
Communications in
Commun. Math. Phys. 95, 121-127 (1984) Mathematical

Physics
© Springer-Verlag 1984
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Abstract. We study the motion of a quantum rotator under an external periodic
perturbation. For the resonant case, i.e. when the frequency of driving pulses is
rationally connected with the frequencies of the free rotator, the quasi-energy
spectrum is known to be continuous. We prove that for a generic choice of the
potential there is a non-empty set of non-resonant values of the external
frequency such that the quasi-energy spectrum still has a continuous
component.

I.

Up to now, quantum mechanics has offered but a poor surrogate for the variety of
the forms in which chaotic behaviour can manifest in classical mechanics.
Discreteness of the spectra of bounded systems and localization of states in
unbounded systems with disordered potentials are major drawbacks that seem to
constrain the search for chaotic quantum motion to the field of time-dependent
Hamiltonians, and to time-periodic Hamiltonians in particular.

The so-called "(5-kicked rotator" has been being used extensively as a model
system in this line of research [i~Ί\ It displays non-recurrent behaviour, associated
with a continuous component in the quasi-energy spectrum, when the frequency of
the driving pulses is rationally connected with the frequencies of the free rotator PI.
However interesting in itself, this "quantum resonance" is quite another type of
behaviour than chaotic; therefore, the latter can possibly take place only for "non-
resonant" values of the driving frequency.

For such values, numerical evidence is that there are strong limitations to the
occurrence - if any - of non-recurrent behaviour [1~3]. These desultory numerical
results, together with the recently discovered similarity of the rotator problem with
the problem of localization[6], seem to support the thesis that there are no
possibilities for periodically driven quantum systems other than recurrence and
resonance.

The result we present in this paper is that a "third way" actually exists. In fact,
we prove that for a "generic" choice of the potential of the kicked rotator there are
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non-resonant situations in which the quasi-energy spectrum still has a continuous
component; also, there are reasons to conjecture that this component is actually a
singular continuous one.

We give the proof in Sect. II. In the conclusive Sect. Ill we discuss somewhat the
relevance of this result, as well as some possibilities of future development.

II.

We study the quantum properties of the <5-kicked rotator, described by the
Hamiltonian:

where V(θ) is an analytical, real-valued, periodic function of 0, and we have
assumed h = 1 . We denote by C the unit circle.

Mapping over one period involves free rotation and a kick:

(1)

Σ '»*"".
From (1) we see that it suffices to consider values of τ within the interval [0, 1].

Let us consider first the "resonant" case - in which τ = p/q, p, q integers. To
ι//eJ2?2(Q, we associate the g-vector

o
0, — As shown in

ref. (2), in this case S allows for the integral decomposition

S= I dθSθ,
o

with Sθ a q x q unitary matrix: Sθ = WΘΓ. Wθ is a diagonal matrix,

and Γ is a circulant matrix independent of θ. We are not interested in further
specification of Γ. For more details, see ref. (2).

Sθ has eigenvalues depending on 0, and, as shown in [2], at least one of them is
not constant over Iq: this eigenvalue originates a continuous band in the spectrum
of 5.

We are interested in S having a purely continuous spectrum, i. e., no eigenvalues.
Eigenvalues of S occur when Sθ has constant eigenvalues over sets of positive
measure in Iq. Since Sθ is a matrix-valued analytic function of θ, its eigenvalues will
be analytic functions of θ - except for branch points at values where level crossing
occurs. Therefore, if an eigenvalue λ (ff) is constant over a set of positive measure, it
will be constant all over Iq.
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Then, consider the analytic, real-valued, periodic functions V(θ) in C, and let J*α

be the vector space of all such functions having an analytic continuation in the
strip Cα = {|Imz| < α}, continuous in Cα. J*α is a Banach space with the norm

||α=ma_x|ι//(z)|.
zεCL

Theorem 1. For any α > 0, the set ofVe&a such that S, in resonance, has a purely
continuous spectrum contains a set of the second Baire category in ̂ α. In this sense
weΊl say that generic analytic V have this property.

Proof. Suppose that λ is a constant, nondegenerate eigenvalue for a given τ = p / q ,
and letx = x(θ) be a corresponding eigenvector (q- vector). Then Sθx = λx,
whence, differentiating,

Sθx + SQx — λx, i.e. (λ — Sθ)x = Sθx = WθΓx = MθSθx = λMθx,

( 9 \
θ H -- I δmn . Therefore, we must have (Mθ x9x) = 0 for

all V e lq in particular,

= 0 (2)

The matrix 50 is fixed by the specification of the q numbers Vj=vl - ); therefore

( r\ Λ

— ) .

9 'In a neighbourhood of any point (Vj, Vj') corresponding to a matrix with no
degenerate eigenvalues, this function is actually a continuous one. Therefore, the set
of values (VJ9 V ) such that

(i) SQ has no degenerate eigenvalues,
(ii) Condition (2) is not satisfied by any eigenvector of SO ,
is open in C2q, being the intersection of the open sets defined by (i) and (ii)

separately; the set A^^ of Fe J*α such that (i) and (ii) are satisfied by (Vj , Vj) is
likewise open, because the map from J*α into C2q defined by V(θ) ~-» (VJ9 V ) is
continuous, as a consequence of Cauchy's formula. This set is dense, also. In fact,
given V e ̂ α , we can first remove any degeneracy from the corresponding 5̂  by an
arbitrarily small variation of V. (This we prove in the Appendix.) If the 50 thus
obtained satisfies (2) Jbr one of its eigenvectors, then we may change V(θ) into
V + ε sin qθ = V(θ) . V(θ) is arbitrarily close to V(θ) in ̂ α and its matrix S0 has the
same eigenvectors, but (2) is no longer satisfied.

Consider now the set XΛ= P) Xp ^q ; α . If V e Xa , then, for all p, q, S0 will have no
p,

degenerate eigenvalues, and no eigenvector of S0 will satisfy (2). Therefore, for any
τ = p/q, Sθ will have no constant eigenvalues. Thus, XΛ is contained in the set of
those V e J*α which have purely continuous spectra in resonance; on the other hand,
Xa is a countable intersection of dense open sets in ̂ α, i.e., it is a set of the second
Baire category in J*α.
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So, for rational τ and generic V(θ\ Sτ will have a purely continuous spectrum
(from now on, the index of S will specify the period). This entails that,
Vι//EL 2(C)[ 8i,

lim Λτ(N,ψ) = lim -*- £ \(S«ψ, ψ)\2 = 0.
N->00 N-+CG -tV jζ _ι

We shall restrict our attention to those ψ eL2(Q which give a finite expectation
value for the kinetic energy:

For£>0, we define σ^ = (ι//eL2(Q, l | y / | | = 1, K(ψ) ^ E] .

Now we set out to prove our main result. We begin with some lemmas.

Lemma 1. Let Sτ have purely continuous spectrum. Then &τ(N,ψ} -> 0 as 7V-> oo,
uniformly with respect to ψ e σE .

Proof. For a fixed τ the sequence fflτ(N,ψ) is equicontinuous in ψ e σE; indeed:

\@τ(N,ψ)-@τ(N,ψ')\^~ £ { |(5fv/,v/-v/ / )l + l(^-^fV/> /)l}^4||v/-v/ΊI
7V κ=ι

Moreover, σE is a compact set in L2(C).

Lemma 2. Let ψ be entire analytic, Fe J*α, F(ι//) = Σ^2ΊC«|2; (>>0). Γteπ 3C
, F(SNψ) ^ CN2r.

Proof. SNψ 6 ̂ α, V T V . Therefore, by the Cauchy theorem the Fourier coefficients
cn(N) of SNψ and Wn of e~^F satisfy:

ft (i\ϊ\ — ςiin pβ\n\ \r (ΛA I <^ on V /? p ΓO <vl I \V I ^ dp ~y \n\\2 o i i v I — δlΊJ--' tί I *-„ y^i y ^ i ^v. \-AJ , v jj ^: γ\j, IΛ j , I π I ~^ *̂
n

Moreover, ifc'n(N) are Fourier coefficients oΐTψ(N) [the "free" evolution ofψ(N)
over one period]

|c π (ΛΓ+l) | = ι

' ^

K K

^ const dqΛβ(N) e-(«/2)iΛL

(The const does not depend on n, N.)
Thus we may assume qoί/2(N+ 1) ̂  const^α/2(TV), and

for a suitable & > 0. This means that the pattern of the c'n s cannot "spread" in time
faster than linearly; it is then easy to conclude that F(SNψ) < const TV2 r.

Lemma 3. Let ψ be an entire function with \\ψ\\ = 1. Then

\ΛΊ(N9ψ) - 0τ,(N,ψ)\ ^ Iτ -

for a suitable β > 0 independent ofτ and τ'.
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Proof. Consider, first,

\(S?ψ - S»ψ,ψ)\ ^ \\(S?-S$φ\\ = QN.

Then,

Now, let φN = Sf~V :

1/2

By Lemma 2, the term within brackets grows no faster than const TV4. There-
fore, QN^ y\τ — τ'\N2 + β^-i f°r a suitable 7 > 0. Since g0 = 0, we get
β ^ l τ - τ ' l y T V 3 . Now,

|^7V,v/)-^V,y/)|^ £ β*^y|τ-τ'| £ K* ^ 2y\τ - τ ' | T V 3 .
K=l

Theorem 2. For generic V and for any given value ofE > 0 there is a nonempty set of
irrationals τ e (0, 1) such that σE is contained in the continuous subspace of Sτ.

Proof. Let V be generic in the sense of Theorem 1 . For integer q and for a given
ε > 0, define vE(q9 ε) as the smallest integer such that

ι// eσ£, τ=pq, q ̂  q, p < q, ^vEq,ε τ , ψ < ε.

That such vE(q,ε) exists is ensured by Lemma 1. By its very definition, vE(q,ε) is
non-decreasing for q -> oo and for ε -> 0. Then let σ(x), η (x) be real valued functions
of x > 0, such that

σ(x) > 0, η(x) > 0, and σ -> 0, η -» 0 for Λ: -> oo .

Define

As q -> oo , φ^(g) -> 0 by the definition of σ, 77, v .

Now consider the nonempty set Lψ c[0,l] of irrationals τ that can be
obtained as the limit of a sequence τn = pn/qn of rationals in such a way that
|f — τn\ < φE(qn} For any such τ, and for any entire ψ E σE,

thanks to Lemma 3. Now consider Nn — vE(qn,η(qn)). By the definition of v£,
7Vn -> oo for w -> oo . We have

Λτ4Nn9ψ) ύβ\τ-τn v\(qn9 η(qn)} + >/(?„) ^ ^σ(^Π) + ̂ (?B) -, 0 for n^ oo .

On the other hand, we know that lim £%τ(N,ψ) exists Vτ, \/ψ, its value being
0 TV -^oo
2π

J //({θ}) dμ(θ)9 where rf// is the spectral measure of Sτ relative to ψ .
o
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It follows that lim &-(N,ψ) = 0; therefore, μ({θ}) = 0 //-almost everywhere,
N-+OO

i.e., μ is a purely continuous measure. Therefore, all entire ψ eσE belong to the
continuous subspace of S-. By a density argument, the same holds for Vι// εσE.

III.

The result of Theorem 2 above is certainly far from complete. At least two points
need to be clarified:

1) How large is the set Lφε and how does its size depend on the energy E and on
the parameter μ? If the quantum regime associated with values τ<aL^E is to
correspond somehow to classical chaotic motion, then one expects the measure of
Lφε to increase with μ, tending eventually to 1. To answer this question one needs
more detailed information on the structure of the resonant spectra, in order to
estimate vE(q,ε), and then φE.

2) What is the nature of the continuous nonresonant spectrum? On account of
numerical results obtained for the standard rotator (F=cos0) we expect the
measure of the resonant spectrum to vanish in the limit q -» oo, in that case, and in
the generic case too. Then the nonresonant continuous spectrum would be singular-
continuous. We conjecture that quantum chaos in periodically perturbed quantum
systems is connected with the occurrence of this particular type of quasi-energy
spectra.

Both 1) and 2) are the object of current investigations. Nevertheless, an
objection of a more general nature might be raised against our result.

In this, as well as in other cases in which "generic" results are established, one
may be doubtful about the extent to which properties which are "generic" in a
technical sense are actually to be observed in a majority of cases.

However necessary, this remark affects but marginally the relevance of our
result. As a matter of fact, we now positively know that in some periodically
perturbed quantum systems, there is room for a type of behaviour that is neither
recurrent nor resonant, and strongly suspect that it is connected with the occurrence
of a singular continuous quasi-energy spectrum. We think that this fact gives some
firmer ground to investigations on the possibility of quantum chaotic behaviour.
Indeed, it raises some interesting questions: how is this type of quantum motion
related to classical chaos? Is it liable to experimental detection?

Certainly, we will not be hasty in dismissing it as a mathematical curiosity just
on account of its unusual mathematical nature: after all, classical chaos itself may
be elusive to an exceedingly square attitude.

Appendix

We prove here that the family of unitary matrices SQ = S0(VQ, Vv,..., Vq_ x) is generic
in the sense that any degeneracy can be removed from any S0 by an arbitrarily small
variation of the J^'s. The characteristic polynomial P(λ, F 0 , . . . , V q _ l ) of SQ has
multiple roots, if and only if the resultant G (F 0 , . . . , Vq_ A ) of P and P[ vanishes[9].
G is the determinant of a matrix whose elements are coefficients in P or in P(: hence,
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G is an entire function of V0,..., Vq _ 1. There is at least one choice of F 0 , . . . , Vq _ 1

- 2πj
such that 5Ό has no degenerate eigenvalues. This is V = , (/= 0 , . . . , q — 1).

(9 Λ
—- j . The circulant matrix Γ has eigenvectors Uj (j — 0, q — 1)

with components (Uj)n = ajn. Therefore, the matrix elements of S0 (V^) over the base
Uj are

/ C* \ C /Qt \ C

\ 0/ j' K j j + 1,^Γ \ Q/ q — 1,K q — 1 0,^Γ'

where V y are the eigenvalues of Γ. It is then easy to find that the eigenvalues of SQ are

the qth roots of Y[ v7 ; hence, they are distinct. Thus G(F 0 , . . . , Vq_l) ΦO.

Now let S0 have degenerate eigenvalues for Vj = Vj, so that G(F 0 , . . . , Vq-ι)

= 0. Find a Cg-valued analytic function t -» F 0 , . . . , F^, such that FJ (O) = F,-,
JΛ(1) = γ.. G(F0(ί),..., Vq-1 (0) will t>e an analytic function of t, not identically 0:
hence, t = 1 must be an isolated zero, so that G ( V 0 ( f ) , . . . , V q _ 1 ( t ) ) Φ 0 for t
arbitrarily near to 1.
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