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Abstract. The Callan-Symanzik γ- and β-functions are calculated analytically
for Q.E.D. in the limit of a large number of leptons (NF-±oo) up to terms of
order 1/NF inclusive. We give closed analytic expressions for the coefficients of
these terms in their series expansion in powers of K = ocNF/π. We have been able
to sum these series and to obtain some striking results.

1. Introduction

Apart from the first few perturbative terms of the renormalization group functions,
not much more is known about them. To our knowledge in four-dimensional field
theories one has gone beyond that only in λΦA and in Q.E.D. in the limit of a large
number of fermions, NF-+co. In AΦ4 Khuri [1] has been able to find a zero of the
Callan-Symanzik β-function [2] by using a Borel resummation technique, and in
Q.E.D. (iVF->oo) Coquereaux [3] has computed the first nontrivial coefficient in
the ί/NF expansion of the same function. In a recent paper [4] we have computed
the Callan-Symanzik y-function [2], which governs the dependence on the
renormalization point of the renormalized fermion mass, in Q.E.D. (iVF-»oo). The
main results obtained there were:

i) The numerical computation of the first 19 terms strongly suggests a series
with a finite radius of convergence. This is not what one expects in four-
dimensional field theories.

ii) There are at least two zeros within the region of convergence.
iii) The analytical computation of the first 7 terms clearly hints on a

factorization of the series into two factors. These are two series, one of them of only
rational coefficients, and the other of coefficients which are sums of products of
Riemann ζ-functions. To our knowledge this is the first time such a factorization
has been found in field theory.

While trying to extend these results to the Callan-Symanzik β-function in
Q.E.D. (JVF-»oo) we have found that the results of our previous work can be
considerably improved and extended to the calculation of the β-function. The
main results of the present paper are:
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i) Due to the fact that the y- and ^-functions must be momentum independent
we have been able to give a closed analytical expression for the coefficients of the
expansion of these functions in power series of K = ocNF/π for the l/NF term and to
sum analytically the obtained expansion.

ii) We have been able to prove, analytically, that the y-function presents, in the
limit A/jr-* oo, two zeros at K ~ 9/2 and K = 6, while the l/iVF term of the β-function
is a positive and increasing function of K.

iii) For the y-function we have been able to prove that its series expansion can
be factorized, to all orders, into two factors. These are two series, one of them of
only rational coefficients, and the other of coefficients which are sums of products
of Riemann ζ-functions. A similar factorization has been found for the series
expansion of the ί/NF term of Kdβ/dK — β.

The next section is devoted to the analytic calculation of the y-function. In
Sect. 3 the β-function is considered. In the last section the main conclusions are
drawn.

2. The y-Function

In order to obtain an expansion in powers of 1/JVF for the y- and /̂ -functions the
coupling constant, held fixed in the large NF limit, has to be taken asXΞocNF/π,
where oc = e2/4π, and e is the coupling constant of Q.E.D. We will work in the
minimal subtraction (MS) scheme [5]. Since both functions are gauge parameter
independent [6] we will work in the Landau gauge so that one does not have to
consider gauge parameter renormalization. Since the MS scheme is mass
independent we will put all fermion masses equal to zero. All these results are valid
in Q.C.D. if e->g and the number of leptons NF is substituted by the number of
flavours Nf.

The y-function is defined as

y=--df, (2.D
m dv

where m is the renormalized fermion mass and v is the renormalization scale. From
the definition of the mass renormalization constant m0 = Zmm, m0 being the bare
mass, one can write for the leading term in l/Nf

^ . (2.2)

As was done in [4] we will calculate this function in Q.C.D. since, in the order that
we are interested in, both calculations are identical up to small changes due to the
algebra associated to the gauge group that will be commented on later on.

Recalling that Zm depends on v only through α, one obtains

dZ ~ιdZ
y = -β(K, s)K-^- + O(\/Nj), (2.3)

where the jS-function for n = 4 4- 2ε is given by

Kβ(K, ε) = K[2ε + β(FQβ = v ̂ . (2.4)
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Fig. 1. Diagrams which contribute to the dominant term of the y-ίίinction in the \/NF expansion

To leading order in the ί/Nf expansion, the only one we need here is

β(K)=j (2-5)

If the fermionic self-energy is decomposed according to (see [4])

Σoy, Xo? β, v) = m0Σίo fc, K09 εj+(ψ- mQ)Σ2o fc, Ko, ε), (2.6)

one finds to leading order

Z w * = 1 + div ̂ l 0 ^ ZkX, εjj, (2.7)

where KO = ZKK, Zκ = (l+K/6ε)~1 and div[Σ l o] means the poles in ε of Σ l o .
What is left is the calculation of the dominant contribution to Σlo(p2/v2,K0,ε).
The diagrams one has to compute are shown in Fig. 1. For Q.C.D. the result is [4]

1 »

! „ b) = [-f V£ί [Γd +ε)]2Γ(l -ε)(l +ε)

(2.8)
+ nε)Γ(l-we)Γ(l

-e)Γ(l+6-ne)Γ(l +e + ne)

Λ φ-l)ε2

Inspection of G(p2/v2, n, ε) allows us to see that we can write

00

G(p2/v2,n,ε)=Σ Gj(ε)(nε)\ (2.9)
0.7 = 0

2/v2
where the coefficients G/ε), except G0(ε), depend on p2/v2 and all of them are
^-independent series expansions of positive powers of ε.



280 A. Palanques-Mestre and P. Pascual

Renormalizing the coupling constant and reexpanding in K one finds

(2.10)

Since we need only the poles in ε of this function, for a given n we can limit the sum
over j from j = 0 to j = n — 1. The surprising thing is that

1, (2.11)

and therefore

The relation (2.11) is the reason for the strong cancellations that we found in the
direct calculation carried out in [4], without noticing their origin. Furthermore
due to this relation it is clear that Z~1 and y are independent of p2/v2 as it must be.

From (2.8) and (2.9) we obtain, using some well known properties of the Γ(z)-
function (see [4]), that

^ J j=0 £ J

Now it is a straightforward calculation to obtain the power series expansion of
G0(ε):

^ Go = U (2-14)
i = 0

which is convergent for values of ε small enough. In terms of these coefficients we
obtain immediately

i \ y n=ι ΠΌ i = 0 8

and using (2.3)

^ \ , (2.16)

which is the desired result. Since (2.14) is convergent, this is also true for this series
for K small enough. This expression allows us to compute the coefficients of the
y-function expansion as far as we like, since no important cancellations appear.
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Comparison of (2.14) and (2.16) and the use of (2.13) gives

y(K)= 2K Γ ( 1 ~K/3) ( 1 ~ K β H l ~K/9)2 I Of 1/A^
Nf [Γ(l-K/6)~]3Γ(l+K/6) ( l-K/6) 2 ' 1 "™^ ^ W

_2K (l-g/9)Γ(4-X/3)
~ 3ΪΫ7Γ(1 +K/6)ir(2-K/6)~]2Γ(3-K/6)

The second of these expressions tells us that the radius of convergence of the
y-expansion is K= 15, and therefore only for K< 15 all these formulae are true.
Furthermore it shows clearly that the y-function has a zero at K = 9 and another
one at K = 12. The first of these expressions, together with (2.13) shows clearly that
the y-function expansion in powers of K can be written as a product of two series.
One of them has only rational coefficients, its convergence radius is K = 6 and has a
zero at K = 3, while the other has coefficients which are positive and sums of
products of Riemann ζ-functions [notice that ((2) does not appear], with
convergence radius K = 3.

With minor changes one obtains in Q.E.D.

K (l~2K/9)Γ(4~2Kβ)

WFΓ(l+ Kβ) [Γ(2-X/3)]2Γ(3-X/3)

and its series expansion, which allows us to obtain the desired result, has a
convergence radius of K= 15/2 and presents zeroes at K = 9/2 and K = 6.

3. The ^-Function

Let us now proceed to the calculation of the /̂ -function in Q.E.D., which is defined
in (2.4), being

Since all the v-dependence on Zκ is due to its dependence on the renormalized
coupling constant, we can write

^ ] ^ i . (3.2)

The leading terms of the ί/NF expansion of Z^ * can be written as

Zκ

 1 = 1 + ̂ 2#>+ -i- £ K""Σ βj»>-L, (3.3)

and from (3.2) one obtains for the /̂ -function the following expansion

β(K) = 2KB(

b

1) + -J- Σ nK"B£l x. (3.4)
JM
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Fig. 2. Lowest order photon self-energy diagram

Since β(K) is finite, we get the conditions

n>2
(3.5)

B

for the coefficients appearing in expansion (3.3).
If we write the photon self-energy as

Z7SV(«, Ko, ε, v) = faV - q2gnΠ0(q2/v2, Ko, ε), (3.6)

then the equation that determines Zκ is

Zl1 = 1 - div {Z^Π0(q2/v2, ZKK, ε)} . (3.7)

Furthermore we can write

Π0(q2/v2, Ko, ε) = K0Π^\q2lv2, ε) + - i - £ K"0Π^(q2/v2, ε),

(3.8)

1 = 0 o

Substituting (3.3) and (3.8) in Eq. (3.7) we find

(3.9)

which are the expressions needed in order to compute Zκ

 x. In order to calculate
B(

o

1} we need only the diagram given in Fig. 2, and we obtain the well known result,

πW_(_ q V CΓ(2 + ε)]2Γ(-β)
Γ(4 + 2ε) ' ( 3 J ϋ )

and hence

4υ=i (3-11)

Furthermore a straightforward calculation gives

:ε)Γ(4 + 2ε)

Γ(-ε)Γ(ε)Γ(-2ε)Γ(-3-2ε) Γ(-2ε)Γ(-3-2ε)

Γ(l+3ε)Γ(-3ε) ε



The l/NF Expansion of the γ and β Functions in Q.E.D. 283

Fig. 3. Higher order photon self-energy diagrams

The calculation of Π{n\ n ^ 3 , corresponding to the diagrams of Fig. 3, is very
lengthy and Gegenbauer's integration techniques [7] are useful. The final result is

It* (
2Ίn-2

4πv2/ I ' Γ(4 + 2ε)

[Γ(l+ε)]2Γ(nε-e)

3 + 2s Γ(l+2ε-«ε)Γ(3-

(6 - 2ε - 2ε3 + 8nε - 6nε2 + «ε3 + 4«2ε2 - n2ε3)Γ( - 2 - nε)

[(2 + «ε + ε) (1 + nε + ε)F(O)

-(2-ε)(n-l)(n-2)ε :

(3.13)

where

W = Γ(-β-we-s) mio

A careful study of all these results shows that we can write

(3.14)

(3-15)

F(q2/v2,n,ε)=ΣFJ{ε)(nεy

where the coefficients Fj(ε), except F0(ε), depend on q2/v2 and all of them are
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^-independent series expansions of positive powers of ε. Using (3.15) in (3.9) we
obtain

where we can restrict thej-summation toO^j^n — 2. We have now a result similar
to (2.11)

(3.17)
> /

and, using (3.9), we get

1 1 Γ 1 1
(3.18)

Since F0(έ) is independent of q2/v2, this is also true for Z ^ 1 as it must be.
As before, and after a long calculation, we can see that

Fo(β) = F(q2/v2,0, ε) = A(ε)B(ε),

A(ε) = C(ε), B(ε) (lε)(l+2ε)Z)(ε) ( " }

where C(ε) and D(ε) are defined in (2.13). As in the study of the y-function we can
write

F0(ε)=ΣFiε
i, F0 = ί, (3.20)

ί = 0

and clearly

F ί = Gi + G ί _ 1 - 2 G i _ 2 , G _ l Ξ G _ 2 = 0. (3.21)

Using (3.20) in (3.18) we obtain immediately for n ^ 2

B (*) = 1 ( - 1 ) " (3.22)
1 22 3"~2 (n-l)n

which satisfy the relations (3.5) as it must be. Finally, from (3.4)

which is the desired expression and allows us to compute the coefficients of the
jS-function expansion as far as we like, since no important cancellations appear.
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From this expansion and the corresponding one for γ(K) we can easily see that, up
to terms of order 1/JVF, we have

An alternative way of expressing the result (3.23) is

2 1 3K °
β(K)=-K+— — j f

5 Np 2 -κ/3

A study of F0(
ε) proves that the radius of convergence of the β(K) expansion is

K = 15/2, which is the same as the one of the y(K) expansion in Q.E.D.
Furthermore, from (3.24) it is clear that Kdβ(K)/dK-β(K) can still be factorized
as the product of two series with characteristics analogous to the ones appearing in
the case of the y-function, but this is not true for β(K).

4. Numerical Results and Conclusions

From the expression equivalent to (2.16) for Q.E.D. and from (3.23) we can easily
obtain the first terms of both expansions

KY ( 83

5-13 5_ . . . ~r,Afκy / l l -41 5-7

-2ζ2(3ή(jJ + ...J, (4.1)

2-32\3j 2 2 - 3 2 3 V 3

+ h^-

5-7-41 107 7-11

2 2 3
+ tlllZL + Lyjl r(3) r(4)

5C(6) - 2C2(3) ) 1 ( | Y + ... |. (4.2)
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Table 1. Values of the coefficients yn and βn. (-n)~xlθ~n

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

7π

+ 1
-2.777777778(-l)
-1.080246914(-l)
4.634577884(-2)

-1.365742438(-3)
-1.594842152(-3)
2.297699045(-4)
9.292851013(-6)

-4.706120144(-6)
2.834550611(-7)
2.943839959(-8)

-4.770448170(-9)
9.185385637(-11)
2.646883749(-ll)

-2.104472229(-12)
-1.965280100(-14)
1.065741625(-14)

- 4.476261677(-16)
—1.767283367(—17)
2.288589571(-18)

βn

+ 1
-3.055555556(-l)
-7.921810700(-2)
3.602060109(-2)
1.438230317(-3)

-1.906442773(-3)
1.521260392(-4)
3.588903124(-5)

-6.540412881(-6)
-2.129162272(-8)
8.915980505(-8)

-6.464438468(-9)
-3.738356407(-10)
7.542503419(-ll)

-2.089292409(-12)
-3.250078716(-13)
2.852169678(-14)
2.039949218(-17)

-1.177252018(-16)
5.382600792(-18)

The expression for y(K) is the analogue for Q.E.D. of the result given in [5] for
Q.C.D., but obtained much more easily. The expression for β(K) is a new result.
The terms up to order X3 have been checked since they can be derived from the
results given in [8].

In Table 1 we present the numerical values of the coefficients yn and βn

appearing in the expansions

3K

K2 °°

—- Σβn
ZJMF n = o

(4.3)

We have checked numerically that the 1/NF term has only the zero at K = 0 and is
positive in the convergence region. Furthermore for NF = 3 the 1/JVF correction to
β(K) is never larger than 15% of the leading term 2K/3. The function β(K) is an
always increasing function of K for K^ 15/2.
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