ρn + 1(h, k, r, μ),

with

(A.7)

-2nρn(h-Vl, k-v2, r, μ)}dVldv2 , (A.8)

where

and

In linear approximation for ρπ+1, Qn~Qn, and

> μ)v2

2~]ρn(h -vi9k-υ29x9 μ)dv1dv2 . (A.9)

For fixed x and μ we have in (A.9) a multi-dimensional Gaussian operator. For a
fixed σ = (σ(1), σ(2)), σ(1)>0, σ(2)>0 define the Gaussian operator Aσ

2

AJ(h,k)=
π]/σ

For fixed m = (mί,m2) and y = (7ι,72) define the function Gm(/ι,k,y)

-Gmι(/z,7l)GM2(/c,72) with Gm(x,7)= ^ - , where HM(x), m = 0, 1, ...
\ 2 / \yy/

are the Hermite polynomials with weight function exp( — x2) and leading
coefficient 1. We have (see e.g. [1])
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Proposition A.l. (i) AσιAσ2 = Aσι+σ2,
(ii) AσGm(h,k,y) = Gm(h,k,y-σ).

This proposition motivates the following expansion of the remaining term ρn

by Hermite polynomials:

ρ.(M,Γ,μ)=3<Σ<4^^^^

(A.10)
and the term Rn satisfies the following orthogonality relations,

Π exp( - y(^h2 - y(2)k2)Gt(h, y(^)Gj (fc, y(2))Rn(h, k, r, μ)dhdk = 0 (A. 107)

for i+7^4.
By the evenness in fe, φ%'J\r, μ) = 0 when 7 is odd. The choice of the parameters

7(n\ y(n] is motivated by Proposition A.I. Namely by this proposition

ω _ <«)__!_

in the linear approximation (A.9). Thus it is natural to define

oo 1

with

and

The definition (A.ll) is correct if ^2'0)(r?Ju)^0? ^°'2)(r?Ju)^0. The second
condition is violated in the narrow strip {Mn>r>Mn — επ}, where Mn is the
minimum point of the function φn. To overcome this difficulty we introduce a
regularization of the quantity yj,2)(r, μ) in this strip. Define the functions

/2m(β-i)\η-ι
= Σ -

where χ(ί) e C00^1) is an arbitrary function such that χ(ί) = 0 if ί ̂  - 1 , χ(ί) = 1 if
ίΞ> - 1 +(4α1)~1, O^χ(ί)^ 1 otherwise. We shall write yl2) = 7n(^°'2)(r,μ)) as the
continuation of the relation (A.ll) into the domain {r<Mn} (cf. [3]).

We need an expansion of the starting function

in the form (A.6), (A. 10). We shall choose
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Then the coefficients φ(o'Λ(x, β) satisfy the equations

$>°\x, μj)

, μ) = (μ- aϋ)x + ux3+ , μ))

, μ)) .

In (A.16) and (A. 17) we have a set of equations for ^(

0

2'0) and ^(

0°'
2). After solving

them we find the remaining coefficients φ$j} by a simple substitution to the other
relation. The following result holds true.

Proposition A.2. There exists a u0 > 0 such that for α / / 0 < w < w 0 , x e R1 μe R1 there
is a unique solution Φ(Q'°\ φ(0>2^ of the equations (A16) and (AΛΊ). This solution
satisfies the estimates

\φ$- °\x, μ)-(μ- α0) - 3ux2\ < Cu, \φ$' 2\x, μ)-(μ- α0) - ux3\ < Cu,

<Cu,

< Cu2x ,

<Cu,

< Cu2x.
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The proof of Proposition A.2 is based on the contractive properties of the
mapping

•^γ(Φ(x))+luγ(ψ(x))\.

It goes on the same line as the proof of Proposition 4.2 in [3]. We omit the details.
Now we formulate the inductive hypotheses we need for φn. For a set Ω C R2 let

SU(Ω) denote the set of functions which have the form Φ(r,μ)= τ^ 4H ^~γ2

+ R(r, μ), where R(r, μ) is the restriction to Ω of a function ReSu. The class Su was
defined in Sect. 2.

Inductive Assumption 7(Λ°

1) For any function φn(r,μ), n = 0,1,...,N there is a critical point μ<n) and a
continuous monotone function Mn(μ) (the spontaneous magnetization) on the
half-line {μ<μ<M)} such that

dΦn

dr2

The function μ = μn(r) which is the inverse of the function r=± Mn(μ) belongs
to C^jR), and satisfies the inequality

2) Define the domains

with

and t/(-1) = Λ2. Then l7 (- 1 )Dl/ ( 0 )D...Dt7 ( J V ), and 4(5,
3) For (r,μ)eU(n~v\ n = Q,l,...9N the expansions (A.6), (A.10) hold true

together with the orthogonality relation (A.10X), where

yi,1' = 7n(tf- V(r, μ)), y<2) = γ,(φW(r, μ)).

The coefficients φ(*'j) and the error term Rn satisfy the inequalities:

y/2,
dhWdμ1 n

nf7 ^2~εr/ι ( 2 ) v'/2r>ι(2) VΊn-ίσn-l\Λn-l) \Λn-l)

/ 9Π V/ 2 I— _ 1
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Rn(h, k, r, μ) = R*(h, k, r, μ) + R~(h, k, r, μ) is the decomposition of Rn into its even
and odd parts in h. The above estimates hold for i,j^5,1 = 0,1 and \h\^δ(^lί9 \k\

/ / \

2) i / / u \
= δ^i, where c l̂ v = " , and 3)n_ l = / In I (1) 1

(M'J) itfi'fi Λ
l(Φn Φn-l) <C'2~n 2" ϊ = l , 7 = 2

3(2) '
Λ n -l

»=1, 7 = 0,

<C
On \ / Λn

,2 Z

For(r,μ)e(7(""1), n = l

:, 7 = 0,1,

<Cu2.
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The inductive assumptions I(N) are similar to those of paper [3]. Properties i(f
— i(

3

w) enable us to control the function <j>n(r,μ) in the domain [7(n~1).
Since the integration in formula (A. 5) goes in the space v e jR2, we also need an

estimate on φn(r, μ) in the domain B(n} = R2 — V(n\ We call it external estimate. Its
formulation is motivated by the analysis of the "crater" densities.

External Estimate J(n\ For μ^μ("} the estimate

exp{ - 2*(φn(r, μ) - φn(Mn(μ\ μ)} ̂  Bs(r, Mn(μ\ χn(μ))

holds true, where χn(μ) = 2\μ — μ("}\2 ~n(l — u°' 2), and Bs is the special crater defined
at the right-hand side of (A.4).

In the proof of the assumptions 7(ΛΓ) and J(n} we shall need the following three
types of estimates A(n\ B(n\ C(n\ Put q = 2a~3/2<l and

r, μ) = 2n(2 -% + (\μ - μ(?\ + ur2)2n ,

r, μ) = 2M(2 -% + u(r2 - M2(μ)) 2" .

In all subsequent estimates the quantity C > 1 is an absolute constant.

(n)a(f). For (r,μ)e
">). For (r,)EU

and

U2r2"
<C , 7 = 0,1,

dμj'

¥or(r,μ)eU(a-1).

= 1,
ur22"

2«/2

The central part in the proof of Theorem A is the following lemma. We say that the
inductive assumptions I(N) and 7(M), N ̂  M are consistent if the functions $?J), jR^0,
Rn coincide in I(N) and /(M) iϊn^N, and the conditions ij0- z(

3

n) hold with the same
constant C.

Lemma A.3. There exists some u0 >0 SMC/I ί/zαί /or any 0<u<uQ and n = 0,1,... the
assumptions 7(n) together with the estimates A(n\ B(n\ C(n\ J(n) hold true, and the
assumptions I(n} for different n are consistent.

The proof of this lemma is rather tedious, and we omit it. It applies the same
method as the papers [3, 4]. Now we prove Theorem A with the help of Lemma

A.3. Put^f= Π U(n\
n = 0
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Lemma A.4. In the domain (s, u) e % the functions φ(^ 0)(s, μ) tend to the limits
^'0)(s,μ), z=l ,2 , as w->oo, and the estimates

" 22"u
'+ 1

2)'

CM

Proo/. According to condition /(

2

W),

Since
2"
(2) 2 tends to zero exponentially fast, lim φ(

n

2'0} =

2nu ( „ 1

exists, and

The other relations can be proved similarly.

Lemma A.5. In the domain (r, μ)ε<% the limit lim φn(r, μ) = Φ(r, μ) exists, and for

7 = 0,1,2 the estimates

2"

. Moreover

<9'

a?'
Proo/. By the relations z'(3

w),

9" \J

Relations (A.6) and (A. 10) imply with the choice h = k=Q that

, r, μ)

, r, μ) + R: (0, 0, r, μ) .
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By applying relations i(p — i(

3

n), we get from this relation that

4(0.0) _ <Cu2 2" O" V

I λ(2) \4 I Λ(2) }
VLn-ί) \At-l/

Hence

W2

"
^Cu2

Summing up the last relation in n we get the convergence of φn(r, μ) to a limit

Φ(r, μ) together with the desired estimate on φn — Φ. The formulas —{Φ(r, μ) = φ

(*(rι μ) follows from the estimates B(n\

Lemma A.6.

1 ^o f4
Φn(r,μ)-Φ(r>ώ+~

where

Proof. By Lemmas A.4, A. 5

In 1 +

dr2 '

ΛdΦ(r,μ)

r dr

<C
2m 2mu2

<C

hence

Similarly

9«(2α-3)

These estimates together with Lemma A. 5 (with the choice j = 0) imply Lemma
A.6.
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Lemma A.7. Φ(r, μ) e Su.

Proof. Let \h\ ̂  5(A(

n

1})~1/2. By differentiating the identity (A.6) and (A.10) twice by
the variable h, and exploiting 7(n) we get that

8r2

<C
,0)

i=2 = CU\Λ^J '
with ε 0 =f—α. On the other hand by Lemmas A.4 and A.5

,<2,o>
Φ" ~

2V ( 2 1
r2

hence

d2Φ(r+h,μ) d2Φ(r,μ)

Apply this result for (A(

n^Γ1/2^\h\^5(A(

n

1}Γ112. Then we obtain

dr2 dr

Since the above estimate holds for all n (the length h depends on n), we get by
covering the interval [r — h0, r + /z0], A0 = (yl[)

1))~1/2 appropriately that the last
estimate holds for any |ft |^ft0 Thus the Holder condition is satisfied for the

di+sR
function R. The Holder conditions for . .. . can be proved similarly. Part ii) and

drldμj

iii) of the definition of the class Su can be proved with the help of f(

3

M).
Lemma A.6. implies the asymptotic formula for lnZn(r, μ, u) in Theorem A. On

the other hand Φ e Su.
This completes the proof of the asymptotic formula in the domain

00

U = Γ] U(n\ Now we briefly explain how it can be extended to the domains U(n\

n = 0,1,2,.... Let us observe that in the domains U(n\U(n + 1\ n = 0,1,2,..., we
have to consider the asymptotic formula for the functions lnZfc(r, μ) only for fe ̂  n,
hence the function Φ(r, μ) is not uniquely defined in these domains. We defined
Φ(r, μ) in the domain U as Φ(r, μ) = lim φn(r, μ). Due to Lemma A.5 the expression

Γ4 (i) (2) 1/2!
n|_π w w J

yields a good approximation for Φ(r,μ). Thus it is natural to define

Γ4 Ί— wi i.~. I / T (1) T (2)\ 1/2 I
111 I \ ΛllΛΛIΛ /t»M*J / I-n | _ π ^ m n m « ; j
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in the domain U(n\U(n+1\ where

2(1)—^/y /^w _L./Λ(2> 0) t Λ W >l^) = /7 /°m-l-/^^'^^ 9W

In this case the asymptotic formula for lnZfc(r, μ) holds in the domain U(n\U(n+1}

for k^n. However this definition of the function Φ(r,μ) has a defect: Φ(r,μ) has
jumps on the boundary of the domains U(n\ n = 1,2,.... To get rid of this defect we
smooth the function Φ(r, μ). For this purpose we use a decomposition of the unit
connected with the domains U(n\U(n+i\ n = 0,1,2,.... Namely, let us consider a
set of non-negative functions χπ(r, μ) ̂  0 such that

00

Σ χn(r,μ)=l, χ,,(r,μ) = 0 if (

and

<C d- ( l + Λ,
3rVΛ"

where C is an absolute constant and d = ρ(x, ί/(n + 2)) + ρ(x, U(n}c\ x = (r, μ), ρ(x, F)
is the distance between x and F, and U(n)c is the component to U(n\ The set of
functions χn(r, μ), n = 0,1,..., is called a decomposition of the unit connected with
the domains C7(w)\(7(n+1). Using these functions we put

00

n = 0

A slight modification of the proof given above shows that this definition of the
function Φ(r, μ) satisfies all statements of Theorem A. This completes the proof of
Theorem A.
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