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Detailed Balance and Equilibrium
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Abstract. For classical lattice systems, an infinite set of jump-processes
satisfying the condition of detailed balance is found. It is proved that any state
invariant for these processes is an equilibrium state, providing a new
characterization of DLR-states by means of the notion of detailed balance.
This extends previous results, proved in one and two dimensions.

I. Introduction

Since their first appearance [1, 2] in rigorous statistical mechanics, the equilibrium
conditions, known as the DLR-conditions, have been reformulated in various
alternative ways. Without being exhaustive at all, one has proved that the
translation invariant DLR-states minimize the free energy [3], that they are
characterized by an inequality expressing a balance between energy and entropy
[4], etc We want to add another characterization and this by means of the
notion of detailed balance which is widely used in the physics literature [5, 6].

The detailed balance condition has a well-defined physical meaning, it
expresses the duality of a jump process between two states with its inverse process.

This notion entered the mathematics literature under the name of a reversible
process [7, 8]. We will continue to use the name detailed balance and give an
independent definition. Our definition will also turn out to have a more universal
character than the previous one.

Our main result is that we are able to construct explicitly an infinite set of
detailed balance processes, and that we prove that any state which is invariant for
all these processes is necessarily a DLR-state, even when the state or the potential
is not translation invariant. This extends earlier results (see discussion). We also
want to stress the extreme simplicity of the proof.

II. Detailed Balance Processes and DLR-Conditions

Consider the lattice Z v (v = 1,2,3,...). To each site; e Z v we associate a copy K} of a
compact set K. For any subset X C Zv, denote Kx = Π Ki and C(X) the set of real
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valued continuous functions on Kx; the set of continuous functions on Ω — Kz is
denoted by C(ί2), it is the sup-norm closure of \j C(X).

xczv

Let us first recall a version of the DLR-conditions which is less known [7, 9].
Denote by Q the group of transformations of C(Ω), the transposed of the

invertible transformations of the configuration space Ω, changing the configur-
ations in some fixed finite volume only (it contains single spin flips in Ising models,
spin exchanges, etc.).

A map h from Q into C(Ω) is called a relative Hamiltonian if for any pair
τ i 5 τ 2 e Q holds

Λ ( ) Λ ( ) + Λ ( ) . ( 1 )
For a given relative Hamiltonian h there might exist a family of local

Hamiltonians HΛeC(Λ)9 AQZ\ such that h(τ)=limτHΛ-HΛ. Therefore the
Λ.

relative Hamiltonian represents the energy difference of any configuration with its
transformed one under the map τ. However in what follows we do not need the
existence of Hamiltonians.

A classical dynamical lattice system is given by its algebra of observables C(Ω)
and by a relative Hamiltonian h. Such a system might have an equilibrium state at
a certain inverse temperature β( > 0). The latter is defined by

Definition ILL A state ωβ of C(Ω) satisfies the DLR-conditions at inverse
temperature β > 0, with a relative Hamiltonian h if for all fe C(Ω) and τeQ holds:

In fact it is sufficient to have this condition for a set of elements τeQ separating the
points of Q.

Now we are in a position to define what we mean by an evolution satisfying the
detailed balance condition.

Definition IL2. Let (yt)teWL be a one-parameter strongly continuous semigroup of
unity preserving positive maps of C(Ω). Then it is said to satisfy the detailed
balance condition at β if for all f,ge C(Ω) and for all DLR-states ωβ holds

ωβ(fytg) = ωβ(yt(f)g). (2)

This definition is the classical analogue of the one developed in [10] for
quantum systems. It differs from other definitions of detailed balance [7, 8,11] in
the sense that it is not a condition on a state but only on the dynamics for a given
dynamical system (C(ί2), h). Therefore our definition has a more universal
character.

Now we are looking for solutions of Eq. (2). For any τeQ, consider the
following linear map Lτ of C(Ω) into C(Ω):

βh(τ) βhiτ-1)

Lτ = e 2 ( τ - l ) + e 2 ( τ " 1 - ! ) . (3)

One readily checks that

L t(l) = 0, (4)
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and that for all/eC(Ω)
_ βh(τ) βhjτ-1)

Lτ(f2)-2fLτ(f) = e~ 2 ( ( τ - l )/) 2 + e~
 2 ( ( τ ^ - l ) / ) 2 ^ 0 , (5)

(6)

Because of (6) the map Lτ is exponentiable and is the generator of a semigroup

(7)

From (4) one gets yj(l) = l5 and together with (5) it follows that y] is a strongly
continuous semigroup of unity preserving, positive contraction maps. One has
also:

Proposition Π.3. For any TGQ, the semigroup (yj)t^o defined in (7) satisfies the
detailed balance condition at β.

Proof. From (2) and (7) it is clearly sufficient to prove for all /, g e C(Ω), and ωβ a
DLR-state that

(8)

Now

ωβ(gLJ)=-ωβ((e 2 +e 2 )gf) + ωβ(e 2 gτf + e 2 gτ 1f).(9)

But using the property

which follows from (1), and using the DLR-condition, one obtains subsequently

β β

ωβ(e 2 T gτf) = ωβ(τ(e 2% (τ τ'\g)f))

lh{τ-1}

= ωβ(e lKτ

and analogously for the other term. After substitution in (9) one gets (8). D

This proves that we have obtained a large set Γ(h, β) = {yτ

t |τ e Q} of dynamical
semigroups satisfying the detailed balance condition. Their explicit form is given
by expression (3). It is interesting to remark that indeed they do correspond to a
jump process, the jump described by τ, such that the probability for that jump is
proportional to the Gibbs factor. Furthermore the symmetry between the jump τ
and its inverse is clear.

One can also construct a set of processes which are space translation invariant.
Therefore take any element of the type defined by formula (3) and add to it all its
space translates. Then one proves as in [12] that it is the generator of a dynamical
semigroup on C(Ω) (see also [13]).
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Let us now come to our main result. We prove that the set Γ(h, β) of solutions of
Eq. (3) is large enough to characterize equilibrium states. We suppose that the
states under consideration are absolutely continuous with respect to an a priori
given measure ρ0, and assume that the set {τeQ\τ-l invertible on I}(QQ,Ω)}

separates the points of Ω.

Theorem IL4. Let ω be any state of C(Ω) such that ω-yτ

t = ω for allt^O and for all
y\eΓ(h,β). Then ω is a DLR-state at inverse temperature β and with relative
Hamiltonian h.

Proof Clearly ω y] = ω for all τ e Q, and t e R + , yields ω Lτ = 0 for all τ e Q. As

h(τ-i)=-τ-1h(τle^Hτ~l\τ-'-l)=-τ-ψHτ\τ -l)),

and so for all fe C(Ω):

Hence

But this is the DLR-condition for functions of the type

e2
Mt)(τ_l)/,/eC(β).

This set is dense in C(Ω). Hence we have the DLR-equation for a set
transformations separating the points in Ω. This proves the theorem. D

III. Discussion

By the theorem we realized a characterization of the equilibrium states as those
states which are invariant under the processes Γ(h9β), satisfying the detailed
balance condition. Here one might refer to other work in this direction. Although
by a completely different approach, the lattice translation invariant DLR-states
are characterized by the detailed balance processes before (see e.g. [7],
Theorem 3.42 and Corollary 3.44; [14]). Finally, in one and two dimensions, the
(not necessarily) translation invariant Gibbs states are also characterized as the
stationary measures for a stochastic process in [15]. All these results are based on
free energy considerations. Hence apart from the new way of looking at the
condition of detailed balance our main contribution consists in the characteriz-
ation of all DLR-states, including the non-translation invariant ones and in any
dimensions.

Acknowledgements. The author thanks P. Vanheuverzwijn for pointing out [15].
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