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Abstract. We study positive solutions of the Dirichlet problem: Λu(x) + f(u(x))
= 0, xeD", w(x) = 0, x€dDn, where Dn is an n-ball. We find necessary and
sufficient conditions for solutions to be nondegenerate. We also give some new
existence and uniqueness theorems.

In this paper we study positive solutions of the Dirichlet problem

Au(x)+f(u(x)) = 0, xeΩ, (1)

wθc) = θ, xedΩ, (2)

where Ω is an n-ball Dn

R of radius R. Our original interest was with the degeneracy
problem for solutions of (1), (2). That is, we wanted to find conditions under which
0 is not in the spectrum of the linearized equations; in symbols,

t>(x) = 0, x E dΩ)

When this holds, we say that the solution u of (1), (2) is non-degenerate; otherwise u
is called degenerate. The interest in this notion comes from the fact that the non-
degeneracy of a solution allows application of certain topological techniques to it,
whereby its stability properties can be investigated [8, Chap. 24, Sect. D]. In
pursuing this problem, we were led quite naturally to existence and uniqueness
questions for (1), (2), and we also obtain some new results in these directions.

From a result of Gidas et al. [4], all positive solutions of (1), (2) on Ω = Dn

R are
(monotone decreasing) functions of the radius, and must therefore satisfy a non-
autonomous ordinary differential equation. Our uniqueness results follow from a
general theorem concerning non-bifurcation of solutions of equations of the form

u"+g(u,u\ή = 0, (3)
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satisfying linear boundary conditions. Again using the fact that positive solutions
of (1), (2) on balls satisfy an ordinary differential equation, we prove some new
existence theorems. Our hypotheses are only concerned with the behavior of / at
infinity; in particular, we do not require any sign conditions on /(0) (compare with
[6]). Thus for example, if f(u) = O(uk) as u-> + oo, we give a general condition, [Eq.
(36)], for solutions to exist. This enables us to prove, for example, that if / is
superlinear, and /"rgO, then for each n, positive solutions exist for some range of
K's.

In order to study the non-degeneracy of solutions of (1), (2), we use the
decomposition of a solution of the linearized equations in terms of the
eigenfunctions of the Laplacian on the (n— l)-sphere Sn~ι. We prove that as a
consequence of the monotonicity of the positive solution, all modes of higher order
than the second must vanish. The fact that the lowest mode is zero follows from a
general non-degeneracy theorem which we give for positive solutions of (3).
Indeed, we find a necessary and sufficient condition for a positive solution of (1), (2)
to be non-degenerate. This condition is stated in terms of the associated "time-
map," T(p), p = u(0), (see [9, 10]), and the statement is that a positive solution is
non-degenerate if and only if both T'(p)+0, and u'(jR)=t=O. We remark that our
existence and uniqueness theorems are also obtained from studying properties of
the time-map.

We illustrate all of our theorems by considering the special cases where f(u)/u
is monotone. For example iΐf(u)/u is a decreasing function, then (1), (2) has at most
one positive solution. If in addition / is positive, then solutions exist on all balls Dn

R,
R7tδ>0 provided that f(ύ)/u-+0, while if f(u)/u^λ2 >0, in u>0, solutions exist
on Dn

R only for a bounded range of JR'S, 0 < JR < R(λ, ή). These positive solutions are
always non-degenerate. In fact, even more is true; namely, whenever (f(u)/u)'<0,
then for any bounded domain Ω (not necessarily an n-ball), the entire spectrum
of the linearized operator lies in the open subset of 1R, x<—η, for some
η = η(f,n)>0. This means that the positive solution is a stable stationary
solution of the associated time-dependent problem

ut = Δu+f{u)9 (x,£)eD£xR + ,

Since the stationary solution depends only on the radius and is monotone, our
stability result can be interpreted as showing that asymptotically, at least, this
symmetry cannot be broken under small perturbations.

The case where both (f(u)/u)' > 0 and /" rg 0 in u > 0 is also interesting. Namely,
we show that if /(0)<0, the positive solution of (1), (2) exists only on balls D%
where R2 < R = Rι that is on balls which are neither too small nor too large. These
solutions are the unique positive ones, and are non-degenerate if and only if
R + Rx. The degenerate solution on Dn

Rί is the only one which also satisfies
homogeneous Neumann boundary conditions. Among other things, this observa-
tion shows that for solutions of (1), (2), the condition u'(r) < 0 in 0 < r < #, (see [4]),
cannot be improved. In addition we show that in this case, the positive solution is
unique and is an unstable solution of the above time dependent problem. This
implies, using a well-known result, [8, p. 100], that the existence of a positive
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solution cannot be obtained via the method of upper and lower solutions; nor can
positive solutions be gotten as minima of (unconstrained) functionals.

Some of our results are extensions to non-autonomous systems of our earlier
work, where we considered related questions for autonomous second-order
equations; the proof of non-degeneracy given here is actually simpler and more
intuitive than our earlier less general result in [9]. The uniqueness question, where
Ω = R", has recently been treated by Peletier and Serrin [7]. See also the survey
paper by Lions [6], which is concerned mainly with existence questions. In both of
these articles entirely different methods than ours are used.

2. Non-Autonomous Ordinary Differential Equations

In this section we prove a general result which will be used in many of our
applications. Thus we consider non-negative solutions of the equation

tt',t) = O, 0 < ί < L , (3)

where g is a C2-function together with the boundary conditions

κ'(0) = w(L) = 0. (4)

The theorem which we prove below is valid for any linear boundary conditions; we
take (4) only for ease in notation, and for the application to (1), (2). Let u(ϋ)=p>0,
i/(0) = 0 and let u(t, p) denote the solution of (3), having w(0) = p. We set

+ :u(t,p) = 0for some ί>0}.

Define a mapping T:A-+Ί!t+ by

T(p) = min{ί > 0: u(t, p) = 0} .

Observe that u ̂  0 is a solution to (3), (4) if and only if u(0)=p e A and T(p) = L.
\T(p) is differentiable; see the appendix.]

Now in order to prove the uniqueness of solutions, it is sufficient to prove that
j Γ ^ φ O for p G Ain\ (assuming that A is connected, as it is in the applications;
otherwise we only prove local uniqueness, in other words non-bifurcation in the
sense that the solutions are isolated). For, if w( , px) and u( , p2) are solutions of (3),
(4) and T(p1) = L=T(p2), then T'(p) = 0 for some pe Aint by Rolle's theorem.

The analytical expression for T is fairly complicated and we shall avoid
working with it here; instead, we shall proceed indirectly. To this end denote by
σt(q), the flow on R 3 generated by (3) where q = (u,v9t)eΊR.3, with uf — v,
υ'=-g(u9v9t)9 ί '=l . Thus, if X = (v9-g9l)9 then σ't(q) = Xσtiq> σo(q) = q, and
σt(σs(q)) = <τt+s(q). Let π be the projection defined by π(w, v, t) = (w, v, 0). We begin
with an easy lemma.

Lemma 1. Assume that along an orbit {σt(q)} of (3) that

(5)

where we are denoting u' by v. Then the vectors πq9 X, and d/dt form a basis at each
point on {σt(q)}. (Here q = q(t) = (u(t), υ(t)9 t)9 X = (v(t), -g(u(t), υ(t)9 t))91), and
d/δt = (O,O,l)J
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Proof. The matrix . A x

J u v 0\

(πq,X,d/dt) = \υ -g 0

\0 1 1 /
is non-singular since (5) holds. D

For psR, we let p = (p, 0,0) eIR3, and σt(p) = q. Now assuming (5), we can
write

dσt(p) [p] = aπq + bX + cδ/dί, (6)

where a = a(t,p) and b = b(t,p). But from (4)

dσT(p)(p)/dp = d(0MT(p)), T(p))/dp = (0,v'(T(p))r(p), Tip)),

and also from the chain rule,

dσTip)(p)/dp = dσTip)lp/\\p ||] + Γ'(p)X = απ^ + (6 + Πp))X + c3/δί.

Thus if we equate the first components of both expressions for dσT{p)(β)/dp, and
recall that πq(T(p)) = (0, v, 0), we find b + T'O) = 0, if t?(Γ(p)) + 0, where b = b(T(p),
p). If (5) holds, then for local uniqueness it suffices to prove that b φ 0. Note too that
if we equate third components, we get T'(p) = b+T'(p) + c; i.e., c= —b.

Now we differentiate (6) with respect to t and use the well-known relation [5],

~dσt(v)
at

to obtain (where "dot" denotes differentiation with respect to ί),

adX(πq) + bdX(X) + cdX(d/dt) = άπq + aπq + bX + bX + cd/dt

= άπq + a(X - d/dt) + bX + bdX{X) - bd/dt,

or

adX(πq) - bdX(d/dt) = άπq + a(X - d/dt) + b{X - d/dt). (7)

= (—v9 M, 0), and πX = (g, v, 0), then taking inner products with (7) by these
quantities gives successively the following two equations:

πq- (X-d/dt)b = πq \_dX(πq)-{X-d/dt)~]a-lϊq' (dX{d/dt))b

πX - (πq)ά = πX [dX(πq) - (X - d/dt)~]a - πX (dX(d/dt))b.

Since

iΛ / 0 1 0

X=\-g\, and dX= i-g2 -g2 -g3 | ,

1/ \ 0 0 0

the equations (8) become

- (y2 + ŵ )fc = u(g - ugu - vgv)a + «gftfe

(ϋ 2 + ug)ά = v(g - ugu - vgv)a + ϋgft6.
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We define the quantity φ by

Φ = Q-ugu-vgv, (10)

and we then have the following theorem.

Theorem 2. Suppose that along an orbit σt(β) of (3), (4), condition (5) holds, and uvφ
gt<0 and both φ>0, gt>0 in 0<t<L. Then Eq. (3) together with boundary
conditions (4) has isolated (ΊLe., locally unique) solutions. If the domain of T is
connected, then global uniqueness holds in the sense that this problem has at most one
solution.

Proof. Note v(t)<0 on 0 < ί < L since u(t)>0 on this range. We show now that
b(t) < 0 on 0 < t < ε, for some ε > 0. To see this, consider the first equation in (9),
which we write in the form, b' + hb = ka, where h = (ugt)(v2 + ug)~1, and
k= -uφ^ + ug)'1. Note that k<0, and a>0 for small £>0. If

H(t)=\h(s)ds, δ>0,
δ

then multiplying our equation by eH and integrating, we get,

eH(ε)-H(%(ε) + e~H(t) J eH^s)k(s)a(s)ds.

Note that the above integral is negative, and that sgn/z = sgn(ugt) > 0 so that H(ε)
< 0 if ε < δ. Thus if we let ε->0 in the above equation, we find that b(t) < 0 for small
ί > 0 since 6(0) = 0.

Now at t = 0, a = 1, and b = 0. Also, when a > 0 and b = 0, sgnb = sgn( — uφ), and
when a = 0, and sgnfc = sgn( — uφ), sgnά = sgn( — uvφgt) > 0 if t > 0. Thus the "orbit"
(α(ί), b(t)) = [a{u{t), v(ή), b(u(t), v(t))~\ is trapped in the quadrant α>0, sgnb
= sgn( — uφ)<0 (see Fig. 1). Noting that αφO when t — L (for otherwise b(L) = 0
and hence c(L) = 0, so that dσL(β)[p~] = 0; this is impossible since σL is a
diffeomorphism and p + 0), we see that b(L)<0. This completes the proof.

3. Application to Uniqueness Problems

In this section we shall apply our theorem to solutions1 of the Dirichlet problem
(1), (2). Here is our first theorem.

Theorem 3. Suppose that / : R + - > R is C2 and satisfies

(f(μ)/u)'<09 for u>0. (11)

Then there is at most one non-negative solution to the problem (1), (2). In
addition dom(T) is connected.

1 By a solution, we always mean a positive solution u, u φ 0
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i—t-

Fig. 1

Proof. First note that (11) implies /(0)^0. From the results in [4], the non-
negative solutions of (1), (2) are radially symmetric, and thus satisfy the ordinary
differential equation .

' + / ( ) = 0, 0<r<R, (12)

together with the boundary conditions

uX0) = u(R) = 0. (13)

In the notation of the last section, we have

thus φ = f(ύ) — uf'(u)>0, and gr = — (n—l)r~V>0, since u'<0 in 0<r<R (see
[4]). It follows that uvφgr<0 in r>0, where we have set v! equal to v.

In order to apply Theorem 2, we must also show that

h(r) = v(r)2 + u(r)g(u(f), v{r), r) > 0 (14)

along any solution (w(r), v(r)) of (12), (13), where, as above, v(r) = w'(r). To do this it
suffices to show two things; namely i) ft(0)>0, and ii) h'(r)>0 when /z(r) = O.

For i), note that w(0)>0, ϋ(0) = 0, and p(r)<0 if r>0. Thus, since lim vr~ι

= MΛr(0) and πMΛf(0)+/(M(0)) = 0, we see that /(tι(0))^0. But /(w(0)) + 0 since
otherwise we would be at a "rest" point. Thus

= ~u(0)f(u(0))>0.

For ii), we have, when v2= —ug,

h'(r) =-2vg + vg + u(guv - gvg + gr)

= — Vψ γ~ UV

since v<0 in 0<r^R2. Thus (14) holds.

2 Thus if v(R)=0, then v'(R)=-f(0)<0. Hence v(R-ε)>0 for some ε>0; this is a
contradiction
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Finally, in order to complete the proof of the theorem we must prove that the
domain of T is connected. To this end, first note that /(0) ̂  0, and that / can be
zero at most once in u > 0.

Now we shall show that D = dom(T) is open. Let p e D then f(p) > 0, and since
/ satisfies (11), /(w)>0 for 0<w^p. It follows that v(r,p)<0for0<r^R = T(p).
Thus u(T(p) + ε, p) < 0 for small ε> 0, so u(T(p) + ε,q)<p for q near p; hence q e D
and D is open.

Next, let p=inf D, and choose pne D with pn\p. Since u(T(pn),pn) = 0, and T"
>0 on D (from Theorem 2), we see that lim w(T(pπ), pn) = u(limT(pn), p) = 0; thus
p e D. But as we have observed above, if p>0, then u'(T(p), p)<0, and this would
violate the definition of p. Thus p = 0 and D = {u>0}. This completes the proof.

Remarks. It is not very hard to show that D = dom(T) is in fact, non-void
provided that / satisfies (11). Thus, if f(u)/u \ A >0 as w-»oo, then f(u) = O(u) as
w-κx), and by Corollary 15 (below), there are solutions u( ,p) for all sufficiently
large p, and hence for all p. If on the other hand, f(ύ)/u \ 0 as u -• oo, [or /(/?) = 0 for
some jS>0], then since ΰ>u implies f(ύ)/u>f(u)/ύ, we see that /'(0) = fc>0.
Therefore, defining ^(W) = /C"1/(M), we see there is a one-to-one correspondence
between solutions of the Dirichlet problems for (1) and Au + g(u) = 0, (for different
#'s, of course). Thus we may assume that //(0) = 1, and this enables us to apply
Theorem 1.4 of [6] (see also [1]) in order to obtain a solution of (1), (2). Thus again
DΦ0.

Our next result considers the case where φ is negative; here we find it necessary
to further restrict / 3 .

Theorem 4. Suppose that / : R + - » R satisfies the conditions

(J(μ)/ύ)'>0 and f"(u)£0 (15)

for all u>0. Then dom(Γ) is connected, and there is at most one non-negative
solution of the problem (1), (2).

Proof. Note first that /(0)<;0. As in Theorem 3, we first show that T'(p)
= - b(T(p)) < 0 for orbits with v(T(p), p) φ 0, and then show that the domain of T
is an interval.

From (7), we have

0\ /0

φ\+b[gr[
0) \0

and this gives the equations

a'v — b'g =
(16)

3 If we do not have some further restriction on / then solutions may not exist. For example, if

f(u) = uk, then as is well-known (see, e.g. [6]), solutions do not exist if k>
n — 2
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Since gr = — (n— \)vr~2>0, φ<0, u>0 and v<0, we have uvgrφ>0, and the
previous argument does not apply. However, since α(0) = 1, b(0) = 0, w(0) > 0, v(Q)
= 0, and since we have shown in the last theorem that g > 0 when r = 0, we conclude
that b(r)>0 for small r. We wish to show that b(R)>0.

Now from (16), b'>0 when b = 0, α>0, so it suffices to show that α(r)>0, or
equivalently that 0<β<π/2, where tanθ = 6/α. If we differentiate this equation
with respect to r we get

7 , i / aa'—baf

ab — ba v —(ua + vb) ,

_ — (ua + υb) (aφ + bgr)

Next define β by tanβ= -φ/g/, then 0^β<π/2, and ^ = 0 when θ = β. Thus we
shall show

from which it will follow that θ^β<πβ. But this is easy since

in view of our hypotheses.
As above, we must show that (5) holds along each orbit for which v(R) < 0. To

this end let h(r) be defined as in (14); then h(0) >0, and h(R) = v(R)2 > 0. We claim
that it suffices to show that the function

H(r)= — ^ =f(u(r))-u(r)Πu(r)) (17)

is non-increasing. For, if this were so and rt was the first zero of h, then h'{r^) :£ 0, so
H{rx) ^ 0. But since h(R) > 0, we let r2 be the largest value in (ί l 5 R) for which h(r2)
= 0 and then let r3 e (t2,R) be such that h(r3)>0 and h'(r3)>0. Then

h'(r3) + Ά— Λ(r3) Λ'(r t) + — ^ r j

this contradiction shows that no such r, exists; i.e., h(r) >0,0^r^R.Ύo show that
H is non-increasing, note that (17) gives H'(r)= — W///(M)U^0.

Observe now that if φ(μ) = f(u) - uf\u\ then /(0) = ̂ (0) ̂  0, and if f(u) = 0 for
some w>0, then 0>φ(u)= —uf'(u), so f'(u)>0. Thus / can have at most one
positive root; call it p0. Furthermore, if f(u) > 0 for some z7, then f\u) > 0, so f'(u)
> 0 for all u > u.

We shall now show that the domain of T is connected. In order to do this, we
assume that px edomain(T), Pi>0. We define B = {p>pί :p<£domain(T)}, and
then show that B is empty. If B is not empty, let p2 = inϊB. Then p2=Pi? a n ( i w e

have
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Fig. 2

V = - c

u = A

H s 0

Fig. 3

Lemma A. p 2 e dom(T).

Proof. Let pn e dom(T), pn / p. If there is a subsequence {pj,} with lim T(p'n) = t2
n

< oo, then since u(T(p'n), p̂ ) = 0 for each n, we have u(t2, p2) — 0, and p 2 e dom(Γ).
For example, if /(0) = 0, then no orbit has v(T(p), p) = 0. Thus T(p) < 0 for p < p 2

and lim T(p) = Γ(p2) is finite, so p 2 e dom(Γ). We may thus assume that /(0) < 0.
P-+P2

Suppose now that Γ(pn)-> + oo. This can only occur if v(T(p),p) = 0 for a
sequence of intervals approaching p 2 since T/(p)<0 if v(T(p), p)φθ; see Fig. 2.

We let H(u,υ) = v2β + F(u\ where F'=f, and JF(0) = 0. Then H'£09 H(pθ90)
= F(p0) < 0, so i ϊ < 0 in a neighborhood of (p0,0). Note that if (0,0) = 0, and that
H(u, v) = 0 is a bounded simple closed curve in the w — v plane, which contains
(Po>0).

Let r>0 be given, and let P i < p < p 2 ; then iί(w(Γ(p),ι;(T(p),p))^0, and
hence # ^ 0 implies iί ^0 below the curve r = T(p) (see Fig. 2). Since Γ(p)->oo as
V^Vi) w e have H(u(r,p2),y(r,p2))>0 for all r^0.

We now claim that the orbit through (p2,0) meets u = 0 at a point with i ^O;
this will imply that p 2 e dom(T), and will complete the proof of the lemma. To
prove our claim, let A > p 0 then the orbit through (p2,0) meets u — A (see Theorem
8, below), at a point where H>0. Since H(p0,0)<0, there is a c>0 and an interval
(a, A) such that H(u, c) = F(u) + c2/2 < 0 for ue{a,A). Thus the orbit through
(p2,0) meets u = A at a point with ι;<c, and meets u = α with ι;<c, for some
r<(A-α)/c. That is, this orbit meets the line u = α for finite r (see Fig. 3).
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This implies that the orbit cannot stay in the region w>0 for all r>0. To see this,
suppose the contrary. Since / < 0 on 0 ̂  u ̂  α, we can find D > 0 such that f(ύ)
^ - D o n this interval. Since -(rn~xυ)'=f(u)rn~1 ^ -rn'ίD, on this interval, we
obtain by integrating from T to T+t [u(T) = ά]9

L n

This shows that v(t+ T)>0 for large ί>0. Thus the orbit through (p2,0) crosses
H = 0. This is a contradiction, so the claim holds, and the lemma is proved.

If r2 = T(p2), and v(r2,p2)<0, then u(r,p2)<0 for r>r2, and hence by the
continuity of the flow, p2 is in the interior of the domain of T; i.e. ρ2 ΦinfB. This is
impossible, so we must have v(r2, p2) = 0. We now show

Lemma B. B = φ.

Proof. Choose ε > 0 so that ε < p0 and φ(u) + ε/'(w) < 0 for 0 ̂  u ̂  p2 + 1 . (This can
be achieved since v(r2, p2) = 0 implies /(0)<0 so that φ(u) = f(u) — uf/(u)<0 if
u ̂  0.) Now choose δ, 0 < δ < 1 such that w(r2, p) < ε for p2 ^ /? ̂  p2 + (5 (we show in
the appendix that u depends smoothly on p).

Now we shall prove that there is a δ' ̂  δ such that [p2, p2 + δ^nB = ̂  this will
be the desired contradiction since it will violate the definition of p2. We begin with
the following

Claim. There is a δ\ 0<<S'£(5, such that if pe [p2, Jp2 + <5/]nB, then i;(r2, p)^0.

If the claim were false, then we could find pn e 5, with pn \ p2 and v(r2, pn) > 0.
Then set zn(r) = u(r,pn)-u(r,p2\ and note that z;/ + (n-l)r~1z;+/ /(^(r))zM = 0,
where ξn(r) is intermediate to u(r,pn) and u(r,p2). Also, zM(0)>0, ẑ (0) = 0, zw(r2)
>0, and z^(r2)>0. Since zn satisfies a linear equation, zπ(r)2 + z^(r)2>0 for O^r
<; r2. Thus we may define θn(r) = arctanz'n(r)jzn(r) [or 0π(r) = arccot zn(r)/z'n(r) near

Zn(r) = 0], and observe that 0n(O) = 0 and 0w(r2) < - 3π/2. Then for any r, 0 ̂  r ̂  r2,
we have

θ'n(r)= ~(H~1) smθncosθn-f'(ξMcoS

2θn-Sm
2θa.

Let z(r) = u'(r,p2); then z satisfies the equation

and the boundary conditions z(0) = z(r2) = 0. Note that z7(0)<0 and z/(r2)>0.
Again, z(r)2 + z/(r)2>0 and we may define θ(r) = arctanz\r)/z(r) (or θ(r)
= arctanz(r)/z/(r)), and observe that 0(0)=-π/2, 0(r2)=-3π/2, -π/2^θ(r)
^ — 3π/2, and for any r, Orgr^r2,

0'(r) = ( w 1 ) sin 0 cos 0 - /'(w(r, p2)) cos2 0 - sin2 0.

Moreover, for n large, f'(ξn(r)) can be made uniformly close to f\u(r, p2)) on 0 ̂  r
<.r2. Also since 0(O)<0n(O), and 0(r2)>0Π(r2), there is an r1 e(0,r2) with θirj
= 0n(r1). Now there is an r3 = r3(pn) s (0, r2) with 0M(r3) = — π/4; thus 0w(r3) — 0(r3)
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π/2 = π/4. Since

- &n{r) ^ /'(u(r, p2)) cos2 θn(r) + sin2 θn(r),

and the right side is uniformly bounded on [0, r 2 ], we see that r3(pn) ^ 77 > 0, where
η is independent of n. Also r3(pn) < r2. Thus for n large, θn and θ satisfy differential
equations which are "close", θn(r1) = θ(rί), but θn(r) — θ(r) is not uniformly small.
This violates the standard continuous dependence theorems. (Note that on
η^r^r2 the equation has continuous coefficients.) The proof of the claim is
complete.

Now assume that there is some p e Bnl, where / = [p2, Vi + ̂ Ί Then ε > u(r2,
p) > 0, and v(r2, p) ̂  0. For pel, let g(p) = min{u(r, p): r e [0, r2]}, and notice that
if g(ρ) ̂  0, then there is an r < r2 with u(r, p) ̂  0 so p e dom(T). Now f̂(p) > 0, and
we shall show that this gives a contradiction. Let η = max{g(p) :pe I}; then η >0. If
p* =inf#~ 1(?/); then for p2UP<P*> u(T(p), p) = η for some T(p) < r2 [for such p we
have g(p)<η since g(p) = η would imply p = p*\ thus u(t,p)<η for some ί < r 2 ] .
Now max{f(p):/?e/} = r2 = f(p*), and Γ(p*)-T(p2)>0. Also, v(T(p)9p)<0 for
p2<p<p*. To see this, suppose that ι;(Γ(p),p)^0. Thus referring to the above
figure, v(T(p),p)>0 is clearly impossible, while if v(T(p),p) = 0, then v(r2,p)>0,
and this violates our earlier claim since peB. Thus v(T(p),p)<0 for p2<p<p*.

Now we shift coordinates by writing ΰ = u — η. Since 77 < ε, ̂ (w) — ηf'(u) < 0 for
u G [0, p24-(5/]. The idea is that in this "shifted" frame, the "new" form ^"is still
negative. Thus, consider the equation ύf/ + {n— l)r~1ύ/+f(ύ + η) = 0, together
with the boundary conditions ύ'(0) = ύ(R) = 0. We have w(r2, p)<0 if p e [p2, p 2

so that this interval is in dom(T). Furthermore, φ(ύ)=f(ΰ + η)
+ ̂ ) = ̂ (w)+ ̂ //(w)<0, on this interval, and since f (ΰ + η)^09 we

may conclude, as above,_that T(p)<0 on [p2, p 2 + ̂ / ] . But since T(p*) = r2, and
7(p 2)<r 2, we have 0<T(p*)-T(p 2) = (p*-p 2 )r(ξ), for some £e(p*, p2). This
implies T'(ξ) > 0, which is the desired contradiction. The proof of the lemma is
complete.

We have thus shown that the domain of T is connected. We must still
investigate the behavior of T on the set

D = {pe dom(T): u(T(p), p) = υ(T(p), p) = 0} ,
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since this set may consist of intervals on which T'>0, and this would violate
uniqueness of solutions.

Lemma C. D is a single point; namely D = {β}, where p = infdom(T).

Proof. In Sect. 4, Corollary 16, we shall show that the domain of T is non-void if
(15) holds, (and / is not everywhere negative!); thus p exists.

Suppose that p1 and p2 are in D. If there is a pφD, p between pί and p2, then
there is an r > 0 with w(f, p) < 0, #(r, p) = 0. If σ = u(f, p), then if we shift coordinates,
and write ΰ ~ u—σ, then Lemma B is violated in this frame namely, p2 > p and p2

φ dom(T). Thus D must be an interval. Curiously, we can easily eliminate the case
D = dom(Γ) by referring to an existence theorem in the next section, but the case
where D is a finite interval is much more difficult. Namely, if D were an unbounded
interval of the form p^p, we again shift coordinates, ύ=u + ε, where ε>0. Note
that the hypotheses (15) are valid in this new frame, yet there are no solutions of the
Dirichlet problem; this violates Corollary 16 below. Thus D can only be a compact
interval, [pi,p2]. (The argument we now give rules out both possibilities.) First
observe that Γmust be monotone on this interval; otherwise there would be two
distinct points, pi, p2 on this interval for which T(p\) = T(p2), and u(T(pβ, pj)
= v(T(pΐ), PD = 05 f=l , 2. This violates the standard uniqueness theorem for
ordinary differential equations.

We next show that T ^ 0 on D = [_p1, p2]
 4 . Thus, suppose that T > 0 on D. We

may assume p2>Pύ if equality holds, then there is nothing to prove. Let Tt = T ^ ) ,
ϊ = l , 2 ; then T2>TV Choose ε>0 so small that both T2~e>Tί and F(Aε)<0,
where Aε = u(T2 — ε, p2); the latter can be achieved since /(0)<0. Note that v(T2

— ε, p 2)φ0 since H(u(T2 — ε, p2), v(T2 — ε, p2))>0; see Fig. 3. Consider now the
equation u(τ, p) = Aε,p1^p^p2. Since u'(τ9 p) < 0, we see that this equation defines
a function, τ = τ(p), p1^p^p2. If ε is small, we have τ(p2) = T(ρ2) — ε>T(pί)
>τ(pι); i.e., τ(p2) > τ(£i) On the other hand if we shift coordinates by writing ΰ = u
— A& then in this frame, if ε is small, Aε is near zero, so (15) holds in this frame, and
Φ(fO> P)*° f o r ViύvύPi- Thus τ/(p) = T/(p)<0 so τ(p1)>τ(p2) This is a
contradiction, and so T'^O on D. (The proof of Theorem 4 is now complete.)

To finish the proof of Lemma C, we proceed in a manner similar to the proof of
the above claim. Thus, suppose that D is a non-trivial bounded interval, and
choose p in D int. Then w(r) — u'(r, p) satisfies W + (n — 1 )r ~1 w'+f'(u(r, p)) = 0, with
w(0) = w(T(p)) = 0, and w/(0)<0, w/(T(p))>0. We may define θ(r)
= arctanw'(r)/w(r), and note that 0(0)=-π/2, θ(T(p))= -3π/2, -π/2^0(r)
^-3π/2. Also for 0^r^Γ(p), 0 /(r)=-(n-l)r" 1sin0cos0-/ /(M(r, p))cos20
— sin2θ. If now p>p, peD, we set z(r) = u(r,p) — u(r,p), and so z" + (n— l)r~V
+/r(ί(r))2 = 0, ^(r) between w(r, p) and w(r, p). Also z(0) > 0, z'(0) = 0, z(Γ(p)) > 0,
z/(T(p))>0, since u(T(p),p) = 0 = u'(T(pX p), and T(β)>T(p) (equality would
violate uniqueness), so u(T(p),p)>0 and u(T(p), p)>0. Now we define θ(r)
= arctanz'(r)/z(r). Then ^satisfies an equation which is "close" to the z equation
uniformly on [0, Tip)'] if p is close to p. Since θ(0) < 0(0), and ff(T(β) < θ(T(β)) we
can find tx e (0, T(β)) with 0 ( 0 = 0^!). Also, there is t2 = t2(p) e [0, Γ(p)] with

4 Note that this will prove that T is a monotone function, and hence will complete the proof of
Theorem 4
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Θ(t2) = — π/4, so θ(t2) — θ(t2) ̂  π/4. Since — 0' is bounded from above, uniformly
on [0, Γ(p)], we see that t2(p)^η>0, η independent of p. Thus Θ(ί1) = ̂ (ί1), but
0 — ίΓis not uniformly small; this is a contradiction, and the proof of Lemma C is
complete. D

As we have noted earlier, the proof of Theorem 4 is also complete. D

We shall next show that if/ satisfies (15), then5

i) if /(0) < 0, dom(T) = [p, oo) for some p > 0, and the orbit starting at (p, 0) is
the unique one going through the origin; i.e., w(T(p),p) = 0 = ι;(Γ(p),p),

ii) if/(0) = 0, dom(Γ) = [0, oo) and t>(T(p),p)<0 for p>0.
Thus, suppose first that /(0) < 0, and let p 0 be the positive root6 of /. If p > p0, p

near p0, then if H(u9v) = v2/2+F(u), (*" = /) , we have H(0,p)<0, and since H
decreases on orbits, such p cannot be in dom(T). Thus p = inf dom(Γ)>0, and as
we have seen earlier, the orbit through (p, 0) is the unique one which goes through
the origin. If /(0) = 0, then in order for solutions to exist, we must have /'(()) > 0. It
follows that for u>0, u near 0, there is a c>0 such that f(u)^cu. Now define tanθ
= v/u, and for u > 0, u near 0, we have

uv — v2

As r-> oo, 0->π/2, and for large r, we see that 0r is uniformly negative; i.e., θ't^—η
for some 77 > 0, for all sufficiently large r. It follows that 0 = — π/2 for finite r. That
is, p e dom(T) for all sufficiently small p>0; this proves (ii).

We close this section with a few remarks. First note that if (15) holds, and /(0)
<0, (so for example if f(u) = u — e~u), then positive solutions to the Dirichlet
problem exist, and there must be exactly one positive solution for which u(R)
= M/(Λ) = 0. In particular, this shows that the conclusion u'(r)<0 for 0<r<R in
[3], cannot be improved. Finally, note that for this class of functions /, there is a
real number Rx such that if R>RX, the problem (1), (2) has no positive solution;
(this follows since T < 0 and T is bounded. The proof of the latter fact is similar to
what we have shown in the proof of Lemma A. Namely, H = 0 is a bounded closed
curve containing (p0,0). If pn \ p and T(pn)-^> + 00, then since H(u(r, p), v(r, p)) > 0,
the argument in the proof of Lemma A applies, and gives a contradiction.) But even
more can be said about the domain of T. This will be discussed in the next section;
Theorem 17.

5 Assuming solutions exist; they do by Corollary 16, below
6 If/ has no positive root then no positive solution exists
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4. Existence of Radial Solutions

In this section we shall use techniques from the theory of ordinary differential
equations in order to prove some existence theorems for positive solutions of (1),
(2), or equivalently, of (12), (13). Our hypotheses are only concerned with the
behavior of / at infinity; in particular, we do not require that /(0)Ξ>0. Thus, for
example, if f(u) = O(uk) as w-»oo, we give a general condition for positive solutions
to exist (Theorem 14). This enables us to prove, for example, that if k < 2 and n ̂  3,
or if k= 1 and n^i 1, positive radial solutions must exist. These results are applied
to the case where / satisfies (15), and they enable us to prove existence of solutions
for all n.

We begin by writing the Eq. (12) as a first-order system:

u'=υ, v'^-in-^vr-'-fiu). (18)

In order to obtain solutions of this system, we find it convenient to consider the
following two associated systems of equations:

K } (19)
{) 9

and

Here A, B, q and T will be suitably chosen constants. Our first result is a
comparison theorem relating solutions of the above systems.

Theorem 5. Suppose that f(u)>B forO^u^A, u(T) = A>0,andv(T) = q<0, for
some T>0. Then u(r)^u(r) for r^T onO^uSA, and if v(r)<0,T<.r<.Tu then
z(r)^w(r) on this range.

Proof Let h(r) = u(r)-u(r). Then Λ(Γ) = 0, Λ/(r) = ϋ(r)-ϋ(r), and Λ/(Γ) = 0. Next,
h\r) = ϋ\r)-v\r)= -in- ly-tytf-B+fiu), so Λ"(T)>0. Now if Λ/(r1) = 0 for
some rt > Γ, 0 <; u S A, then h"^^ > 0. It follows that h\r) > 0 for all r > T on 0 <; u
^ A, so that u(r) > u(r) ifr>T,0^u^A. For the second part, let g(r) = z(r) — u(r).
Then ff(Γ) = 0, g'(r) = w(r)-ΰ(r), g'(T) = 0, g\r) = W{r)-ϋ\r\ g\T) = ̂  g'"(r)
= W'(r)-ϋ\r)= -(n-\)T-W(r) + (n-\)r-H'{r)-{n-\)r-2v(r\ and g"'(T)
= -{n- l)T~2v(T)>0. Thus g(r)>0 if T<r<T+ε, for some β>0. On the other
hand, if g/(r1) = 0 for some r l 5 Tί^r1>T, then g"(rx)= -(n-tywirJT'1

+ (n-l)v(r1)rϊί = -(n-l)v(r1) (T~1-r1-
1)>0. Hence g'(r)>0 for T^r>T

and so g(r)>0 on this range. •

We shall apply this comparison theorem in order to prove that the Dirichlet
problem (1), (2) has a solution for some R>0, provided that (15) holds. We shall
then discuss the range of JR'S. The existence theorem will follow from a general
theorem, which will be applied in other contexts as well. We begin with a lemma.

Lemma 6. Suppose that
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f ( u )

Fig. 5

Then for any solution of (12), there is an r x > 0 with u(rί9p) = A. Moreover,

in Ύ12 Yin Ί 1 / 2

Proof We have, on A^w^p,

Thus integrating from 0 to r, gives

so that

r2m r2M
^ P — u(r) ^

In = r v ' = 2n !

This shows that rj exists and that (21) holds. D

We apply this lemma to the following situation. Suppose that /(0) < 0, f(u) < 0,
0^w<α, and /(α) = 0; see Fig. 5.

Let ε>0 be any positive number. Consider the orbit of (18) which starts out at
u=p, v = 0, r — 0. By our lemma, this orbit crosses the line u = oc -f ε, at some point
which we call qε; cf Fig. 5. We let Tε be defined by u(Tε, p) = oc + ε. Then we have the
following lemma.

Lemma 7. // f(u) §; 0 for u ̂  α + ε,

Proo/. If we integrate — (ι;rII~1)/ = r'I~1/(M), we get

from which the result follows.
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We can now state our first theorem.

Theorem 8. Suppose that /(w)^m>0 for u^A. Then
(1) for any p>A, there is a T>0 such that u(T,p) = A.
(2) Let q = υ(T,p); if qT->-oo as p->oo, then the problem (12), (13) has a

solution, with R = T(p).

Proof. Part (1) is a consequence of Lemma 6. For the second part, consider the
system (20). We shall show that if w(rx) = 0, then z(rx) <0, provided that — qT is
sufficiently large. Then Theorem 5 implies that u(T(p), p) = 0 for some p > 0. (In the
applications, we usually take A = <x + ε, q = qε, T= Tε; cf. Fig. 5.)

Suppose f(u) ^ B, B < 0, and set

β = (n -1 )/Γ, δ = (n - I)β/TJB =

Equation (20) can be explicitly integrated as

= e-βrq-j(l-e-βr), and thus l+δ = eβn. (22)

Furthermore,

and using (22), we find

If φ(§) = 1 — δ 1 ln(l + <5), then φ(0) = 0, and φ(δ) > 0 for δ > 0. Since
(5 = (n— \)B~1(qlT), it follows from Lemma 4 that φ is bounded away from zero.
Since gT->oo as p-^oo, we see that z(r1)<0 for large p. This completes the
proof. D

Our next result gives a condition under which q-+ — oo as p-> oo before stating
it, we need a little notation. Thus, referring to Fig. 5, let 4̂ = α + ε, F'=f and

Mp= sup f(ύ).

Proposition 9. Suppose that

Km [V(p)+ ^ M p G 4 - p ) j = + oo (23)

then q-+ — oo as p-+oo.

Proof The equation —{rn~1vy = f{u)rn~1 gives ~{rn~1υ)/^.Mpr
n~1, and by

integration we get
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Then if u(T) = Λ9 (T= Tε), we have

]]2/2 + F(A)-F(j>)= ]wdr=]~{n-\)~dr
0 0 T

^ ]Mpvd Mp(Ap),

o n n

and (23) implies the desired result.

We next give a class of functions / for which 7̂  is bounded away from zero.
Proposition 10. Suppose that (f(u)/u)'>0 and that f'{u) is bounded from above.7

Then Tε is bounded away from zero.

Proof The equation -{rn~ιυ)' = rn-ιf(u\ gives - ( r " " 1 ! ; ) ^ ^ " 1 / ^ ) , and if we
integrate this from 0 to r, we get —v^rf(p)/n. Integrating again gives, for
p>2(α + e),

I £p-i,(r) = Tf _υdrύ< p ( α + β ) £ p i , ( r ) = f υ d r ύ .

Thus if f'(u) < fc, we have

Ί?>np/f(p)>n/f'(p)Zn/k, (24)

and the proof is complete. D

Corollary 11. Suppose that the hypotheses of the last proposition hold. Then T(p) is
bounded away from zero.

Proof Replace Tε by T(p) in the above proof. D

As a consequence of the last three results, we have the following theorem.

Theorem 12. Suppose that (23) holds, and that the hypotheses of Proposition 10 are
valid. Then problem (12), (13) has a positive solution, for some R = R(ή).

We pause here to give some examples. First, if f(u) = u — e~u, and n = 2, then it
is easy to check that all of the above hypotheses hold. If f(u) = 2u — 2 + e~u, and
n = 2, then again all of the above hypotheses hold.

We remark that an existence theorem for any function f(u) which satisfies
(/(«)/«)' > 0, cannot be obtained by the usual method of upper and lower solutions.
This holds since the positive solution being unique (by Theorem 4), it must
necessarily be a stable solution of the associated time dependent parabolic
problem.

see [7, Theorem 10.5]. But, as we shall show in Sect. 6, solutions which satisfy the
above condition cannot be stable.

In particular, if (15) holds, this will be the case
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We shall now give some general conditions under which qεTε-+ — oo (cf.
Theorem 8). These will be applied to yield existence theorems for certain classes of
/'s

We assume that f(u) = O(uk), /c>0, as w->oo, or more precisely, we assume
that8

/(fθ/tι*-*l as u-> + oo. (25)

We fix α, choose p > α and let T be the "time" that the orbit starting at u = p, v = 0,
ί = 0, takes to get to the line u = ΰ9 where a^ΰ<p. (We think of ΰ as α + ε in our
above earlier discussion.)

We have —(vr)'=(n — 2)v + rf(u). Thus, if q = v(T), then integrating this
equation from r = 0 to r = T gives

-<?T=-(n-2)0?-ύ)+ f ζf(M(r)dr. (26)
o

Now choose points 1 > ax > a2 >... > as > 0, and let w be successively: p = aop,
atf, ...9aj>9 ΰ. If Tj denotes the "time" the orbit takes to go from u = aJ^1p to
u = a p9 then setting To = 0, we have

]rf(u(r))dr= £ " ί ίrf(u(r))dr+ ] rf(u(r))dr
0 j = 0 Tj Ts

s Tj +1

But

rf(u(r))dr ^ c' f (α^ + xp)krdr = c7j

so that

J ζT(iι(r)>fr ^ c ^ {«ϊ T;2 + ΦSJi - 7?) + • + βϊ ί ΐ 2 - Γs

2- J
o 2

^ c't- {Tftα* -β*) + . . . + Γs

2_ ̂ α j . x - α*)},

and this latter sum converges, as 5^00, to the Riemann-Stieltjes integral

I 0

where Ta is the "time" the orbit takes to go from p to ap. Thus from (26), we get

ζ\τa

2dak. (27)

8 It is not difficult to consider the more general case f{u)/uk-*c>0 as tί-»oo
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Next, — (rn"1 v)' = rn~ ιf(ύ) ^ rn"1 cpk, and so if we integrate this from 0 to r, we
get

— v ̂  rep /n.

Integrating again from r = 0 to r = Γα, gives

T2

so that Tα

2^>(l -a)px'k —. If we put this in (27) we obtain

} ( ) ( ) ( p )
o c

nd ( k \
Thus — q T-> oo as p -^ oo, provided that — 1 — -—- > n — 2. Since we may take

c \ /c+1/
c/c' arbitrarily close to 1, we want n/(n - 2) > k + 1 , or 2/(n — 2)>k. We have thus
proved the following theorem.

Theorem 13. Suppose that f(u) satisfies (25). Then the problem (12), (13) has a
positive solution for some R, provided that

2 >k. (28)
n-2

Notice that (28) holds if n = 3 and 0 < k < 2, and it also holds for all k > 0 if n = 2.
We shall prove one last theorem which together with Theorem 13 will imply,

in particular, an existence theorem for (12), (13), for all n, provided that (15) holds.
To this end, note that we have shown above that in order that —qεTε-+co, we
need [cf. (27)]

t ^ \ 2 . (29)

For n = 3, we have just seen that we can estimate T2 from below, and this gives us
an existence theorem for k < 2. We shall now obtain different estimates on Ta which
will enable us to get a different existence theorem. We again assume that (25) holds.

If 0<p, we have

ϊ-TΞ-f^. (30)
p V ap — V

and if τ<r, f{u{τ))^u(τ)k^u{rf. Thus as above

- r»- h = } τn~ 7(u(τ))dτ ^ c } τn~ ̂ (r^dτ,
o o

so that — v/r ̂  uk/n, where we are using the notation u = u(r). From this we obtain

-v\τ) ^ujrfυjτ)
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V-+F(u) = F(p)-(n-\)\υ-dτ,
2. o T

or

V-=F{V)-F{u)-{n~\)]-dτ=]f{s)ds-{n-\)\~dτ.
l i τo τ

From (25),

and from (31)

Therefore

= fc+1
= c-

fc+1

— (n—1)} — dt^
o ί

If we use this in (30) we obtain

T>

Setting u=ps, gives

du

Now let's consider the case where k = 1 then from (32)

Likewise, for k= 1, (29) becomes

}τα

2<iα>2(n-2).

( 3 3 )

(34)

Since 7̂  depends continuously on c and c can be taken arbitrarily close to 1, we can
assume c = 1 in (33), and use the resulting expression for Ta in order to prove (34).
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Thus if c = l ,
} ds

149

« i n — Λ

n-2) \ (n-2)2

ds

5 —
n - 1

(n-1)2

In
n-2) (n-2)2

Using this in (34) gives

1 1

o a = on-2ι

If we let y = (n — 1) — (n — 2)α, we have

0 1

Since we want (34) we must show

n-l

1
(35)

Note now that 2 > 2(n — 2)/π, and that the left-hand side of (35) is monotone in n.
But when n = 3, it is easy to show that

hence (35) holds for n = 3. If rc = 4, we have that

and so (35) holds for n ̂  3. It follows from Theorem 12 that for k = 1, (12), (13) has a
solution for all n. We have thus proved the following theorem, and Corollary 15.

Theorem 14. Suppose that f(ύ) satisfies (25). Then the problem (12), (13) has a
positive solution for all sufficiently large p, for some R = R(p), if

dak>2(n-2). (36)

Corollary 15. // f(u) satisfies (25) with fc= 1, then (12), (13) has a positive solution
for all sufficiently large p, for all n ^ 1, for some R.
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Corollary 16. Suppose that (15) holds and f{ύ) > 0 for some u > 0. Then (12), (13) has
a positive solution for all sufficiently large p, for all n ^ 1, for some R.

Proof Since / " ^ 0 , we have

and since f(u)/u is an increasing function,

lim f(u)/u = A
u-+ oo

exists. Thus given ε > 0, we have

(37)

Now in Eq. (1), make the change of variables y = xγA — ε; then (1) goes over
into i

Ayu+- f(u) = 0, \y\<R]/A^l. (38)

We thus see that there is a one-one correspondence between solutions of the
Dirichlet problem for (1) and (38). Thus, if we define g(u) = (A — s)~ 1f(u), we have
the estimate A

if u ̂  uε. We may now apply Corollary 15 to the equation Au+#(w) = 0, to conclude
the existence of a solution to the Dirichlet problem for every w, for (38), and hence
for(l).

As a consequence of this last result, we have the following theorem.

Theorem 17. Suppose that (15) holds, and /(0)<0. Then there are real numbers
Rt>R2>0 (depending on f and n), such that the problem (1), (2) has positive
solutions if and only if RX^R> R2. Moreover if u is the positive solution of (1), (2)
for R = R{ then u(R1) = u'(R1) = 0.

Proof In the proof of Theorem 4, we have shown that such an R1 exists, while the
existence of the lower bound R2 follows from Corollary 11. The actual existence of
solutions is a consequence of Corollary 15.

Notice that for f(u) = u-e~\ the bound T2(p)^2n/f'(0) gives R2^]
Concerning the case where (f{u)/u)'<0, we have the following existence

theorem, which is essentially known, and follows from degree theory arguments
and results about positive operators; see [1]. We show here how existence also
follows from Theorem 14. Recall that in this case / can have at most one positive
root.

Theorem 18. Suppose that (/(u)/w)/<0 in w>0. Then the following statements
concerning the problem (1), (2) are valid:

A. 0 ̂  Ro < T{p) <Rx<>oo, where Ro = 0ίf and only if /(0) > 0, while Rί < oo if

and only if lim f(u)/u = λ>0.

B. l
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We shall first prove the assertions concerning Ro. If /(0) > 0 and f(p) > 0, p > 0,
then /(w)^m>0 on O^u^p for some m>0. Then integrating — (rn~1v)'
= f(ύ)rn~1'^mrn~1 yields —v^tmr/n, and integrating again gives u(r)^p
- mr2/2n. Thus u(r) < 0 if r2 > 2np/m [so p e dom(T)!] and T(p)2 < 2np/m, so T(p)
-+0 as p-»0; thus Ro = 0. If /(0) = 0, then since /(w) > 0 for some u > 0 (in order for
positive solutions to exist), and (11) holds, we see that //(0)>0. Let A=f'(0) and
note that f(u) ^ (A + ε)w, for small w>0, for some ε>0. For such w, along a
solution we have

so v ̂  - r(A + ε)p/n, and thus - T(p)2(>4 + ε)p/2n <Ξ - p ; hence T(p)2 ;> 2n/(A + e),
and thus Ro ^ 0.

The equation v'=—(n— \)υr~ ί-f(u) implies that (rn~iv)'= -rnf(u). Integrat-
r

ing this from 0 to r gives rn~ 1v(r)= — J snf(u(s))ds. Hence, if u(0)=p, we get
o
1 r

max (—v(r))= max -^ry ί snf(u(s))ds
O^ugp 0^r^T(p)f 0

1 r

^ max -ĵ zrf J 5" Γ max /(w)l ds
0^r^T(p)r 0 |_° = U = P J

where Mp = max{/(w): 0 ̂  w ̂  p}. Since u'=υ implies that T(p) ̂  p I max ( - υ(r))9

II
we obtain T(p)3 ^ (n + \)p/Mp. We claim that p/Mp->oo if and only if /(p)/p->0, as
p-»oo.

In order to prove the claim, first note that Mp^f(p) implies that if Mp/p->0,
then /(p)/p->0. Conversely, suppose that /(p)/p->0. If/ is bounded, say /(p) ^fc,
then fc/p ̂  Mp/p, so Mp/p^>0. We may thus assume that / is unbounded. Let ΛΓ > 0
be given; since f(ρ)/p->oo and (f(p)/p)'<0, we see that there is a p 0 >0 such that
p/f(p)^N for p^Po On the closed interval [0,p0], / is bounded, say
Since / is unbounded, there is a <?>p0 such that f(q) = k+l. Let
= max{/(p):0gpgί}. Then ^>p o , ξ/f(ξ)>po/f(Po)^N so that ξ/Mξ = ξ/f(ξ)
>N. Since AT was arbitrary and u/f(ύ) is an increasing function, we see that
Mp/p->0. This proves our claim.

Suppose that /(w)/u^Λ>0. We write (1) in the form

For the linear system
„ n— 1 , Λθw H w + / w = 0,

r

the associated time map T is constant, T(p) = TL; this follows since φ, as defined by
(10) is identically zero. If T(p) is the time map associated to (1), (2), we shall show
that T{p) ̂  TL, and this will give the desired conclusion.
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Let ε>0 be a given small number, and let v1 and υ2 be linearly independent
solutions for the above linear (homogeneous) equation, where

, and u2(e) = 0,

Using variation of parameters, we can write the solution of (1), (2) as

where a and b are constants, and W(s) is the associated Wronskian; i.e.,

Since W(ε) > 0, we see W(s) > 0 for all 5. Also 0 < W(TL) = -ϋ'1(ΓI,)t;2(Γί,), v\{TL) < 0
imply that v2(TL)>0. Since

we see that w(ΓL)^O if fc^O. Thus, if bgO, we will have proved that
It remains to show b g 0. We have

u'(ε) = αυΊ (ε) + b, w(ε) = av t (ε)

so that

b =

and thus if the numerator is not zero,

u'(ε) »ΊΓ
= sgn L u(β) o x (

In order to compute this sign, we define # = arctan(uyw), ψ = arctan(t;ί/ί;1). Then

Λ,Λ v2 + uf{u)-{n-\)uvr'1

and as we have observed in the proof of Theorem 3, limι;r~ * = —f(u(0))/n as r->0,
so that

θ(0)=-~f(u(0))/u(0).

Similarly, ψ(0)=-λ2/n. Thus ψ(0)^θ(0), and so ϋ/

1(ε)/ϋ1(ε)^M/(ε)/M(ε), for small
ε>0. This implies that fc^O.

Finally, assume that f(p) = 0 for some p > 0. Then since T > 0 and w = 0, i; = p is
a "rest point," Γ(p)->oo as p / p . This completes the proof of A.

To prove B, we first suppose that f(β) = 0 for some p>0. Then f(p)<0 for
p>p, as solutions cannot exist if p^p. Let 0<p<p, then as noted above,
p E dom(Γ) if /(0) > 0. Suppose 0 <p <p and /(0) = 0. As noted above, /'(0) > 0.
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Define a new positive smooth function g(ύ) by g(u)=f(u) if 0 ̂  u ̂  p, and g(u)/u \ 0
as w-κx) (see the depicted figure). Then since the orbit through v = 0, u=p depends
only on the values of f(u) for u^p, we may apply a remark after Theorem 3 to
conclude that pedom(T). Thus B holds if f(p) = 0 for some p>0. If f(ύ)>0 for
all w > 0, then if /(0) > 0, as above dom(T) = {w > 0}, while if/(0) = 0, Corollary 15
implies p e dom(T) if p >̂ 1. But Theorem 3 shows that p e dom(T) for p near 0, and
the assertion follows since dom(Γ) is connected (cf. Theorem 3). The proof is
complete.

5. Nondegenerate Solutions

In this section we shall show that the ideas in the previous sections can be used to
prove the non-degeneracy of solutions. We assume that / e C3.

We begin with the following theorem.

Theorem 19. Let u( ,p) be a solution of (3), (4), where g e C3. Then u(-,p) is non-
degenerate if and only if up(L, p) φ 0.

Proof Differentiating (3) with respect to p gives for w = wp

9,

w" + g1(u, u\ t)w + g2(u, u\ t)w' = 0, (39)

where u(r) = u(r,p), and g{ denotes differentiation of g with respect to its ϊth

argument. Also, u(0, p) = 0 gives u'p(09 p) = 0. Thus, if up(L9 p) = 0, then up satisfies
(39) and the correct boundary conditions. Moreover, u(0,p)=p, wp(0,p)=l, so
up(0,p)φ0; thus the solution u(-,p) is degenerate.

Conversely, if u( , p) is degenerate; i.e., if there exists a non-trivial solution w of
(39) which satisfies w'(0) = w(L) = 0, then w(0) + 0 and up(t,p) = w(t)/w(0), since
both satisfy (39) and the same initial conditions. D

We remark that the condition up(L,p)ή=0 is generally very difficult to verify
directly. However, if w'(L, p) φ 0, then the equation w(ί, p) = 0 defines t implicitly as
a smooth function of p near (L, p) (see the appendix); namely T(p). Differentiating
the equation u(T(p), p) = 0, with respect to p, gives, at p, up(L, p) = — u'(L, p)T'(β).
Thus up(L, p) = 0 if and only if T'(p) = 0. Theorems 2-4 give conditions under
which T{p) φ 0. The condition u'(L, p) φ 0 is automatically satisfied if 0(0,0, L) > 0.
One sees this latter fact from the "phase portrait." Namely, since M' = I;, vr

= -g(u,υ,t)9 We find that if u(L,p) = u'(L,p) = 09 then - #(0,0, L) = v\L) > 0,
since v(L—ε) < 0, and u'{L) = 0. Similarly, if #(0,0, t) = 0 for all t ̂  0, then no orbit
reaches the origin in finite time since the line u = v = 0 in R 3 is invariant; thus

9 The fact that u depends smoothly on p is shown in the appendix / e C3 is needed to ensure w"
is continuous
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u'(L, p) Φ 0 in this case too. The case where u'(L, p) = 0 is quite interesting and will
be considered in a forthcoming publication.

We now come to the main theorem in this section.

Theorem 20. Let u = w( , p) be a non-negative solution of (1), (2) onΩ = Dn

R. If both

r ( p ) Φ0, and i*'(Λ,p)Φθ,

then u is non-degenerate, and conversely. In particular, u is non-degenerate if (11)
holds.

Proof. First, recall from [4] that u'(f) < 0 if r > 0. We want to show that 0 is not in
the spectrum of the linearized equations if Γ ' ^ φ O and ι*χR,p)φO; that is, we
want to show that v = 0 is the only solution of the problem

Δυ + f'(u)v = Q9 xeΩ, v(dΩ) = 0. (40)

Now it is a standard result that every solution of (40) can be written in the form

υ(r,θ)= ΣaN(r)ΦN(θ), ΘES^1, r ^ O , (41)

where Φo = const, and for N ^ l , ΦN is an eigenfunction of the Laplacian on the
(n— l)-sphere Sn~* (see, e.g., [2] for the case n — 3). If we use this in (40), we obtain
the equation

0(f ^ ^ ) N = 0, (42)

where

(43)

see [2, p. 161].
In view of (42) we have, for iV^O,

4 + ^ + f ' ( ) = 0, (44)

and 1 0 for iV^l ,

0. (45)

We shall show that (44), and (45) imply that aN(r) = 0, 0 ̂  r ̂  R, if JV ̂  1. Then
we shall show that Theorem 19 implies that ao(r) = 0, and so we will have that v = 0,
and the non-degeneracy of u will be proved. To this end, let w = du/dr; then w
satisfies the equation

.. n— 1 . n—\ ... Nw H w j - w+j (u)w = 0.

10 ajϊiήΦNiθ) is undefined at r = 0 unless aN(0)=0. Formally, aN{r)= f v(r,θ)ΦN(θ)dθ, and
S 1

since discontinuous at r = 0, aN(0) = v(0) j ΦN(θ)dθ=^~ J
5 l Λ S
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Assume N^l; multiply this last equation by — aNrn *, multiply (44) by wrn x,
add the two resulting equations and integrate from r = 0 to r = R^R, where R is
the first zero of aN. This gives

or, in view of the boundary conditions (45),

(46)

Note that -λN-(n-\)>0 iϊ N>1, while -λ1 = n-\. Thus (46) implies that
%(r) = 0 if JV^2. Since w(R)φO, u(R) = 0 (and wφO), then setting R = R in (46)
gives a^RJ^O.

It remains to prove that ao(r) = 0. Since u\R, p) φ 0, it follows from the remark
which we made after the proof of Theorem 18, that

up(R,p)= -u'(R,p)T(p)*0.

Hence from Theorem 19, αo(r) = 0.
Conversely, if the solution u( ,p) is non-degenerate, then w/(i^,p)φ0, for

otherwise, the function u/(r,p)Φ1(θ) would be a non-zero solution of (44), (45).
Furthermore, using the fact that u'(R, p) φ 0, we see as above, that if T'(p) = 0, then
up(',p) would be a non-zero solution of (40); thus T(p)Φθ. D

It is useful to summarize our results for solutions of (1), (2) in the cases where
Ω = Dn

R. We define ψ(ύ) = f(ύ)/u, and consider two cases:
1) ψ'(u)<0 in w>0, and 2) both ψ'(u)>0 and ///(0)<0 in u>0.

Case 1. ψ'(u)<0. [If /(0) = 0, then there are no positive solutions.]

R

T(p) dom(T) = (O,po)
\ fίu) / I

A.

Po

Fig. 6. Solutions exists only for R > Ro > 0

B. f(ύ)>0 in M>0. Here there are two subcases:
i) if f(ύ)/u-+0 as w->oo, then T has the following form:

Fig. 7.

T(p)
T(p)

f(O)>O

o as p-»oo

f ( O ) = O
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ii) if f(u)/u^λ2>0, then T has the following form:

T(p)

Fig. 8.

f(O) >O

^Rί for all p>0

T(p)

f(0) = 0

All of the above positive solutions are unique, stable and non-degenerate.

Case 2. ψ'(u)>Q, /(0)<0, and f ^ ^ O .

f ( u )

T(p)

Fig. 9

Solutions exist for JR2<K^K1; all positive solutions are unique, and non-
degenerate if p > p. If w(0) = p, the corresponding solution is degenerate and in this
case u'(Rl9 p) = 0.

6. Concluding Remarks

If u is a positive solution of (1), (2) in any domain Ω C R" (Ω is need not be an rc-ball),
and σ(u) denotes the spectrum of the linearized operator about w, then we shall
show that σ(u) C {x>0} if (11) holds, and σ(u)n{x >0} is non-void if (f(u)/uY>0.
In fact, we have the following somewhat more general result.

Theorem 21. Let Ωbea bounded domain in IR", and let ubea non-negative solution of
the problem

e Au(x)+f(u(x))=0, xeΩ, (46-47)

an
xedΩ, (48)

where a2 + b2 = l, and d/dn denotes the outward-pointing normal derivative on dΩ.
Then if ψ(ύ) = f(u) — uf'(ύ), we have

a) ί f t | ) > 0 i n M > 0 , φ ) C { x e R ; x < 0 } ,
b) if ψ<0 in u>0, σ(w)n{:x;eIR; x>0} is non-void.

Proof. Let u be a non-negative solution of (47), (48), and consider the eigenvalue

equation Aυ + f'(μ)υ = x e Ω , (49)
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with boundary conditions (48). Suppose that υ is a solution of (49), (48), and λ is the
principal eigenvalue of A +f(u) on Ω, together with the boundary conditions (48).
From a well-known result, (see [8]), we may assume that v > 0 on Ω.

We multiply (49) by w, (47) by v, add and integrate over Ω to get

dΩ dn

Since the equations an + b — = 0 and av + b — = 0 have a non-zero solution (α, b),
an an

we see that the above boundary term vanishes. Then using (47), we find

ί \ (50)
Ω Ω

This shows that if ψ>0 in u>0, then Λ<0, while if ψ<0 in w>0, the λ>0. •

As we have remarked earlier, this together with Theorem 4 implies that if (15)
holds, then one cannot prove existence theorems for (1), (2) via the method of upper
and lower solutions (nor by a variational approach, in which u is a minimum of a
functional).

The same argument yields still a more general result. Namely, consider the
equation with self-adjoint boundary conditions

Lu(x)+f(u(x)) = 0, xeΩ.

Here Ω is a bounded domain (not necessarily a ball), and L is a linear 2nd-order
elliptic operator. Then the following theorem holds (cf. [8, Chap. 11, Appendix]).

Theorem 22. Let u be a positive solution of the above problem. Then conclusions
a) and b) of the last theorem are valid.

Appendix

We shall show here that if u is a solution of (12) and (13), then u is a smooth function
of p (and r) 1 1 . The usual theorems are not applicable here since the coefficient of u'
in (12) is not continuous in any neighborhood of r = 0. Note that as a consequence
of the smoothness of u, it follows that T is a smooth function of p.

Theorem. Let feCk and let u = u(r,ρ) be a solution of (12), (13) with u(0,p) = p.
Then u is a Ck function12 of r and p.

Proof It suffices to show that u is a Ck function in any interval O^r^δ, since we
may then apply the standard theorems.

Now the equation (rn~iu/)/= —rn~1f{u) gives

11 A similar result is given in a preprint by Ni and Nussbaum, Uniqueness and Nonuniqueness
for Positive Radial Solutions of Au+f(u, r) = 0
12 In the applications to the non-degeneracy problem, we need k^ 3 since u"p must be defined
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and so if we take first the case n > 2, we have

u(r,p)=p+ ] - *
o t

=p-ίί(s/ty-1f(u(s,p))dtds
Or

=P+ }
0

Thus, if n> 2,

^ ί ^ Q W ' j (51)

whiel if n = 2, a similar calculation gives

iι(r, 5) = p + f s ln(r/s) /(w(s, p))ds. (52)
o

We shall assume n>2, and prove the theorem in this case; the case n = 2 is
similar and will be left to the reader. Thus, motivated by (51), we let β be the class
of Ck functions of r and p with the Cfe-norm which satisfy the conditions

hφ,P)=P,

We define a mapping T on f by

It is straightforward to check that Th is in f, and that T is a contraction mapping
for small r^O. It follows that T has a unique fixed point /ι in β. We set u(r,p)
= h{r, p)\ then w'(0, p) = 0, w(0, p) = p, and by direct calculation, u satisfies (12). D
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Note added in proof. If fe C°, and w(r, p) solves (12), (13), with w(0, p)=p, then u is a C2 function
of r, and w, un urr are C1 in p. This holds since u is a fixed point of the above map T, now
considered as a map from C°[0, α]~>C2[0, a]; hence u is C2 in r. Now we may follow the usual
proof of differentiability with respect to initial values to see that u, un urr are C1 in p. Thus in
Sect. 5, we need only assume fe C1.






