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Abstract. The inverse scattering method approach is developed for calculation
of correlation functions in completely integrable quantum models with the R-
matrix of XXX-type. These models include the one-dimensional Bose-gas and
the Heisenberg XXX-model. The algebraic questions of the problem are
considered.

1. Introduction

The quantum inverse scattering method (QISM) [1] is extremely useful for analysis
of completely integrable systems. In this paper we formulate the problem of
calculation of correlation functions for these models in the frame of QISM. Our
approach is essentially different from the one based on the quantum Gelfand-
Levitan equation [2, 3]. We use results of papers [4, 5] where the generalized
integrable model was introduced. This model depends on an arbitrary functional
parameter. Concrete models such as one-dimensional Bose-gas and the Heisenberg
XXX-model can be obtained as special cases at particular values of this parameter.
The crucial point is a simple dependence of the generalized model on this functional
parameter. We call this generalized model the "one-site" model. By means of this
model the simple formula for norms of Bethe wave functions was proved.

In this paper we introduce the "two-site" generalized model which permits us to
give a natural formulation of a problem of calculation of correlation functions. This
approach can be applied to any model with the ^-matrix of XXX or XXZ models.
Here we restrict ourselves to the XXX-case only.

We deal in this paper with algebraic aspects of the problem, but to clarify the
statement of the problem turn now to the one-dimensional Bose-gas with repulsion
which is described by the quantum nonlinear Schrodinger equation (so we call this
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model the NS-model). The Hamiltonian of this model is equal to

L L

f+ιl/. (1.1)

Here c> 0 is a coupling constant, h > 0—a chemical potential, L—a length of a
box, \j/(x)—a canonical Bose-field: [ψ(x),ψ +(y)] = δ(x — y), [ψ(x),Ψ(y)] =
[ψ+(x\ψ+(y)] =0. The "bare" vacuum |0> is defined by ψ(x)\0} =0,
<0|0> = 1. Eigenstates of H were constructed in [6-8] by means of the coordinate
Bethe's Ansatz:

\ΨN(λ1..ΛN))=-±=$dNzχN(z1...zN\λ1...λN)ψ+(zί)...ψ+(zN)\O>,
V ™ ' 0

(1.2)

where eigenfunction χ is
-1/2

Σ ( " 1)[P] Π (λPjPk - ice (zj - z,))exp| i £ znλPn \. (1.3)
n=l

Here λjk = λj — λk the sum is taken over all the permutations P of 1, 2,... JV; [P]
denotes a parity of P. All the momenta λj are real, different [9] and satisfy the system
of "transcendental" equations (s.t.e.) which expresses the periodicity of wave
functions:

N

Qxp{ίλjL} = Yl [(λjk + ic)/(λjk — ic)~\ j = 1,...,JV. π 4)
fe=l V

This system can also be rewritten in the form φ. = 0(mod2π), where

N

ψj = λjL+ ^ Φ(λjk). (1.5)
/ c = l

Here Φ(λ) = i\n\χλ + ic)/(λ — ic)~] is a scattering phase of bare particles. The
N

eigenvalue ofif forwavefunction (1.3) is ]Γ (λj — h). The norm of the wave function

is equal to [4, 10]
L

<ΨN(λ1...λN)\ΨN(λ1...λN)}=μNz\χN\2=detN(φ'). (1.6)
0

Here the N x ΛΓ-matrix φ' is defined as φ'jk = dψjjdλk.
Consider the current operator J(x) = ΐj/ +(x)ιl/(x). We want to study the N-

particle mean value <ΨNy(x1)f(x2)\ΨN}> which is a real positive function of \x1

— x2\. For IΨN) = \Ω} it is a correlation function. The physical vacuum |Ω> is the
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state with the minimal energy; its construction in the thermodynamical limit (N
-• oo L -• oo N/L = Const) see, for example, in [9]. The operator of number of

X2

particles for the interval [xί ,x2] (L ̂  x2 > x1 ^ 0) is defined as QX2Xι = j /(z) dz. It

is easy to see that

i d2

Due to the translation in variance, one can put xι = 0:

r

N\Ql\ΨN), (1.8)
2dx

where

^ ' ^ > 0 0 9)

So the calculation of (ΨN\s{$j($!)\ΨNy is reduced to the calculation of
< ΨN IQ11 ^ N > I n t e r m s o f Bethe's wave functions (1.3), < ΨN \ Q J| ΨN > is expressed as

0 0

+ < PN |Q 1 |-fN>. (1.10)

Here the mean value of operator Qj is equal to

xN xN
(ΨvmΨn) = <ΨN\ΨN)Ύ = γdetN(φr (1.11)

The mean value <¥ /

Λ,|Qί|¥ /

Λ r> for small N is also easy to calculate: < ΪΌIQi l^o)

Here we denote y = L — x. One can see that < Ψ21Q \ \ Ψ2 > depends on the distance in
two essentially different ways: in a polynomial way and in an exponential one. The
"exponential" part we call the irreducible part I2(I0 = / 1 =0) :

I2=-Γ(- 7k-e-ixλl2) + τr(z Γ ) ( l - * - * * » ) . (1.13)
λ\2 \A12 - ϊc/ Ai2 \λ 2 1 - ic

The notion of irreducible part will be extremely useful. Let us give the
corresponding definition for arbitrary N. Below we'll show that (ΨN\Q2\ΨN} can
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be uniquely represented in the form

N N - l

(ψN\Ql\ψN)= Σ Σ C * V (i i4)
n = O m = O

Coefficients J^n here are rational functions of λi and of exp {ixλj}(j = 1,... ,N). The
ΛΓ-particle irreducible part IN is defined as follows:

IN = A N l (1.15)

The irreducible part depends on x through exp { ± ixλj} only, and this dependence

can be separated in the following form

I N = Σ e-'ψϊ-W^Mλ+Uλ-Uλ0}). (1.16)

The sum here is taken over all the partitions of the set {λj}, j =l,...,N into three
disjoint subsets {λ + },{λ~},{λ0}, the number of elements in the subsets being card
{λ + } = card {λ~} = n; card {λ0} = N- 2n(n ̂  [N/2]). The coefficients ^n

N are
rational functions of momenta λj and do not depend on x. They will be called the
Fourier coefficients of irreducible part IN. We shall see that all the coefficients J^n in
(1.14) can be expressed in terms of irreducible parts Ik, 2 ̂  k ̂  N. That is the reason
why irreducible parts are important.

In this paper we prove also the following properties of irreducible parts. IN is a
symmetric function of all the λ}(j = 1,..., JV). It is real and bounded when λ. are real.
It is a function of the coupling constant c and is small at c -• 0 or c -» oo :

IN~cN~2 at c-+0; IN~c2~N at c-+oo(N^2). (1.17)

If x = 0, then IN = 0. Fourier coefficients have similar properties:

sΐk

N~cN-2 Sit c->0; jtfk

N~c2~N at c ^ o o , (1.18)

and if all the λj are real,

The Fourier coefficients are symmetric functions in all λΐ,λj and λj (separately).
By means of (1.10), (1.14), (1.15) it is easy to calculate IN for small N (see, for

example, 73 in (8.13), (8.14)), but it is impossible to study the general properties of IN.
To prove all the properties of IN presented here we introduce the two-site
generalized model in Sect. 2. The important formulae concerning "scalar products"
in the generalized model are given in Sect. 3. Matrix elements of operators exp {αQx}
and Q x are studied in Sects. 4-6. The definition of irreducible parts and method of
their calculation in terms of these quantities are given in Sect. 7. Main results
concerning the mean value (ΨN\Ql\ΨN} are given in Sect. 8.

The properties of irreducible parts established here will be used by one of us
(V.E.K.) in the next publication [11] for calculation of the correlation function of
currents in the NS-model. The answer appears to be a series, the nth term of the series
being generated by irreducible part /„.
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2. QISM and the Two-site Generalized Model

Here we introduce the two-site generalized model, the NS-model (as well as other
models with the same jR-matrix) being the particular case of it. Properties of
correlation functions are easy to investigate in the frame of this model.

The main object in QISM (see, for example, [1]) is the monodromy matrix T(λ)
of the auxiliary linear problem. In our case it is a 2 x 2 matrix depending on complex
spectral parameter λ:

R(λ,μ) =

(); B(λ)\
T(λ) = ( I (2.1)

\C(λ); D(λ)J K

The matrix elements of T(X) do not commute—they are "quantum operators."
Their commutation relations are given by

R(λ,μ)T(λ) ® T(μ) = T(μ) ® T(λ)R(λ,μ), (2.2)

where R(λ,μ) is the XXX-model ft-matrix:

(f(μ,λ) 0 0 0

0 g(μ,λ) 1 0

0 1 g(μ,λ) 0

\ 0 0 0 f(λ,μ)l
λ — μ + ic ic

f(λ,μ) = — g(λ,μ) = • (2.4)
λ — μ λ — μ

Let us introduce the two-site generalized model. It is a model with a monodromy
matrix T(λ) which is a matrix product of two monodromy matrices

= T2(λ)Ti{λ); (2.5)

(2.3)

Ti(λ) = ( ιK) ) , i = 1,2. (2.6)

Vc,α); Dμ)J
The matrix T^λ) can be associated with the first site and T2(λ) with the second site of
a lattice with two sites. Matrix elements of T (A) are quantum operators which
commute at different sites of the lattice. Operators at the same site commute
according to the rule (2.2). The monodromy matrix T£(A)(i =1,2) has the vacuum
|0> ί—the state in quantum space with the following properties:

(2.7)

The state |0> = | 0 > 2 <g> | 0 > 1 is the vacuum for T(λ) (2.5):

CU)|0> = 0; A(λ)\0) = a(λ)\θy ; D(λ)\0) = d(λ)\0),

where

a(λ) = a λ{λ)a2(λ) d(λ) = dx(λ) d2(λ). (2.8)
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Here at(X), d^λ) are c-number functions which are defined by the choice of concrete
models. The crucial point is that there exist monodromy matrices T (Λ) for arbitrary
functions α.(Λ), dt(X) [5]. It should be noted that in the XXX-case all such
monodromy matrices can be generated by the L -operator of the lattice nonlinear
Schrόdinger model [12, 13]. It is convenient to use the following notations:

t{λ) = a^λyd^λ) m(λ) = a2(λ)/d2(λ)

(2.9)

r(λ) = a(λ)/d(λ) = S(λ)m(λ).

Different functions /(A) and m(λ) correspond to essentially different models.
Function £(X) will be the main free functional parameter in the two-site model. It
occurs that the dependence of correlation functions on {($) is rather simple and can
be explicitly evaluated.

The trace of the monodromy matrix τ(λ) = A(λ) + D(λ) generates the Hamil-
tonians of completely integrable systems. Eigenfunctions of τ(2) are of the form

\ψN(λ1...λN))=γ\B(λj)\θy, (2.10)
J = l

where

B(λ) = B(λ)/d(λ). (2.11)

Here all the λ} are different [14] and satisfy the system of transcendental equations
(s.t.e.)

=l; 7 = 1 , . . . , N . (2.12)

Here fjk = f(λj9λk) and r} = r(λ). The s.t.e. may be put into the form φ. = 0(mod2π),
where

j) (2-13)
k= 1

kf j

The corresponding eigenvalue of τ(λ) is

τ(λ)\φN(λ1...λN)} = tN(λ-,λ1 ..λN)\φN(λ1...λN)>; (2.14)

tN = a(λ) Π f(lλj) + d{λ) ft f(λj9λ).

The dual vacuum <0| = 2<0|(g) 1<0| satisfies relations (0\B(λ) = 0; (0\A(λ)

= α(A)<0|; (0\D(λ) = d(λK0\. We put also ί<0|0>£ = <0|0> = 1. The dual state

(2.15)

is an eigenstate of τ(Λ), (ψN\τ(λ) = tN(ψN\, with the same eigenvalue (2.14) if the s.t.e.
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(2.12) is valid. The "norm" is equal to [4]:

<φN(λ1.. Λ M * α i . Λ)> = H Π /* W ( P O , (2.16)

W* /
where the Λf x N-matrix φ' is defined as φjΛ = dψj/dλk. Notice that eigenfunctions
corresponding to different sets of λ. are orthogonal due to different eigenvalues
(2.14).

The operators of number of particles will play an important role. Operator Qt of
number of particles at the ιth site of the lattice (i = 1, 2) is defined as follows:

y; Q, |0> = 0. (2.17)

A quantum commutator is at the left-hand side here and a matrix commutator of
Tt(λ) with the Pauli matrix σ3 is at the right-hand side. Operator Q of complete
number of particles is Q = Q x + Q 2 . Eigenvectors of operator Q. are

Qi Π Biαfc)io> = nπ Bία*)io> c = 1,2); (2.18)
fc=l fc=l

<0| Π CMt)Q, = «<0| Π C A ) 0" = i'2)-
fc= 1 fc = l

Notice that λj here are arbitrary and are not supposed to satisfy s.t.e. (2.12). The
definition of arbitrary function of operator Q. is quite obvious. Operator Qj is of
special interest for us. It is however more convenient to consider a generating
function exp{αQt}. As it is shown in Appendix A its matrix elements can be
represented in the form:

Σ

II II

Here the sum is taken over all the partitions of the set {λf j = 1,... ,N} into two
disjoint subsets {/if} and {/if/}, and over similar partitions of the set {λc}. These
partitions are independent except that card {λf} = card {λ^} = ^ card{Af7} =

^jj} = n 2 = N — nί. Product Y[ denotes the product over all the /le{/lj},

and thus contains n1 factors. Product Y[ denotes double product over all λe{λj} and
1,11

over all λe{λπ} and contains n{a2 factors. Notice that values of λc,λB in (2.19) are
quite arbitrary. This equation is a basic one for investigation in the two-site model
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the mean value

<^iQii^> = <^αi -^)iQii^αi Λ)>' ( 2 2°)

in terms of which correlation functions can be expressed (as it will be seen later).
Let us discuss the connection of the two-site model with the NS-model. The NS-

model was imbedded in QISM in papers [1,15,16]. The monodromy matrix TNS(λ)
of this model is constructed in a standard way by means of local L-operators.
Vacuum eigenvalues of Λ(λ) and D(λ) are

= exp { - iλL/2} dNS(λ) = exp {iλL/2}

(2.21)

The Hamiltonian (1.1) can be expressed in terms of τ(λ) by means of trace identities
[17]. Equation (2.5) has the following meaning in the NS-model: TX(X) is the
monodromy matrix of the NS-model for the interval [0, x]9 T2(λ) is the monodromy
matrix for the interval [x, L]. So we have the correspondence:

^ N S O = exp { - iλx] mNS(λ) = exp {iλ(x - L)}. (2.22)

Operator Qί introduced in the two-site model by Eq. (2.17) turns into operator Q1

(1.9). So the calculation of the mean value (1.7) in the NS-model which is necessary to
calculate the correlation function is reduced to the calculation of the mean value
(2.20) in the generalized model. This reduction is very useful due to the arbitrary
functional parameter i(J) (2.9) existing in the generalized model.

Below we'll study the mean value (2.20) in the two-site model. By means of Eq.
(2.19) this object is expressed in terms of "scalar products" < 01 \\ C(λ) f\ E(λ) 10 >. The
next section is devoted to the description of properties of these scalar products.

3. Scalar Products

We call "scalar product" a quantity

7 = 1 k=l

which is a symmetric function of all λ? and a symmetric function of all λB. Here all
2N momenta λc\λB are different and arbitrary (the s.t.e. (2.12) is not in general
supposed to be fulfilled). Note that the number of operators B in (3.1) is equal to the
number of operators C; otherwise the scalar product is equal to zero. Scalar
products can be calculated by means of thq commutation relations (2.2). For
instance, <0|C(λc)B(λB)|0> = g<λc,λB)[r(λc)-r(λF)]. For N arbitrary the depen-
dence of scalar products on vacuum eigenvalues r(λ) can be explicitly extracted [4] :

(3.2)

The sum here is taken over all the partitions of the set {λc}Nu{λB}N into two
disjoint subsets {λipr)}N and {λiab)}N (subindex N in {λ}N means the number of
elements in this set). Coefficients KN do not depend on r(λ) being rational functions
of IN variables λB, λc decreasing in each λ as \/λ at λ-> oo and other λ's fixed.

N

<oιΠc(>
7 = 1

N

Φ Π Wi
k= 1

ϊ)|o> = Σ (
part

/ Nπ
W = i
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Return now to the scalar product (3.2). It depends on values of an arbitrary
function r(λ) at 2N points λj,λB. Due to the arbitrariness of function r(λ) the values
r(λB'c) can be considered as 2N independent complex variables:

ή^r(λ^); rB

k=r(λ*) (j,k = l,...9N). (3.3)

So scalar product (3.2) is a function of 4 AT independent variables: {λc}N, {λB}N, {rc}N,
ίrB\
V JJV

Properties of scalar products can be restored from paper [4]. The most
important property is that scalar product (3.2) has a simple pole when λc.-^>
λB(j,k=\,...,N), the residue being also some scalar product. For example, at
λχ^>λB->λN one has (the general case is obvious due to the symmetry):

j = l k = 1

) j Π ' ' ; (3.4)
j=ί / j=ί fc=l

The scalar product at the right hand side must be calculated with the modified
vacuum values ά(λ) = a(λ)f(λ,λN); cl(λ) = d(λ)f(λN,λ). Due to this modification one
has:

<0| Π Cα7

c) Π B(if)|0>m o d

j=ί k=ί

f π 1 ^ ^ ) ^-i(part); c a r d U ^ ^ = N - 1, (3.5)
part \ j= 1 /

where

r(λ) = r(λ)tf(λ,λN)/f(λN,λ)l (3.6)

It is essential that coefficients KN_ x are not modified: they are just the same as in Eq.
(3.2) at N -> N — 1. Notice that modified scalar product in Eq. (3.4) does not contain
rB>c, and λN is included in f(λ) (see (3.5), (3.6)).

In physical cases variables r are the values of smooth function r(λ) at different
points (see Eq. (3.3)). In this special case the residue in Eq. (3.4) becomes zero; the
corresponding limit is finite. At λχ->λB^>λN the dependence of the scalar product
on the vacuum eigenvalue at point λN is represented naturally in terms of two
variables: rN = r(λN) and zN = id[lnr(λ)ydλ\λ=λ^ The dependence on zN is linear, the
coefficient at zN being essentially the residue in Eq. (3.4):

δ <
dzn \ j = 1

(3.7)
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Let us consider now the scalar product at the limit λ*j -> λB -> λj(j = 1,..., N) all
the Ay are different. In this case the scalar product depends on 3N complex variables
WN, {Z}N, {r}N. Here

j λj. (3.8)

Equation (3.7) is valid also in this case; in the scalar product at the right-hand side
not only r(λ) is modified according to (3.6) but also zj according to the rule:

X,r2; j = U . . . , N - l . (3.9)
+ C

Discuss now the case where only the part of {λc} coincides with the part of {λB}.
Then the scalar product (3.1) depends on r. and z. of coinciding λ's and on rfc of
remaining λ's. Equation (3.7) is also valid in this case.

Finally consider the situation when λ*j = λB = λ (j' = 1,... ,ΛΓ), all λj are different
and satisfy s.t.e. (2.12). In this case r. are expressed by s.t.e. as explicit rational
functions of λ9s, the scalar product depends only on {λ}N and {z}N and is called the
"norm" of the wave function (the explicit expression is given in (2.16)). Equation (3.7)
remains valid. It should be noted that in this case the scalar product at the right-
hand side of (3.7) can be also considered as the norm corresponding to the modified
s.t.e.

= 1 ; rj = rj(fjN/fN); j = 1,.. .,iV - 1,

which is valid due to (2.12).

4. Properties of Operator e x p l α Q J in the Generalized Model

In the previous section we considered properties of scalar products which are valid
also in the two-site model. This model, however, permits us to consider operators Q.
(2.17). Properties of their matrix elements are investigated in the same way as
properties of scalar products. Consider the matrix element <0|f|C(/ίc) x
e x p ί α Q j f j B ^ I O ) with all λB and λc arbitrary. Equation (2.19) shows that this
matrix element depends on 6iV complex variables: on 2N momenta λ^,λB and on 4Λf
variables £c.,ίB,mc.,mB (2.9), being a rational function of all these variables. So we
denote:

k=i

Due to commutation relations (2.2): [C(/L),C(μ)] = [B(A),B(μ)] = 0 . Hence
M% is a symmetric function with respect to replacement of triples (λ^/(j,m^)<^
(λ%, /£, m() and with respect to (Af, /f, mf)^(λB, <fB, mB). The main property of M"N

is that it has first-order poles at λc. -> λB, the residue being expressed in terms of
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M% _ 1. One has for (4.1) if λfi -> λ$ -• λN (other possibilities are easily restored from
the symmetry):

Here fc

Nf =/(λ^λ^ and

i y = <CAfC£lfCriT> > ™Cϊ'B = ™CAfC/lfC

N ϊ)- (4-3)
(Compare with (3.5), (3.6)). Equation (4.2) can be obtained by substitution of Eq. (3.4)
into Eq. (2.19). Notice that M%_1 here are modified according to the rule (4.3)
(compare with (3.6).) It is essential that M"N_1 does not depend on £N,mN. The
variable λN enters only into the modified ?. and nij in M ^ . i

Formula (4.2) is a basic one for the investigation of the matrix element IVO. It can
be considered in two different ways depending on the smoothness of functions <

(1) In physical cases variables £. and m are the values of smooth functions
and m(λ):

η f (44)
(for the NS-model /(A) = exp{ - ixλ] m(λ) = exp{i(x-L)λ}). In this case the
residue in (4.2) becomes zero the corresponding limit is finite. At λ^ -• λ% -> λN the
dependence of the scalar product on vacuum eigenvalues at point λN is represented
in terms of four variables:

a n d

x N = i d l \ n έ ( λ ) y d λ \ λ = λ N y N = i d [ N

The dependence on xN and yN is linear, the coefficients at xN and yN being essentially

the residue in Eq. (4.2):
/N-ί

fC 4
NjJ ] fc

NJf*

(4.6)

The modification here is to be done using the same rule (4.3).

Let us consider now the matrix element at the limit λ<j-*λf->λj(j=l,...,N),
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the λj being different. In this case MN depends on 5N complex variables (compare
with (3.8)):

where

xk = id[ln£(λ)]/dλ\λ = λk yk = id[lnm(λ)']/dλ\λ=: λk. (4.8)

Notice that for the NS-model Xj = x; y^L—x. The linearity in each χ.,y. is
preserved and Eqs. (4.5), (4.6) are valid also for MN (4.7):

Λ Γ - l \

1_1 fNjJNjJ

N-l

Here fNj = f(λN,λj); the modification of ( and m is done according to (4.3) and

XJ-XJ + KJ,,; yj = yj + KjN (j=l,...,N-\) (4.11)

with KJN defined in (3.9).
Consider now the case where not only λf = λj = λj(J = 1,... ,N) but also s.t.e.

(2.12) for λj is valid. The matrix element in this case is the mean value with respect to
eigenfunctions ψN (2.10), (2.15):

}ί}N). (4.12)

Here we have written down explicitly all 4N independent variables. The matter is

that variables m 3 in this case can be expressed in terms of remaining variables due to

s.t.e. (2.12):

/*)• ( 4 1 3 )

Equations (4.9), (4.10) are rewritten in the form:

/N-l

fNjfjN

(4.14)

W ^ ^ ^ i ) (4.15)

Modification here is made according to rules (4.3), (4.11). Formulae (4.14), (4.15) are

very important because they give an opportunity to restore all the coefficients Jmn in
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Eq. (1.14) in terms of irreducible parts (1.15). This restoration is done in [11].
(2) Return now to Eqs. (4.1), (4.2) and consider another situation. Suppose that

{λc} as well as {λB} satisfy s.t.e. (2.12) but these sets do not coincide. In this case "bra"
and "ket" in (4.1) are different eigenfunctions (2.10), (2.15). The corresponding matrix
element we call "form factor":

B}). (4.16)

The variables mfc presented in (4.1) are here expressed by means of the s.t.e. It is easy
to obtain from formula (4.2) that:

(4.Π)

The modification of/ here is defined in (4.3). These properties are used in the
next Section to obtain a representation for F^ which permits to study
irreducible parts.

5. Representation of the Form Factor of Operator expfαQj}

Here we consider form factor F^ (4.16). Our aim is to obtain a representation
for it which is similar to the one for scalar products given in [4].

Discuss at first the dependence of F^ on variables tf^iB. It is more
convenient here to use notations (4.4) denoting ^(λJtB) = ίcfB (due to the
arbitrariness of function *f(λ), its values t(λc.iB) can be considered as
independent variables). The dependence of F on these variables can be
explicitly separated as follows:

(5.1)
»art \ pr / \ pr /

Here the sum is taken over all the partitions of set {λc}N into two disjoint subsets
[λc

pr}n and {λc

ah}N_n and over partitions of set {λB}N into two disjoint subsets {λB

r}n

and {λab}N-n. These partitions are independent except that card{>l^}π = card{Ap,}n

= n; card{λ(;b}N_n = c2irά{λB

b}N_n = N-n. Product Π ^ p r ) denotes the product
pr

of nfactors ί(λ^);λ^e{λc

pr}n. Product Π Γ\λB

p^) denotes the product on n factors

£~1(λB)\λBe{λB

pr}n. So form factor F*N is a linear function of each {{λ^) and a linear
function of each / ~ ί(λf). Coefficient RN(part) does not depend on ^ and is a rational
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function of all A's:

Prίn ' X^abiN-n

p r J n 5 l Λ α b J N

The proof of (5.1) is straightforward but rather tiresome. It is given in Appendix B.
Our next step is to study the properties of coefficients UN. It is proved in

Appendix B that they are represented in the following "factorized" form:

λabίN-n/

} j π Π ^ ^ U π Π & O [ (5.3)
pr ab ) {_ pr ab

Product Y\Y\ denotes the independent products over all λe{λpt) and all λe{λab}\
pr ab

this product contains n(N — n) factors. Rational functions σa

n{n = 0,1,2,...) are
uniquely defined by the following five properties:

(1) σa

n is a rational function of 2n momenta:

n,{λB}n). (5.4)

(2) It is a symmetrical function of λ^fj = 1,... ,ή) and a symmetrical function of
λB

k(k=l,...,n).
(3) For n ̂  1 it decreases as l/λ1- at λB -> oo and all other /ίβ and Ac fixed. It also

decreases as l/λ? at Â  -^ oo and all other /lc and Aβ fixed.
(4) The only singularities of functions σa

n are first-order poles at λ?^>λf(j,k
= 1,...,n). The residue at the pole is expressed in terms of σ*n _ x as λc

n -> Λ* -^ ̂ n one
has

Here as usual / ^ ' β = /(λ? B - λn). There are no λ^B ^tσa

n_1 at the right-hand side
here. The residues of σ*n at λCj -> /ί̂  for othery, /c can be easily restored from (5.5) due to
symmetry property (2).

Notice that due to properties (l)-(4) function σa

n can be represented in the form

ΠIWΦ
j=lk=l

Here π* is a polynomial in each of λ; the degree of the polynomial in given λ being
n — 1 at all the other A fixed.

(5) By definition σ% = 1.
Functions σ£ thus defined exist and are defined uniquely. It is proved in

Appendix B. These functions can be calculated by recursion using these properties;
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the first function, for example, is σ°[(λc λ8) = g(λc,λB)\βxp(a£) — 1]. The following
property will be of further importance

σ«n{{λB}n,{λC}n) = zM™}σ-Λ{λc}n,{λB}n\ (5.7)

Formulae (5.1)—(5.3) give the representation for form factor Fa

N which appears to be
very useful in investigating properties of irreducible parts.

6. Form Factor of Operator Q1

Our aim is to investigate the irreducible part of the mean value of operator Q^. To
do this one has to study the form factor Fr

N of operator Q x :

^ ^ (6 0
Here φN are eigenfunctions (2.10), (2.15). Form factor F'N is easily expressed in terms

of F*N (4.16):

F'N = dF*N/dx\a = 0. (6.2)

The orthogonality of eigenfunctions for different sets of λ leads to the property:
F ^ | a = 0 = δN0. Considering representation (5.1)—(5.3) one concludes:

< α = o = *„<>• (6-3)
Differentiating representation(5.l)-(5.3) with respect to α at α = 0, one then obtains:

F'N = { Π ' U P Π < ~ Klj) - l }σ'N({λc}N,{λB}Nl (6.4)

where

^({λc}NλλB}N) = dσU{λc}N,{λB}N)/d*\a = 0 (6.5)

(see (5.3)). Here we use the property σf

N{{λc}, {λB}) = - σ'N({λB}, {λc}) which follows
from (5.7).

Properties of functions σ'n is restored from properties of functions σa

n discussed in
the previous section:

(1) σ'n is a rational function of 2n variables {λc}n,{λB}n.
(2) It is a symmetrical function of λ*j and of λB (separately).
(3) It decreases as l/λ in given λ when all the other Xs are fixed.
(4) The only singularities of functions σ'n are first-order poles at λ*j ->λB(j,k

(6.6)
1

(5) For small n one has: σ'0=0; σ[(λc λ1) = g(λcU*);

These properties define σ'n uniquely and can be used as a practical tool for
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calculation of σ'n\σ'2 was calculated in this way. The asymptotics in the coupling
constant at λ fixed are especially easy to obtain. At c -> oo one has

N N \N-ί

(6.8)

at c->0

^({^}«,{^}»)Uo

Σ*!-Σ lήΣ Π flί^,^fl(Aίiitl,Λgi)~c«'-1. (6.9)
j=l J = l JP,Qn=ί

Here the sum is over two independent permutations P and Q of π numbers.

7. Irreducible Parts in the Generalized Model

Consider the "normalized" mean value of operator exp{αQj with respect to the
eigenfunction (see (4.12)):

\jψk

Let us write down explicitly the independent variables

<exp{αQ1}>JV = <exp{αQ1}>JV(μ} iV,{x}JV,{y}JV,KU (7.2)

The value of (7.2) at x. = yj = Q we call the irreducible part ΓN of < e x p { α Q j } N :

"Normalized" mean values of operators Qf(m = 0,1,2,...) are defined in terms of
generating mean value (7.1) as

<Q7>N = 3m<exp{αQ1}>N/3α"I|β = o. ( 7 4 )

The irreducible part of (Q™}N is generated by 1% (7.3):

I^^dmiydam\a = 0. (7.5)

The mean value < 1 > N of the unit opera tor is already calculated (2.16): < 1 > N

= det i V (φ') . The corresponding irreducible part I^] is equal to

W = δm. (7-6)

Irreducible parts I{™\m ̂  1) are rather difficult to calculate starting directly from
their definition. So we give a method of calculation in terms of form factor (4.16),
(6.1):
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jψk

x lim F*N({λ<j = λj}N9{λf = λj + ε}N9{η = t^tf? = ίj}N}. (7.7)

This formula explains why we studied in detail the form factor in previous sections
and is proved in Appendix C. Equation (7.7) is applied below to investigate and
calculate irreducible parts. For example it is quite obvious from (6.4) and (7.7) that

jα> = o (N = 0,l,2,...) (7.8)

Of most interest for us is the irreducible part Iff which is much more
complicated. Further we denote it simply /jv

2) = IN, suppressing the superscript. It is
obvious that for the NS-model definitions (7.3), (7.5) for m = 2 lead to (1.15). The
irreducible part INoϊ^Qf}N does not vanish for N ^ 2. To investigate it let us study
the form factor of operator Q \:

= d2F°N/δu% = 0. (7.9)

Using representation (5.1)—(5.3) for F% and Eq. (6.3), one obtains:

part

pr ab ) (. pr ab

(7.10)

The sum here is taken as is explained after (5.1) but we have written down explicitly
the two terms corresponding to partition {λc

pr} = 0 ; {λB

pr} = 0 and to partition
{λc

pr} = {λc}N;{λB

pr} = {λB}N. We denote card{λc

pr}n = card{λB

pr}n = n and σ ^

d2σ«N/dα% = 0.

Now we can investigate the irreducible part IN using Eq. (7.7). One can see that IN

can be represented in the form:

Σ

The sum here is taken over all the partitions of the set {λ}N into three disjoint
subsets: card{/[+}„ = card{/ί_}π = n; card{λo}N_2n = N-2n; 0^n^[ iV/2] . Co-
efficients <stfn

N are the Fourier coefficients of the irreducible part IN (compare (1.16)).
They do not depend on £. but only on λj being a rational functions of λ. Fourier
coefficients depend on the .R-matrix only and do not depend on the concrete model.
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All the dependence on concerete models enters through vacuum values tf(λ) and is
written in (7.11) explicitly.

Turning now to Eq. (7.7) one sees that the first two terms in (7.10) contribute only
to the term with n = 0 in the sum in (7.11). This term with n = 0 can be expressed as a
linear function of other terms with n ^ 1. Indeed, it is shown in Appendix D that

Λ^J = 1}N) = 0 Hence one can rewrite (7.11) as follows:

x ^n

N({λ + }n,{λ_}n,{λ0}N_2n\ (7.12)

where the sum does not contain coefficient s/^. Coefficients srfn

N(n ^ 1) are expressed
through functions σ'k only. So we do not need functions σ'k' to calculate IN. The
functions σ'n defined in the previous section can be calculated rather simply by
recurrence. Formulae (7.7) and (7.10) then permit us to calculate the irreducible part
IN. Irreducible parts IO = IX= 0. Irreducible parts I2 and I3 are given in the next
section. The computation of IN(N Ξ> 4) also is quite straightforward. We could not
obtain the simple formula for general IN. However one can easily establish the
behavior of IN in coupling constant c for c -» oo and c -> 0, using formulae (6.8), (6.9),
(7.7), (7.10). One obtains

IN~c2~N at c-+oo ( N ^ 2 ) , (7.13)

IN~cN~2 at c->0 (N^2). (7.14)

This remarkable behavior means that IN is small in coupling constant in the weak as
well as the strong coupling limit. This is one of the main results of the paper which
permits us to construct an effective perturbation theory for correlation functions
[11].

Our results are summarized in the next section.

8. Main Properties of the Mean Value of Operator Qj

We begin with the mean value of the identity operator with respect to eigenfunctions
(2.10) (see (2.16)):

= c-»( Π a(λ)d{λ) Π / „ ) ' <0| ft C(λj) Π B(λk)\0}

= detjV(φ'). (8.1)

Here ^ 0 = 1,-.. ,iV) satisfy s.t.e. (2.12). The irreducible part of the identity operator
I°N = δN0 (see (7.5), (7.6)).

We now remind the reader of the main properties of the mean value < Qj >w with
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respect to eigenfunctions:

-N(c-N( Π ^ ^ ) Π / * ) <0| Π C φ Q i Π B(λύ\0>. (8.2)

It depends on 4N variables: <Qi> N = (Qi}N(WNΛX}NΛ^}N a n d possesses the
following properties as a function of these variables:

(1) It is invariant under replacement

(2) It is a linear function of xN and of yN.
(3) The coefficient at yN is equal to

and the coefficient at % is equal to

where XjiV and ?} are defined in (3.9) and (4.3) as (8.4)

KjN =

Here we use the notation < Q 1 + l > N = <Q1>Λ Γ + <l>Λ r . It should be noted that
variables xN,yN/N are absent at the right-hand side of (8.3), (8.4) and λN enters only
in KjN and in factors fjN and fNj modifying i to /. These three properties can be
easily obtained from (4.12)—(4.15).

(4) The mean value <Qj }N is equal to zero at x. = y. = 0(j= 1,... ,N) and λk/k

fixed: (Q1 >N({λ}N,{0}N,{0}N9{S}N) = 0;N = 0,1,2,.... This means that the irreduc-

ible part of <Qi }N is equal to zero (see (7.8)):

/α) = 0 (N = 0,1,2,...). (8.5)

(5) It can be easily seen that in the one-particle sector (Qί}1=xι.
Now let us turn to the mean value of operator Q 2 :

jfk

v ( Π a(λ)d(λ) Π /«) ' <0| Π C ( ^ )QΪ Π W1°>. (8.6)
\j=l kψg / j=l ft=l
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which depends on the same 4N variables

<Ql>N = <Q?>w({A}w,{χ}N,MJ¥,KU (8.7)

Its properties are as follows.
(1) It is invariant under replacement of

(2) It is a linear function of xN and yN.
(3) The coefficients at yN and xN are

(8.8)

iλ (8.9)

with the same KjN and ?. as in (8.3), (8.4). Here we put <(QX + l ) 2 ) ^ = < Q 2 } N

+ 2< Q1 }N + < 1 }N. On the right-hand side of (8.8), (8.9) xN,yN,ίN are absent and ΛN

enters only in KjN and fjN,fNj modifying £.(j = 1,... ,N — 1) to ?p These properties
(l)-(3) can be easily obtained from (4.12)—(4.15).

(4) The mean value at x. = yj = ΰ is equal to the irreducible part IN = Iψ (see
(7.5)):

^ y (8.10)

which was studied in Sect. 7.
(5) In the one-particle sector {Ql)ί = x 1 .
Remember now properties of the irreducible part IN. It was shown in Sect. 7 that

it can be represented in the form (7.11), (7.12). The function IN is symmetric under
replacement of pairs (λk/k)-+(λj/). If /*(/l*) = ί~ \λ) (as for the NS-model), then
IN is real at λj real (j = 1,...,JV). In Sect. 7 important properties (7.13), (7.14)
concerning the asymptotics of the irreducible parts in the coupling constant were
proved. The methods of calculation of IN were discussed in Sect. 1 and in Sect. 7,
which is especially simple. By means of these methods IN can be easily calculated for
small N for example, lo = Ix = 0

The irreducible part / 3 is equal to

y-\XP2) - 1]. (8.13)

The sum here is taken over all the permutations of λ1, λ2, λ3. The Fourier coefficient
stf\ is equal to

%(ΐ^) fe fek^ <8l4)
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It should be noted that the properties presented in this section permit us to
restore the mean value < Q\ ) N in terms of the irreducible parts Ik /c ̂  N [11]. Let us
remind the reader that for the NS-model r(λ) = exp{ — iλL) *f(Λ) = exp{ — iλx]
m(λ) = exp{ - iλy) z(λ) = L x(λ) = x; y(λ) = y = L- x.

9. Conclusion

So we have demonstrated that the two-site generalized model permits a formulation
of the problem of calculation of correlation functions of currents in the frame of
QISM. It should be emphasized that our approach can be applied to the calculation
of any correlation function. To do this one has to use the generalized model with
more than two sites. For example, one can calculate the field correlator <( ιlf(x)ψ +(y))
in the NS-model by means of a 4-site generalized model, representing the
monodromy matrix in the form T(λ) = T2(λ)Lx(λ)Tι(λ)Ly(λ) (compare with (2.5)).
Here L(λ) is the local L-operator for the NS-model [1]. The correlation function of
currents is special in two aspects. It is connected with the simplest two-site model,
and its irreducible parts are small in the strong coupling limit (7.13) (for the field
correlator this is not the case).

In our paper we considered the XXX case only. It should be mentioned that the
generalization to the XXZ-case is quite obvious. So this approach gives the
opportunity to calculate the correlation function for the XXZ Heisenberg model and
for the sine-Gordon model.

Appendix A

Let us consider the state

Here all λj are independent and s.t.e. (2.12) is not supposed*to be satisfied. By means
of the formula

E(λ) = iA2(λ)id2(λ)-}n,{λ) + iD^λyd^λ^n.iλi (A.2)

we present this state in terms of states f^[O1(A)|0> and f}B2(A)|0>. The generali-
zation of standard arguments of QISM [1, 18] shows that

2α//)YΠiα/) (A3)

Here the sum is taken over all the partitions of the set {λ}N into two disjoint subsets

Mm a n d {λii)n2 c a r d μ j ^ - nt card{/L/7}n2 = n2 and nt + n2 = cardμ}^ = N.

Product Y\Y\ is an independent product over all λe{λj} and λe{λπ}, and thus
/ //

contains n1n2 factors.
Formula (A.3) permits us to calculate the action of operator e x p j α Q j on state

(A.I):
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x MΛr)/<AΛ/) T̂ W//) Π ^ / ) |0> (A 4)
\ X X X X J. ^ ^ A • * - * / \ X X ^ ' j * - * / l X X A v *>̂  I I / I J L V . T I

\ i a J\II J\ i } V }

Similar representation can be obtained for the state

H
/ //

Combining these two formulae one gets representation (2.19).
It is remarkable that representation (A.3) permits us to find eigenfunctions and

eigenvalues of the translation operator O which is defined for the two-site model as
follows (see (2.5), (2.1)):

1 = Tx(λ)T2(λ) = T(λ) = (J^\ *^J (A.6)

Notice that O is a scalar quantum operator and O|0 > = |0 >. Vacuum eigenvalues of
matrix T(λ) are the same a(λ) and d(λ) as the ones of matrix T(λ) (2.8). Let us consider
the state

o Π BO*/)|0> = Π β (
7 = 1

= O | ^ α i . . . A N ) > . (A.7)

If momenta 1. satisfy s.t.e. (2.12) it is the eigenstate \φN(λ1.. .λN)} of the trace
τ(X) = A(λ) -h D(X) of matrix T(λ) with the same eigenvalue (2.14) as the state
ιj/N(λί ...λN)} (2.10) is an eigenstate of τ(λ) = A(λ) + D(λ). The state I ^ ^ . - . A ^ ) )
also can be represented in the form (A.3). By means of s.t.e. (2.12) one can see that the
states (2.10) and (A.7) are proportional

\φN(λt ...**)> = k^φ^λ,.. .λN)>; (A.8)

7 = 1

iV iV

One can easily show also that if J~] B(>lJ)|0> = Const Π B(^)|0>, then the s.t.e.
J = l J = l

(2.12) is valid and Const is given by (A.9). It is also true that

with just the same kN. The generalization for an AΓ-site model is also quite obvious.
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Appendix B

Consider first the proof of structure in t (5.1). The main points of the proof are as
follows:

(i) It is obvious from (3.2), (2.19) that the dependence of F on each individual ί(λ.)
is of the form Fa

N = s//(λj) + ύdj + # / " \ λ ), where si.,βi.,<g. do not depend on
f(λj). Hence one can write

n^ΣΠ^Π^^-^Cpart), (B.I)
part( + ) ( - )

where the sum is over all the partitions of set {λB}N

u {λ^} into disjoint sets

+ } B + U } o

(ii) Using the fact that K-matrix (2.3) commutes with matrix ε®ε, where

f 0

o n e c a n s h o w t h a t FU{λ*}9{λ*}9{ε-2η}9{ε-2η}) = F % { { λ % { λ » j j

Noting that £fc are independent variables, one then obtains that in (B.I) card{/l+}
= card{/l_}, i.e. n+ =n_.

(iii) Considering monodromy matrix T(λ) (A.6) and using formulae (A.8), (A. 10)
for eigenfunctions one comes to the relation

(B.2)
3=1

Based on this relation it is easy to prove that in (B.I) set {λ + } contains only λc's and
set {λ_} contains only λB's. Thus representation (5.1) for F^ is proved.

Turn now to the proof of (5.3) which is straightforward but rather lengthy. So we
mention only the main points. The idea is to prove (5.3) using induction in N.

(i) For N = 1 the validity of (5.3) is established by direct calculation.
(ii) It is easy to prove that rational function UN (5.2) is a symmetrical function of

all λ entering set {λc

pr} as well as {λpr},{λ^b},{λB

b} (separately). So the symmetry
properties of the left-hand side of (5.3) under replacement of Xs are the same as of the
right hand side.

(iii) Equation (2.19) and properties of scalar products discussed in detail in [4]
permit us to establish the structure of singularities of rational function UN (5.2). One
can easily see that the only possible singularities of this function are first order poles
of the following two kinds, (a) Poles at λj — λk = 0 where λj,λk is any pairs of λ
belonging to the set {λ8}^ {λc}N. (b) Poles at f(λf9λξ) = 0 or f(λc

j9λ$ = 0 which
could occur due to (4.13). However, not all these poles really do occur. Residues at
first order poles corresponding to :

iC _ iC iC _ iC . iδ _ iβ . β _ }B
Λab,j — Aab,k •> Apr,j " " Apr,k ' Aab,j ~ A

ab,k' Apr,j ~~ Apr,k

are equal to zero due to the symmetry property (ii). Residues at all the poles of the

kind (b) also appear to be zero which can be shown using Eqs. (A.7), (A.8) of paper

[4].
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So one comes to the statement that the only singularities of the left-hand side of
(5.3) are the first-order poles at λ^rJ = λ^by,λ^j = λξby,λ^rJ = λ^y,λ^btJ = λ^k.
Thus the singularities of the left-hand side of (5.3) are the same as of the right-hand
side.

(iv) The most subtle point is to prove that UN (5.2) has zeros at f{λc

pr,λ
c

ah) = 0
and f(λB

b,λpr) = 0. It can be done using formula (B.2). The form factor at the
right-hand side is easily seen to be equal to ( i ^ l e x p j α Q j l ^ ) = exp{aN} x
(φx\Qxp{ — (xQ2}\ψB} = Qxp{oιN}Fΰa({λc},{λB},{mc},{mB}). Here Q 2 is a
number of particle operator at the second site of the lattice (2.17) and m(λ)
is defined in (2.9). The representation of the kind (5.1) for F ^ α is valid. It should be
noted that nίs and not /'s enter this representation. Using s.t.e. (4.13) one can,
however, return to Γs. Comparing now both sides of (B.2) one can see that U indeed
has the required zeros and

// c i . hci \
rπ> / Vιpr)n •> \/ιab)N-n

N\ n B x • I Ί B X
\\Apr)n> \AabΪN-n/

\Aab)N~npr ab

The only singularities of rational function &N are first order poles at λB

rj = λc

prk and
Aab j = λ^bk ft a ^ s o decreases as l/λ in each λ at other λ's fixed.

(v) Now the proof of (5.3) can be done by induction in N, assuming that it is valid
for N S M. The proof of its validity for N = M + 1 may be done by comparison of
the residues of both sides at λB

rj = λc

prk and λB

bj = λc

abk using (4.17), (5.5). The
residues appear to be equal which is sufficient for the proof of (5.3).

Formula (5.3) shows that

£}.; {0V
Jpr)n J I *-

(i.e. {λc

ab) = {λB

b} = 0 , where 0 i s an empty set). This is the best way to introduce the

function σ£ and to prove all its properties.

Appendix C

Let us prove Eq. (7.7). Consider matrix element M% (4.1) in special case £c. = £B = £.

and πή = mB = m . It can be represented in the form:

N\\A )ΛA J>i*j -ϋj)λ{j ~ljh\mj -mjhlmj -mj))

= Σ Π«w Π ^ , Wart). (CD
part \ pr / \ pr J

Coefficient JΓ here depends on a partition and it is a rational function of λ?,
λB(j = 1,... ,N). According to the definition (7.3)

IN= lim MJX^M^ + ̂ K ^ ^ M ^ M w ^ c - ^ Π / j i l (C 2)
ε^o \jψk 1

where one has to put m = ίjι Y\(fkj/fjk) ^ue to (2.12). On the other hand, form
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factor (4.16) is expressed in terms of fVÔ  (4.1) as follows:

F% = M%({λc},{λBWcWBUm%{mB}), (C.3)

where one has to put nή =(tf^)~1 Π (/£///;*) a n d m1 = OΦ~* Π (fϊj/fβ)' τ h e

limit (7.7) is easily seen to lead exactly to expression (C.2).

Appendix D

Let us consider the two-site model in the trivial situation where

which corresponds to tf(λ) = 1. Such 7\(A) satisfies all the requirements to be a
monodromy matrix. In this case B1(λ) = 0, which means that Qί Y\ B(λj)\0 > = 0, and
hence < ψN(λί.. .λN)\Ql\ιl/N(λ1 ...λN)} = 0 and IN = 0. In our case £. = 1, but all ^ are

some values satisfying s.t.e. (2.12). Hence IN({λj},{J>

j= 1}) = 0.
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